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On the existence of Minkowski units in totally
real cyclic fields

par FRANTI0160EK MARKO

RÉSUMÉ. Soit K un corps de nombres cyclique réel de degré n
qui est le produit de deux nombres premiers distincts et tel que
le nombre de classes du n-ième corps cyclotomique soit égal à 1.
Nous établissons certaines conditions nécessaires et suffisantes

pour l’existence d’une unité de Minkowski pour K.

ABSTRACT. Let K be a totally real cyclic number field of degree
n that is the product of two distinct primes and such that the
class number of the n-th cyclotomic field equals 1. We derive
certain necessary and sufficient conditions for the existence of a

Minkowski unit for K.

1. Introduction

The main result (Theorem 11.1) of [1] states a necessary and sufficient
condition for the existence of the Minkowski unit in the totally real cyclic
fields of degree pn. These conditions are of an inductive nature as they
relate the existence of the Minkowski unit in such a field Kn to the ex-
istence of the Minkowski unit in the subfield Additional necessary
conditions are the isomorphism of the factor-group of units 
and the group of integers of the p~‘-th cyclotomic field together with
the surjectivity of the norm map from Kn to on units modulo ~~1}.
For the sufficient conditions it is necessary to know the Minkowski unit of

and the generator of over Z[(pn]. The relationship be-
tween these generators is then described using a coordinate element from

Z[(p.]. If the coordinate element can be represented by a unit of a certain
ring and the previously mentioned norm map on units is surjective, the
existence of the Minkowski unit follows. This method works best when all
the invertible classes can be covered by units as is the case for the degrees
pn = 4, 8 and 9. For these degrees the existence of the Minkowski unit is
equivalent to the surjectivity of the norm map on units, see ~1~, Theorem
11.2.

The general idea of local generators and coordinates similar to [1] extends
to totally real cyclic number fields of degree n for which the ring 7G~~n~ of
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the integers of the n-th cyclotomic field is a unique factorisation domain.
We treat in detail the case when n is a product of two distinct primes.
Among other results we prove the following statement.

Theorem 1.1. Let K be a totally real cyclic number field of degree n = 6,10
or 14. Then K contains a Minkowski unit if and only if the norm maps
from K to its subfields are surjective on units.

For precise formulation see Corollary 5.3. This theorem is a generaliza-
tion of Theorem 3 of [3].

2. Notation

Throughout the paper the symbols p, q will denote distinct prime num-
bers, n a positive composite integer, K = Kn a totally real cyclic number
field of degree n over the field Q of rational numbers. Denote by a a
generator of the Galois group G of K over Q, by a subfield of K of

degree m &#x3E; 1 over Q that is fixed by the subgroup of G generated by 0".
The letters m, l, d will be reserved for divisors of n that are larger than
1, hence they correspond to subfields of K. Let EK~ be the group of all
units of the field and UKm = Further denote by 
the m-th cyclotomic polynomial, let (m a primitive m-th root of unity
and put
and - ~ ~x~ / (cpm (x) ) . Note that UK is not only a G-module but an
0-module as well.
A unit u E is called a Minkowski unit of Km if the conjugates of u

generate this is equivalent to the Galois module U Km being cyclic.
For an 0-module W denote Wm = and W’n = and

Wm = Wm/Wm. An O-module W will be called structured if Wm is

a nontrivial cyclic Om-module for each min. Actually Om as
O-modules in that case.
The number of isomorphism classes of 0-structured modules is denoted

by l~l (n) . We conjecture that each isomorphism class of structured 0-
modules contains UK for some number field K. In any case the index

M(n) is an upper bound for the number of isoclasses of structured Galois
modules UK for fields K of degree n.
The function SZ(m) is defined as the sum of the exponents in the prime

factorization of m, i.e. then For a
structured module W we say that its element w has length k and write
.1"’1/ I ~ ... 1---r ~ t ~ "I . , ~ ~ i ~
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3. Coordinates and Galois structure

