On the ring of p-integers of a cyclic p-extension over a number field

par Humio ICHIMURA

RÉSUMÉ. Soit p un nombre premier. On dit qu'une extension finie, galoisienne, N/F d'un corps de nombres F, à groupe de Galois G, admet une base normale p-entière (p-NIB en abrégé) si \mathcal{O}'_N est libre de rang un sur l'anneau de groupe $\mathcal{O}'_F[G]$ où $\mathcal{O}'_F = \mathcal{O}_F[1/p]$ désigne l'anneau des p-entiers de F. Soit $m=p^e$ une puissance de p et N/F une extension cyclique de degré m. Lorsque $\zeta_m \in F^\times$, nous donnons une condition nécessaire et suffisante pour que N/F admette une p-NIB (Théorème 3). Lorsque $\zeta_m \notin F^\times$ et $p \nmid [F(\zeta_m) : F]$, nous montrons que N/F admet une p-NIB si et seulement si $N(\zeta_m)/F(\zeta_m)$ admet p-NIB (Théorème 1). Enfin, si p divise $[F(\zeta_m) : F]$, nous montrons que la propriété de descente n'est plus vraie en général (Théorème 2).

ABSTRACT. Let p be a prime number. A finite Galois extension N/F of a number field F with group G has a normal p-integral basis (p-NIB for short) when \mathcal{O}'_N is free of rank one over the group ring $\mathcal{O}'_F[G]$. Here, $\mathcal{O}'_F = \mathcal{O}_F[1/p]$ is the ring of p-integers of F. Let $m = p^e$ be a power of p and N/F a cyclic extension of degree m. When $\zeta_m \in F^\times$, we give a necessary and sufficient condition for N/F to have a p-NIB (Theorem 3). When $\zeta_m \notin F^\times$ and $p \nmid [F(\zeta_m) : F]$, we show that N/F has a p-NIB if and only if $N(\zeta_m)/F(\zeta_m)$ has a p-NIB (Theorem 1). When p divides $[F(\zeta_m) : F]$, we show that this descent property does not hold in general (Theorem 2).

1. Introduction

We fix a prime number p throughout this article. For a number field F, let \mathcal{O}_F be the ring of integers, and $\mathcal{O}_F' = \mathcal{O}_F[1/p]$ the ring of p-integers of F. A finite Galois extension N/F with group G has a normal integral basis (NIB for short) when \mathcal{O}_N is free of rank one over the group ring $\mathcal{O}_F[G]$. It has a normal p-integral basis (p-NIB for short) when \mathcal{O}_N' is free of rank one over $\mathcal{O}_F'[G]$. For a cyclic p-extension N/F unramified outside p, several results on p-NIB are given in the lecture note of Greither [5]. Let N/F

be such a cyclic extension of degree $m=p^e$. In particular, it is known (A) that when $\zeta_m \in F^{\times}$, it has a p-NIB if and only if $N=F(\epsilon^{1/m})$ for some unit ϵ of \mathcal{O}_F' ([5, Proposition 0.6.5]), and (B) that when $\zeta_m \notin F^{\times}$, it has a p-NIB if and only if the pushed-up extension $N(\zeta_m)/F(\zeta_m)$ has a p-NIB ([5, Theorem I.2.1]). Here, ζ_m is a fixed primitive m-th root of unity. These results for the unramified case form a basis of the study of a normal p-integral basis problem for \mathbb{Z}_p -extensions in Kersten and Michalicek [12], [5] and Fleckinger and Nguyen-Quang-Do [2]. The purpose of this article is to give some corresponding results for the ramified case.

Let $m = p^e$ be a power of p, F a number field with $\zeta_m \in F^{\times}$. In Section 2, we give a necessary and sufficient condition (Theorem 3) for a cyclic Kummer extension N/F of degree m to have a p-NIB. It is given in terms of a Kummer generator of N, but rather complicated compared with the unramified case. We also give an application of this criterion.

When $\zeta_m \notin F^{\times}$ and $p \nmid [F(\zeta_m) : F]$, we show the following descent property in Section 3.

