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Systems of quadratic diophantine inequalities

par WOLFGANG MULLER

RÉSUMÉ. Soient Q1,..., Qr des formes quadratiques avec des
coefficients réels. Nous prouvons que pour chaque 03B5 &#x3E; 0 le système
|Q1(x)|  03B5,..., |Qr (x)|  03B5 des inégalités a une solution entière
non-triviale si le système Q1 (x) = 0,...,Qr(x) = 0 a une

solution réelle non-singulière et toutes les formes 
03B1 = (03B11, ... , 03B1r) ~ Rs, 03B1~ 0 sont irrationnelles avec rang &#x3E; 8r.

ABSTRACT. Let Q1, ... , Qr be quadratic forms with real coeffi-
cients. We prove that for any ~ &#x3E; 0 the system of inequalities
|Q1 (x)|  ~,... , |Qr(x) |  ~ has a nonzero integer solution, pro-
vided that the system Q1 (x) = 0,...,Qr(x) = 0 has a nonsin-
gular real solution and all forms in the real pencil generated by
Q1, ... , Qr are irrational and have rank &#x3E; 8r.

1. Introduction

Let Q1, ... , Qr be quadratic forms in s variables with real coefficients.
We ask whether the system of quadratic inequalities

has a nonzero integer solution for every E &#x3E; 0. If some Qi is rational and
E is small enough then for x E Zs the inequality IQi(X)1 I  E is equivalent to
the equation = 0. Hence if all forms are rational then for sufficiently
small E the system (1.1) reduces to a system of equations. In this case
W. SCHMIDT [10] proved the following result. Recall that the real pencil
generated by the forms Q~, ... , Qr is defined as the set of all forms

where a = (a 1, ... , ar) E JRr, a # 0. The rational and complex pencil are
defined similarly. Suppose that Q1, ... , Qr are rational quadratic forms.
Then the system = 0, ... , Q, (x) - 0 has a nonzero integer solution
provided that

1A real quadratic form is called rational if its coefficients are up to a common real factor
rational. It is called irrational if it is not rational.
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(i) the given forms have a common nonsingular real solution, and either
(iia) each form in the complex pencil has rank &#x3E; 4r2 + 4r, or
(iib) each form in the rational pencil has rank &#x3E; 4r3 + 4r2.
Recently, R. DIETMANN [7] relaxed the conditions (iia) and (iib). He

replaced them by the weaker conditions

(iia’) each form in the complex pencil has rank &#x3E; 2r2 ~- 3r, or
(iib’) each form in the rational pencil has rank &#x3E; 2r3 if r is even and rank

&#x3E; 2r 3+ 2r if r is odd.
If r = 2 the existence of a nonsingular real solution of = 0

and Q2 (x) = 0 follows if one assumes that every form in the real pencil
is indefinite (cf. SWINNERTON-DYER [11] and COOK [6]). As noted by
W. SCHMIDT [10] this is false for r &#x3E; 2.

We want to consider systems of inequalities (1.1) without hidden equa-
lities. A natural condition is to assume that all forms in the real pencil are
irrational. Note that if Qa is rational and c is small enough, then (1.1) and
x E Z~ imply Qa(x) = 0. We prove
Theorem 1.1. Let Q1, ... , Qr be quadratic forms with real coefficient.
Then for every E &#x3E; 0 the system (1.1) has a nonzero integer solution pro-
vided that

(i) the system Q 1 (x) = 0, ... , = 0 has a nonsingular real solution,
(ii) each form in the real pencil is irrational and has rank &#x3E; 8r.

In the case r = 1 much more is known. G.A. MARGULIS [9] proved that
for an irrational nondegenerate form Q in s &#x3E; 3 variables the set I
x E is dense in R (Oppenheirra conjecture) In the case r &#x3E; 1 all known
results assume that the forms Qi are diagonal2. For more information on
these results see E.D. FREEMAN [8] and J. BRUDERN, R.J. COOK [4].

