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Stable reduction of three point covers

par STEFAN WEWERS

RÉSUMÉ. Cette note est un survol des résultats récents sur la
réduction semi-stable des revêtements de la droite projective ra-
mifiés en trois points.

ABSTRACT. This note gives a survey of some recent results on the
stable reduction of covers of the projective line branched at three
points.

1. Three point covers

1.1. Ramification in the field of moduli.

Let X be a smooth projective curve over C. A celebrated theorem of
Belyi states that X can be defined over a number field K if and only if
there exists a rational function f on X with exactly three critical values,
see [3], [13]. If such a function f exists, we can normalize it in such a way
that the critical values are 0, 1 and oo. After this normalization, we may
view f as a finite cover f : X - I~1 which is 6tale over {O, 1,00}. We
call f a three point cover. Another common name for f is Belyi map. The
rraonodromy group of f is defined as the Galois group of the Galois closure
of f.

Let f : X - I~1 be a three point cover. By the ’obvious direction’ of
Belyi’s theorem, f can be defined over the field Q of algebraic numbers.
Therefore, for every element a E Gal(Q/Q) of the absolute Galois group of
Q we obtain a conjugate three point cover f ° : P , which may or may
not be isomorphic to f . This yields a continuous action of Gal(Q/Q) on the
set of isomorphism classes of three point covers. Hence we can associate
to f the number field K such that is precisely the stabilizer of
the isomorphism class of f . The field K is called the field of moduli of f.
Under certain extra assumptions on f , the field K is the smallest field of
definition of the cover f , see [6]

Three point covers are determined, up to isomorphism, by finite, purely
combinatorial data - e.g. by a dessin d’enfants [21]. It is an interesting
problem to describe the field of moduli of a three point cover in terms of
these data. There are only few results of a general nature on this problem.
The aim of this note is to explain certain results leading to the following
theorem, proved in [26].
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Theorem 1.1. Let f : X - be a three point cover, with field of moduli
K and monodromy group G. Let p be a prime number such that p2 does not
divide the order of G. Then p is at most tamely ramified in the extension
K/Q.

If the prime p does not divide the order of G then p is even unramified
in the extension K/Q, by a well known theorem of Beckmann [2]. Both
Beckmann’s result and Theorem 1.1 rely on an analysis of the reduction of
f at the prime ideals p of K dividing p. The results leading to Theorem
1.1 were mainly inspired by Raynaud’s paper ~20~.

1.2. Good reduction.

To warm up, let us explain the result of Beckmann mentioned above.
Fix a prime number p and let Ko denote the completion of the maximal
unramified extension of Qp. From now on, the letter K will always denote
a finite extension of Ko. Note that K is complete with respect to a discrete
valuation v, with residue field k = Fp. We write R (resp. Ro) for the ring
of integers of K (resp. of Ko).

Let f : ~ 2013~ Y := Pl be a three point cover, defined over a finite
extension K/Ko. Let Y := denote the standard (smooth) model of Y
over R. We say that f has good reduction if f extends to a finite tame
cover Y, ramified only along the sections 0, 1, oo. The map fR
is then called a good rraodel for f . Such a good model is unique; moreover,
X is automatically a smooth model of X. In particular, if the cover f has
good reduction, then the curve X has good reduction, too. (The converse
of this conclusion does not hold.)
The following theorem is a consequence of the theory of the tame funda-

mental group ~10~.

Theorem 1.2. Let f : X -~ Y = Pl be a three point cover over K, with
monodromy group G.

(1) If the order of G is prime to p, then f has good reduction.
(2) If f has good reduction, then f has a unique rnodel fKo : P1

over Ko with good reduction.

