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Differences in sets of lengths of Krull monoids
with finite class group

par WOLFGANG A. SCHMID

RÉSUMÉ. Soit H un monoïde de Krull dont le groupe de classes est
fini. On suppose que chaque classe contient un diviseur premier.
On sait que tout ensemble de longueurs est une presque multi-
progression arithmétique. Nous étudions les nombres entiers qui
apparaissent comme raison de ces progressions. Nous obtenons en
particulier une borne supérieure sur la taille de ces raisons. En
appliquant ces résultats, nous pouvons montrer que, sauf dans un
cas particulier connu, deux p-groupes élémentaires ont le même
système d’ensembles de longueurs si et seulement si ils sont iso-
morphes.

ABSTRACT. Let H be a Krull monoid with finite class group
where every class contains some prime divisor. It is known that

every set of lengths is an almost arithmetical multiprogression.
We investigate which integers occur as differences of these pro-
gressions. In particular, we obtain upper bounds for the size of
these differences. Then, we apply these results to show that, apart
from one known exception, two elementary p-groups have the same
system of sets of lengths if and only if they are isomorphic.

1. Introduction

Let H be a Krull monoid with finite class group G where every class
contains some prime divisor (for example the multiplicative monoid of a
ring of integers in an algebraic number field). H is atomic, thus every non-
unit a E H can be written as a product of irreducible elements. If a E H
and ul, ... , u~ E H are irreducible elements such that a = ul ~ ... ~ u~ is
a factorization of a, then k is called the length of the factorization. The
set L(a) C No of all k such that a has a factorization into irreducibles
of length k is a finite set and is called the set of lengths of a. The set

,C(H) - ~L(a) ~ I a E 77} is called system of sets of lengths of H. It is
well known that the system of sets of lengths of H just depends on the
class group. More precisely, L(a) for some a E H is equal to the set of
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length of some associated element in the block monoid B(G) over the class
group (cf. Section 2 for the definition of a block monoid). Hence sets of
lengths of Krull monoids can be studied in the associated block monoids. A
detailed description of the construction and applications of the associated
block monoids of Krull monoids can be found in the survey articles [17]
and [4] in ~1~, for the algebraic theory of Krull monoids cf. [18, Chapter 22,
Chapter 23].

In this article we are mainly interested in the set of differences 0*(G)
which governs the structure of sets of length (cf. Definition 3.1). More

precisely, every set of lengths is an almost arithmetical multiprogression
(bounded by a constant just depending on G) with difference d E 0*(G)
(cf. [8, Satz 1~, also cf. the survey articles, [7] and [12] for a generalization).
The set 0*(G) was first investigated in [9] and recently in [7] and [13]. In
Theorem 3.1 we give an upper bound for 0*(G). For an elementary p-group
we explicitly determine ma,x0*(G) and derive a criterion when A*(G) is
an interval (cf. Theorem 4.1).

It is an open question if, respectively to what extent, finite abelian groups
(with Davenport’s constant greater or equal 4) are characterized by their
system of sets of lengths. This is a contribution to the problem due to
W. Narkiewicz of arithmetical characterizations of the class group of a
number field (cf. [20, Theorem 9.2, Notes to Chapter 9]). In [9] it was

answered positively for cyclic groups, for elementary 2-groups and some
other groups. In Section 5 we use Theorem 4.1 to prove that if an elemen-

tary p-group and an elementary q-group have the same system of sets of
lengths, then they are, apart from one already known exception, isomorphic
(cf. Theorem 5.1~.

2. Preliminaries

In this section we fix notations and recall terminology and results that
we will need, in particular for monoids, abelian groups and related notions.
The notation will be mostly consistent with the usual one in factorization
theory (cf. [17, 4], also cf. [7]).

For C Z we set = fz E Z [ ~ ~ ~ ~ ?~} and we will call it an
interval. For a set M we denote by IMI I E No U ~oo} its cardinality. For a
real number x let [r] = min~z E Z x  zl and Lxl = max~z E Z x &#x3E; zl.
A monoid is a commutative cancellative semigroup with identity element

(1H = 1 E H) and we usually use multiplicative notation. Let H be a
monoid. We denote by HX the group of invertible elements of H. Let

Hi, H2 C H be submonoids. Then we write H = Hl x H2, if for each
a E H, there exist uniquely determined b E Hl and c E H2, such that
a = bc. An element u E H ~ H" is called irreducible (or an atom), if for all
a, b E H, u = ab implies a E H" or b E By A(H) C H we denote the
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set of atoms. H is called atomic, if every a E H B H" has a factorization
into a product of atoms. Let a E ~I ~ H’ and a = Ul - - - - - uk a factorization
of a into atoms ui, ... , Uk E A(H). Then k is called the length of the
factorization and

L(a) = {k E has a factorization of length kl c N

denotes the set of lengths of a. We set L(a) = {0} for all a E The

monoid H is called BF-monoid, if it is atomic and L(a) ~  oo for all a E H,
and it is called half-factorial monoid, if it is atomic and ~L(a)~ I = 1 for all
a E H. Let H be an atomic monoid. E HI denotes
the system of sets of lengths of H.

