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Linear independence of values of a certain

generalisation of the exponential function 2014 a new

proof of a theorem of Carlson

par ROLF WALLISSER

RÉSUMÉ. Soit Q un polynôme non-constant à coefficients entiers,
sans racines sur les nombres entiers positifs. Nous donnons ici,
essentiellement avec la méthode de Hermite, une nouvelle démon-
stration de l’indépendence linéaire de certaines valeurs aux points
rationnels de la fonction

xn Q(1)Q(2) ... Q(n).
ABSTRACT. Let Q be a nonconstant polynomial with integer
coefficients and without zeros at the non-negative integers. Es-

sentially with the method of Hermite, a new proof is given on
linear independence of values at rational points of the function

xnQ(1)Q(2)... Q(n).
1. Introduction

Let Q E be a nonconstant polynomial of degree q with integer
coefficients and without zeros at the non-negative integers. Carlson [2]
investigated already in 1935 the arithmetical nature of values of the function

For n = 0 we define Q(1) ... Q(n) to be equal to one.
Carlson proves:

Theorem 1. Let al, ... , ah be any pairwise distinct non-zero rational
numbers. Then we have for the function G (compare (1)) that the values

are linearly independent over the field Q of rational numbers.
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Remarks.

i) G satisfies a linear differential equation of order q with coefficients
which are polynomials over Q. Therefore it is not possible to replace
in the theorem the order (q - 1) of differentation by a higher one.

ii) One can assume that the numbers a~ (1  j G h) in the theorem are
integers. To show this, let us denote

If the theorem is proved for integers aj we use this result for the
function

""" ’"""

The term on the left in this relation is by definition of G* and a* :==
equal to

Carlson’s proof depends on a certain Pad6-approximation of G, a rep-
resentation of the remainder term by an integral and a careful evaluation
of this term using a Laurent development about infinity. Applying the
method of Siegel-Shidlowskij similar results, qualitative and good quanti-
tative ones, were obtained mainly by the Russian school (compare [4], pp.
128-136).

In this paper we use in principle the same method which Hermite applied
to establish the transcendence of the basis of the natural logarithm. Like
Hilbert [7] and Hurwitz [8] we apply divisibility properties to show the
non-vanishing of a certain sum of integers. Aside the exponential function,
this way was mainly used by Skolem [12] to get results on the irrationality
of certain numbers. We take the method of Hermite in the form as it is

described in Perron [10] and Skolem [12], and regain in a simple way the
result of Carlson.

2. The method of Hilbert-Perron-Skolem

Let
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One chooses a "starting-polynomial"

and derives from P m other polynomials:

The "approximating-polynomial" P* belonging to P is the following:
m

Remark. If f denotes the exponential function (e.g Q(x) = x or kn = 1,)n.

one has the relation 
°

Using the relations (4) and (5) one obtains

and with f (0) = ko = 1

Finally it follows for the " remainder-term"

with (7) and (8)

To prove theorem 1 one has to show that for every non-zero vector

the linear form
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does not vanish.
To show this one uses the "approximating-polynomial" P* (compare (6))

to introduce the linear form

Using the "remainder term" 0(x) (compare (9)) one gets the following
connection between the linear forms 1’1 and 

If one chooses an appropriate "starting-polynomial" P one can show firstly
that the linear form A* is different from zero and secondly that

In this way one gets from (14)

Form this inequaliy one concludes A ~ 0 which proves theorem 1.

Remark. In the paper of Skolem [12] and in [1] one finds further applica-
tions of the method of Hilbert-Perron-Skolem.

3. The form of the polynomials P~, in the special case of the
function G defined in 1.

We apply now the method of Hilbert-Perron-Skolem described in Chap
2 to the function G defined in Chap 1. In this case the values kn in (3) are
given by

Let 6 denote the operator x-4-. The function G (compare (1)) satisfies the
linear differential equation of order q, (compare [4], Chap 2, 6.1. formula
(85)).
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If one applies to P,, one gets

If the "starting-polynomial" Po(x) := P(x) vanishes at zero with multi-
plicity mo, it follows

and from (19) we have

At the end of this chapter we will prove a connection of the operators ð and
D = d giving with (21) the following representation of the polynomials

The coefficients are integers and if Q E has the form

one gets for the highest coefficient of P,

Lemma 1. For 6 = x dx and D = dx we have
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Beweis. The lemma holds for j = 0. Assume that the lemma has been
verified for j = 0,1, ... , k. From this inductive hypothesis one deduces:

The lemma follows by induction.

Beweis. From Lemma 1 we gain

(ii) We use induction. Clearly the formula holds for J1 = 0. Assume that ii)
is proved for J1 = 0, l, ... ,1~. For the following it is not necessary to have
an explicit expression for the numbers aj,, for j = 0, ... , 1, /~&#x3E;1.
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To finish the proof, we see

4. A survey of some results on higher congruences
Let P denote the set of prime numbers. For the proof of theorem 1

one needs some results on those primes p E P for which the congruence
= 0(modp) is solvable. Here denotes a polynomial with ra-

tional integer coefficients which is not identically zero (modp). Moreover
results on those primes p are needed for which the given polynomial splits
mod p in degree of f (deg f ) linear factors. In algebraic-number-theory one
can find many papers in this direction going essentially back to Dedekind
[3] and Hasse [6]. Gerst and Brillhart [5] have given an excellent more
elementary introduction to these problems. For better readability of this
work I mention here some notations, definitions, conclusions and theorems.
All proofs of these results can be found in [5].

Definition 1. A prime p for which f (x) is not identically zero (modp)
and for which the congruence f (x) - 0( mod p) is solvable is called a prime
divisor of f .