We start with an observation. Let m = and put 

Lemma 3.1. The ideal of Z [x] generated by polynomials Ak for k = 1, ... , s
equals (W. (x)) -
Proof. Clearly ’Pm(x) divides Ak, so write Ak = The polyno-
mials pk are all irreducible, and this implies that the polynomials gk are
pairwise relatively prime. Therefore the ideal of generated by all gk ’s
equals for a certain non-zero c E 7G~~~. This shows that the ideal
I generated by the Ak’s is principal, and is generated by Hence
all coefficients of polynomials lying in I are divisible by c, however the

polynomals Ak are monic, and this forces c to be 1. D

Existence of a Minkowski unit of K implies certain structural properties
of the groups of units of subfields of K.

Proposition 3.2. If K has a Minkowski unit, then Norm K/ Km UK = U Krn
for each subfield Km of K. Moreover, the O-module

isomorphic to Om. 
’

Proof. If K has a Minkowski unit E, then by [4], Prop.1.3, the Z[G]-module
UK is isomorphic to 0, where the generator E corresponds to 1 and the

conjugation by Q corresponds to multiplication by ~. Moreover, in this
case according to [4], Prop.I.4, and its corollary, each subfield K",, has a
Minkowski unit and = UK"~ for each subfield of K. The

group UKm is isomorphic to and the factor-group UK/ flpl,, UK,,p
is isomorphic to 0 modulo the ideal generated by all Oa (x) - Using Lemma

p

3.1, we get that this factor-group is isomorphic to G(cpn()). It is an
immediate consequence of R(m) that the ideal of 0 generated by all (~)

p

for all plm equals (cp.",(x)~",,(x)). Therefore for each min the factor-group
UKm/ flpl m UKm is isomorphic to Om = G((cp",,(x)). D

p

Corollary 3.3. The 0-modules 0 is structured. Moreover, if K has a
Minkowski unit, then U = UK is structured.

Proof. Since UKm = NormK/KmU = U’Øm(X) we have UKm = Um for each
0

For special values of n the Galois module U is structured if the norm
maps on units are surjective (without the assumption about the existence
of the Minkowski unit).
Proposition 3.4. If Z[(n] is a principal ideal domain and NormK/KmUK
= UKm for each subfield Km of K, then UK is structured.
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Proofs. According to [3], UK is isomorphic as a G-module to an ideal M of
the ring O. Assuming that the norm map on units are surjective (that is

UKm for each subfield Km of K) we obtain that Um =
UKm corresponds to module that is annihilated by I1zln;zfm 
and Üm is isomorphic to Lemma 3.1 implies that

p

0. (x) MI (om is a module over Z[(m]. is a principal ideal
p 

_

domain, then so is Z[(m] and in this case Um is a cyclic Z[(,,,]-module. The
fact that it is nontrivial follows from the Dirichlet unit theorem. D

From now on assume that an O-module W is structured. Keep in mind
the prominent example of the structured O-module, namely the group UK
of the field K that is given by Proposition 3.4.

Fix and denote by wm an element of Wm whose class represents a gen-
erator of Wm as an Om-module. Note that each wm can be written as

wm = where vm E W . Then each w E W can be written uniquely
as a product w = flmln where am (w) is a polynomial from 0 such
that its degree does not exceed the degree of The exponents am (u)
are called coordinates of w.
The elements (as well as are generators of W as

an 0- module. In order to work with the above factorizations and to
determine the O-structure of W, we will derive conditions describing when

arbritrary polynomials am (x) from O.

For each wm and each dim we have = Denote am,d =

Then am,m = 1 and the collection of all such am,d for dim; d ~ m
is called the coordinate system of W.

Proposition 3.5. Let mln be polynomials in O. Then
= 1 if and only if for all din the condition Cd :
(mod satisfied.

