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Linear independence of values of a certain
generalisation of the exponential function — a new
proof of a theorem of Carlson

par RoLF WALLISSER

RESUME. Soit @ un polynéme non-constant a coefficients entiers,
sans racines sur les nombres entiers positifs. Nous donnons ici,
essentiellement avec la méthode de Hermite, une nouvelle démon-
stration de 'indépendence linéaire de certaines valeurs aux points
rationnels de la fonction
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ABSTRACT. Let @ be a nonconstant polynomial with integer
coefficients and without zeros at the non—negative integers. Es-
sentially with the method of Hermite, a new proof is given on
linear independence of values at rational points of the function

TI.
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1. Introduction

Let Q € Z[z] be a nonconstant polynomial of degree ¢ with integer
coefficients and without zeros at the non-negative integers. Carlson [2]
investigated already in 1935 the arithmetical nature of values of the function

W 60 =2, Gaem—am ”Z QDRE) QM)

For n = 0 we define Q(1)...Q(n) to be equal to one.
Carlson proves:

Theorem 1. Let ai,...,an be any pairwise distinct mon—zero rational
numbers. Then we have for the function G (compare (1)) that the values

(2) L,G(),..., G4 V(ay),...,G(ap),-..,G9V(ap)

are linearly independent over the field Q of rational numbers.
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Remarks.

i) G satisfies a linear differential equation of order ¢ with coefficients
which are polynomials over Q. Therefore it is not possible to replace
in the theorem the order (¢ — 1) of differentation by a higher one.

ii) One can assume that the numbers a;(1 < j < h) in the theorem are
integers. To show this, let us denote

S )
;= t—J (1<j<h), Sj,t; € Z*, a:=11 -ta...t,
J
tiaj == sja, o € Z, Q*(z) := a- Q(z).
If the theorem is proved for integers a; we use this result for the
function

G*(z) = Z QM) ---Q(n) ( ) Z Q*(l) Q*(’fl)

n=0

If (so, S1,---,8,) € Zh"'l\O it follows
so+s1G*(a]) + -+ snG*(a}) #0

The term on the left in this relation is by definition of G* and o =
a; - a equal to

So + 51G(Oz1) +---+ 8y G(ah)

Carlson’s proof depends on a certain Padé-approximation of G, a rep-
resentation of the remainder term by an integral and a careful evaluation
of this term using a Laurent development about infinity. Applying the
method of Siegel-Shidlowskij similar results, qualitative and good quanti-
tative ones, were obtained mainly by the Russian school (compare [4], pp.
128-136).

In this paper we use in principle the same method which Hermite applied
to establish the transcendence of the basis of the natural logarithm. Like
Hilbert [7] and Hurwitz [8] we apply divisibility properties to show the
non—vanishing of a certain sum of integers. Aside the exponential function,
this way was mainly used by Skolem [12] to get results on the irrationality
of certain numbers. We take the method of Hermite in the form as it is
described in Perron [10] and Skolem [12], and regain in a simple way the
result of Carlson.

2. The method of Hilbert—Perron—Skolem
Let

(3) f@) = knz", ko =1.

n=0
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One chooses a ”starting—polynomial”

(4) P(z) := Py(z) : Z% o
n=0
and derives from P m other polynomials:
m
(5) PH("E) = Z Tn kn—u "H 1< p<m.
n=p

The ”approximating—polynomial” P* belonging to P is the following;:

(6) P*(z) : Z Py(

383

Remark. If f denotes the exponentlal function (e.g Q(x) = z or kp = )

one has the relation
m
P*(z) =) PW
pn=0
Using the relations (4) and (5) one obtains

(7) Z Tn Z k;u-'L'

n=0

and with f(0) = ko =1

m
(8) P*0)=) .
n=0
Finally it follows for the ”remainder—term”

9) A(z) = P*(z) = P*(0)f(z)
with (7) and (8)

(10) Z'Yn Z kyz” — Z’Yn Z kyx”

=0 v=0

= —Z% Z kyz".