Proof. We only give a sketch of the argument. For more details, see e.g. [17]
or [24]. Suppose that f has good reduction, with good model fR : X -&#x3E; y.
Let f : X -~ Y = P) denote the special fiber of fR. By definition, the map
f is a finite and tame cover of smooth curves over 1~, ramified at most at
0, 1, oo. In other words, f is a three point cover in characteristic p.
By a fundamental result of Grothendieck [10], there exists a tame cover

g : Xo ~ Yo := ramified at most along 0, 1, oo, which lifts f . We call
g a lift of f over Ro. Such a lift is uniquely determined by the choice of the
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base curve Yo (which lifts Y) and the ramification locus D := {O, 1,00} c
yo (which lifts the ramification locus of f ).
By construction, both fR are lifts of f over R, with the same

base curve Y and the same ramification locus D. Therefore, by uniqueness,
fR is isomorphic to g R. In particular, the generic fiber of g is a model
of f over Ko with good reduction. This proves (ii).
To prove (i), we may replace the field K by any finite extension. Indeed,

if we can show that f has good reduction after an extension of K, then (ii)
shows that f is defined and has good reduction already over Ko.
The cover f gives rise to a finite extension of function fields K(X)/K(Y).

We may identify K(Y) with the rational function field K(t), where t is the
standard parameter on Let vo denote the Gauss valuation on K(Y) =
K(t) with respect to t. Let L be the Galois closure of K(X)/K(Y). After
replacing K by a finite extension, we can assume that K is algebraically
closed in L. Then the Galois group of L/K(Y) can be identified with the
monodromy group G of the cover f.
Now suppose that the order of G is prime to p. Then a simple application

of Abhyankar’s Lemma shows that, after a further extension of K, the
Gauss valuation vo is unramified in the extension L/K(Y), and hence in
the extension K(X)/K(Y).

Let X denote the normalization of y Pl inside the function field of X.
By definition, the natural map fR : X is a finite map which extends

f : X - Y. Moreover, fR is unramified along the special fiber Y = Pl
seen as a divisor on y. Using the Purity Theorem of Zariski-Nagata, it is
now easy to show that fR is a tame cover, ramified only along the divisor
D = {0, 1, oo} C y. In other words, fR is a good model for f . This proves
(i) and concludes the proof of Theorem 1.2. D

Corollary 1.3 (Beckmann). Let f : X - I~1 be a three point cover (defined
over Q) with field of moduli K. Let p be a prime number which does not
divide the order of the rrzonodromy group of f. Then p is unramified in the
extension 

Proof. Let p be a place of Q whose residue characteristic is prime to the
order of the monodromy group of f . Let o- E Gal(Q /Q) be an element of
the inertia group of p. We claim that f . Clearly, this claim implies
the corollary.
To prove the claim, let Ko be the completion of the maximal unramified

extension of Qp, and let Ko denote an algebraic closure of Ko. The place
p gives rise to an embedding Q - Ko. Moreover, there exists a (unique)
element T E Gal(Ko~Ko) with ~. By Theorem 1.2, the three point
cover fKo := f ~ Ko can be defined over Ko. Hence we have fRo’
which implies f . This proves the claim and the corollary. 

° 

D
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The basic strategy to prove Theorem 1.1 is quite similar to the proof
of Corollary 1.3. One first studies the reduction of the cover f at a prime
ideal p, and then one uses a lifting result. The main difficulty is that, if p
divides the order of G, the cover f will in general not have good reduction
at p. So both for the reduction and the lifting step, one can not use the
standard results of Grothendieck. In the following two sections we explain
two results (Theorem 2.4 and Theorem 3.1) which replace Part (i) and (ii)
of Theorem 1.2 in the case where p exactly divides the order of G.

2. Stable reduction

2.1. The semistable reduction theorem.

Let K be a field equipped with a discrete valuation v. We denote by R
the valuation ring of v and by k its residue class field. Let X be a smooth
projective curve over K. We assume that X is geometrically irreducible.
By a model of X over R we mean a flat proper R-scheme X such that
X ®R K = X . For instance, if we fix a projective embedding X - 
then the Zariski closure of X inside P’ is a model of X over R. One
can show that, conversely, every model of X arises in this way (for some
projective embedding of X).
We say that X has good reduction if there exists a model X such that

the special fiber X := X 0R k is a smooth curve over k. In this case, X
is called a good model of X . If the genus of X is &#x3E; 0, then there exists at
most one good model, up to isomorphism.

In general, X may not have good reduction. A very basic and impor-
tant problem in arithmetic geometry is to find models of X which are still
reasonably nice to work with. For many questions, the regular models are
a good choice. However, for the questions we are concerned with in this
article (and for many other questions too), regular models are not the right
choice.