Theorem 1. Let $m = p^e$ be a power of a prime number p, F a number field with $\zeta_m \notin F^{\times}$, and $K = F(\zeta_m)$. Assume that $p \nmid [K : F]$. Then, a cyclic extension N/F of degree m has a p-NIB if and only if NK/K has a p-NIB.

When p divides [K:F], this type of descent property does not hold in general. Actually, we show the following assertion in Section 4. Let Cl'_F be the ideal class group of the Dedekind domain $\mathcal{O}'_F = \mathcal{O}_F[1/p]$.

Theorem 2. Let F be a number field with $\zeta_p \in F^{\times}$ but $\zeta_{p^2} \notin F^{\times}$, and $K = F(\zeta_{p^2})$. Assume that there exists a class $C \in Cl_F'$ of order p which capitulates in \mathcal{O}_K' . Then, there exist infinitely many cyclic extensions N/F of degree p^2 with $N \cap K = F$ such that (i) N/F has no p-NIB but (ii) NK/K has a p-NIB.

At the end of Section 4, we see that there are several examples of p and F satisfying the assumption of Theorem 2.

Remark 1. In Theorem 1, the condition $p \nmid [K : F]$ means that [K : F] divides p-1. Further, p must be an odd prime as $p \nmid [K : F]$.

Remark 2. As for the descent property of normal integral bases in the usual sense, the following facts are known at present. Let F be a number field with $\zeta_p \notin F^{\times}$, and $K = F(\zeta_p)$. For a cyclic extension N/F of degree p unramified at all finite prime divisors, it has a NIB if and only if NK/K has a NIB. This was first proved by Brinkhuis [1] when p = 3 and F is an imaginary quadratic field, and then by the author [7] for the general case. When p = 3, for a tame cyclic cubic extension N/F, it has a NIB if and

only if NK/K has a NIB. This was first proved by Greither [6, Theorem 2.2] when p=3 is unramified in F/\mathbb{Q} , and then by the author [9] for the general case.

2. A condition for having a p-NIB

In [4, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB (in the usual sense). In [8, Theorem 2], we generalized it for a tame cyclic Kummer extension of arbitrary degree. The following is a p-integer version of these results. Let $m = p^e$ be a power of a prime number p, and F a number field. Let \mathfrak{A} be an m-th power free integral ideal of \mathcal{O}'_F . Namely, $\wp^m \nmid \mathfrak{A}$ for all prime ideals \wp of \mathcal{O}'_F . We can uniquely write

$$\mathfrak{A} = \prod_{i=1}^{m-1} \mathfrak{A}_i^i$$

for some square free integral ideals \mathfrak{A}_i of \mathcal{O}'_F relatively prime to each other. As in [4, 8], we define the associated ideals \mathfrak{B}_i of \mathfrak{A} as follows.

(1)
$$\mathfrak{B}_{j} = \prod_{i=1}^{m-1} \mathfrak{A}_{i}^{[ij/m]} \quad (0 \leq j \leq m-1).$$

Here, for a real number x, [x] denotes the largest integer $\leq x$. By definition, we have $\mathfrak{B}_0 = \mathfrak{B}_1 = \mathcal{O}'_F$.

Theorem 3. Let $m = p^e$ be a power of a prime number p, and F a number field with $\zeta_m \in F^{\times}$. Then, a cyclic Kummer extension N/F of degree m has a p-NIB if and only if there exists an integer $a \in \mathcal{O}_F'$ with $N = F(a^{1/m})$ such that (i) the principal integral ideal $a\mathcal{O}_F'$ is m-th power free and (ii) the ideals associated to $a\mathcal{O}_F'$ by (1) are principal.

The proof of this theorem goes through exactly similarly to the proof of [8, Theorem 2]. So, we do not give its proof. (In the setting of this theorem, the conditions (iv) and (v) in [8, Theorem 2] are not necessary as m is a unit of \mathcal{O}'_F .)

It is easy to see that the assertion (A) mentioned in Section 1 follows from this theorem. The following is an immediate consequence of Theorem 3.