v=n+1
To prove theorem 1 one has to show that for every non—zero vector

(11) (so, sgo),.. 8510), s(lq 1)7”.’82;—1)) € zhatl
the linear form

h g-1
(12) A=sp-1+ Z sg»”) W) (qa;)
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does not vanish.
To show this one uses the ”approximating—polynomial” P* (compare (6))
to introduce the linear form

h g1
(13) A* = 50 P*(0 +ZZ WP (ay).
j=1 v

Using the ”remainder term” A(z) (compare (9)) one gets the following
connection between the linear forms A and A*

-1 h
(14) A* = P*(0)A + qz > sA® (ay)

v=0 j=1

If one chooses an appropriate ”starting—polynomial” P one can show firstly
that the linear form A* is different from zero and secondly that

q—1 h 1
(15) PRI UIHIESI

v=0 j=1

In this way one gets from (14)
(16) |P*(0)] - |A| > —|A*| > 0.

Form this inequaliy one concludes A # 0 which proves theorem 1.

Remark. In the paper of Skolem [12] and in [1] one finds further applica-
tions of the method of Hilbert-Perron—-Skolem.

3. The form of the polynomials P, in the special case of the
function G defined in 1.

We apply now the method of Hilbert—Perron—Skolem described in Chap
2 to the function G defined in Chap 1. In this case the values &y, in (3) are
given by
1
QMQ(2)...Qn)

Let 6 denote the operator z-%. The function G (compare (1)) satisfies the
linear differential equation of order g, (compare [4], Chap 2, 6.1. formula

(85)).
(18) Q(0)G(z) = Q(0) + z G(x).

(17) ki 1=
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If one applies Q(J) to P, one gets

(19) ( u(x) 2{:7% n— u(2<ﬂw" H

n=p

:::£:'7nk%—u(207_'U)xn

n=u

m
=7Q0) +z Z Yn Kn—(u+1) g (bt
n=p+1

= %Q(0) + ePus1(x), 0 < pp < m.

If the ”starting—polynomial” Py(z) := P(z) vanishes at zero with multi-
plicity myg, it follows

(20) P,(0)=7,=0 for p=0,...,mp—1

and from (19) we have

(21) P,(z) = (i Q(&))u oP(z) for 0<pu<my.

At the end of this chapter we will prove a connection of the operators § and
D = d—‘i giving with (21) the following representation of the polynomials

(22) Pu(z) = faj,ﬂ 27# PY(z), p < mo.
§=0
The coefficients o, are integers and if Q) € Z[z| has the form
(23) Qx)=ao+arz+---+aq29, ag #0, ¢>1
one gets for the highest coefficient of P,
(24) Qugp = ag .
Lemma 1. For § = xad; and D = d% we have
J
) = sz’,j «' D', py € Z,
i=0

poo = 1; poj =0, pij =ipij-1+pi-15-1 (0 <i<j),
Pig = Pi-15-1 (0<J), pij:=0 (1= —1 ori>j).
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Beweis. The lemma holds for j = 0. Assume that the lemma has been
verified for j =0,1,...,k. From this inductive hypothesis one deduces:

1) = (v2) " (@) = (w—)zp,ka: 1)

k
= ipipat fO(z) + Z pije Tt fOH ()
i=0 i=0
k41

= Z (i pik + pi-1x) = O ()
i=0
k+1

=Y pirp17' D' f(z).

1=0

The lemma, follows by induction. O

Lemma 2. For Q(z Zagm one has
£=0

q q
i) Q)= ZajJC]D], Q; 1=ij,eae (0<j<q)

j=0 =j
1q
i) ( Q(‘S) Zawm] "D, agp =1, aj1=0a; (0<j < q)
Qg = g1 = O‘N (Pg,q aq)" = af

Beweis. From Lemma 1 we gain

q q 4
(i) Q) = ad= Zw(Zm,e # DY)
=0

=0 =0

q
= ZxJDJ(Zp]gag) = Zajijj.
=j §=0

(ii) We use induction. Clearly the formula holds for u = 0. Assume that ii)
is proved for y = 0,1,...,k. For the following it is not necessary to have
an explicit expression for the numbers «a;, for j = 0,...,qu—1, pu > 1.
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We get
1 k1 J i Y
(; Q(J)) = Zai,l 1 Zaj,k Di(z? k D7)
i=0 j=0

q qk
_ § : i—1 E :
= ai,lx aj,k
i=0 j=0
1

X Z (2)(3'—k)...(j—k—h+1)$j—k—hD,-+j_h

q q-k i ) )