Proof. We proceed in steps depending on the upper bound for the length
of w = First,  O(n) if and only if w E wn which
is equivalent to an(x) = 0 (mod ’Pn(x)) and that is condition Cn. Next

assume that £( w)  k. We are looking for conditions that are equivalent
to £(w)  k. The assumption ~(w)  1~ means that ¡

say

with z, E Wz. Choose loin such that £(lo) = k and consider
I I I , " ,

. It is a product of and other terms for lo. Since10 1

each zl = ytl(X) for some yi E W and E for 1 =1= lo,1

each ztlo (x) belongs to Wio. Therefore zl E Wio if and only if (x) E Wlo
which is the same as = 0. Since the last
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equality is equivalent to Clo . Therefore .~(w) if and only if all conditions
C, for = 1~ are satisfied. Hence u = 1 if and only if all conditions Cd
for d~n are satisfied. 0

Although the above conditions Cd do not describe explicitly the Galois
action on wm they provide a means of checking whether the computations
involving Galois action on generators are correct.

It is interesting that only the leading exponent am,d in the factorization
’l/;d(X)

of with respect to generators wl is needed in the above theorem.
The polynomials am,d are related by various congruences. They vary

depending on the type of decomposition of n into the product of primes
and therefore we will investigate the relationship between am,d separately
for each such type.

In the next sections we will be looking for conditions on a coordinate
system am,d of U that will guarantee the existence of a Minkowski unit in
l~. For that purpose we will investigate the relationship between coordinate
systems for various fields of the same degree n.

4. The case n = p2
The main priority in the case n = p2 is not to prove new results but to

explain our method in the simplest nontrivial case, show a connection with
the work of ~1~, and view and reprove some of their results from a different
perspective. First note that (mod 
A structured O-module T is given by a generating set tpl and the

coordinate 

a 2 . If t = then t’P x - Sincecoordinate ap2 p. If t = then t’°P(") = . Sincecoordinate 2 ? then tp . Since

the congruence - 1 (mod must have
a solution which is equivalent to apa,p being invertible modulo (p, ~pp (x) ) .

Conversely, if a polynomial ap2,p is invertible modulo (p, then

we can define an O-module T generated by that is structured

and ap2,p is its coordinate. Set T = Op2 ® Op as an abelian group and
tp2 = ( l, 0), tp = (o,1 ) . A structure on T is defined as

c(x)(a(x), b(x)) _ ( f (x), czp2,pe(x) + b(x)c(x)), where e(x) and f (x) are the
quotient and the remainder respectively after the division of the polynomial
a(x) c(x) 

Assume now that we have two structured O-modules T and W gene-
rated by and respectively, with coordinates ap2,p and
bp2 ~p respectively. 
We would like to determine when T and W are isomorphic as O-modules.

As a special case, for number fields K and .K~ of degree n = 4, 9 or 25
satisfying and UK this would
allow us to compare Galois structures of UK and !7~ as well as to determine
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whether K has an Minkowski unit (if UK is isomorphic to the structured
module 0).

O-morphism, then L(Tp) C W~, and therefore =

and L(tp) = wP~~~ for some a(x) E 0 and E Op. A
map L defined on generators in the above way is a morphism of O-modules

= 1 for E Op implies = 1.

Proposition 3.5 applied to T = 1 if and only if

k(x) - 0 (mod and +pl(x) - 0 (mod 
That means

Use Proposition 3.5 again for W to see that

if and only if a (x) k (x) = 0 (mod and

The first congruence is clearly satisfied and the second one is equivalent to

Since there are no restrictions on the values of kI(x) we can choose l~~ (x) = 1
and obtain

This congruence gives a necessary and sufficient condition for L to be an
O-morphism from T to W.

