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On the Euclidean minimum of some real

number fields

par EVA BAYER-FLUCKIGER et GABRIELE NEBE

RÉSUMÉ. Le but de cet article est de donner des bornes pour le
minimum euclidien des corps quadratiques réels et des corps cyclo-
tomiques réels dont le conducteur est une puissance d’un nombre
premier.

ABSTRACT. General methods from [3] are applied to give good
upper bounds on the Euclidean minimum of real quadratic fields
and totally real cyclotomic fields of prime power discriminant.

1. Introduction

Throughout the paper let K be a number field of degree n = ~K : Qj, OK
its ring of integers, and denote by DK the absolute value of the discriminant
of K. Then the Euclidean minimum of K is

M(K) := inf 1/i E R~o ~ 1 Vx E K 3y E OK such that Norm(x - y) 1  MI.
If M(K)  1 then OK is a Euclidean ring (with respect to the absolute
value of the norm).

It is conjectured that

for totally real number fields K of degree n. This conjecture follows from
a conjecture in the geometry of numbers that is usually attributed to
Minkowski (see [7, Chapter 7 (xvi)]) and which is proven to be true for
r~  6 (see [10]).

If K is not an imaginary quadratic field, then there is no efhcient general
method to calculate M(K). In this paper we use the general upper bounds
for given in [3] in terms of the covering properties of ideal lattices (see
Theorem 2.1 ) to calculate good upper bounds for M(K) for real quadratic
fields (Section 3) and for the maximal totally real subfields of cyclotomic
fields of prime power discriminant (Section 4). The last section deals with
thin totally real fields, which are those fields K for which the bounds in
Theorem 2.1 allow to show that M(K)  1.
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Part of the work was done, during a stay of the last author at Harvard
university from September to December 2003. G.N. would like to thank
the Radcliffe institute which enabled this stay. We also acknowledge Prof.
Curtis T. McMullen’s valuable remarks on the real quadratic case.

2. Generalities

2.1. Ideal lattices. This section gives a short introduction into the notion
of ideal lattices. More detailed expositions can be found in ~1~, [2], and [3].
Let K be a number field of degree n = ri + 2r2 over Q and denote by

Note that field automorphisms of K extend uniquely to R-linear ring auto-
morphism of KR. Moreover KR has a canonical involution - which is the
identity on Rrl and complex conjugation on Cr2. This involution does not
necessarily preserve K. Let

S1J := {0152 E KR a = 0152 and all components of a are positive }.

Then the real valued positive definite symmetric bilinear forms q on KR
that satisfy q(x, Ay) = q(Ax, y) for all ~, ~, .1 E KR are of the form

with 0: where Tracer,..., xn) _ Xi + + Xj denotes
the regular trace of the R-algebra KR. 

Definition. Let OK denote the ring of integers in the number field K. A
generalized OK-ideal I is an OK-submodule I C KR of K-rank 1 in KR.
An ideal lattice (I, is a generalized OK-ideal in KR together with a
positive definite symmetric bilinear form for some a e fl3.

It is easy to see that generalized OK-ideals I are of the form I = aJ for
some a E KR and an ideal J in OK. Then we define the norm N(I) :=
Norm(a)N(J) where the norm of a E KR is

The inverse of I is I -1 := a-1 J-1 and again a generalized OK-ideal.
The most important ideal lattices are provided by fractional ideals in K.

We are often interested in ideal lattices, where the underlying O K-module
I = OK is the ring of integers in K. We call such ideal lattices principal
ideal lattices.
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2.2. Covering thickness and packing density. With a lattice L in
Euclidean space (Rn, ( , )) one associates two sets of spheres: the associated
sphere packing and the sphere covering of R’~. The centers of the spheres
are in both cases the lattice points. For the sphere packing, one maximizes
the common radius of the spheres under the condition that they do not
overlap, for the covering, one minimizes the common radius of the spheres
such that they still cover the whole space (see [6, Chapter 1 and 2~ ) .
Definition. Let L be a lattice in Euclidean space (Rn, ( , )).