To finish the proof, we see

_ _ k\ _ k+1
Og(k+1),k+1 = Qg1 Ogkk = (aq ) aq) =dg -

4. A survey of some results on higher congruences

Let P denote the set of prime numbers. For the proof of theorem 1
one needs some results on those primes p € P for which the congruence
f(z) = O(modp) is solvable. Here f(z) denotes a polynomial with ra-
tional integer coefficients which is not identically zero (mod p). Moreover
results on those primes p are needed for which the given polynomial splits
mod p in degree of f (deg f) linear factors. In algebraic-number—theory one
can find many papers in this direction going essentially back to Dedekind
[3] and Hasse [6]. Gerst and Brillhart [5] have given an excellent more
elementary introduction to these problems. For better readability of this
work I mention here some notations, definitions, conclusions and theorems.
All proofs of these results can be found in [5].

Definition 1. A prime p for which f(z) is not identically zero (modp)
and for which the congruence f(z) = 0(mod p) is solvable is called a prime
divisor of f.

Proposition 1. Schur [11] has shown that every nonconstant polynomial
f has an infinite number of prime divisors.
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Definition 2. Let f(z) = o] fi(z)%(a,8; € Z, B; > 0, fi(z) € Z[z] dis-
tinct, primitive and irreducible) be the unique factorisation of f(x) into
irreducible polynomials. f(z) will be said to ”split completely” (mod p), p
a prime, iff each f;(z) is congruent (mod p) to a product of deg f; distinct
linear factors and p doesn’t divide the discriminant of g(z) = [] fi(z)-

If f(z) ”splits completely” (mod p) then f(z) is congruent (mod p) to a
product of deg f linear factors of the form az+b, a,b € Z, p J a. It is this
property which is needed in our prove of theorem 1.

Theorem 5 of the work of Gerst and Brillhart [5] gives a general infor-
mation on the prime divisors of a polynomial. The following Proposition 2
is proved there as a corollary (compare [5], page 258).

Proposition 2. Every non-constant polynomial f(z) has an infinite num-
ber of prime divisors p for which it ”splits completely” (mod p).

5. The choice of the ”starting—polynomial” P and some
divisibility properties of the values P,Sp )(aj)

To prove theorem 1 one can assume that in (11) or (12) not all of the
numbers sg.y) (1<j<h, 0<v<g-—1) are zero.

Let the value sg.ZO) be the ”highest” term in (11) which is different from
zero; that is:

s #0,
(25) s¥=0, 1<j<h wm<v<qg-1,

s'=0, jo<j<h

So in case (25) the linear form A* of (13) has the form

h vo—1 Jo
(25) A =soP0)+ Y. Y s P () + Y st P (ay).
j=1 v=0 j=1

Let p € P be a prime number which satisfies the relation:

(26) Q@ “splits completely” (mod p)
(compare Definition 2 and Proposition 2 in Chap 4). Choose a sufficiently
large p with (26) which fulfills in addition the conditions

h
(27) p /52 p fagas, [] (g — o).

j=1
J#jo
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Define the ”starting—polynomial” P of the method of Hilbert-Perron—
Skolem (compare Chap 2, (4)) in the following way:

(28) P(z) := aP9(z — aj,) P~ Vet ﬁ (x — aj)P.
Jo
Then the derivatives of P satisfy the relations:
(29)
0, < (p—1)q+ w,

ag’ ((p —1)g+ vo)!x

i) PO(a;,) =
) ) H (ajo — )P, £=(p—1)g+wo.
1=1

J#30

ii) 1<j<h, j+#jo,
(q p)'a”( — ajy) PrDTH0
P(z)(a]) =

H (a5 — ay)P 9, L=p-q.

r=1

T#350»J

0, £<p-q,

o D) h
ii) PO0) =\ (pg)!(=ayo) >V T] (~ay)?%, £=p-q

J#do
The Taylor development at x = 0 of the ”starting—polynomial” P begins
with the term czP'9, ¢ # 0. Therefore one concludes from (20)

(30) P,(0)=0 for p=0,...,p-q—1.
From (22) one gets for u <p-q

(31) PP (x Za (z7=+ p(j)(m))(/’)_

and from this follows with (29) for p<p

0 0<pu<p-L1,0<p<qg-1,
(32) Pﬁp)(ajo) =¢ 0 for p=p-1, 0< p <y,
Ay, p=p—1, p=wp.