Definition 2.1. A model X of X over R is called semistable, if the special
fiber X is a reduced curve with at worst ordinary quadratic singularities.
We say that X has semistable reduction if there exists a semistable model
over R.

Semistable models are never unique. Indeed, blowing up x in any smooth
point of the special fiber will produce another semistable model dominating
X . However, if X has semistable reduction and the genus of X is &#x3E; 2,
then there exists a semistable model x which is minimal (with respect to
domination). It is called the stable model, see [7].

The following theorem is a cornerstone of modern arithmetic geometry.
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Theorem 2.2 (Semistable Reduction). Let X be a smooth projective curve
over K. Then there exists a finite extension K’/K such that the curve
X’ := X OK K’ has semistable reduction.

In full generality, this theorem was first proved by Deligne and Mumford
[7]. For an overview, see e.g. [1]. We would like to stress that Theorem 2.2 is
a mere existence result. Even for curves X given by very simple equations,
it can be extremely difficult to determine a finite extension K’/K over
which X has semistable reduction. The difficulty comes from the fact that
one may be forced to take an extension K’/K which is wildly ramified.
(Indeed, if the residue class field k has characteristic 0, and hence K’/K
can only be tamely ramified, the proof of Theorem 2.2 is relatively easy.)
Recent work of Lehr and Matignon [14] treats the case of p-cyclic covers of
the projective line, i.e. curves X which are birationally given by an equation
of the form yP = f (x~, with f (x~ E 

2.2. The stable model of a Galois cover.

Let Ko be as in §1.2, and let f : X --&#x3E; Pl K be a three point cover, defined
over a finite extension K/Ko. If p divides the order of the monodromy
group, then f may have bad reduction and it may not be possible to define
f over Ko. For the purpose of studying this situation, it is no restriction

to make the following additional assumptions.
~ The cover f : X - Pl is Galois, with Galois group G (replace f by

its Galois closure).
~ The curve X has semistable reduction (replace K by a finite exten-

sion).
Note that passing to the Galois closure may already force us to replace
K by a finite extension. But this is ok if we only want to bound K from
above, e.g. to show that we may take K/Ko to be tamely ramified. For

the second point, we have used Theorem 2.2. For simplicity, we shall also
assume that the genus of X is &#x3E; 2. (Three point Galois covers of genus
 1 can be classified and treated separately.)
Let X denote the stable model of X, i.e. the minimal semistable model

of X over the ring of integers of K, see [7]. By uniqueness of the stable
model, the action of G on X extends to X. Let Y := X/G be the quotient
scheme. It is shown in [18], Appendice, that Y is again a semistable curve
over R.

Definition 2.3. The morphism fst : X -+ Y is called the stable models of
f . Its special fiber f : ~ 2013~ Y is called the stable reduction of f .

If f is a separable and tamely ramified map between smooth curves, then
f has good reduction, in the sense of §1.2. Otherwise, we say that f has
bad reduction.
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Initiated by a series of papers by Raynaud [18], [19], [20], several authors
have studied the stable reduction of covers of curves (the case of three point
covers is just a special case). For an overview of their results and a more
extensive list of references, see [15]. In this note, we shall focus on the
results of [26], and on results which inspired this work (mainly [20], [11] ,
[25]).

2.3. Bad reduction.

Let f : X -~ Y be the stable reduction of a three point cover f : X -
Pk-. We suppose that f has bad reduction. Let (Y ) be the list of all
irreducible components of the curve Y. Since the generic fiber of Y is just
the projective line, the components Y are all smooth curves of genus 0.
Moreover, the graph of components of Y (whose vertices are the components
Y and whose edges are the singular points) is a tree. For each index i, we fix
an irreducible component Xi of X such that = Yi. Let fi : Y
denote the restriction of 1 to Xi. Let Gi C G denote the stabilizer of the
component Xi.
The component Y corresponds to a discrete valuation vi of the function

field K(Y) of Y = Pl K whose residue field is the function field of Yi. The
choice of Xi corresponds to the choice of a valuation w2 of the function field
K(X) of X extending v2, and the map fi corresponds to the residue field
extension of The group Gi is simply the decomposition group of wi
in the Galois extension K(X ) /K(Y) . Let Ii a Gi denote the corresponding
inertia group.