Let L C No with L = {ll, l2, l3, ... } and li  li+l for each i. Then

A(L) = fl2 - ll, l3 - 12,14 - l3, ... } denotes the set of distances of L. For
an atomic monoid H let A(H) = ULEC(H) A(L) denote the set of distances
of H. Clearly, H is half-factorial if and only if 0(H) _ 0.

Throughout, let G be an additively written finite abelian group. By r(G)
we denote its rank and by exp(G) its exponent. For n E N let Cn denote a
cyclic group with n elements. If Go C G is a subset, then (Go) C G denotes
the subgroup generated by Go, where (0) _ 101.

The set Go (respectively its elements) are said to be independent, if 0
Go, 0 # Go and given distinct elements el, ... , er E Go and ml, ... , mr E Z,
then rrtiei = 0 implies that mlel Tnrer = 0. If we say that

lei,..., is independent, then we will assume that the elements el, ... , eT
are distinct.

Let Go C G. Then denotes the free abelian monoid with basis

Go. An element S = 7(Go) is called a sequence in Go. It has a

unique representation S = I1gEGo gVg(S) with E No for each g e Go.
We denote the identity element of the empty sequence, by 1 and
it will always be obvious from the context, whether we mean the empty
sequence or the integer.

1fT 18, then T-1 S denotes the codivisor of T, i.e. the (unique) sequence
such that T(T-1S) = S. We denote by 181 = l E No the length of S, by

the cross number of S and by G the

sum of S. The support of S is the set of all g E Go occurring in S, i.e.

supp(S) _ {gi i E 1, l} _ {g E Go I vg(8) &#x3E; 01 C Go. The length and
cross number of the empty sequence are 0 and the support is the empty
set.

The sequence S is called a zero-sum sequence (a block), if a(S) = 0, and
S is called zero-sumfree, if 0 for all 1 ~ T S. A zero-sum sequence
1 ~ S is called minimal zero-sum sequence, if for each proper divisor T ~ S
(i.e. with T ~ S), T is zero-sumfree. The empty sequence is a zero-sum
sequence and zero-sumfree.
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The set l3(Go) consisting of all zero-sum sequences in Go is a submonoid
of F(Go), called the block monoid over Go. ,Ci(Go) is a BF-monoid and
its atoms are just the minimal zero-sum sequences. If Gl C Go, then
13(G1) C is a submonoid. For ease of notation, we denote by A(Go)
the set of atoms, by G(Go) the system of sets of lengths and by A(Go) the
set of distances of 
A subset Go C G is called half-factorial, if ,CC3(Go) is a half-factorial

monoid, and Go is called minimal non-half-factorial, if Go is not half-
factorial and each Cl C Go is half-factorial.
Go C G is half-factorial if and only if k(A) = 1 for each A E A(Go)

(cf. [24, 25, 27] and [4, Proposition 5.4] for a proof in present terminology).
Note that G (and thus all subsets of G) is half-factorial if and only if ~G~  2
(cf. [3, 27, 24]). For further results and applications of half-factorial sets
we refer to [6] and the references given there.

Let Go C G. Then D(Go) = I A E A(Go)l is called Daven-
port’s constant of Go and K(Go) = I A E A(Go)} is called the
cross number of Go. If G = Cnr is a p-group, then D(G) =

and K(G) + (cf. [5, 21] and [19, 11]).

3. An Upper Bound for 0*(G)
Until the end of this section let G denote a finite abelian group with

3.

Definition 3.1. Let G be a finite abelian group.

(1) 0*(G) = (min A(Go) ) 0 ~ Go c G and Go non-half-factorial}
(2) For d e N, we say d E if for every there is some

L E £(G) with L = L’ U L* U L" such that
max L’  min L*  max L*  min L" and L* = {y + id ~ i E [0,1]1
with some y e N and l &#x3E; k.

