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On the ring of p-integers of a cyclic p-extension
over a number field

par HUMIO ICHIMURA

RÉSUMÉ. Soit p un nombre premier. On dit qu’une extension
finie, galoisienne, N/F d’un corps de nombres F, à groupe de
Galois G, admet une base normale p-entiere (p-NIB en abrégé) si
O’N est libre de rang un sur l’anneau de groupe O’F[G] où O’F =
O’F[1/p] désigne l’anneau des p-entiers de F. Soit m = pe une
puissance de p et N/F une extension cyclique de degré m. Lorsque
03B6m ~ F  , nous donnons une condition nécessaire et suffisante pour
que N/F admette une p-NIB (Théorème 3). Lorsque 03B6m ~- F  et

p ~ [F(03B6m) : F], nous montrons que N/F admet une p-NIB si et
seulement si N(03B6m)/F(03B6m) admet p-NIB (Théorème 1). Enfin, si
p divise [F(03B6m): F], nous montrons que la propriété de descente
n’est plus vraie en général (Théorème 2).

ABSTRACT. Let p be a prime number. A finite Galois extension
N/F of a number field F with group G has a normal p-integral
basis (p-NIB for short) when O’N is free of rank one over the

group ring O’F[G]. Here, O’F = OF[1/p] is the ring of p-integers
of F. Let m = pe be a power of p and N/F a cyclic extension
of degree m. When 03B6m ~ Fx, we give a necessary and sufficient
condition for N/F to have a p-NIB (Theorem 3). When 03B6m ~ F
and p ~ [F(03B6m) : F], we show that N/F has a p-NIB if and only if
N(03B6m)/F(03B6m) has a p-NIB (Theorem 1). When p divides [F(03B6m) :
F], we show that this descent property does not hold in general
(Theorem 2).

1. Introduction

We fix a prime number p throughout this article. For a number field F,
let (OF be the ring of integers, and 0’ F = the ring of p-integers of
F. A finite Galois extension N/F with group G has a normal integral basis
(NIB for short) when ON is free of rank one over the group ring OF (G~ . It
has a normal p-integral basis (p-NIB for short) when 0’ N is free of rank one
over C~F (G~ . For a cyclic p-extension N/F unramified outside p, several
results on p-NIB are given in the lecture note of Greither [5]. Let N/F
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be such a cyclic extension of degree m = p’. In particular, it is known

(A) that when (m E FX, it has a p-NIB if and only if N = F(t1/m) for
some unit E of ([5, Proposition 0.6.5]), and (B) that when Çm g F,
it has a p-NIB if and only if the pushed-up extension N((,,)IF((,,) has a
p-NIB ([5, Theorem I.2.1~). Here, ~"z is a fixed primitive m-th root of unity.
These results for the unramified case form a basis of the study of a normal
p-integral basis problem for Zp-extensions in Kersten and Michalicek [12],
[5] and Fleckinger and Nguyen-Quang-Do [2]. The purpose of this article
is to give some corresponding results for the ramified case.

Let m = pe be a power of p, F a number field with (m E FX. In Section
2, we give a necessary and sufficient condition (Theorem 3) for a cyclic
Kummer extension N/F of degree m to have a p-NIB. It is given in terms
of a Kummer generator of N, but rather complicated compared with the
unramified case. We also give an application of this criterion.
When Çm g FX and p t ~F(~,n) : F], we show the following descent

property in Section 3.

Theorem 1. Let m = pe be a power of a prime numbers p, F a number
field with Çm g F" , and K = F((,,). Assume that p t [K : F]. Then, a
cyclic extension N/ F of degree rri has a p-NIB if and only if NK/K has a
p-NIB.

When p divides ~K : F~, this type of descent property does not hold in
general. Actually, we show the following assertion in Section 4. Let Cl%
be the ideal class group of the Dedekind domain 0’ F = 

Theorem 2. Let F be a number field with (p E F’ but ~pz ~ FX, and
K = F((p2). Assume that there exists a class C E CLF of order p which
capitulates in 0’ . Then, there exist infinitely many cyclic extensions N/F
of degree p2 with N n K = F such that (i) N/F has no p-NIB but (ii)
NK/K has a p-NIB.

At the end of Section 4, we see that there are several examples of p and
F satisfying the assumption of Theorem 2.

Remark 1. In Theorem 1, the condition p t ~K : F] means that [K : F]
divides p - 1. Further, p must be an odd prime as p t ~K : F].

Remark 2. As for the descent property of normal integral bases in the
usual sense, the following facts are known at present. Let F be a number
field with Çp g F~, and K = F((p). For a cyclic extension N / F of degree
p unramified at all finite prime divisors, it has a NIB if and only if NK/K
has a NIB. This was first proved by Brinkhuis [1] when p = 3 and F is an
imaginary quadratic field, and then by the author [7] for the general case.
When p = 3, for a tame cyclic cubic extension N/F,it has a NIB if and
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only if has a NIB. This was first proved by Greither [6, Theorem
2.2] when p = 3 is unramified in F /Q, and then by the author [9] for the
general case.