(1) The minimum of L is

the square of the minimal distance of two distinct points in L.
(2) The maximum of L is

the square of the maximal distance of a point in Rn from L.
(3) The Hermite functions of L is

(4) The Hermite-like thickness of L is

Note that min(L) is the square of twice the packing radius of L and
max(L) is the square of the covering radius of L. Therefore the density of
the associated sphere packing of L is

where Yn is the volume of the n-dimensional unit ball and the thickness the
associated sphere packing of L is

The functions T and r only depend on the similarity class of the lattice.
Motivated by the applications in information technology one tries to find

lattices that maximize - and minimize T. For our applications to number
fields, the minimal -y and minimal T are of interest.

Definition. Let K be a number field and I be a generalized OK-ideal in
~R ~
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For I = OK one gets

Proposition 2.1. (see [3, Prop. 4.1 and 4.2]) Let K be a number field of
degree n and denote the absolute value of the discrirrainant of K by DK.
Then for all generalized OK-ideals I in KR

and

2.3. The Euclidean minimum. The Euclidean minimum of a number
field K is a way to measure how far is K from having a Euclidean algorithm.
A very nice survey on Euclidean number fields is given in [9].

Definition. Let K be an algebraic number field and OK be its ring of
integers. The Euclidean minimum of K is

More general, let I be a generalized ideal in KR. Then we define

Note that M(K)  M(OK).
In [3] it is shown that

Theorem 2.1.

for all number fields K with [K : Q] = n.

In particular

Together with Proposition 2.1 this implies that

for all number fields K. Moreover if K has a principal
ideal lattice of thickness smaller than the thickness of the standard lattice.
The purpose of the paper is to use Theorem 2.1 to get good upper bounds

on for certain number fields K. The next section treats real

quadratic fields and in Section 4 we deal with the maximal real subfields
of cyclotomic fields of prime power discriminant.
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3. Real quadratic fields

This section treats real quadratic fields K = G~ (~~ . Then for any
generalized O K-ideal I the similarity classes of ideal lattices (I, T (a)) with
a E S1J form a one-parametric family in the space of all similarity classes of
two-dimensional lattices. The latter can be identified with H/ SL2(Z), the
upper half-plane

modulo the action of SL2 (Z) .
We show that for any generalized OK-ideal I there is an a E S1J such

that the lattice (I, T (a)) has a basis of minimal vectors. In particular
which implies the Theorem of Minkowski that M(K)  1 NID-K

(see [4, Section XI.4.2]). In most of the cases we find better bounds.

3.1. Two-dimensional lattices. There is a well known identification of
the set of similarity classes of two-dimensional lattices and the quotient of
the upper half plane H modulo SL2 (Z) .
To explain this, we pass to the language of quadratic forms. Up to

rescaling we may assume that any positive definite two-dimensional qua-
dratic form is of the form

Then q is mapped to z = ~ + iy E H := {2~ E C &#x3E; 01 where y is the
positive solution of x2 + y2 = w.
The group SL2(R) acts on H by Môbius transformations A ~ z := ~2013~

for all A := SL2(R). It also acts on the positive definite quadratic
forms in two variables by variable substitution,

for certain wl, xl E R. Then the mapping above is a similarity of SL2(R)-
sets.

Any proper similarity class of two-dimensional lattices corresponds to a
unique SL2(Z)-orbit of similarity classes of quadratic forms in two variables
and hence to an element in H/ SL2 (Z) .