There is a close relation among A*(G) (cf. Lemma 3.1).
Note that the definition of 0*(G) involves the group G itself, whereas the
definition of O1(G) just involves the system of sets of lengths £( G). This
suggests that A*(G) can be used to gather information on G from £ ( G)
and in Section 5, as mentioned in the Introduction, we make use of this
fact to distinguish elementary p-groups by their system of sets of lengths.

First we cite several fundamental results, that will be used in the proofs
of our results.

Lemma 3.1. [10, Proposition 2] A*(G) C Ai(G) and if d E O1(G), then
there exists some d’ E 0*(G) such that did’. In particular, max0*(G) _
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Lemma 3.2. [8, Proposition 3, Proposition 4] Let Go C G be a non-half-
factorial set. Then min A(Go) = gcd(0(Go)) and D(Go)-2.
The following Lemma summarizes several results that will we useful.

Statements 1.,2. and 3. are immediate consequence of Lemma 3.2 and the
definitions, the other statements are proved in [7, Lemma 5.4].
Lemma 3.3. Let Go C Go C G be non-half-factorial sets.

(1) 
(2) Let G’ be a finite abelian group such that G c G’ is a subgroup. Then

(3) Let L E L (Go) and E L. Then min A (Go) I (x - y).
(4) min A (Go) 1) ~ A E A(Go)}).
(5) If there exists some A E A(Go) with k(A)  1, then 

exp(G) - 2.

Next we give results on min A (Go) for special types of subsets Go C G
and results on A* (G), which were obtained in [7, Proposition 5.2].
Lemma 3.4. [7, Proposition 5.2] Let Gl = {el, ... , er} C G independent
with ord(ei) = ... = ord(er) = n.

(1) Let g = - and Go f gl U Gi . Then either n = r + 1 and Go
is half-factorial or A (Go) r - 111.

(2) Let r &#x3E; 2 and g’ _ ei and Go = {g’} U Gi. Then 

r - 1}.
(3) [1, r(G) - 1] C A* (G) and for all m E N with m &#x3E; 3 and m| exp(G)

This lemma gives immediately that

There are known several types of groups for which equality holds. For

p-groups with large rank this was proved in [7, Theorem 1.5] and for cyclic
groups even a more general result on 0*(G) is known (cf. [13, Theorem
4.4]). In Theorem 4.1 we will prove that equality holds for elementary
p-groups. Moreover, there is known no group for which equality does not
hold.

In Theorem 3.1 we obtain an upper bound, involving the cross number
K(G), for the elements of 0*(G). Using this result we will treat several
special cases (cf. Corollary 3.2 and Corollary 3.3).
Lemma 3.5. Let Go C G be a non-half factorial set and g E Go such
that Go B ~g~ is half-factorial. Suppose there exists sorrze W E A(Go) with
k(W) = 1, g E supp(W) and
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Then k(,A(Go)) C N and

Proof. Let A E A(Go). We need to prove, that k(A) E N and that

If k(A) = 1, this is obvious, hence we assume k(A) # 1. Go B {g} is half-
factorial, thus g E supp(A) and E 1]. Since

there exists some r E [1, ord(g)] such that

Thus + vg (A) = yord(g) for some y E N‘. We consider the block
C = AW~. We get C = with B E 13(Go B fgf). Since Go B is

half-factorial, we have k(B) E N and L(B) = {k(B)}. For k(A) we get

and consequently k(A) = k(B) + y - x E N, which proves the first part
of the lemma. We know that each factorization of B has length k(B) =
k(A) + ~ - y, hence there exists a factorization of C with length y + k(B) =

Since C = is a factorization of length we get, applying
Lemma 3.3.3, that I (k(A) - 1). D

Corollary 3.1. Let Go c G be a minimal non-half-factorial set. Suppose
that Go has a proper Gi C Go which is not a minimal generating
set (with respect to inclusion) for (G1). Then k(A(Go)) C 

Proof. Let G’ C Gi such that (Gl) _ (Gi) and g E Gi B G’. Since

Go is minimal non-half-factorial, we have Go B is half-factorial. Since

-g E (G’), there is some S E .~’(G1) with -g, and consequently
there exists some atom W E with vg (W) = 1. Since Go is minimal
non-half-factorial and supp(W) C Gi C Go, it follows that k(W) = 1. Thus
Lemma 3.5 implies the assertion. D

Now we are ready to prove the upper bound for A*(G). In the proof
it will be an important step to restrict our considerations to sets Go with
convenient properties. To do so we will apply Lemma 3.3 and a result
obtained in [22] that makes use of the notion of transfer homomorphisms
(cf. [17, Section 5]).
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Theorem 3.1. Let G be a finz*te abelian group. Then

Proof. Let Go C G be a non-half-factorial set. We need to prove that

By Lemma 3.3.1 we may assume that Go is minimal non-half-factorial.