Corollary 1. Let m and F be as in Theorem 3. Let $a \in \mathcal{O}'_F$ be an integer such that the principal integral ideal $a\mathcal{O}'_F$ is square free. Then, the cyclic extension $F(a^{1/m})/F$ has a p-NIB.

Let H_F be the Hilbert class field of F. The p-Hilbert class field H'_F of F is by definition the maximal intermediate field of H_F/F in which all prime ideals of \mathcal{O}_F over p split completely. Let Cl_F be the ideal class group of

F in the usual sense, and P the subgroup of Cl_F generated by the classes containing a prime ideal over p. Then, we naturally have $Cl_F'\cong Cl_F/P$. Hence, by class field theory, Cl_F' is canonically isomorphic to $Gal(H_F'/F)$. It is known that any ideal of \mathcal{O}_F' capitulates in \mathcal{O}_{H_F}' . This is shown exactly similarly to the classical principal ideal theorem for H_F/F given in Koch [13, pp. 103-104]. Now, we can derive the following "capitulation" result from Theorem 3.

Corollary 2. Let m and F be as in Theorem 3. Then, for any abelian extension N/F of exponent dividing m, the pushed-up extension NH'_F/H'_F has a p-NIB. In particular, if $h'_F = |Cl'_F| = 1$, any abelian extension N/F of exponent dividing m has a p-NIB.

Proof. For brevity, we write $H = H'_F$. For each prime ideal \mathfrak{L} of \mathcal{O}'_F , we can choose an integer $\omega_{\mathfrak{L}} \in \mathcal{O}'_H$ such that $\mathfrak{L}\mathcal{O}'_H = \omega_{\mathfrak{L}}\mathcal{O}'_H$ by the principal ideal theorem mentioned above. Let $\epsilon_1, \dots, \epsilon_r$ be a system of fundamental units of \mathcal{O}'_H , and ζ a generator of the group of roots of unity in H. Let N/F be an arbitrary abelian extension of exponent dividing m. Then, we have

$$N = F(a_1^{1/m}, \cdots, a_s^{1/m})$$

for some $a_i \in \mathcal{O}_F'$. We see that NH is contained in

$$\widetilde{N} = H\left(\zeta^{1/m}, \, \epsilon_i^{1/m}, \, \omega_{\mathfrak{L}}^{1/m} \mid 1 \leq i \leq r, \, \mathfrak{L}|a_1 \cdots a_s\right).$$

Here, \mathfrak{L} runs over the prime ideals of \mathcal{O}'_F dividing $a_1 \cdots a_s$. As H/F is unramified, the principal ideal $\mathfrak{L}\mathcal{O}'_H = \omega_{\mathfrak{L}}\mathcal{O}'_H$ is square free. Hence, by Corollary 1, the extensions

(2)
$$H(\zeta^{1/m})/H$$
, $H(\epsilon_i^{1/m})/H$, $H(\omega_s^{1/m})/H$ with $\mathfrak{L}|a_1\cdots a_s|$

have a p-NIB. As the ideal $\omega_{\mathfrak{L}}\mathcal{O}'_{H} = \mathfrak{L}\mathcal{O}'_{H}$ is square free, the extension $H(\omega_{\mathfrak{L}}^{1/m})/H$ is fully ramified at the primes dividing \mathfrak{L} and unramified at other prime ideals of \mathcal{O}'_{H} . Therefore, we see from the choice of ζ and ϵ_{i} that the extensions in (2) are linearly independent over H and that the ideal generated by the relative discriminants of any two of them equals \mathcal{O}'_{H} . Therefore, the composite \widetilde{N}/H has a p-NIB by a classical theorem on rings of integers (cf. Fröhlich and Taylor [3, III (2.13)]). Hence, NH/H has a p-NIB as $NH \subseteq \widetilde{N}$.

Remark 3. For the ring of integers in the usual sense, a result corresponding to this corollary is obtained in [8, Theorem 1].