By definition of the semistable model, the curve X is reduced. It follows
that the ramification index of the extension of valuations is equal
to one. This does not mean that the extension in question is unramified at
the valuation wi : the residue field of w2 is a function field in one variable
over k and hence not perfect. However, it follows that the inertia group
Ii is a p-group whose order is equal to the degree of inseparability of the
extension of residue fields.
We say that Y is a good component if the map fi is separable. By what

we have said above, this holds if and only if Ii = 1, i.e. the valuation

v2 is unramified in the extension K(X)/K(Y). If this is the case, then

fi : Y is a Galois cover with Galois group Gi.
if fi is not separable we say that Y is a bad component. The map f i

factors as the composition of a purely inseparable map Xi -* Zi of degree
I and a Galois cover 2i -~ Y with Galois group Gi /Ii . By assumption,

there exists at least one bad component.
Note that K(Y) = K(t), where t is the standard parameter on P . To

simplify the exposition, we shall make the following additional assumption:
there is a (necessarily unique) component Yo of Y which corresponds to the
Gauss valuation on K(t) with respect to the parameter t. This component
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FIGURE 1. The stable reduction of a three point cover

is called the original component. It is canonically isomorphic to Pl. (It may
be that there is no component of Y corresponding to the Gauss valuation.
This happens if and only if the cover f has bad reduction but the curve
X has good reduction. In [26], Definition 2.1, this is called the exceptional
case.) Let Yl, ... , % be the components of Y different from Yo.
The following theorem is the first main result of [26].

Theorem 2.4. Suppose that p strictly divides the order of G and that f
has bad reduction. Then the following holds (compare with Figure 1).

(1) The original components Yo is the only bad component. Every good
component Y intersects Yo in a unique point Ai E Yo.

(2) The inertia group Io corresponding to the bad components Yo is cyclic
of order p. The subcover Zo - Yo of fo (which is Galois with group
Go/ Io), is ramified at most in the points Aj (where Yo intersects a
good component)-

(3) For i = l, ... , r, the Galois cover fi : Xi - Yi is wildly ramified at
the point Ai and tamely rarraified above Y - f Ail. If fi : is

rarraified at a point- Ai, then this point is the specialization of one
of the three branch points 0, 1, o0 of the cover f : X - Wk.

Part (ii) and (iii) of this theorem follow from part (i), by the results of
[20]. In fact, this implication is not restricted to three point covers but
holds for much more general covers f : X -~ Y. On the other hand, the
truth of part (i) depends in an essential way on the assumption that f is a
three point cover.

Under the additional assumption that all the ramification indices of f
are prime to p, Theorem 2.4 follows already from the results of [25], via
Raynaud’s construction of the auxiliary cover (see the introduction of [25]).

Here is a brief outline of the proof of Theorem 2.4. First, certain general
results on the stable reduction of Galois covers, proved in [20], already
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impose severe restrictions on the map 1. For instance, it is shown that the
good components are precisely the tails of Y (i.e. the leaves of the tree of
components of 17). Also, the Galois covers - : Xi -+ Y (if Y is good) and
Zi -~ Y (if Y is bad) are ramified at most at the points which are either
singular points of the curve Y or specialization of a branch point of f.

In the next step one defines, for each bad component a certain dif-
ferential form w2 on the Galois cover Zi -~ Y . This differential form satisfies
some very special conditions, relative to the map f : Y --~ X and the
action of G on Y. For instance, wi is either logarithmic (i.e. of the form
du/u) or exact (i.e. of the form du) . Furthermore, wi is an eigenvector
under the action of the Galois group Gilli of the cover Zi -~ and its
zeros and poles are related to and determined by the ramification of the
map f : Y - X . These properties follow from the work of Henrio [11].
Let us say for short that wi is comwatible with f . Intuitively, Wi encodes
infinitesimal information about the action of the inertia group Ii on the
stable model X, in a neighborhood of the component Xi . Within the proof
of Theorem 2.4, the important point is that the existence of the compatible
differentials Wi imposes further restrictions on the map f : X -~ Y. In fact,
these restrictions are strong enough to prove part (i) of Theorem 2.4. For
details, see [26], §2.1.
2.4. Special deformation data.