(33)
h ) )
Ay = (( —1)g+wo (ago (oo — O‘j)) ;ﬁ St " ®(p-1)g,p—-1>
j=1
.70

p—1 _
g~ = Cp-1)g,p-1-
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From (27), (32) and (33) one concludes

(34) p? ¥ B (eg0), 9> 1.
With (29) and (31) one gets (the same holds for ag := 0),
(35) PP(a;) =0, j#jo, p<p—1, p<qg—-1.

To find such properties for y > p, one takes the representation which follows
from (5)

m
— -
(36) P;Ep) (o) = Z Y kn—p,/)!( , )a;.‘ (u+p)

n=p+p

and one expresses Yy, - kn—, (compare the definition of k, in (17)) in the
following way:

kpn—
(37) ’)’n'kn—u:’)/n'kn Z“:7n'kn'Q(n_/‘+1)"'Q(n)'

n

For p > p the product Q(n — p + 1)...Q(n) has at least p factors. By
the assumption (26) that the polynomial @ ”splits completely” (mod p) in
q linear factors of the form az + b, p } a, one gets
(38) P|Qn—p+1)---Qn), u>p.
If one remembers that the a;,1 < j < h, could be chosen as integers
(compare remark ii) to theorem 1) one recognizes from (4) and (28) that the
coefficient v, k, of the starting polynomial P is also an integer. Therefore
we have from (37) and (38)
(39) P kn—p, p<p<n<m.
From this we conclude with (36)

(40) p?| PP (a;), p<pu<m, 0<p<gq 1<q 0<j<h (ag:=0)

6. The values P**)(a;) and the non—vanishing
of the linear form A*

We apply the divisibility properties proved in chapter 5 to show that the
linear form A* of (251)

vo— 1
A* = 50 P*(0) + Z Z S(V)P*(V) )+ ZS(VO)P*(VO (a;)
j=1 v=0 j=1

does not vanish. P* (compare (6)) is defined with the polynomial P of (28)
by

m
(41) P*(z) =Z Puz), m=p-q-h+(p—1)g+vo =:deg P.
u=0
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It follows from (5) and (30)

m m
(42) PO)= 3 R0 = 3
H=pq H=pq
and from (32) and (35)
P*)(a ZP(”) )j#jo, p<q—1,

(43)
P*(p) (ajo) ZP(p)(aJO) p < V.
p=p
With (40) we get from (43)
PP (0;)(j # jorp < g—1) and PP () (p < vo).

Therefore we have

vo—1

(44) pQ| (30 P*(0) + Z Z S(P)P*(P Z—: S§.V0)P*(VO)(aj)>
j=1

j=1 p=0
which is the same (compare the definition of A* in (251)) as
(45) p? | (A* — s%(’)P*("O)(ajO)).
From (32) we get
(vo) -
(46) P*(VO)(O‘J'O) = szol (o) + Z P;SVO) (ajo)-
p=p

Because of (40) the second term on the right of (46) is a multiple of p?
whereas the first term is not divisible by p? (see (34)). Therefore we get
from (46)

(47) P! P (ag), g2 1.
Since we assumed in (27) p J S§ZO) we get with (47)
P f s P (o).
Together with (45) one derives now the important relation

(48) p? JA* or A*#0.
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7. A lower bound for A*
Let t be a prime number and let u; denote the number

(49) pe = |{z €Z, 0 <z < t, Q(z) =0(modt)}|;
|{---}| denotes the cardinality of the set {...}.

After Nagell [9] one has the estimate
. logt N
0 —— =kl o1
(50) ;ut = = rlogz +0(1)

where x denotes the number of irreducible factors of Q.
Let p € P be the prime number which was chosen in Chapter 5 (compare
(26), (27)). In (37) we have seen that for p > p every coefficient v, kn—, in

the representation (36) of P,Sp ) (o) contains the factor

Qln—p+1)...Q(n) (p<p<n<m)

In all these products the argument of @ goes at least through p consecutive
positive integers. Therefore, using the definition of y; in (49), in each one
of these products the prime number ¢ occurs at least in order p; [g] In

consequence for 4 > p, every number P,Sp ) (o) is divisible by a positive

integer B), with

B, > [ 2.