3. Proof of Theorem 1

The "only if" part follows immediately from [3, III, (2.13)]. Let us show the "if" part. Let $m = p^e$, F, K be as in Theorem 1. Here,

p is an odd prime number (see Remark 1). Let N/F be a cyclic extension of degree m, L=NK, and $G=\operatorname{Gal}(L/K)=\operatorname{Gal}(N/F)$. Assume that $\mathcal{O}'_L=\mathcal{O}'_K[G]\cdot\omega$ for some $\omega\in\mathcal{O}'_L$. To prove that N/F has a p-NIB, it suffices to show that we can choose $W\in\mathcal{O}'_N$ such that $\mathcal{O}'_L=\mathcal{O}'_K[G]\cdot W$. Actually, when this is the case, we easily see that $\mathcal{O}'_N=\mathcal{O}'_F[G]\cdot W$. Let $\Delta_F=\operatorname{Gal}(L/N)=\operatorname{Gal}(K/F)$ and $\ell=|\Delta_F|\ (\geq 2)$. As $p\nmid [K:F]$, ℓ divides p-1 (see Remark 1). We fix a primitive m-th root of unity: $\zeta=\zeta_m$. Let σ be a fixed generator of the cyclic group Δ_F of order ℓ , and let $\kappa\in\mathbb{Z}$ be an integer with $\zeta^\sigma=\zeta^\kappa$, which is uniquely determined modulo m. For an integer $x\in\mathbb{Z}$, let $[x]_{p^f}$ be the class in $\mathbb{Z}/p^f=\mathbb{Z}/p^f\mathbb{Z}$ represented by x. For $1\leq f\leq e$, the class $[\kappa]_{p^f}$ in the multiplicative group $(\mathbb{Z}/p^f)^\times$ is of order ℓ . We put

$$t_f = p^{f-1}(p-1)/\ell \ (\in \mathbb{Z}).$$

For each $1 \leq f \leq e$, we choose integers $r_{f,1}, \dots, r_{f,t_f} \in \mathbb{Z}$ so that their classes modulo p^f form a complete set of representatives of the quotient $(\mathbb{Z}/p^f)^{\times}/\langle [\kappa]_{p^f} \rangle$. Then, we have

(3)
$$\{[0]_m, [p^{e-f}r_{f,i}\kappa^{j-1}]_m \mid 1 \le f \le e, 1 \le i \le t_f, 1 \le j \le \ell\} = \mathbb{Z}/m.$$

For brevity, we put

$$a(f, i, j) = p^{e-f} r_{f,i} \kappa^{j-1}.$$

Fixing a generator g of G, we define the resolvents α_0 and $\alpha_{f,i,j}$ of ω by

$$\alpha_0 = \sum_{\lambda=0}^{m-1} \omega^{g^{\lambda}}$$
 and $\alpha_{f,i,j} = \sum_{\lambda=0}^{m-1} \zeta^{-a(f,i,j)\lambda} \omega^{g^{\lambda}},$

for each $1 \leq f \leq e$, $1 \leq i \leq t_f$ and $1 \leq j \leq \ell$. By (3), we see that the determinant of the $m \times m$ matrix of the coefficients of $\omega^{g^{\lambda}}$ in the above m equalities is divisible only by prime ideals of \mathcal{O}_K dividing p. Hence, it is a unit of \mathcal{O}_K' . Therefore, from the assumption $\mathcal{O}_L' = \mathcal{O}_K'[G] \cdot \omega$, we obtain

(4)
$$\mathcal{O}'_{L} = \mathcal{O}'_{K}\alpha_{0} + \sum_{f,i,j} \mathcal{O}'_{K}\alpha_{f,i,j}.$$

Let $\mathcal{O}_L^{\prime}{}^{(0)} = \mathcal{O}_K^{\prime}$, and let $\mathcal{O}_L^{\prime}{}^{(f,i,j)}$ be the additive group of integers $x \in \mathcal{O}_L^{\prime}$ such that $x^g = \zeta^{a(f,i,j)}x$. As $\zeta^{\sigma} = \zeta^{\kappa}$, we see that