2. A condition for having a p-NIB

In [4, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condi-
tion for a tame Kummer extension of prime degree to have a NIB (in the
usual sense) . In [8, Theorem 2], we generalized it for a tame cyclic Kummer
extension of arbitrary degree. The following is a p-integer version of these
results. Let m = pe be a power of a prime number p, and F a number field.
Let 2{ be an m-th power free integral ideal of Namely, for all

prime ideals p of We can uniquely write

for some square free integral ideals 31 of O i relatively prime to each other.
As in [4, 8], we define the associated ideals j of Ql as follows.

,m _ , 1

Here, for a real number x, ~x~ denotes the largest integer  ~. By definition,
we have 0153o = 01531 = O’p,.
Theorem 3. Let m = pe be a power of a prime nurreber p, and F a number
field with (m E F. Then, a cyclic Kummer extension N/F of degree m
has a p-NIB if and only if there exist an E O’p, with N = F(a1/m)
such that (i) the principal integral ideal is m-th power frce and (ii) the
ideals associated to (1) are principal.
The proof of this theorem goes through exactly similarly to the proof of

[8, Theorem 2]. So, we do not give its proof. (In the setting of this theorem,
the conditions (iv) and (v) in [8, Theorem 2] are not necessary as m is a
unit of C~F-.)

It is easy to see that the assertion (A) mentioned in Section 1 follows
from this theorem. The following is an immediate consequence of Theorem
3.

Corollary 1. Let m and F be as in Theorem 3. Let a E O’p, be an integer
such that the principal integral ideal is square free. Then, the cyclic
extension F(a1/m)/ F has a p-NIB.

Let HF be the Hilbert class field of F. The p-Hilbert class field HF of F
is by definition the maximal intermediate field of HF/F in which all prime
ideals of over p split completely. Let ClF be the ideal class group of
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F in the usual sense, and P the subgroup of ClF generated by the classes
containing a prime ideal over p. Then, we naturally have 
Hence, by class field theory, ClF is canonically isomorphic to Gal(HF/F).
It is known that any ideal of O i capitulates in This is shown exactly
similarly to the classical principal ideal theorem for given in Koch
[13, pp. 103-104]. Now, we can derive the following "capitulation" result
from Theorem 3.

Corollary 2. Let m and F be as in Theorem 3. Then, for any abelian
extension N/F of exponent dividing m, the pushed-up extension NHF/HF
has a p-NIB. In particular, if hF = I = 1, any abelian extension N/F
of exponent dividing m has a 

Proof. For brevity, we write H = HF. For each prime ideal £ of 0’ , we
can choose an integer E 0’ H such that £09 = by the principal
ideal theorem mentioned above. Let E 1, ~ ~ ~ , Er be a system of fundamental
units of 09, and ( a generator of the group of roots of unity in H. Let

N/F be an arbitrary abelian extension of exponent dividing m. Then, we
have

for some ai E Oi. We see that NH is contained in

Here, ,~ runs over the prime ideals of 0’ F dividing al ~ ~ ~ as. As H/F is
unramified, the principal ideal = o£09 is square free. Hence, by
Corollary 1, the extensions

have a p-NIB. As the ideal = square free, the extension

fully ramified at the primes dividing and unramified at
other prime ideals of 09. Therefore, we see from the choice of ( and Ei
that the extensions in (2) are linearly independent over H and that the
ideal generated by the relative discriminants of any two of them equals
0’ - Therefore, the composite has a p-NIB by a classical theorem on
rings of integers (cf. Frohlich and Taylor [3, III (2.13)]). Hence, NH/H
has a as NH C N. D

Remark 3. For the ring of integers in the usual sense, a result correspond-
ing to this corollary is obtained in [8, Theorem 1].

3. Proof of Theorem 1

The "only if part follows immediately from [3, III, (2.13)].
Let us show the "if ’ part. Let m = pe, F, K be as in Theorem 1. Here,
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p is an odd prime number (see Remark 1). Let N/F be a cyclic extension
of degree m, L = NK, and G = Gal(L/K) = Gal(N/F). Assume that

(~I - for some c,~ E 0’ . L To prove that N~F has a p-NIB, it

suffices to show that we can choose W E 0’ N such that 0’ L = 0’ K [G] - W.
Actually, when this is the case, we easily see that 0’ F [G] - W. Let
AF = Gal(L/N) = Gal(K/F) and £ = (&#x3E; 2). As p ~ ~K : F], £ divides
p - 1 (see Remark 1). We fix a primitive m-th root of unity: ( = (~. Let
a be a fixed generator of the cyclic group AF of order P, and let K E Z be
an integer with (’ = (~, which is uniquely determined modulo m. For an
integer x E Z, let be the class in Z/pf = 7G/pf7G represented by x. For
1 ~ f  e, the class in the multiplicative group is of order f.
We put

For each 1  f  e, we choose integers r~i,’-’ E Z so that their

classes modulo pf form a complete set of representatives of the quotient
Then, we have