In 1999 V. BENTKUS and F. GÖTZE [2] gave a completely different proof
of the Oppenheim conjecture for s &#x3E; 8. We use a multidimensional variant
of their method to count weighted solutions of the system (1.1). To do this
we introduce for an integer parameter N &#x3E; 1 the weighted exponential sum

Here Qa is defined by (1.2), e(:c) = exp(2Jriz) as usual , and

2Note added in proof: Recently, A. GORODNIK studied systems of nondiagonal forms. In

his paper On an Oppenheim-type conjecture for systems of quadratic forms, Israel J. Math.

149 (2004), 125-144, he gives conditions (different from ours) that guarantee the existence of a
nonzero integer solution of (1.1). His Conjecture 13 is partially answered by our Theorem l.l.
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denotes the fourfold convolution of pN, the density of the discrete uniform
probability distribution on [- N, Since WN is a probability density
on Z~ one trivially obtains 1. The key point in the analysis of
BENTKUS and G6TZE is an estimate of SN(a + E)Snr(a - E) in terms of
E alone. Lemma 2.2 gives a generalization of their estimate to the case
r &#x3E; 1. It is proved via the double large sieve inequality. It shows that
for N-2  (e(  1 the exponential sums SN(a - e) and SN(a + E) cannot
be simultaneously large. This information is almost sufficient to integrate
18N(a)1 ] within the required precision. As a second ingredient we use for
0  To  1  Tl the uniform bound

Note that (1.5) is false if the real pencil contains a rational form. The proof
of (1.5) follows closely BENTKUS and G6TZE [2] and uses methods from the
geometry of numbers.

2. The double large sieve bound

The following formulation of the double large sieve inequality is due to
BENTKUS and G6TZE [2]. For a vector T = (Tl, ... , Ts) with positive real
coordinates write T-1 = (Tll, ... , and set

Lemma 2.1 (Double large sieve). Let p, v denote measures on and let

S, T be s-dimensional vectors with positive coordinates. Write

where (., .) denotes the standard scalar product in I~s and g, h : JRs -+ C are
measurable functions. Then

where
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The implicit constant is an absolute one. In particular, if I  1 and

1 and 1L, v are probability measures, then

Remark. This is Lemma 5.2 in [1]. For discrete measures the lemma is

due to E. BOMBIERI and H. IWANIEC [3]. The general case follows from
the discrete one by an approximation argument.

Lemma 2.2. Assume that each form in the real pencil of Ql, - - ., Qr has
rank &#x3E; p. Then the exponential sum (1.3) satisfies

Proof. Set S = SN(a - E)SN(a + E). We start with

To separate the variables m and n in the weight function write

where B = (-1/2,1/2]8 and h denotes the (finite) Fourier series

Since w = PN * pN * pN we find h(O) = hN(O)2, where
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Now set

Using (2.5) we find

Note that a(m) and b(n) are independent of E. Furthermore, by Bessel’s
inequality

Hence

t . -- I 1---

We are now in the position to apply Lemma 2.1. Denote by Ai,..., As
the eigenvalues of QE ordered in such a way that ~~1 ~ &#x3E; ’ ’ ’ &#x3E; I. Then
QE = where U is orthogonal and A = Set Al/2 ==

diag(IÀlll/2,..., IÀsI1/2), E = diag(sgn(Ai),..., sgn(As)) and

Furthermore, let p denote the uniform probability distribution on and v

the uniform probability distribution on N. Choose Sj = 
1 + Then x C .M implies x E B(T) and yEN implies
y E B(S). If follows by (2.3) that
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where

Hence

with = + tl/2 N) min(N, 1 + t-1N-1~. To prove (2.4) we have
to consider the case N-2  ~E~  1 only. Otherwise the trivial bound

