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On a mixed Littlewood conjecture for quadratic
numbers

par BERNARD DE MATHAN

RÉSUMÉ. Nous étudions un problème diophantien simultané relié
à la conjecture de Littlewood. En utilisant des minorations con-
nues de formes linéaires de logarithmes p-adiques, nous montrons
qu’un résultat que nous avons précédemment obtenu, concernant
les nombres quadratiques, est presque optimal.

ABSTRACT. We study a simultaneous diophantine problem re-
lated to Littlewood’s conjecture. Using known estimates for linear
forms in p-adic logarithms, we prove that a previous result, con-
cerning the particular case of quadratic numbers, is close to be
the best possible.

1. Introduction

In a joint paper, with O. Teuli6 [5], we have considered the following
problem. Let ,~ be a sequence of integers greater than 1. Consider
the sequence (rn)n&#x3E;o, where ro = 1 and rn = for n &#x3E; 0. For

q E Z, set 
-

and

Notice that I.IB is not necessarily an absolute value, but when 13 is the
constant sequence p, where p is a prime number, then 1. 1 L3 is the usual

p-adic value.
For x E R, we denote by fxl the number in (-1/2, 1~2~ such that

x - E Z. As usual, we put llxll = 
Let a be a real number. Given a positive integer M, Dirichlet’s Theo-

rem asserts that for any n, there exists an integer q, with 0  q  Mrn,
satisfying simultaneously the approximation condition llqall  1/M and
the divisibility condition i. e. I/rn- Indeed, it is enough to
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apply Dirichlet’s Theorem to the number rna. We thus find positive inte-
gers q with

By analogy with Littlewood’s conjecture, we ask whether

holds. The problem is trivial for a rational, and for an irrational number
a, one can easily see [5] that condition (1) is equivalent to the following:
for each n E N, consider the continued fraction expansion

We have (1) if and only if

However, we shall not use this characterization here.
We do not know whether (1) is satisfied for any real number a. In [5], we

have proved that if we assume that the sequence Zi = is bounded,
(1) is true for every quadratic number a. More precisely:

Theorem 1.1. (de Mathan and Teulié [5]) Suppose that the sequence B
is bounded. Let a be a quadratic real number. Then there exists an infinite
set of integers q &#x3E; 1 with

and

In particular, we have

As msual, for positive functions x and y, the notation x C y means that
there exists a positive constant C such that x C Cy.

In our lecture at Graz, for the "Journ6es Arithm6tiques 2003" , it was

discussed whether the factor Inq in (3) is best possible. We do not know
the answer to this question, but we shall prove:
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Theorem 1.2. Assume that the sequence L3 is bounded. Let a be a real

quadratic number, and let S be a set of integers q &#x3E; 1 with

Then there exists a constant A = A(S) such that

for any q E S.

One may expect that (4) holds for any A &#x3E; 1, but we are not able to
prove this. We do not even know whether there exists a real number A
for which (4) holds for any set S of integers q &#x3E; 1 satisfying (2). Indeed,
Theorem 1.2 does not ensure that sups A(S)  +oo.

There is some analogy between this problem, and the classical simultane-
ous Diophantine approximation. For instance, let us recall Peck’s Theorem.
Let n be an integer greater than 1, and let al,..., I an, i be n numbers in a
real algebraic number field of degree n -I- 1 over Q. Then it was proved by
Peck [7] that there exists an infinite set of integers q &#x3E; 1 with

for 

Assume that 1, aI, ..., an are linearly independent over Q, and let S be an
infinite set of integers q &#x3E; 1, with

for each 1  k  n. Then we have proved in [3] that there exists a constant
K = such that

Theorem 1.2 can be regarded as an analogue of this result with n = 1,
and its proof is similar.

2. Proof of the result

2.1. Some rational approximations of a.

In the quadratic field ~(a), there exists a unit w of infinite order. Re-
placing, if necessary, cv by w2 or 1/ w2, we may suppose w &#x3E; 1. In his

original work, Peck uses units which are "large" and whose other conjugates
are "small" and close to be equal. Here, Peck’s units are just the wm,s,
with rn e N. We shall use these units in order to describe the rational

approximations of a which satisfy (2).
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Denote by ao = id and ai = a the automorphisms of ~(a). As usual,
we denote by Tr the trace form ao + cri. The basis (1, a) of

admits a dual basis (/30, (3l) for the non-degenerate Q-bilinear form
(x, y) ~---~ on Q(a). That means that, if we set ao = 1 and al = a,
we have = 6ki , = 0,1 and 1 = 0, l, where 611 = 1, and 6ki = 0

l. Here it is easy to calculate (3o = 2013 ~’~~ and (3¡ = ~_)~~~ . Hence,
if we put

, ,

where q and q’ are rational numbers, we have

Also notice that (5) and (6) imply that

Let D be a positive integer such that Da, D , are alge-I 

braic integers.
The notation A ~ B, where A and B are positive quantities, means that

Lemma 2.1. Let 1 be a positive number in Q(a). Let A be a positive
integer such that ~1 is an algebraic integer. For each m E N, define the
rational number

Then Aq is a rational integer, one has q &#x3E; 0 when m is large, and the
integers DAq satisfy (2).