teP

Regarding the construction of P* (compare (41)) one has by(43)
(51) B, | P*)(qy), j # jo, 0< p< g, Bp|P*(ajy), 0< p< .
The same divisibility property can be proved for ag := 0 so one has
(52) B, | P¥(0).
For j = jo and v = vy it was shown in (46)

) m
(53) P*(VO)(ajo) = P;SZOI (ajo) + Z P[,(I,VO) (O‘jo)-

u=p

The second term on the right is by the argument above again divisible by
By. For the first term one gets by (32) and (33)

(54) ((p — 1)g + vo)! | P (o)
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From the relations (49) - (54) we conclude that

vo—1
A* = (soP*(O +Z Z g\ P* p) Z Sg'VO)P*(VO)(a]’))
j=1 p=0 j=1
+ 5500 P00) (o)
can be divided by
(55) D = g.C.d. ((( —_ ]_ q + VO Ht‘ut[e )
teP
that means
(56) D|A*.
One has
D >gcd. ((p— nt, Htﬂtl’fl) > g.c.d.(Htl":—ll , Htm%‘]),
teP teP teP
This gives, because of y; < g,
1 logt p—1

> - 57 4. |E )

(57) D_exp(q t<p'ut ; t [ - ])

Finally one gets from (50), (56) and (57) the lower bound
. K
(58) A%] > |D| > exp (% plogp +0(p)).

8. An estimate of the remainder terms A®)(q;)

A(zx) was defined in (10). Since we have v, =0 for 0 < n < q-p, we get
for0<v<g-1

(59)  AW(z) = Z . 2 k V|< )xp-u

n=q-p p=n+1
: n =0k

== Yk V!( )wn—u' ve 2 ghm,
n;q-p " v p=;i-l (le) k

We have € Z[z] and @ is of degree q. Therefore exists an integer no(Q)
so that

(60) for all n > no(Q), |Q(n)| > %q

In (59) we have p > n > ¢p. From (60) follows that if p is sufficiently large

we have
kp _ 1 —2_ (p—n)
~gern o <)

(61)
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Since we can take the prime number p, chosen in (26) and (27), as large as
we want, we can consider only numbers x with the property

4z 1
62 —_—< .
Then one gets the estimate

— ) ko
63 !
( ) lp:;_l (Z) kn

Let P, denote the polynomial
m
(64) P.(z) := Z I'yn kn|x".

n=g-p
With (59) and (63) follows

65)  |AM(z)| <4-2™z| PP (|z]), O<v<q—1, || < g.

If p and ¢ € C|z] are polynomials,

L L
Blz) = arat, §(z) =) beat,
=0 =0

one writes
(66) p(z) < 4(z) = forall £, 0 <L < L,|ag| < by

From the definition of P in (4) and (28) it follows that there are constants
c1 > 0 and ce > 0, which depend only on aj, ..., ap so that we have

(67) Py(z) < (a(1+ )™

and

(68) PY@) <cdMl+2)™ 1<v<q-—1.
For a p € P that satisfies

(69) 8laj| <p, 1<j<h

we get from (65) and (68)

(70) 1AM (a))| <, 1<j<h

Here c3 > 0 is a constant, which depends on ay,...,an and @, but not on
peP.
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9. Proof of the linear independence over Q of the numbers
1,GM(a;)(1<j<h 0<v<qg-1)

We have to show that for every non—zero vector in (11) the linear form

qg—1 h
(71) A=5G0)+Y Y s ¢¥(ay), G(0) =1
v=0 j=1
is different from zero.
In (14) we have seen that the linear forms A and A* are connected in the
following way:

qg—1 h
(72) A =P 0)A+ > S s AW (ay).
v=0 j=1
If H denotes the height of the vector in (11),
(73) H = max (|s}”]),
it follows from (72) with (58) and (70)
qg-1 h
(74) 1P*0)A] > (A7 - Y Y [V a(ay))|
v=0 j=1

K
> exp (Eplogp + O(p)) — Hexp(p-c4)

where c4 > 0 is a constant independent of p and H. From (74) one gets for
sufficiently large p (depending on H)

(75) A#0,

which proves the linear independence over Q of the numbers 1, G(a1),...,

G (ay).
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