1 is sufficient. Since Aj = Àj(E) varies continuously on Rr B fol
and Aj (cc) = cAj (E) for c &#x3E; 0 there exist constants 0  Cj  oo such

that

If N-2  1 then IÀjl I « 1 and A (I Aj 1) K 1 for all j  s. Further-

more, for j  p we find IÀjl I x 1,E I and G 

Altogether this yields

3. The uniform bound

Lemma 3.1 (H. DAVENPORT [5]). Let Ai,xi + ... + hjszs be s
linear forms with real and symmetric coe,f,jicient matrix Denote

by ~~.~~ the distance to the nearest integer. Suppose that P &#x3E; 1. Then the

number of x E 7GS such that

is « (Mi ... Here Ml, ... , Ms denotes the first s of the 2s succes-
sive minima of the convex body defined by F(x, y)  1, where for x, y E IEBS
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Lemma 3.2. Assume that each form in the real pencil of Ql, ... , Qr is
irrational. Then for any fixed 0  To  Tl  oc

Proof. We start with one Weyl step. Using the definition of u~N we find

Here the first sum is over all m2, m3, nl, n2, n3, z E ZS with N,

It is an s-dimensional box with sides parallel to the coordinate axes and
side length « N. By Cauchy’s inequality it follows that

Here we used the well known bound

where Ii are intervals of length » 1 and ei denotes the i-th unit vector.
Set

We claim that

To see this set

where denotes the fractional part of x. Then N(a) for all
m = (ml, ... , ms) with 1  16N. Note that if zl and Z2 are counted
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in D",(a) then zl - Z2 is counted in N(a). It follows that

To estimate N(a) we use Lemma 3.1 with P = 16N and Lj (z) = 2(ei, Qax)
for 1  i  s. This yields

where Ml,a  ~ ~ ~  Ms~a are the first s from the 2s successive minima of
the convex body defined in Lemma 3.1.

Now suppose that there exists an E &#x3E; 0, a sequence of real numbers
Nun - oo and a(n) with To  Tl such that

By (3.1) and (3.2) this implies

Since ( ) we obtain and

this proves

By the definition of the successive minima there exist x~n~ , (n) E ZS such
that ... , 1 are linearly independent and Mi, =

Hence for 1 ~ i, j  s

Since I C Tl this inequalities imply «Tl 1. This proves that theyi,t
integral vectors 

are contained in a bounded box. Thus there exists an infinite sequence
with = for k &#x3E; 1. The compactness of {o; E JRs I To 

Tl~ implies that there is a subsequence of with
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= 0;(0) and 10;(0)1 ~ Tl. xJnk) yjnk)
for 1 ~ j ~ s. Then Xj and Yj are well defined and

We claim that Xs are linearly independent. Indeed, suppose that
there are qj such that = 0. Then qjyj = 0 by (3.4). This
implies ~~=1 yj) = 0 and the linear independence of (xj, yj) yields
qj = 0 for all j. The matrix equation 2(~(o) (~i,... ,~5) = (~/i,..., ys)
implies that Q,,,(o) is rational. By our assumptions this is only possible if
a(o) = 0, contradicting la(o) I &#x3E; To &#x3E; 0. This completes the proof of the
Lemma. D

Lemma 3.3. Assume that each form in the real pencil 
irrational and has rank &#x3E; 1. Then there exists a function Tl(N) such that
Tl(N) tends to infinity as N tends to infinity and for every 6 &#x3E; 0

Proof. We first prove that there exist functions To(N)  Tl(N) such that
To(N) J. 0 and I oo for N - oo and

From Lemma 3.2 we know that for each m E N there exist an with

Without loss of generality we assume that is increasing. For

N"z  N  define To(N) = ~, Tl(N) = m and for N  Nl set
To(N) = Tl(N) = 1. Obviously this choice satisfies (3.5). Replacing To(N)
by max(To(N), N-1) we can assume that N-1  To(N)  1. Finally,
Lemma 2.2 with p &#x3E; 1 yields

4. The integration procedure
In this section we use Lemma 2.2 to integrate It is here where

we need the assumption p &#x3E; 8r.
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Lemma 4.1. For 0  U  T set B(U, T) = faER’ I U  lal  T~ and
define