Moreover, we may assume by [22, Theorem 3.17~ that for each g E Go

If there exists some atom A E A(Go) with k(A)  1, then by Lemma 3.3.5
exp(G) - 2, which gives the statement of the theorem.

Suppose k(A) &#x3E; 1 for each A E A(Go). Let 9 E Go and G1 = Go B {g}.
Since -g E (Gi), there exists an atom W E .A(Go) with == 1. If

k(W) = 1, we apply Lemma 3.5 and obtain

Suppose k(W) &#x3E; 1. For every j E we consider the block Wi,
and obviously we have j E L(W~). For every j E let Wj E ,Ci(Go)
and Bj E ,Li(G1), such that wj = WjBj and k(Wj) is minimal among all
blocks Vj E 8(Go) with Yj I wj and = j. Since Gl is half-factorial
we obtain that L (Bj) = for every j E [2, ord (g) ]. For j = 1 we
have Wl = W, Bl = 1 and

For j = ord(g) we have Word(g) = g°rd(g) and

In particular, since ord(g) # ord(g)k(W), we have &#x3E; 1.

We define

Since ord(g)k(W) E + and L(Wl) + L(Bl) = {1} we
obtain k E [2, ord(g)].
We have k E L(Wk ) and there exists some k’ E L(Wk) + C

L(Wk) such that k’ # k. Since Wk is not an atom we have l~’ &#x3E; 1.
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By Lemma 3.3.3 it suffices to prove that
r

If k’  ~ then

Suppose k  k’. We estimate max L(Wk). Since k(A) &#x3E; 1 for each
A E A(Go), we have k(Wk).
We will estimate k(Wk-1), which leads to an estimate for k(Wk) . By

definition of k we have

and hence fll with some L E ~1, k - l~. We have 

f k(Bk-1)1, hence k(Bk-1) + 1 = k - 1 and

Combining these estimates we obtain

Consequently, we have

For p-groups the size of K(G) is known and using this we can bound
maxA*((9) by an expression just involving r(G) and exp(G). If exp(G) = 2,
then this upper bound yields max A*(G) = r -1, which was initially proved
in [9, Proposition 1].

Corollary 3.2. If G is a p-group, then

In particular, if exp(G) = 2, then = r - 1.
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Proof. Suppose G is a p-group. Let r(G) = r and ki, ... , kr E N such that
Cvki. By [11, Theorem], as mentioned in Section 2, we have

and applying Theorem 3.1 the first statement follows.

Suppose exp(G) = 2. Then 1 = r(G) - 1. By Lemmaexp(G)
3.4.3 we have r(G) - 1  maxA*(G) and equality follows. D

For arbitrary finite abelian groups the size of K(G) is not known. How-
ever, there is known an upper bound for K(G). Using this result, we get an
upper bound for max A* (G) just involving r(G) and exp(G) as-well. (By
log(~) we mean the natural logarithm.)

Corollary 3.3.

In particular, then

Proof. Let n = exp(G) and r = r(G). By [15, Theorem 2] we have K(G) 
Therefore

which proves, applying Theorem 3.1, the first statement.
Now suppose r~ We get

2, 2r log(n) I = n - 2 and consequently max 0* (G)  n - 2.

By Lemma 3.4.3 we have n - 2  maxA*(G) and equality follows. D

4. A*(G) for Elementary p-groups
In this section we investigate A*(G) for elementary p-groups. We pro-

ceed similarly to the previous section, but in elementary p-groups minimal
generating sets are independent and thus certain sets are so-called simple
sets. Using results on the set of atoms of block monoids over simple sets we
will investigate min0(Go) for simple subsets of finite abelian groups (cf.
Proposition 4.1). Having this at hand we will determine max A* (G) (and
to some extent the structure of A* (G) ) in case G is an elementary p-group.
We recall a definition of simple sets and some related notations. A

subset Go C G B 101 is simple if there exists some g E Go such that
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Gi = Go B fgl = is independent with ord(ei) = ni for each
i E (1, r~ and g with bi E [1, ni - 1] for each i E [1, r] - For

j E N let Wj (Gi, g) = Wj E 8( Go) denote the unique block with vg (Wj) = j
and E ~0, n2 - 1] for each i E [1, r] (clearly, mod 

Moreover, let i(Gl,g) = f j E N E A(Go) I -
Note that the sets considered in Lemma 3.4 are simple sets. In the

following result we summarize some results on simple sets.