By Theorem 2.4 (i), the original component Yo = is the only bad
component for the stable reduction of the three point cover f . The proof
of Theorem 2.4 shows that there exists a differential form wo on the Galois
cover Zo - Yo which is compatible with f , in the sense explained above. It
is worthwhile to write down explicitly what ’compatibility’ implies for the
differential wo .
To simplify the exposition, we assume that the ramification indices of f

are all divisible by p. If this is the case, then the branch points 0, 1 and o0
specialize to the original component Yo . Since we identify Yo with ]P’ this
means that the points ~l, ... , Ar where Yo intersects the good components
Yl, ... , Y, are distinct from 0, 1, oo. By Theorem 2.4 (iii), the Galois covers
fi : Xi -+ Y are then 6tale 

Let t denote the rational function on the original component Yo which
identifies it with Compatibility of wo with f implies that

where c E is a constant and z is a rational function on Zo for which an
equation of the form
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holds. Here the ai are integers 1  ai  p such that = p - 1.

These integers are determined by the (wild) ramification of the Galois covers

Compatibility of wo with f also implies that wo is logarithmic, i.e. is of

the form du/u, for some rational function u on Zo. Equivalently, wo is

invariant under the Cartier operator. The latter condition gives a finite list
of equations satisfied by the t-coordinates of the points Ai (depending on the
numbers a2). One can show that these equations have only a finite number
of solutions (Ai), see [23], Theorem 5.14. In other words, the existence of
the differential form wo determines the position of the points Ai, up to a
finite number of possibilities.
The pair (.2’0, wo) is called a special deformation datum. Given a special

deformation datum (Zo, wo) , the branch points Ai of the cover Zo ~ Yo are
called the supersingular points. A justification for this name, in form of a
well known example, will be given in §4. By the result mentioned in the
preceeding paragraph, a special deformation datum is rigid, i.e. is an object
with 0-dimensional moduli. This is no surprise, as special deformation data
arise from three point covers, which are rigid objects themselves. We point
this out, because this sort of rigidity is the (somewhat hidden) principle
underlying all results discussed in this note which are particular for three
point covers. In the following section, we will interpret the existence of
(Zo, wo) as a liftability condition for the map f : X - Y.

3. Lifting
3.1. Special G-maps.
The stable reduction of a three point Galois cover f : X - Pl is,

by definition, a finite map f : X - Y between semistable curves over
the residue field 1~, together with an embedding G ~ Aut (X /Y) . In the
case of bad reduction, the curves Y and X are singular, and the map
f is inseparable over some of the components of Y. This suggests the
following question. Given a map f : X - Y of the sort we have just
described, together with an embedding G ~ Aut (X /Y), does it occur as
the stable reduction of a three point Galois cover f : X -~ for some
finite extension K/Ko‘~ If this is the case, then we say that f : X -~ Pl is
a lift of f : X - Y.
Theorem 2.4 and its proof give a list of necessary conditions on f for

the existence of a lift (at least under the extra condition that p strictly
divides the order of G) . These conditions lead naturally to the notion of a
special G-map. See [26], 32.2 for a precise definition. To give the general
idea, it suffices to say that a special G-map is a finite map f : X - Y
between semistable curves, together with an embedding G ~ Aut(X/Y),
which admits a compatible special deformation datum (Zo, wo) . One can
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show that special G-maps are rigid in the sense we used at the end of §2.4.
Moreover, one has the following lifting result, proved in [26], §4.

Theorem 3.1. Let f : ~ 2013~ Y be a special G-map over k. Then the

following holds.

(1) There exists a three point cover f : X - I~1 lifting f .
(2) Every lift f of f can be defined over a finite extension K/Ko which

is at most tamely ramified.

The corresponding result proved in [26], ’4, is somewhat stronger. It
determines the set of isomorphism classes of all lifts of f , together with the
action of Gal(Ko/Ko), in terms of certain invariants of f (these invariants
are essentially the numbers ai appearing in (2)). This more precise result
gives an upper bound for the degree of the minimal extension K/Ko over
which every lift of f can be defined.
Theorem 1.1 follows easily from Theorem 2.4 and Theorem 3.1 (in a way

similar to how Beckmann’s Theorem follows from Grothendieck’s theory of
tame covers, see the proof of Corollary 1.3).