For brevity, we put

Fixing a generator g of G, we define the resolvents ao and of cv by

for each 1  f  e, 1  i C t f and 1  j  R. By (3), we see that the
determinant of the m x m matrix of the coefficients of in the above m

equalities is divisible only by prime ideals of OK dividing p. Hence, it is a
unit of Therefore, from the assumption 0’ = C~K ~G~ ~ cv, we obtain

Let 0’ L (0) = and let C~L ~f’2’~ ~ be the additive group of integers x E 0’ L
such that xg = As ~~ _ ~’~, we see that

As is easily seen, we have ao E 0’ and 0; f,i,j E From 

C9 1Gl . W, we see that 
K ’ ’ L L
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Here, the last equality holds by (5). Therefore, from (4), we obtain

Now, we put

Here, TrL~N denotes the trace map. As we have

for 0  A  m - 1. We see that the determinant of the m x m matrix of
the coefficients of 

1 

in the above m equalities is a unit of 0’ . Hence,f,2,1 I

by (6), we obtain 0= 0’ [G] - W . Therefore, as W E N/F has a
p-NIB . 0

4. Proof of Theorem 2

Let F, K be as in Theorem 2, and OF = Gal(K/F). As (p E F X , we can
choose a generator a of the cyclic group AF of order p so that (a2 = p p
with r, = 3 or 1 + p according to whether p = 2 or p &#x3E; 3. When p &#x3E; 3, we
put

2=0

The following lemma is an exercise in Galois theory.
Lemma. Under the above setting, let x be a nonzero elerrzent of K. We

put

Let L = Assume Then, L/F is an abelian
extension of type (p, ~2). Hence, there exists a cyclic extension N/F of
degree N r1.K = F and L = NK.

Proof of Theorem 2. Let C be as in Theorem 2, and 11 a prime ideal of
Oi contained in C. By the assumption of Theorem 2, is a

principal ideal. Let 93 = be an arbitrary principal prime ideal of 0’ K
of degree one in K/F relatively prime to £l, and let q3n Oh. Then, p
is a prime ideal of 0’ F splitting completely in K. Let x = and define
an integer a by (7). As = is invariant under the action of a, we
have



785

according to whether p = 2 or p &#x3E; 3. Here,

For p &#x3E; 3, since r,’ -= 1 + ip, T - p mod p2, the last term equals

for some X E 0~. We may as well replace a with a/04 (resp. for

p = 2 (resp. p &#x3E; 3). Then, it follows that

according to whether p = 2 or p &#x3E; 3. In particular, we see that a g (K’)P
as p splits completely in K and q3 = aO£ is a prime ideal of 0’ K over p.
Then, by the lemma, L = K(a1/P2) is of degree p2 over K, and there exists
a cyclic extension N/F of degree p2 with = F and NK = L. We see
from (8) and Theorem 3 that L/K has a pNIB. Let us show that N/F has
no p-NIB. For this, assume that it has a p-NIB. Let Nl be the intermediate
field of N/F of degree p. By the assumption, N1/ F has a p-NIB. We see
from (7) and K - 1 mod p that = K(b1/p) with

As b E 0’ F and (p E it follows that Ni = for some 0 C

s  p - 1. Since xO£ = we have = As N1/F has
a p-NIB, it follows from Theorem 3 that there exists an integer c E C7F
with Ni = F(c1/p) such that cO’ F is p-th power free. Hence, c = 
for some I  r  p - 1 and y E F . We have = pr(y£1r)P. As the
integral ideal coi is p-th power free, we must have = 0’ - This is a
contradiction as the class C containing 0 is of order p. D

We see in the below that there are many examples of p and F satisfying
the assumption of Theorem 2.

Let p = 2. Let ql , q2 be prime numbers with ql - mod 4 and

q2, and let F Then, the imaginary quadratic field F
satisfies the assumption of Theorem 2. The reason is as follows. Let 0 be
the unique prime ideal of over ql. We see that the class C = E

ClF is of order 2 from genus theory. Let K = F( A) = F ( ql q2 ) and
_ ~ ( ql q2 ) ~ By genus theory, the class number of k in the usual sense
is odd. Hence, we have for some integer cx. Therefore,

= and the class C capitulates in 0’ K*
Let us deal with the case p &#x3E; 3. Let p be an odd prime number, k a real

quadratic field in which p remains prime, F = ~(~p), and K = F((p2). Let
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B1/Q be the unique cyclic extension of degree p unramified outside p, and
ki = Clearly, we have K = FBI. In the tables in Sumida and the
author [10, 11~, we gave many examples of p and k having an ideal class
C E Clk which is of order p and capitulates in (More precisely, real
quadratic fields in the rows "no = 0" and "no = I" of the tables satisfy the
condition.) For such a class C, the lift CF E ClF to F is of order p and it
capitulates in K. As p remains prime in k, there is only one prime ideal of
F (resp. K) over p, and it is a principal ideal. Hence, we have ClF = Cli
and ClK = CIK. Thus, we obtain many examples of p &#x3E; 3 and F satisfying
the assumption of Theorem 2.
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