3.2. Real quadratic ideal lattices. Let K = Q [ÙÔ] be a real quadratic
field, with D E N, square-free. Let OK be the ring of integers in K and E a
fundamental unit in OK. Fix the two different embeddings of cri and a2 of
K into R. Then (O"l, 0"2) : KR = K 0Q R -~ R E9 R is an isomorphism. As
above let S1J be the set of totally positive elements in KR. Then R&#x3E;o acts
on S1J by a . r := (air, a2r) for a = (al, a2) E i3 and r E R&#x3E;o. Every orbit
under this action contains a unique element a = (al, a2) with Norm(a) =
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ala2 = 1. Since al &#x3E; 0, there is a unique t E R with al = ul(e 2)t . This
establishes a bijection

Theorem 3.1. Let I C KR, be a generalized OK-ideal. Then the set of
similarity classes of ideal lattices

corresponds to a closed geodesics on H/ SL2(Z).

Proof. Let B := (bl, b2) be a Z-basis of I. With respect to this basis B, the
action of E2 on I corresponds to right multiplication with a unique matrix
A E SL2(Z).

Let W E SL2(R) such that WAW-1 = diag(sl, 82) where sl and 82 =
sl 1 are the eigenvalues of A.
The forms T(a) with a E S1J are precisely the forms for which E2 is self-

adjoint. Therefore the two eigenvectors of A are orthogonal with respect
to any of the forms Hence in this basis, the set is identified with
the geodesics {is ~ 1 s &#x3E; 0} C H. Since SL2 (R) acts as isometries on the
hyperbolic plane H, W-1 maps this geodesics to some other geodesics Q; in
H that corresponds under the identification above to the set 6 l with respect
to the basis B. Since A E SL2(Z) induces an isometry between (I, 
and (I, @ the image of 0 in H/ SL2(Z) is a closed geodesics that
corresponds to the ideal lattices in 6j. D

The theorem (together with the two examples above) yields a method to
calculate for real quadratic fields K, by calculating the image of
the geodesics Q; in the fundamental domain

of the action of SL2(Z) on H. For x + iy e X one has

where, of course, is the Hermite-like thickness of the corresponding
two-dimensional lattice.

For D = 19, the image of the geodesics Q5 in diag(-1,1) drawn with
MAPLE looks as follows:



443

The next lemma is certainly well known. Since we did not find a precise
reference, however, we include a short elementary proof for the reader’s
convenience.

Lemma 3.1. Every geodesics in H/SL2(Z) meets the geodesic segment
_ . , .. ,

Proof. As usual let T :_ ( ô 1 ) E SL2(Z). The orbit C := is a contin-

uous curve in H separating the fundamental domain X and the real axis.
The geodesics in H are half-circles perpendicular to the real axis. Let 0 be
such a geodesics. Up to the action of SL2(Z) we may assume that 6 meets
3C in some point. Since (9 also meets the real axis, it passes through C and
hence an image of ? under (T) meets the geodesic segment ~. D

Corollary 3.1. Let I be a generalized OK-ideal. Then there is an 0152 E S1J
such that the lattice (I, T (a) ) has a Z-basis of minimal vectors.

Corollary 3.2. Let I be a generalized OK-ideal. Then llil (I )  
In particular 

-1

For the special case I = OK, it seems to be worthwhile to perform some
explicit calculations:

Example. Let OK = Then B := (VD, 1) is a Z-basis of 0~ and
the matrix of E2 =: a + bVD with respect to this basis is A := ( b bD ) . The
matrix W can be chosen as 
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Then the geodesics {is ~ s &#x3E; 0} is mapped under to the geodesics 0
which is the upper half circle with center 0 meeting the real axis in ~
and The trace bilinear form T(l) corresponds to i in the basis of

eigenvectors of A (since the two eigenvectors are Galois conjugate) which
is mapped to OE 6 under 
To calculate an intersection of 0 and the geodesic segment (S of Lemma

3.1 let t’ := l VDJ. and if t’2 + t’ + 1  D
then let t := t’ + 1. Let a := 1 + E K. With respect to the new
basis B’ := (~ - t,1) the Gram matrix of is

by the choice of t. The thickness of the corresponding ideal lattice

with equality if and only if D = t2 + 1.