Part (i) of Theorem 3.1, i.e. the mere existence of a lift, follows already
from the results of [25]. Part (ii) is more difficult. The technical heart of
the proof is a study of the deformation theory of a certain curve with an
action of a finite group scheme, which is associated to a special deformation
datum. A detailed exposition of this deformation theory can be found in
[23]. An overview of the proof of Theorem 3.1 will be given in §3.4 below.

3.2. The supersingular disks.
Let f : V 2013~ Pl be a three point cover, defined over a finite extension

K/Ko, with bad reduction. Let f : ~ 2013~ Y be the stable reduction of f . We
assume that the conclusion of Theorem 2.4 holds (it holds, for instance, if
p2 Let Yan denote the rigid analytic K-space associated to Y = Pl
The R-model Y of Y yields a specialization map spy : Y. For

i = 1, ... , r, the good component Y gives rise to a rigid analytic subset

Di := 

As a rigid K-space, Di is a closed unit disk, i.e. is isomorphic to the affinoid
See e.g. [12].

An important step in the proof of Part (ii) of Theorem 3.1 is to show
that the disks Di depend only on the reduction f , but not on the lift f of
f . For simplicity, we shall again assume that all the ramification indices of
the three point cover f : X - Pl K are divisible by p, see §2.4. Then the
special deformation datum (Zo, cao) associated to the reduction f : X - Y
is essentially determined by points .~1, ... , ~T E (0, 1 , cxJ) and integers
al, ... , ar with 1  ai  p and ¿i ai = p- 1. We consider Ai as an element
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10, 11 and let ~i E Ro be a lift of Ài. By definition, the closed disk
Di is contained in the open unit disk

With this notation, we have the following result, see [26], Proposition 4.3
and the remark following the proof of Theorem 3.8.

Proposition 3.2. We have

In particular, the disks Di depend only on the special deformation datum

We call the open disks D~ the supersingular disks associated to the special
deformation datum ( Zo, wo ) . This is in correspondence with naming the
points Ai E Yo the supersingular points, see §2.4. The closed subdisk Di C
D’ is called the too supersingular disk, a term which is also borrowed from
the theory of moduli of elliptic curves, see §4.

3.3. The auxiliary cover.
We continue with the notation and assumptions of the preceeding sub-

section. Recall that we have chosen in §2.3 a component Xi C X above the
component Yi C Y. The stabilizer of Xi is the subgroup Gi c G and the
inertia subgroup of Xi is a normal subgroup Ii a By the conclusion of
Theorem 2.4, we have = p and = 1 for i = 1, ... , r. Let X hor C X
denote the union of all horizontal components, i.e. those components of X
which are mapped onto the original component Yo. Then we have

The map finite 6tale Galois cover between smooth affinoid

K-spaces whose reduction is equal to the restriction of the 6tale Galois
cover This determines Ei - Di uniquely, up
to isomorphism, because lifting of 6tale morphisms is unique.

Let Uo : := (UiDi) denote the complement of the disks Di . Then
we have

The map Yo - Uo is a finite Galois cover between smooth (non quasi-
compact) rigid K-spaces, 6tale outside the subset {O, 1,00} c Uo. It can be
shown that there exists a Go-Galois cover f aux : Y - p, K such that
vo = (faux) -I (U 0). Such a cover f aux is ramified at 0, 1, oo and, for each
i = l, ... , r, at one point yj E D~. Moreover, the cover f aux is uniquely
determined by the choice of the points ~2. It is called the auxiliary cover
associated to f and the points (Yi), see [20], [25] and [26], ~4.1.3. Let o9Di
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denote the boundary of the disk By construction of there exists

a G-equivariant isomorphism

compatible with the natural map to 

3.4. The proof of Theorem 3.1.
We will now give a brief outline of the proof of Theorem 3.1. Suppose

that f : X - Y is a special G-map. We want to construct all three point
covers f : X -~ Y = Pl lifting J. For the moment, we let K be any
sufhciently large finite extension of Ko. At the end of our argument, we
will reason that it suffices to take for K a certain tame extension of Ko,
which is explicitly determined by f .
We divide the proof into three steps. The first step consists in construc-

ting a Galois cover f aux : xaux -+ Y which can play the role of the auxiliary
cover associated to any lift f of f . In fact, one shows that all good can-
didates faux live in a continuous family which depends only on the special
deformation datum (Zo, associated to f . The individual members of
this family depend on the choice of the extra branch points yi E D’ (with
D’ as above). See [25], §3.2, and [26], §3.