Lemma 4.1. [22, Theorem 4.7, Lemma 4.12] Let G be an abelian group,
r G1 = an independent set with ord(ei) = ni for each
i E [1, r], g = - ~i-1 biei with bi E [1, ni - 1] for each i E [1, r] and
Go = Gi U ~g}. Further let j E N.

(4) If A(Go), then there exists some k E [1, j - 1] such that 
WkWj-k.

(5) min (i ( G 1 , g) B i E (l,r~}.
(6) i (GI, g) = {l,ord(g)} if and only if ord(g) I ni and bi = for

each i E [1, r~ .
(7) Ifi(G1,g) t= then 

Now we are ready to investigate min A (Go) for simple sets.

Proposition 4.1. Let Go = {g, el, ... , C G be a simple and non-
half-factorial set with r E I‘~, independent, ord(g) = n and
ord(ei) = rci for each i E [1, r]. Then either

or

r 

n rci for every i E[l,r],g = - L niei and minA(Go) = n

Proof. We set Gl = and g biei with bi E [1, ni - 1]
for every i E [1, r].
We use all notations introduced for simple sets and set m -

f 11) hence m E ~2, n~
Suppose that m = n. Then, by definition of we have
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and Lemma 4.1.6 implies that n ni and bi = ) for every i E [1, r]. Thus
Wn e ni is the only non-cancellative relation among the atoms

of Go. Since Go is non-half-factorial, we get n # r - 1 and A (Go) =

Suppose that me 2, n - 1].
If k(Wl) = 1, then Lemma 3.5 implies minA(Go) ! I gcd(k(A) - 1 1

A e A(Go)}). Since Go is non-half factorial, there exists an atom, say
A’ such that k(A’) i= 1. We obtain

and consequently minA(Go)  r hence r - 1.

Suppose k(Wl) =I 1. For every j E ~l,n~ let Bj = E ,Ci(G1).
Since G1 is half-factorial, it follows that L(Bj) = fk(Bj)l for every

For j = n we have

We define

Clearly, we obtain that k E [2, n] and

for every j E [1, n].
Assertion: Wk E A(Go).
Proof of the Assertion: Assume to the contrary that A(Go). We
assert that

Suppose that this holds true. If j C (l, l~ -1~, then and

Thus L(Wk) + L(Bk) c f kl, a contradiction.
To verify the inclusion, let 1 E L(Wk) and ... - !7/ a factorization of

W~ with length L Then there is some j E (1, k - 1] such that !7i = Wj . By
Lemma 4.1.4 we have = hence U2 ..... Ul is a factorization

k(Bj) + k(Bk-j) . Since L(Bv) = (k(Bv) ) for every v E [1, I~J it follows that

hence the inclusion is verified.
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Since Wk E A(Go) we infer that m  k and

Note that since W~ is not an atom, 1 and hence 0.
Case 1: 1 + k(Bk) &#x3E; k. Let j E [2, n] By definition we have

and since G 1 is independent, it follows that E niNo for
every i E Since vei(Wl) E ~0, n2 - 1~ for every it follows that

Suppose that m  1~. Then we have

and {1} + = L(Wm) + {m} hence k(Bm) = m - 1. We
set f = and obtain that

Therefore we obtain that

Recall that m C [2, r~l] and let f : be defined by f (~) _ ~ +~-3.
Since f"(x) &#x3E; 0 for every x E R&#x3E;o (or by a direct argument cf. [23, Lemma
4.3]), we obtain that
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Theorem 4.1. Let G be an elementary p-group with exp(G) = p and
r(G) = r. Then

In particular,
(1) 
(2) 0*(G) is an interval if and only if p  2r + 1.

Proof. By Lemma 3.4 we know that

- - - - - - .

Let Go C G be a non-half-factorial subset and d’ = min A (G’). We have
to prove that d’ E If p = 2, then

D(Go) - 2  r - 1 by Lemma 3.2. Let p &#x3E; 3 and Go C G’ a
minimal non-half-factorial subset and d = minA(Go). Then Lemma 3.3.1
implies that d’ I d. If d E r},p 2013 2], then either d = d’ or
d’  L2J  p;3. Suppose that d ~ [max{l,p - 1 - r},p - 2]. Let g E Go
and Gl = Go B fgl.

If Gl is not a minimal generating set for (G1), then Corollary 3.1 implies
that d  K(G) - 1. By [11, Theorem], as mentioned in Section 2, we have
K(G) ~ r and thus d’ E ~l, r - 1].