Example. Let OK = Then B := (~~,1) is a Z-basis of

0~ and the matrix of E2 =: a + bVD with respect to this basis is A :_

( ~ ~9 ) . . The matrix W can be chosen asB 2b a-b /

Then the geodesics lis 1 s &#x3E; 01 is mapped under W-1 to the geodesics
6 which is the upper half circle meeting the real axis in ( 1- VD)/2 and
(1 + ~) ~2. The trace bilinear form T(1 ) corresponds to i in the basis of
eigenvectors of A (since the two eigenvectors are Galois conjugate) which
is mapped to 1 + OE 6 under W-1.2 

. 

2
As in the previous example we calculate an intersection and the

geodesic segment g of Lemma 3.1. Let t’ := L 1+fD J. Then2

For D = 5 let t := 0, otherwise let t and put
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With respect to the new basis B’ := ( 1+ - t,1 ) the Gram matrix of T(a)2
is 

-

by the choice of t. With s := 2t - 1, the thickness of the corresponding
ideal lattice

with equality if and only if D = s2 + 4.

These explicit upper bounds on T min (OK) yield the following corollary:

Corollary 3.3. Assume that DK ~ 4(t2 + 1) and (2t -1 ) 2 + 4 (for
all t Then M(K)  In particular this is true if OK does
not contain a unit of norm - 1.

3.3. Special lattices in real quadratic fields. In view of the results
in the last subsection, it is interesting to calculate all points, where the
geodesics 0 meets the geodesic segment ~ in H/ SL2(Z). This section

characterizes the real quadratic fields K that have the square lattice Z2 H
i respectively the hexagonal lattice A2 - 1+~2 as principal ideal
lattice.

Let K = be a real quadratic field of discriminant D~ and let
OK be its ring of integers.

Theorem 3.2. The square lattice Z2 is a principal ideal lattice for h’, if
and only if the f undamental unit of K has norm -1.

Proof. Let E be a unit in K of norm -1. is a totallyK

positive element in K and La := (OK, T (a)) is an integral lattice of deter-
minant 1 and dimension 2. Therefore L, - Z2.
On the other hand let La := (OK, T (a)) be a positive definite unimodular
lattice. Since L# = La one finds that E := is a unit in OK. Since a
is totally positive, the norm of 6 is -1. D

In view of Lemma 3.1 this gives a better bound for for those real

quadratic fields K where all units have norm 1:
It is well known that all real quadratic fields of prime discriminant 

p -1 (mod 4) have a fundamental unit of norm -1 (see e.g. [12, Exercise
6.3.4]). In general one can characterize the real quadratic fields that have
units of norm -1, though this characterization is algorithmically not very
helpful:

Remark. A real quadratic field K has a unit of norm -1 if and only if
K = for some (not necessarily square-free) D of the form t2 + 4. If
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fact, in this case the norm of 2 is -1. On the other hand any integral
element

of norm -1 yields a decomposition D = a2 - 4.

There is a similar characterization of the fields that contain an element
of norm -3 (and of course other norms):
Remark. A real quadratic field K contains an integral element of norm
-3 if and only if there are b, t E Z with

Then a = is such an element of norm -3.

Similarly as above, one constructs a definite integral lattice

of determinant 3. Up to isometry, there are two such positive definite
lattices, the hexagonal lattice A2 and Z E9 UiZ. The lattice A2 is the only
even lattice of determinant 3 and dimension 2. To characterize the fields
that have A2 as ideal lattice, it therefore remains to characterize those
for which the lattice La above is even.

This is shown by an explicit calculation of the Gram matrix with respect
to an integral basis of OK. Note that

If DK = 1 (mod 4) then (1, ~~~) is a basis of OK for which the Gram
matrix of La is 

-

Hence La is an even lattice, if and only if b, t E 2Z and b - t (mod 4)
(which is impossible in view of equation (*) ) .

If DK - 0 (mod 4) then (1, 2 ) is a basis of OK for which the Gram
matrix of La is

Hence La is an even lattice, if and only if b is even. Equation (*) then
shows that t is even and 3 (mod 4).