Proof. Also define 
- -

As A-yw’ and are algebraic integers, Aq and DAq’ are rational
integers. As = we have q = + o-(~y)w-’~’2, hence q &#x3E; 0 as
soon as w2m &#x3E; -,7 (7)/7, and then

From (7), we get qa - q’ = (a - hence

As DAq and DAq’ are integers, it follows from (10) that for large m we
have ~~DOqa~~ = DD~qa-q’~, and by (9) and (10), the integers DAq satisfy
(2).
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Conversely:

Lemma 2.2. Let S be a set of positive integers q satisfying (2~ . Then

there exists a finite set r of numbers 7 E ~ 0, such that for any
q E S, there E r and m E N such that

Proof. For q E s, let m(q) = m be the positive integer such that
 We thus have cv’~’2 ~ q. Let q’ be the rational integer

such that ~qa ~ = q’ . Set

First, notice that D, is an algebraic integer. From (5), we get (8). Writing

we see that q &#x3E; 0 when q is large, and ycv’’2 q. As we have c,’n q, we
thus get q 1. We also have

hence, by (2), Io-()’) I W wmlq, and thus, ] W 1. Then, as D-y is an
algebraic integer in Q(a), and ~Q(7)~) C 1, the set of the q’s is
finite.

2.2. End of proof.
Denote by P the set of all prime numbers dividing one of the bk. Since

we assume that the sequence (bk) is bounded, this set is finite. For p E P,
we extend the p-adic absolute value to ~(a). The completion of this field is
Qp(a). As above, let w be a unit in Q(a) with w &#x3E; 1. Note that = 1.

The ball {~ E  is a subgroup of finite index
in the multiplicative group Ix E Qp(a); Ixlp = If. Hence, replacing
by w", where n is a suitable positive integer, we may also suppose that
Iw -  for every p E P.
We shall use the p-adic logarithm function, which is defined on the mul-

tiplicative group {j- E Cp; I x -  1} C Cp by

This function satisfies
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We prove:

Lemma 2.3. Let p be a number of P. be a positive number of Q(a) .
For m E N, set

Then, if

we have

for large rrt; if

then

Proof. Recall that q &#x3E; 0 when m is large (Lemma 2.1). From the definition,

if 16 - I lp  then, by (11), we write Iw2m-8lp 
and we obtain (12).

Accordingly, in order to achieve the proof of the result, we shall use
known lower bounds for linear forms in p-adic logarithms. For instance, it
follows from [8] that:

Lemma 2.4. (K. Yu [8]) Let x and y be algebraic numbers in Cp, with
Ix - P-,/(P-1) and ly - lip  p-’I(P-1). Then there exists a real
constant such that for any pair (k, ~) of rational integers with

Note that this result is trivial, with r, = 1, if log x and log yare not
linearly independent over Q, and log x =1= 0, Le, x =1= 1. Indeed, if a log x =
b log y, where a and b are rational integers with b # 0, then we write

Hence we »

1, when k log x y =1= 0.
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We can then achieve the proof of Theorem 1.2. Applying Lemma 2.2, we
can suppose that the set r contains a unique element 7 &#x3E; 0, i.e., for any
q E S, there exists Tn e N such that we have (8). It follows from Lemma

2.3 and 2.4 that there exists a constant such that Iqlp W m-K (one may
take K = 0 if 10";1’) + lip &#x3E; p-l~~p-1&#x3E; ). As q ~ I.A)m, hence m ~ Inq, we

get Iqlp » Now set K _ ~~, (the constant ~~, may depend upon
p E P). Note that TIpEP lqlp. Indeed, putting = l/rn, we have
q E hence and I1PEP lqlp C flpep 1/rl" We thus
get (4) with A = Epep Kp, and Theorem 12 is proved.