Suppose that G1 is a minimal generating set for (G1). G is an elementary
p-group, consequently GI is independent. Since Go is minimal non-half-
factorial, Go is not independent and it follows that Go is simple (also cf.
[22, Lemma 4.4]).
Thus Proposition 4.1 implies that d  max{r - 1,~} hence d’ E

It remains to prove the additional statements: 1. is obvious.
2. If p  2r+l, then

and consequently 0* (G) _ 2, r - If p &#x3E; 2r + 1, then
1 e A*(G), p - 2 E A*(G) but p - r - 2 E A*(G). 0

5. Characterizing Elementary p-groups by £( G)
As mentioned in the Introduction, it is an open question to what extent

a finite abelian group is characterized by its system of sets of lengths. In
Section 2 we mentioned that if 2, then the block monoid B(G) is half-
factorial, hence G(Cl) = L(C2) (cf. [24, Proposition 3.2]). In [9, Lemma 9,
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Lemma 10] it was proved, that G(C3) = L(C2) and no group not isomorphic
to C3 or C2 has the same system of sets of lengths as these groups.

Furthermore, it is known (cf. [9, Satz 4~ ) that for n E N with n &#x3E; 4 the
following holds: If

and if

In this section we will prove the following result.

Theorem 5.1. Let p and q be primes, G be an elementary p-group and G’
be an elerraentary q-group with D(G) ~ 3. If L(G) = £(G’), then G’.

Since we just investigate elementary p-groups, we will have, from Propo-
sition 5.1 until the end of the paper, as general assumption that G is an
elementary p-group and some additional notation introduced there.

In Theorem 5.1 but even more in its proof Davenport’s constant is of
importance. Recall that if G is an elementary p-group with r(G) = r, then
D(G) = 1 + (p - 1)r. Consequently, C3 and C2 are the only elementary
p-groups and in fact the only abelian groups with Davenport’s constant
equal to 3. Thus the theorem gives, that apart from C2 and C3 any ele-
mentary p-group is characterized by its system of sets of lengths among all
other groups that are elementary q-groups for some prime q.
To prove Theorem 5.1 we make use of the notion of elasticity one of the

most investigated invariants in the theory of non-unique factorization (cf.
the survey article [2] in [1]). For a non-empty, finite subset 

is called the elasticity of L, and one sets = 1. Let H be a BF-monoid
and a E H. Then p(a) = p(L(a)) is called the elasticity of a and

the elasticity of H.
By definition, a BF-monoid is half-factorial if and only if p(H) = 1. In

the following lemma we summarize some facts on the elasticity, which we
need in the proofs of Proposition 5.2 and 5.3. As usual, we write p(Go)
instead of p(B(Go)).

Lemma 5.1. [16, 14] Let H be a BF-monoid.

for a non-empty subset of an abelian group G. Then
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Another concept we will use are decomposable and indecomposable sets.
A non-empty subset Go C G is decomposable, if Go has a partition Go =
GiUG2 with non-empty sets Gi, G2, such that 13(Go) _ ,L3(G1) x B(G2)
(equivalently (Go) _ (Gl) E9 (G2)). Otherwise Go is indecomposable. In

the proof of Proposition 5.2 we will make use of the fact that every non-
empty set Go C G has a (up to order) uniquely determined decompositions
into indecomposable sets (cf. [22, Section 3]). Note that minimal non-half-
factorial sets are indecomposable.
An important tool to characterize groups is that D(G) is determined by

£( G).

Lemma 5.2. [9, Lemma 7] Let G be a finite abelian group with 2.

Then
- ... _.’10. - - . - - J .-..," - - ......

From here until the end of this paper, although not explicitly stated in
the exposition, all groups G will be elementary p-groups with r(G) = r and
{el, ... , er} C G an independent set.
The results established in Section 4 give information on 

Proposition 5.1.

and Ai(G) is an interval if and only if p  2r + 1.

Proof. By Lemma 3.1 and Theorem 4.1 the statement on max Ai(G) is

obvious. Clearly, in case A* (G) is an interval, we get by Lemma 3.1 Ai(G)
is an interval as-well. Conversely, suppose that A*(G) is not an interval.
Then Theorem 4.1 implies that p &#x3E; 2r + 1 and p - r - 2 ~ 0*(G~. Since
p - r - 2 &#x3E; 1 max A*(G), it follows that p - r - 2 t d for any d E 0*(G).
Thus p - r - 2 ~ is not an interval. 0

Another result we will need to prove Theorem 5.1 is Proposition 5.3. In
its proof we investigate properties of sets of lengths that are arithmetical
progressions with maximal difference. We need some preparatory results,
in particular on sets Go such that min ð.( Go) is maximal. Note that several
of the occurring sets are just the sets considered in Lemma 3.4.