(5)
$$\mathcal{O}'_{L}^{(f,i,j)} = (\mathcal{O}'_{L}^{(f,i,1)})^{\sigma^{j-1}}.$$

As is easily seen, we have $\alpha_0 \in \mathcal{O}_K'$ and $\alpha_{f,i,j} \in \mathcal{O}_L'^{(f,i,j)}$. From $\mathcal{O}_L' = \mathcal{O}_K'[G] \cdot \omega$, we see that

$$\mathcal{O}_{L}^{\prime(0)} = \mathcal{O}_{K}^{\prime} = \mathcal{O}_{K}^{\prime} \alpha_{0}$$
 and $\mathcal{O}_{L}^{\prime(f,i,j)} = \mathcal{O}_{K}^{\prime} \alpha_{f,i,j} = \mathcal{O}_{K}^{\prime} \alpha_{f,i,1}^{\sigma^{j-1}}$.

Here, the last equality holds by (5). Therefore, from (4), we obtain

(6)
$$\mathcal{O}'_L = \mathcal{O}'_K + \sum_{f,i,j} \mathcal{O}'_K \alpha_{f,i,1}^{\sigma^{j-1}}.$$

Now, we put

$$W = 1 + \sum_{f,i,j} \alpha_{f,i,1}^{\sigma^{j-1}} = 1 + \sum_{f,i} \operatorname{Tr}_{L/N}(\alpha_{f,i,1}) \in \mathcal{O}'_{N}.$$

Here, $\operatorname{Tr}_{L/N}$ denotes the trace map. As $\alpha_{f,i,1}^{\sigma^{j-1}} \in \mathcal{O}_L^{\prime}(f,i,j)$, we have

$$W^{g^{\lambda}} = 1 + \sum_{f,i,j} \zeta^{a(f,i,j)\lambda} \alpha_{f,i,1}^{\sigma^{j-1}}$$

for $0 \le \lambda \le m-1$. We see that the determinant of the $m \times m$ matrix of the coefficients of $\alpha_{f,i,1}^{\sigma^{j-1}}$ in the above m equalities is a unit of \mathcal{O}'_K . Hence, by (6), we obtain $\mathcal{O}'_L = \mathcal{O}'_K[G] \cdot W$. Therefore, as $W \in \mathcal{O}'_N$, N/F has a p-NIB.

4. Proof of Theorem 2

Let F, K be as in Theorem 2, and $\Delta_F = \operatorname{Gal}(K/F)$. As $\zeta_p \in F^{\times}$, we can choose a generator σ of the cyclic group Δ_F of order p so that $\zeta_{p^2}^{\sigma} = \zeta_{p^2}^{\kappa}$ with $\kappa = 3$ or 1 + p according to whether p = 2 or $p \geq 3$. When $p \geq 3$, we put

$$D = \sum_{i=0}^{p-1} \kappa^i \sigma^{p-1-i} \ (\in \mathbb{Z}[\Delta_F]).$$

The following lemma is an exercise in Galois theory.

Lemma. Under the above setting, let x be a nonzero element of K. We put

(7)
$$a = \begin{cases} xx^{3\sigma}, & \text{for } p = 2, \\ x^{D} = x^{\sigma^{p-1}}x^{\kappa\sigma^{p-2}} \cdots x^{\kappa^{p-2}\sigma}x^{\kappa^{p-1}}, & \text{for } p \ge 3. \end{cases}$$

Let $L = K(a^{1/p^2})$. Assume that $a \notin (K^{\times})^p$. Then, L/F is an abelian extension of type (p, p^2) . Hence, there exists a cyclic extension N/F of degree p^2 with $N \cap K = F$ and L = NK.