Furthermore, let h be a measurable function with 0  h(a) S (1 ~- 
k &#x3E; r. If each form in the real pencil generated by Ql, ... , Qr has rank &#x3E; p
with p &#x3E; 8r and if "((U, T) &#x3E; 4p/(8r)N -p/4 then

Proof. Set B = B(U,T) and q = -y (U, T). For 1 &#x3E; 0 define

If L denotes the least non negative integer such that 7 &#x3E; 2-L-1 then

ISN(a)l  ~y  2-L and for any M &#x3E; L

where DM = ~a E B ~ IISN(a)1 ]  2-M-1}. By Lemma 2.2

with some constant C depending on Q1,... ,Qr. By considering C-’12SN(a)
instead of SN (a) we may assume C = 1. If a E BL and a + E E Bl it follows
that

If N-1 this implies N-224(l+1)/P - 6, say, and if 1,El &#x3E; N-1 this

implies 1,E I &#x3E; 2-~~+~/P == p, say. Note that p if 2g~1+1)/P  N2, and
this is true for all 1  M if

HT
We choose M as the largest integer less or equal to 
Then the assumption y &#x3E; 4p/(8r)N -p/4 implies L  M, (4.1 ) and

To estimate the integral over Bl we split J3/ in a finite number of subsets.
If 0 choose any (31 E Bl and set BL(~l~ _ {a Ila - 8}. If
a E then la - {3ll ~ p. 0 choose 02 E Bl B 
and set {o; 1 1 a - ,(32~ G Then I a - I &#x3E; p
and la - (3212 p for all a U B (,(32) }. Especially 1,81 - fl2 ] &#x3E;

p. In this way we construct a sequence {3l,..., 13m of points in Bi with
l,8i - p for i ~ j. This construction terminates after finitely many
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steps. To see this note that the balls with center (3i and radius

p/2 are disjoint and contained in a ball with center 0 and radius T + p/2.
Thus vol(KT+P/2) and this implies m « (1 +T/p)T. Since

I we obtain

Note that for a E if 1,3il &#x3E; 1. If U &#x3E; 1 the first sum is

empty and the second sum is  (8/prU-(k-r).
If U  1 then the first sum contains G p-" summands; Thus both sums
are bounded by (~/p)r. This yields

Altogether we obtain by (4.2) and the definition of 6, p, L

5. Proof of Theorem 1.1

We apply a variant of the Davenport-Heilbronn circle method to count
weighted solutions of (1.1). Without loss of generality we may assume
E == 1. Otherwise apply Theorem 1.1 to the forms E-lQi. We choose
an even probability density X with support in ~-1, 1~ and x(x) &#x3E; 1/2 for

1/2. By choosing X sufficiently smooth we may assume that its

Fourier transform satisfies i(t) = f x(x)e(tx) dx « (1 -+- Itl)-r-3. Set
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Then K(a) _ ~i=1 x(ai). By Fourier inversion we obtain for an integer
parameter N &#x3E; 1

Our aim is to prove for N &#x3E; No, say,

with some constant c &#x3E; 0. This certainly implies the existence of a non-
trivial solution of (1.1), since the contribution of the trivial solution x = 0
to A(N) is  N-S and s &#x3E; p &#x3E; 8r. To prove (5.1) we divide R’ in a major
arc, a minor arc and a trivial arc. For 6 &#x3E; 0 set

where Tl (N) denotes the function of Lemma 3.3. Using the bound K(a) «
(1 + Lemma 4.1 (with the choice U = Tl(N) and the trivial
estimate 1) implies

Furthermore, Lemma 4.1 with U = Na-2 and T = Tl(N), together with
Lemma 3.3 yield