Clearly the prime 3 has to be either decomposed or ramified in K. Sum-
marizing we get:
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Theorem 3.3. The hexagonal lattice A2 is a principal ideal latt,ice for the
real quadratic field K = if and only if 4 divides DK, D K 14 == 3
or 7 (mod 12), and there is b E 2Z with = t2 + 12.

Numerical examples:

Corollary 3.4. Assume that the real quadratic fieLd K = satisfies
the condition of Theorem 3.3. Then

4. Real cyclotomic fields of prime power discriminant

In this section we give a good upper bound on where K =

Q« + (-l) and ( is a pa-th root of unity, for some prime p and a E N. [3]
already shows that the standard lattice is a principal ideal lattice and hence
these fields satisfy Minkowski’s conjecture. For p &#x3E; 2 the lattice (OK, T (1))
- the ring of integers of K with the usual trace bilinear form - has a much
smaller thickness than the standard lattice and the aim of this section is
to calculate this thickness. Since the lattice is invariant under the natural

permutation representation of the symmetric group Sn (n = [K : Qj) we
begin with a study of Sn-invariant lattices in the next subsection. Note
that these lattices are of Voronoi’s first kind and their Voronoi domain is
for instance also investigated in ~5). We thank Frank Vallentin for pointing
out this reference to us.

4.1. The thickness of certain Sn-lattices.

Theorem 4.1. Let n E N, and b E R with b &#x3E; n. Let L = Lb,n be a lattice
in R’~ with Gram matrix

where In is the nxn-identity matrix and Jn the all-ones 
Then L is a positive definite lattice o f determinant

Moreover the automorphism group of L contains
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where the symmetric group Sn acts by permuting the coordinates.
For a subset J C 11, - - ., n} let vJ be the "characteristic vector", i.e.

Then the Dirichlet domain 0 centered in 0 with respect to the 2(2~ -1) + 1
vectors vJ, -vJ (where J C 11, ... , n}) has circumradius R with

In particular

Proof. Since In and Jn commute, they can be diagonalized simultaneously.
Therefore the eigenvalues of bIn - Jn are (b - n) (multiplicity 1) and b
(multiplicity (n -1 ) ), from which one gets the positive definiteness of L and
the determinant. It is clear that (-In) x Sn acts on L as automorphisms.
It remains to calculate the Dirichlet domain 1’. By definition a vector
x = (xi, ... , xn) belongs to D, if and only if

for aIl 0 =1- J C ~l, ... , n}. Modulo the action of Sn we may assume that

for some RE {0,... ~}. 

and

We first show that D is bounded, i.e. that (x, x) is bounded for x E D.
Then it is clear that the points of maximal norm in D are the vertices of D,
these are the elements of D, where at least n of the inequalities describing
D become equalities. Hence we may assume that all the inequalities above
are equalities, which determines the vertex x uniquely.
To show that 0 is bounded, we note that the ~-th inequality above reads

as
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Since 0 1, this implies that

Since all Xk 2: 0 R, one has 0  x~  2 for k = 1, ... , R. Similarly
one gets 0  -x~  for k _ .~ + l, ... , n. Therefore the norm of x and
hence D is bounded.
Now assume that x is a vertex ouf 0. Then

and

The difference of the R-th and the last equality yields

from which one now easily gets that

and

Therefore one calculates

as claimed. D

Corollary 4.1. The HerTnite-like thickness of the lattice Lb,n t’s

For n &#x3E; 2 and b &#x3E; n the function T(n, b) attains its unique global minimum
for b = n + 1. Then the lattice L 1 n N An is similar to the dual lattice
of the root lattice An .
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4.2. Some real cyclotomic fields. One motivation to consider the lat-
tices Lb,n is that the trace form of the maximal real subfield of a cyclotomic
number field with prime power discriminant is the orthogonal sum of lat-
tices similar to Lb,n. Let Tp := Pl(p-I)/2 - 2J(p-l)/2 such that !Tp 2 is the
Gram matrix of Lp/2,(p-I)/2 and let Up Jp-l be the Gram matrix
of Then we getp-