Proof of Theorem 2. Let \mathcal{C} be as in Theorem 2, and \mathfrak{Q} a prime ideal of \mathcal{O}_F' contained in \mathcal{C} . By the assumption of Theorem 2, $\mathfrak{Q}\mathcal{O}_K' = \beta\mathcal{O}_K'$ is a principal ideal. Let $\mathfrak{P} = \alpha\mathcal{O}_K'$ be an arbitrary principal prime ideal of \mathcal{O}_K' of degree one in K/F relatively prime to \mathfrak{Q} , and let $\wp = \mathfrak{P} \cap \mathcal{O}_F'$. Then, \wp is a prime ideal of \mathcal{O}_F' splitting completely in K. Let $x = \alpha\beta$, and define an integer a by (7). As $\mathfrak{Q}\mathcal{O}_K' = \beta\mathcal{O}_K'$ is invariant under the action of σ , we have

$$a\mathcal{O}_K' = \alpha \alpha^{3\sigma} \beta^4 \mathcal{O}_K'$$
 or $\alpha^{\sigma^{p-1}} \alpha^{\sigma^{p-2} \kappa} \cdots \alpha^{\sigma \kappa^{p-2}} \alpha^{\kappa^{p-1}} \beta^T \mathcal{O}_K'$

according to whether p=2 or $p\geq 3$. Here,

$$T = 1 + \kappa + \dots + \kappa^{p-1}.$$

For $p \geq 3$, since $\kappa^i \equiv 1 + ip$, $T \equiv p \mod p^2$, the last term equals

$$\prod_{i=0}^{p-1} \alpha^{\sigma^{p-1-i}(1+ip)} \beta^p X^{p^2} \mathcal{O}_K'$$

for some $X \in \mathcal{O}'_K$. We may as well replace a with a/β^4 (resp. a/X^{p^2}) for p=2 (resp. $p\geq 3$). Then, it follows that

(8)
$$a\mathcal{O}_K' = \alpha \alpha^{3\sigma} \mathcal{O}_K' \quad \text{or} \quad \prod_{i=0}^{p-1} \alpha^{\sigma^{p-1-i}(1+ip)} \beta^p \mathcal{O}_K'$$

according to whether p=2 or $p\geq 3$. In particular, we see that $a\not\in (K^\times)^p$ as \wp splits completely in K and $\mathfrak{P}=\alpha\mathcal{O}_K'$ is a prime ideal of \mathcal{O}_K' over \wp . Then, by the lemma, $L=K(a^{1/p^2})$ is of degree p^2 over K, and there exists a cyclic extension N/F of degree p^2 with $N\cap K=F$ and NK=L. We see from (8) and Theorem 3 that L/K has a p-NIB. Let us show that N/F has no p-NIB. For this, assume that it has a p-NIB. Let N_1 be the intermediate field of N/F of degree p. By the assumption, N_1/F has a p-NIB. We see from (7) and $\kappa\equiv 1$ mod p that $N_1K=K(b^{1/p})$ with

$$b = xx^{\sigma} \cdots x^{\sigma^{p-1}}.$$

As $b \in \mathcal{O}_F'$ and $\zeta_p \in F^{\times}$, it follows that $N_1 = F((\zeta_p^s b)^{1/p})$ for some $0 \le s \le p-1$. Since $x\mathcal{O}_K' = \mathfrak{PQO}_K'$, we have $b\mathcal{O}_F' = \wp \mathfrak{Q}^p$. As N_1/F has a p-NIB, it follows from Theorem 3 that there exists an integer $c \in \mathcal{O}_F'$ with $N_1 = F(c^{1/p})$ such that $c\mathcal{O}_F'$ is p-th power free. Hence, $c = (\zeta_p^s b)^r y^p$ for some $1 \le r \le p-1$ and $y \in F^{\times}$. We have $c\mathcal{O}_F' = \wp^r (y\mathfrak{Q}^r)^p$. As the integral ideal $c\mathcal{O}_F'$ is p-th power free, we must have $y\mathfrak{Q}^r = \mathcal{O}_F'$. This is a contradiction as the class \mathcal{C} containing \mathfrak{Q} is of order p.

We see in the below that there are many examples of p and F satisfying the assumption of Theorem 2.