Let Di C D’ be the closed disk defined in Proposition 3.2 (the numbers
ai used in the definition of Di are determined by the special deforma-
tion datum Let Di be the 6tale Gi-Galois cover lifting

For any choice of points yi E D’, we obtain a
cover f aux : Y, which is a candidate for the auxiliary cover. In this
situation, a tuple of isomorphisms as in (3) is called a patching datum.
The second step of the proof consists in showing that there exists a

patching datum if and only if the points yi lie in the smaller disk Di .
The sufficiency of the condition yi E Di can be shown using the same argu-
ments as in [25], §3.4. The necessity of this condition - which is equivalent
to Proposition 3.2 above - lies somewhat deeper. See [26], §3, in particular
Theorem 3.8. In this step one uses the deformation theory developed in
[23].
The third and final step uses rigid (or formal) patching. For any choice

of yi E Di, let xaux -+ y - Pl be the associated auxiliary cover,
and set Yo By the second step, we have a patching datum

The proof of the claim in step two shows moreover that the cover
Uo depends only on the special deformation datum, but not on the

choice of g2 E Di . Using rigid patching, one easily constructs a G-Galois
cover f : X - Y such that = Indgi(Ei), = 

and such that the patching datum (pj) is induced by the identity on X.
Essentially by construction, f is a three point cover lifting the special
G-map f . This proves Part (i) of Theorem 3.1.
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It is not hard to see that all lifts of f arise in the way we have just
described. More precisely, the set of isomorphism classes of lifts of f is in
bijection with the set of patching data. Therefore, to finish the proof of
Theorem 3.1 it suffices to show that the above construction works over a

tame extension K/Ko. Actually, the construction of the covers Di
and of the auxiliary cover Y can be done over Ko (set
y2 := ~i). A direct analysis shows that patching data (’Pi) exist if one takes
for K the (unique) tame extension of degree (p - 1) . lcmi(p - 1 + ai). This
concludes the proof of Theorem 3.1.

4. Modular curves

4.1. Modular curves as three point covers.
Let H denote the upper half plane and IHI* the union of H with the set

The group SL2 (Z) acts on H and H* in a standard way. Moreover,
for every subgroup r c SL2(Z) of finite index, the quotient Xr := ff3I*/T
carries a natural structure of a compact Riemann surface, and therefore
also of a smooth projective curve over C. The classical j-function identifies
the quotient of H* by SL2(Z) with the projective line. So for each finite
index subgroup T we obtain a finite cover of compact Riemann surfaces (or
smooth projective curves over C)

This map is unramified away from the three points 0,1728, oo. In other

words, f r is a three point cover.
For an integer N, let

A congruence subgroups is a subgroup r c SL2(Z) which contains T(N),
for some N. The corresponding curve Xr is called a modular curve. The
standard examples for congruence subgroups are r(N), To(N) and 
The corresponding modular curves are usually denoted by X(N), Xo(N)
and Xl (N).
4.2. The modular curve X(p).

Let us fix an odd prime number p. The three point cover g : ~(p) 2013~
X(l) = ?l is Galois, with Galois group G = PSL2(p). Its ramification
index at the branch point oo (resp. at 0, resp. at 1728) is equal to p (resp.
3, resp. 2). Note that the order of G is equal to p(p2 - 1)/2.

For technical reasons it is easier to discuss a variant of g, namely the
three point cover

(We identify the modular curve X(2) with pI by means of the classical
A-function.) The cover f is Galois with Galois group G = PSL2(p). The
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ramification index at each of the three branch points 0, 1, oo is equal to p.
There is an equivariant action of SL2 (2) E£ 83 on the source and the target
of f . The cover g is obtained by taking the quotient under this action.
The next proposition follows easily from the results of [8].

Proposition 4.1. The covers f and g can be defined over Q. In particular,
Q is their field of moduli. Furthermore, g (resp. f ) has good reduction at
the prime 1 (in the sense of Definition 2.3) for 1 =1= 2, 3, p (resp. for 1 =1= p).
The fact that f and g can be defined over Q follows also from the rigidity

criterion used in inverse Galois theory. See [16] or [22]. The Q-models of f
and 9 are not unique. However, both covers have a unique model over the

P-1
field (where p* := (-1) p).