Thus (5.1) follows if we can prove that the contribution of the major arc is

Lemma 6.1. Assume that each form in the real pencil of Q1, ... , Qr has
rank &#x3E; p. Let g, h : be measurable functions with lgl  1 and

lhl  1. Then for N &#x3E; 1
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Proof. Note that the bound is trivial for N-2. Hence we assume
N-2. Denote by Ai, ... , As the eigenvalues of Qa ordered in such

a way that ~1 ~ &#x3E; ’ ’ ’ ~ ~ I A, 1. Then Qa = UT AU, where U is orthogonal
and A = diag(Ai , ... , A,). Write x = (1, 7), where x = (xl, ... , and
~ _ (~p+i?... ? Then

where

and h is defined similarly. If N-2 then by (2.6) lail ^ lal W N 2 for
i  p. Now we apply the double large sieve bound (2.3). For 1  j  p

be the continuous uniform probability
distribution on and set 9(;f) = IÀpl-l/2xp)
and = Then

Together with (6.1) this proves the lemma.

For a E 9Jt we want to approximate by

where 7r = IB * IB * IB * IB is the fourfold convolution of the continuous
uniform distribution on B = (-1/2,1/2~5. Set g(u) = e( Q a (u)). Denote by
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9Ul the directional derivative of g in direction ul, and set 9UIU2 == (gul)U2.
We use the Taylor series expansions

Applying the third of these relations to f(T) = + the second to
= gul (X + -FU2) and the first to j(T) = + we find for

Together we obtain the expansion

Multiplying with WN(X), summing over x E and integrating 
with respect to the probability measure 7r yields

where Go(a) is defined by (6.2),

and
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An elementary calculation yields

Since gu and guv are sums of odd functions (in at least one of the compo-
nents of u) we infer = 0 and G3(a) = 0. Furthermore, the trivial
bound guvz"(x) W lal3N3 + lal2N for yields

This is sharp enough to prove
r -

To deal with Go and G2 we need a bound for

where L(x) _ (x, Qau) and 0  j  2. Using the definition of WN and 7r
we find that u) is equal to

Expanding L(xl + x2 + X3 + X4) and Qa(xl + X2 + X3 + X4) this can be
bounded by

I I
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Here

Applying Lemma 6.1 to the double integral over xl and x2 and estimating
the integral over X3 and X4 trivially we obtain uniformly in lul W 1

Setting

we conclude for sufficiently small

Similarly, the explicit expression of and the definition of 

yield

Hence

Altogether we have proved that for p &#x3E; 8r
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7. Analysis of the terms Ho(N) and H2(N)
Lemma 7.l. Denote by the fourfold convolution of the continuous uni-
form probability distribution on BN = (-N- 1/2, N + 1/2]8 and by fN the
density of 7rN. Then

and

Proof. By Fourier inversion and the definition of wN and 7r = 7ro we find

This proves the first assertion of the Lemma. Similarly,

This implies

With the abbreviations Lm = 2 (x, Qmu~ and Lm = 2(u, Qmv) the inner-
most integral can be calculated as

r
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Here we used the relations

Since

we find

w,j-.

Altogether we conclude

Since 7rN has compact support and f N is two times continuously differen-
tiable, partial integration yields

- -11 - _0 -

This completes the proof of the second assertion of the Lemma, since

Finally, we prove

Note that
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Hence, by Fourier inversion

This completes the proof of Lemma 7.1. We remark that we used the
fourfold convolution in the definition of wN, 7rN, IN for the above treatment
of H2(N) only. At all other places of the argument a twofold convolution
would be sufficient for our purpose. 0

Lemma 7.2. Assume that the system Ql (x) = 0, ... , Qr (x) = 0 has a
nonsingular real solutions, then

where A denotes the s-dimensional Lebesgue measure.

Proof. This is proved in Lemma 2 of [10]. Note that if a system of homoge-
neous equations = 0, ... , = 0 has a nonsingular real solution,
then it has a nonsingular real solution with 1/2.

Now we complete the proof of Theorem 1.1 as follows. For c &#x3E; 0 and
N &#x3E; 0 set

Then

By Lemma 7.1
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and

With Lemma 7.2 this yields

for N &#x3E; No, say. Together with (6.3) this completes the proof of Theo-
rem 1.1. D
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