2.3. A remark.

Note that one may also use Lemma 2.3 for solving the opposite problem.
For simplicity, consider the case where is the p-adic value for a prime
number p. If we take a positive number -y E Q(a) such that ~(7) _ 2013~,
for instance, q = a - a(a) (one may replace a by -a, and so, we can
suppose a - &#x3E; 0), then we have = 0, and by (12),
we get imlp. By Lemma 2.1, there exists a positive integer
A such that for every large m, the numbers q = q(m) = are

positive integers satisfying (2). For m = ps with s E N, we get Imlp = 
hence lqlp ~ Since m ~ lnq, we have thus proved that there exists
an infinite set of integers q &#x3E; 1 satisfying (2) and (3) (which is Theorem
1.1). In this way we obtain integers q &#x3E; 1 satisfying (2) and such that Iqlp

One can ask whether there exists an infinite set of integers q &#x3E; 1 satis-

fying (2), with

Given a positive decreasing sequence (Em) +oo, a

p-adic version [4] of Khintchine’s Theorem ensures that for almost all x E
Zp, there exist infinitely many positive integers m such that I x - em .

One often considers as reasonable the hypothesis that a given "special"
irrational number x E Zp satisfies this condition, with Em = 1/(mlnrrc)
for m &#x3E; 1 (which is false if x E Zp n Q, since in this case, we have

Ix - W for m large). Let us prove that we can choose -y &#x3E; 0

in Q(a), with d + 11  Iw - 11 such that is an irrational, l’ P p, log w
number in Zp. In order to make this obvious, we prove:

Lemma 2.5. There exists ç E Q(a) such that ~ is not a unit, NQ(a):QÇ = 1,
and lçlp = 1.

Proof. The number is a root of the equation + 1 = 0, where S is
a rational integer, S = Tr w. The number ~ must be a root of an equation
~2-t~-f 1 = 0, where t is a rational number for which there exists a positive
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rational number p such that t2 - 4 = p2(,S’2 - 4). Such pairs (t, p) can be
expressed by using a rational parameter 0:

Let us show that we can choose 0 E Q* such that t (j. Z and 1.

It is enough to take 0 = p. As we have S2 &#x3E; 4, hence S2 &#x3E; 9 and

(S2 - 4)p2 - 1 &#x3E; 4, t cannot be an integer for this choice of 0. But we have
1, since ~(S’2 - 4)p2 _ lip = 1. Then there exists a number ~ E Q(a)

such that ~2 - t~ + 1 = 0, and ~ is neither a rational number, since p &#x3E; 0,
nor an algebraic integer, since t g Z. Then we have = 1,
and lçlp = 1 because either condition lçlp  1 or lçlp &#x3E; 1 would imply

Replacing ~ by Çn, where rc is a suitable positive integer, we thus may
find a satisfying Lemma 2.5, with moreover - lip  Iw - lip. Then we
have ] log g]p  Further let us prove that log wE Qp. Indeed that
is trivial if a E Qp, since in this case ~ and lie in Qp, hence so do log ~
and If Qp (a) has degree 2 over Qp, then log~ and logw lie in Qp (a).
But Q can be extended into a continuous Qp-automorphism of Qp(a) , and
we get since = = 1.

That proves that E Qp, and since ] logg]p  we conclude

that Zp. Lastly, log wis not a rational number, since ~ is not a
unit. Now, by Hilbert’s Theorem, there exists -y E Q(a), with ~y &#x3E; 0,
such that g = ~cr(7)/~’ We thus have found ~y &#x3E; 0 in Q(ca), such that

 and is an irrational element ofZp. Underi p 2 log w p

the above hypothesis, it would exist infinitely many integers m &#x3E; 1 with

1/(m log m), and, by (12), we could obtain an infinite2 log w
set of integers q &#x3E; 1, q = where A is a positive integer, satisfying
(2) and such that Iqlp * In particular, (3’) would be satisfied.q n 9

3. Conclusion

For a sequence ,13 bounded, the Roth-Ridout Theorem [6] allows us to
see that for any irrational algebraic real number a, thus in particular for a
quadratic, we have:
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(see [5]). Of course, our method is far from enabling us to prove that there
exists a real constant A such that

We can only study the approximations with qllqall « 1. It seems difficult
to study approximations in the "orthogonal direction" 1, with for
instance, q = p’, for a prime number p. For such approximations, it is not
known whether infnEN IIpnaII = 0 holds, neither if there exists A such that

0. It is very difficult to obtain more precise results than
the Roth-Ridout Theorem (see [1]).

Even for rational approximations satisfying (2), we are not able to prove
that the constants A(S) are bounded. This is related to Lemma 2.4. It

would be necessary to prove that there exists a real constant K for which this

Lemma holds for x = cv and for any y E Q(a) with Iy -lip  p-1/(p-i) and
= 1. There exist many effective estimates of I k log x + t log y lp

(see for instance [2] and [8]), but they do not provide the needed result. It

seems difficult to take the particular conditions required into account.
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