Proposition 1. Schur [11] has shown that every nonconstant polynomial
f has an infinite number of prime divisors.
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Definition 2. Let f (x) = all /3i E Z, /3i &#x3E; 0, fi(x) E dis-

tinct, primitive and irreducible) be the unique factorisation of f (x) into
irreducible polynomials. will be said to "split completely" (mod p), p
a prime, iff each fi(x) is congruent (mod p) to a product of deg fi distinct
linear factors and p doesn’t divide the discriminant of g(x) == I1 fi(x).

If f(r) "splits completely" (mod p) then is congruent (mod p) to a
product of deg f linear factors of the form ax + b, a, b E Z, It is this

property which is needed in our prove of theorem 1.
Theorem 5 of the work of Gerst and Brillhart [5] gives a general infor-

mation on the prime divisors of a polynomial. The following Proposition 2
is proved there as a corollary (compare [5], page 258).

Proposition 2. Every non-constant polynomial f (x) has an infinite num-
ber of prime divisors p for which it "splits completely" (mod p).

5. The choice of the "starting-polynomial" P and some

divisibility properties of the values 

To prove theorem 1 one can assume that in (11) or (12) not all of the

numbers s(v) ( 1  j  h, 0  v  q - 1) are zero.
Let the value be the "highest" term in (11) which is different from

zero; that is:

So in case (25) the linear form A* of (13) has the form

Let p E P be a prime number which satisfies the relation:

(26) Q "splits completely" (mod p)

(compare Definition 2 and Proposition 2 in Chap 4). Choose a sufficiently
large p with (26) which fulfills in addition the conditions

L.
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Define the "starting-polynomial" P of the method of Hilbert-Perron-
Skolem (compare Chap 2, (4)) in the following way:

Then the derivatives of P satisfy the relations:

The Taylor development at x = 0 of the "starting-polynomial" P begins
with the term cxp’q, 0. Therefore one concludes from (20)

From (22) one gets for p  p - q

and from this follows with (29) for &#x3E;  p



390

From (27), (32) and (33) one concludes

With (29) and (31) one gets (the same holds for ao := 0),

To find such properties for J-L 2: p, one takes the representation which follows
from (5)

and one expresses -yn - kn-/-L (compare the definition of kn in (17)) in the
following way:

For ti &#x3E; p the product Q((n - J-l + 1)... Q(n) has at least p factors. By
the assumption (26) that the polynomial Q "splits completely" (mod p) in
q linear factors of the form ax + b, p f a, one gets

If one remembers that the aj, 1  j  h, could be chosen as integers
(compare remark ii) to theorem 1) one recognizes from (4) and (28) that the
coefficient qn kn of the starting polynomial P is also an integer. Therefore
we have from (37) and (38)

From this we conclude with (36)

6. The values and the non-vanishing
of the linear form A*

We apply the divisibility properties proved in chapter 5 to show that the
linear form A* of (251)

does not vanish. P* (compare (6)) is defined with the polynomial P of (28)
by
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It follows from (5) and (30)
Tr

and from (32) and (35)

With (40) we get from (43)

Therefore we have

which is the same (compare the definition of A* in (251)) as

From (32) we get

Because of (40) the second term on the right of (46) is a multiple of pq
whereas the first term is not divisible by pq (see (34)). Therefore we get
from (46)

Since we assumed in (27) p ,~ we get with (47)

Together with (45) one derives now the important relation
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7. A lower bound for A*

Let t be a prime number and let pt denote the number

I f... I I denotes the cardinality of the set {... }.

After Nagell [9] one has the estimate

where K denotes the number of irreducible factors of Q.
Let p C P be the prime number which was chosen in Chapter 5 (compare

(26), (27)). In (37) we have seen that for fc ~ p every coefficient 7n in

the representation (36) of (aj) contains the factor

In all these products the argument of Q goes at least through p consecutive
positive integers. Therefore, using the definition of pt in (49), in each one
of these products the prime number t occurs at least in order /-It [1[]. In

consequence for p &#x3E; p, every number P(p) (aj) is divisible by a positive
integer Bp with

Regarding the construction of P* (compare (41)) one has by(43)

The same divisibility property can be proved for ao := 0 so one has

For j = jo and v = vo it was shown in (46)

The second term on the right is by the argument above again divisible by
Bp. For the first term one gets by (32) and (33)
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From the relations (49) - (54) we conclude that

can be divided by

that means

One has

This gives, because q,

Finally one gets from (50), (56) and (57) the lower bound

8. An estimate of the remainder 

0(x) was defined in (10). Since we have qn = 0 for 0  rz  q ~ p, we get
1

We have Q E and Q is of degree q. Therefore exists an integer no(Q)
so that

In (59) we have p &#x3E; n &#x3E; q p. From (60) follows that if p is sufficiently large
we have
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Since we can take the prime number p, chosen in (26) and (27), as large as
we want, we can consider only numbers x with the property

Then one gets the estimate

Let P* denote the polynomial

With (59) and (63) follows

If P and 4 E are polynomials,

one writes

From the definition of P in (4) and (28) it follows that there are constants
ci &#x3E; 0 and c2 &#x3E; 0, which depend only on a 1, ... , ah so that we have

and

For a p E P that satisfies

we get from (65) and (68)

Here C3 &#x3E; 0 is a constant, which depends on a 1, . - - , ah and Q, but not on
pEW.
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9. Proof of the linear independence over Q of the numbers

We have to show that for every non-zero vector in (11) the linear form

is different from zero.
In (14) we have seen that the linear forms A and A* are connected in the

following way:

If H denotes the height of the vector in (11),

it follows from (72) with (58) and (70)

where c4 &#x3E; 0 is a constant independent of p and H. From (74) one gets for
sufficiently large p (depending on H)

(75) A # 0,
which proves the linear independence over Q of the numbers 1, G(al), ... ,
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