Lemma 5.3. Let g ei, Go = fgl U er~ and

Then for every n E N we have
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Proo f . As usual we set Wj = for each j e 1, p~ . Then it

follows, either by a simple direct argument or by Lemma 4.1.2 and 3., that

Let n E N and s = n - [n]. Suppose that

with ... E No. Clearly, we have n = = 

hence e ~n - s, n~ . Since

it follows that

Conversely, let i E [n - s, n~ . Then there exist j 1, ... , jp E No with
jv = i and v jv = n, which implies that

Therefore, we obtain that

In the following considerations we need a result on certain half-factorial
sets. It was obtained in [25, Lemma 1] (cf. also [26, 5.]) and in [6, Lemma
3.6] a result is proved that contains it as a special case.
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Lemma 5.4. Let g = - ¿~==l biei with bi e [0, p - 1] for each i e [1, r~. If
{g, ei,..., half-factorial, then = p - 1.

Lemma 5.5. Let p - 2 &#x3E; r and Go C G. Then Go C G is indecomposable
with min A(Go) = p - 2 if and if Go = {2013~, ~} for some g e G B f 0}.

Proof. If Go = {2013~? g} for some 9 e G B {0}, then obviously Go is indecom-
posable and Lemma 3.4 implies that = p - 2.

Conversely, let Go C G be indecomposable with minA(Go) = p - 2.
Then (Go~ &#x3E; 2. Suppose that r((Go)) = 1 and let g E Go. If ag E Go
for some a e ~2, p - 1], then [10, Theorem 1] (respectively Lemma 3.3.4
with A = (ag)gp-a) implies that minA(Go) a - l. Thus a = p - 1 and
Go = {-9, 9~-
Assume to the contrary that r((Go)) &#x3E; 2, and let Gi C Go be a min-

imal non-half-factorial subset. Then min A (Go) ! I minA(Gi) by Lemma
3.3.1. Assume that Gi has some proper subset G2 which is not a minimal
generating set for (G2). Then Corollary 3.1 implies that

hence

p - 2 = min A(Go)  ma,x~k(A) - 1 A E A(Gi) I

a contradiction. Hence each proper subset of GI is independent. Since Gi
is minimal non-half-factorial and thus not independent, we get that Gl is
simple (also cf. [22, Lemma 4.4~). Since

Proposition 4.1 implies that Gl = for some g E G B ~0~.
Moreover, the considerations imply that every simple, non-half-factorial

subset of Go is equal for some g’ E Go .
We set el = g. Let C Go such that fe ...... e, I is an

independent generating set for (Go~ . Since Go is indecomposable, there
exists some h E Go such that h biei with bi E [0, p - 1], 0

0 for some j E [2, r’~ . Let I = {z E [1, r’] 0}. Then I
i E If is simple and since III ( &#x3E; 2 we obtain U {e~ I i E If is half-
factorial. Thus by Lemma 5.4 we have ¿iEI bi = ~ -1. Clearly, -el E Go,

U fe ...... 2 is independent, h (p - bl ) (-ei ) - i and

I B f 111 is simple and has to be half-factorial. However,
we have = p-2bl + ¿iEI bi = p-1, since

p &#x3E; 3. We obtain, again by Lemma 5.4, that, e~} U {e~ i E is

not half-factorial, a contradiction. Thus r((Go)) = 1 and Go = ~-g, g~. 0
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Proposition 5.2. Let p - 2 &#x3E; r and Go C G a non-empty set. Then
min 0(Go) = p - 2 if and only if

In particular, if min A (Go) = p - 2, then p(Go) = 2 .
Proof. Let L denote the set on the right hand-side. If £( Go) = L, then
obviously min A (Go) = p - 2.

Conversely, suppose that minA(Go) = p - 2. By [22, Proposition 3.10]
there exist uniquely determined non-empty subsets G1, ... , Gd C Go such
that

and consequently

Clearly, there exists some i e [1, d] such that Gi is non-half-factorial.
Then Theorem 4.1 implies that

p-2=minA(Go) = p - 2

hence by Lemma 5.5 it follows that Gi = {2013~~} with some g e G B (0) .
Thus it remains to verify the following three assertions:

Al: G({-g, g}) = 1L for every g E GB (0) .
A2: If L, L’ e L, then L -I- L’ e L.
A3: p(Go) = ~.
Proof of Al: Let 9 E G B {O}. For we set