Note that the second statement of Proposition 4.1 confirms (but is not
implied by) the good reduction criterion discussed in §1.2. For 1 = 2,3, the
curve X (p) has good reduction as well. However, since in this case 1 divides
one of the ramification indices, the cover g has bad reduction - at least in
the sense of Definition 2.3.

Since p exactly divides the order of G, the results discussed in §2 and §3
can be used to study the stable reduction of f and g at the prime p. This
in done in detail in [4]. We shall present some of the main results of [4], as
an illustration for the results discussed earlier.

Let Ko be the completion of the maximal unramified extension of Qp.
From now on, we consider the three points covers f and g as defined over
Ko. We remark that there are many different models of these covers over
Ko. However, the stable model, which exists over a finite extension of Ko,
is unique.

For simplicity, we discuss only the stable reduction of the cover f in
detail. Let K/Ko be the minimal extension over which f has semistable re-
duction, and let f : X - Y denote the stable reduction of f . We will freely
use the notation introduced in §2.3 and §2.4. Since f has bad reduction
and p strictly divides the order of G, the conclusion of Theorem 2.4 holds.
In particular, f gives rise to a special deformation datum (Zo, ’-Vo) and to
Galois covers fi : Xi --t Y-j. Since all the ramification indices of the cover f
are equal to p, none of the supersingular points Aj E equals 0, 1 or
oo. Moreover, the Galois covers fi are 6tale over Yi - fail.
Theorem 4.2.

(1) The field K is the (unique tame extension of Ko of degree (p2 -1) /2.
(2) There are r = (p-1)/2 supersingular points they are precisely the

roots of the Hasse polynomial
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The Galois cover Zo - Yo is the cyclic cover of degree r given by the
equation zr = Furtherrraore, we have wo = z t-’(t - l)-ldt.

(3) For i = l, ... , r, the curve Xi is given by the equation y(p+l)/2 -
xP - x. An elerraent of G = PSL2(p), represented by a matrix
A = ~ a b) E SL2(P), acts on Xi as follows:

For the proof of this theorem, see [4]. The main idea is this. One
constructs a special G-map f : X - Y, which satisfies the conclusion of
Theorem 4.2 (ii) and (iii). By Theorem 3.1, it lifts to a three point cover
f’ : X’ -j PB defined over the tame extension of Ko of degree (P2 - 1)~2.
By the rigidity criterion of inverse Galois theory, f’ has to be isomorphic
to f . Whence the theorem.
One can prove a similar theorem about the stable reduction of g : X (p) -

X(l) = P . If p - 1 (mod 12) then the statements are almost identical,
except that the Hasse polynomial has to be replaced by another polynomial
(for which there is an explicit formula, similar to the expression for -4~). If

p ~ 1 (mod 12) then some of the supersingular points Aj are equal to either
0 or 1728, and the corresponding Galois cover fi : Yi is not the one
from Theorem 4.2 (iii).
The modular curves Xo(p), Xl(p) and Xo(p2) are all quotients of the

curve X (p). Using the results of [4] on the stable reduction of X(p), one
can determine the stable reduction of all these quotients, reproving results
of Deligne-Rapoport [8] and Edixhoven [9]. Somewhat surprisingly, this
new proof does not use the interpretation of modular curves as moduli
spaces for elliptic curves with level structure.

However, the ’modular’ interpretation of modular curve justifies the use
of the term ’supersingular’ in §2.4 and §3.2. In fact, the supersingular
points which are the roots of the Hasse polynomial (D, are exactly the
values t E k for which the Legendre elliptic curve Et with equation y2 =
x(x - 1)(x - t) is supersingular. Similarly, a point t E lies in one

of the open disks D’ if and only if the elliptic curve Et has supersingular
reduction. The modular interpretation of the smaller closed disks Di C D’
is somewhat less known. However, it can be shown (see e.g. [5]) that a
point t E I~1 (K) lies in one of the disks Di if and only if the elliptic curve
Et is too supersingular, which means that Et p] has no canonical subgroup.
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