Proposition 4.1. Let p be a prirrze, a E N and let :_ pa be a primitive
pa-th root of unitg in C. Let K := Q [( + ~-l~ be the maximal real subfield
of the pa-th cyclotomic number field and OK := Z[( + (-l] be its ring of
integers.

a) If p &#x3E; 2 is odd then the lattice (OK, T (1 ) ) is isometric to a lattice
with Gram matrix

isometric to the standard lattice Z2a-~ .

Proof. Let K := C~~~~. Then the trace of (i E K over Q is

a) Assume first that p is odd. Then O1 is a unit in Ox, and hence the Oi
(i =1, ... , pa-1 (p -1)~2) form a Z-basis of OK. One calculates

where now Trace is the trace of K over Q. Hence with respect to T(1), OK
is the orthogonal sum of lattices Li

where Li is spanned by the 8j with j - +1 (mod and has Gram
matrix pa-lUp for i &#x3E; 0 and pa-’Tp for i = 0.
b) If p = 2 then (1, O1, ... , 82a-2-1) is a Z-basis of OK for which the Gram
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matrix of T(a) has the form

(only the non zero entries are given). This lattice is easily seen to be similar
to the standard lattice. D

Corollary 4.2. Let K be as in Proposition .~.1 and assume that p is odd.
Then

Proof. The maxima max(Tp) and max(Up) of the lattices with Gram matrix
TP respectively Up satisfy

and

If a = 1 then the claim follows immediately. If a &#x3E; 2, then

Since

we find with Proposition 2.1:

Corollary 4.3. Let K be as in Proposition .~.1. If p is odd then the Eu-
clidean minimum of K satis fies

where
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(where we assume a &#x3E; 2 if p = 3). The value of z tends to 2~ (from
above) when p tends to infinity.
If p = 2 then

5. Thin totally real fields.

In [3] a number field K is called thin, if T min ( OK)  We call
K weakly thin, if T min (OK) Ç · By Theorem 2.1, thin fields are
Euclidean and it is usually also possible to show that weakly thin fields are
Euclidean.

Table 1: Candidates for totally real thin fields.

The first column lists the degree, followed by the bound b(n) (rounded
to the first decimal place for n = 3 and n = 5). Then we list all totally real
fields K of degree n and D~ smaller this bound. A + in the second last
column indicates that K is thin, a (+) says that K is weakly thin and a ?
means that we don’t know whether K is thin or not. The last column gives
an a E K such that T(OK, T (a)) is smaller (respectively equal) to D ~nK
if K is thin (respectively weakly thin). Note that all fields in the Table 1
are Euclidean (see e.g. [11]). For degrees &#x3E; 2 we do not have a general
algorithm to calculate Tmin (O K) for a given number field K.

Theorem 5.1. All totally real weakly thin fields are listed in Table 1.



453

Proof. By [3, Proposition 10.4] there are only finitely many (weakly) thin
fields, since the general lower bounds on the Hermite-like thickness of an n-
dimensional lattice (see (6~ ) give an upper bound on D;t for a thin field K.
In particular all thin totally real fields have degree n  5 (see [3, Proposition
10.4~ ) . The thinnest lattice coverings are known up to dimension n  5 ( (6,
Section 2.1.3]) and provided by the dual lattice An of the root lattice An
with 

, ~ ,

This gives the bound

Together with the list of fields of small discriminant in [8] this implies that
the totally real thin fields are among the ones listed in Table 1. D

It is an interesting question to find good lower bounds for other
than the general bounds for lattices.

Note added in proof: In the meantime Mathieu Dutour, Achill Schür-
mann and Frank Vallentin [13] have shown that the three remaining can-
didates for thin fields marked with a question mark in Table 1 are not

thin.
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