Then L(Bn,k) = liE ~o, k~}, hence 1L 
Let B = -gVgW E ,~i(~-g, g~~. We may suppose w &#x3E; v. Clearly, w =

v mod p. Let m E ~0, p - 1~ and n’, k’ E No, such that v = m + n’p and
w = m + (n~ -I- k’)p. Then B = (-gg)mBnl,k, and
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Proof of A3: Let g E GB{0} and set G’ = {-g, g}. Since D(G’) = p, Lemma
5.1.2 implies that p(G’) = 2. Hence by Lemma 5.1.1 and the considerations
of this proof, we obtain p(Go) = 2. 0

Next we investigate blocks that have arithmetical progressions with dif-
ference p - 2 as sets of lengths. We will show that such blocks can be
factorized in a block for which the set of distances of the support is a sub-
set of ~p-2~ and a block with bounded length. Problems of this type were
initially investigate in [8] to determine the structure of sets of lengths in
block monoids.

Lemma 5.6. Let p - 2 &#x3E; r. Then there exists a constant N(G) E I~ such
that for every B E 13(Go) with A(L(B)) = f p - 2} the following statement
holds: there exist Bl, Bz E B(G) with N(G), 0(supp(Bz)) c {p-2}
and B = BlB2.

Proof. Let B E B(G) with A(L(B)) = {p - 2}. We construct blocks

Bl, B2 E B (G) in such a way that IBll is bounded above by a constant, not
depending on B but only on G, and all remaining conditions are satisfied.
We set Go = supp(B) and proceed in two steps.

1. We assert that there is some Nl(G) E N and a partition Go = GlUC2
such that B = FlF2 with Fi E for i E [1,2], A(G2) C {p - 2} and

Nl(G).
For every non-half-factorial set Go C G, let B(Go) E such that

Let

Nl (G) = g E G’l Go C G non-half-factorial},

If G2 = 0, we have A (G2) = 0, F2 = 1, Fi = B and I Fl I == IBI :::;_

Suppose that 0. Since B(G2) B, it follows that

Theorem 4.1 implies that

hence min A (G2) = p-2. By Proposition 5.2 we infer that A (G2) = fp - 2 1.
By construction, we obtain that

2. Let Bz E be maximal (with respect to divisibility) such that
B21F2. Then A(supp(B2)) c A(G2) C {p - 2} and B2 1F2 is zero-sumfree
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and therefore I B2 1 F21  ~(G). Setting Bl = Fl(B2lF2) we obtain that
B = BlB2 and

Proposition 5.3. Let p and q be primes with p &#x3E; q &#x3E; 2 and (p-1)(q-1) &#x3E;
3. Then

Proof. If q = 2, then p &#x3E; 5 and by Proposition 5.1 we get that is

an interval and is not an interval and consequently G(CP-1) ~
G(C9_1).

Suppose that q &#x3E; 3. If with q - 1 k, then Lemma 5.3 (with
r = p - -~Y 1 and s = n - [11] 1 = 1~~ implies that

Note that p(Lk) == q+(q-l)(p-2) . °mIn Lk q

We show that Lk for sufficiently large k. with

q -1  1 and assume to the contrary there is some Bk E such that

L(Bk) = Lk.
By Lemma 5.6 there exist some constant e N, not depending

on 1~, and blocks Bk,l, Bk, 2 E B(G) with IBk,ll 1  and C

{p - 2}, where G~ = supp(Bk,2), such that Bk = If k is large
enough, then I L(Bk,2)1 &#x3E; 1 hence A(Gk) = {p20132}. Moreover, for any 1 E N
there exists some k(L) E N such that IL(Bk,2)1 [ &#x3E; 

By [8, Proposition 5] we obtain that there exists some constant M E
N not depending on k (for example M = is a possible
choice) such that

and

Thus we obtain, if k is sufficiently large, that
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Since by Lemma 5.1.2 and Proposition 5.2 p(L(Bk,2))  p(Gk) = 2 and
since [ and hence can be arbitrarily large, we obtain
that for any E &#x3E; 0

if k is sufficiently large. Hence 
"

for any E with 0  E  1, a contradiction. D

Proof of Theorem 5.1. Let G be an elementary p-group with r(G) = r and
G’ an elementary q-group with r(G’) = s and D(G) ~ 3. Suppose that
G(G) = £(G’). We have to prove that p = q and r = s. By definition of
Ai(G) and by Lemma 5.2 it follows that

Thus we obtain

and, by Proposition 5.1,

Suppose that s = p - 1 and r = q - 1. If D(G) = 2, then p = q = 2 and
r = s = 1. If D(G) = (q - 1~(p - 1) + 1 ~ 4, then Proposition 5.3 implies
that p = q and hence r = s. D
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