Let p=2. Let q_1, q_2 be prime numbers with $q_1 \equiv q_2 \equiv -1 \mod 4$ and $q_1 \neq q_2$, and let $F = \mathbb{Q}(\sqrt{-q_1q_2})$. Then, the imaginary quadratic field F satisfies the assumption of Theorem 2. The reason is as follows. Let \mathfrak{Q} be the unique prime ideal of \mathcal{O}_F' over q_1 . We see that the class $\mathcal{C} = [\mathfrak{Q}] \in Cl_F'$ is of order 2 from genus theory. Let $K = F(\sqrt{-1}) = F(\sqrt{q_1q_2})$ and $k = \mathbb{Q}(\sqrt{q_1q_2})$. By genus theory, the class number of k in the usual sense is odd. Hence, we have $q_1\mathcal{O}_k = (\alpha\mathcal{O}_k)^2$ for some integer α . Therefore, $\mathfrak{Q}\mathcal{O}_K' = \alpha\mathcal{O}_K'$, and the class \mathcal{C} capitulates in \mathcal{O}_K' .

Let us deal with the case $p \geq 3$. Let p be an odd prime number, k a real quadratic field in which p remains prime, $F = k(\zeta_p)$, and $K = F(\zeta_{p^2})$. Let

 \mathbf{B}_1/\mathbb{Q} be the unique cyclic extension of degree p unramified outside p, and $k_1=k\mathbf{B}_1$. Clearly, we have $K=F\mathbf{B}_1$. In the tables in Sumida and the author [10, 11], we gave many examples of p and k having an ideal class $C \in Cl_k$ of k which is of order p and capitulates in k_1 . (More precisely, real quadratic fields in the rows " $n_0=0$ " and " $n_0=1$ " of the tables satisfy the condition.) For such a class C, the lift $C_F \in Cl_F$ to F is of order p and it capitulates in K. As p remains prime in k, there is only one prime ideal of F (resp. K) over p, and it is a principal ideal. Hence, we have $Cl_F = Cl'_F$ and $Cl_K = Cl'_K$. Thus, we obtain many examples of $p \geq 3$ and F satisfying the assumption of Theorem 2.

Acknowledgements. The author thanks the referee for valuable suggestions which improved the presentation of the paper. The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] J. Brinkhuis, Normal integral bases and the Spiegelungssatz of Scholz. Acta Arith. 69 (1995), 1-9.
- [2] V. FLECKINGER, T. NGUYEN-QUANG-DO, Bases normales, unités et conjecture faible de Leopoldt. Manus. Math. 71 (1991), 183-195.
- [3] A. FRÖHLICH, M. J. TAYLOR, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1991.
- [4] E. J. GÓMEZ AYALA, Bases normales d'entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux 6 (1994), 95-116.
- [5] C. GREITHER, Cyclic Galois Extensions of Commutative Rings. Lect. Notes Math. 1534, Springer-Verlag, 1992.
- [6] C. GREITHER, On normal integral bases in ray class fields over imaginary quadratic fields. Acta Arith. 78 (1997), 315-329.
- [7] H. ICHIMURA, On a theorem of Childs on normal bases of rings of integers. J. London Math. Soc. (2) 68 (2003), 25–36: Addendum. ibid. 69 (2004), 303–305.
- [8] H. ICHIMURA. On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra 187 (2004), 169–182.
- [9] H. ICHIMURA, Normal integral bases and ray class groups. Acta Arith. 114 (2004), 71-85.
- [10] H. ICHIMURA, H. SUMIDA, On the Iwasawa invariants of certain real abelian fields. Tohoku J. Math. 49 (1997), 203–215.
- [11] H. ICHIMURA. H. SUMIDA, A note on integral bases of unramified cyclic extensions of prime degree, II. Manus. Math. 104 (2001), 201–210.
- [12] I. KERSTEN, J. MICHALICEK, On Vandiver's conjecture and \mathbb{Z}_p -extensions of $\mathbb{Q}(\zeta_p)$. J. Number Theory **32** (1989), 371–386.
- [13] H. Koch, Algebraic Number Theory. Springer, Berlin-Heidelberg-New York, 1997.

Humio ICHIMURA Faculty of Science Ibaraki University

2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan

 $E ext{-}mail: ext{hichimur@mx.ibaraki.ac.jp}$