Therefore the existence of an O-morphism L from T to W as above is
given by the following congruence:

If this congruence is satisfied for some a(x), c(x), we can compute b(x) as
required to make L an O-morphism.
Assume now that L as above is an isomorphism. Then L(Tp) = Wp and

since = the class of c(x) modulo pp (z) must be invertible.
Since L(T) = W the class of modulo ’Pp2(X) must be invertible as
well. Conversely, we will show that if is invertible modulo 
and c(x) is invertible modulo cpP(x), then L is an isomorphism. Assume
t E Ker(L) and k(x), 1(x) are coordinates of t with respect to the generators

Then L(t) = 1 implies a(z)k(z) m 0Then L() p2 
’ ’’ ’ 

- 1 implies 0

(mod and since the class of a(x) is invertible, we have = 0.

Therefore L(t) muyx)~(~) - 1 and since the class of is invertible we
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also have l (x) = 0 and thus t = 1. We have established that such map L
is injective. If c(x) is invertible modulo then clearly L(Tp) = Wp.
If also the class of a(x) modulo is invertible, then L also induces a

map onto W = W /Wp and thus L is surjective.
Hence we determined the conditions for an isomorphism between struc-

tured modules.

Proposition 4.1. Let T and W be structured 0-modules for n = p2 with
coordinates ap2,p and &#x26;p2 p respectively. Then W as O-modules if and
only if there is a(x) E 0 that is invertible modulo (x), E Op that is
invertible modulo and

When comparing this result with [1], Theorem 11.1, it is worth noting
that the congruence classes there appear as a consequence of a choice of

generators whereas congruence classes here appear because of the require-
ment for morphism.
The above criteria further simplifies for n = p2 = 4, 9 and 25. This is

the case when the class number of Z[(n] and Z[(p] equals 1 and hence all
units in these rings are ~ cyclotomic units.

If a polynomial is represented by a cyclotomic unit for (a, p) = 1
modulo ’Pp2(X), then its class modulo is also represented by a unit.
Thus if a (x) is represented by a unit modulo ’Pp2(X) then a(x) is also repre-
sented by a unit modulo cpP(x). Therefore the condition of Proposition 4.1
is satisfied if and only if the invertible class of bp2 Pa-2l modulo (p, , P ,

is represented by a unit modulo cpp(x). This also means that if an isomor-
phism of T and W exists, then there is one with = 1. We have thus

proved the following statement.

Proposition 4.2. If n = p2 = 4, 9 or 25, then structured modules T and W
are isomorphic as O-modules if and only if the invertible class of bp2 Pa-l
modulo represented by a unit modulo 

Corollary 4.3. If K is a totally real cyclic nurraber field of degree n = p2 =
4 or 9, then K contains a Minkowski unit if and only if Norm K IK p UK =
UK,
Corollary 4.4. If K is a totally real cyclic numbers field of degree n = 25
such that NormK/KsUK = UKs, then K contains a Minkowski unit if and
only if the class of its coordinate b25,5 modulo (5, is represented by a
unit modulo cp5(~).

Proof. Assumption = UKP implies that T = UK is struc-
tured. Put W = 0 in the above proposition. Since the coordinate bp2,p = 1
for 0, the modules UK and 0 are isomorphic (meaning a Minkowski unit
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exists for K) if and only if modulo (p, has a representative that
is a unit modulo It can be checked easily that every for n = 4, 9,
every invertible class modulo (p, satisfies this condition. 0

Corollary 4.5. M(25) = 5.

Proof. It can be easily verified that the condition in Corollary 4.4 is true
only for 20 out of 100 invertible classes. 0

Therefore there are at most 5 nonisomorphic Galois structures of UK for
fields K of degree n = 25 with = 

5. The case n = pq

We will proceed in the same way as outlined in section 4. First note that
~~PP~x)~ ~Pa~x)) = = q (mod and Oq(X)

(mod 
A structured O-module T is given by a generating set f tP9, tp, tql and

the coordinate system If t = then _the coordinate system fapq,p, apq,ql. If t = q p q , then tOp (x)
and Since TWp(x) = Z’p andp 

- 

q . 
- 

p

the congruences apq,PaPq(t) + qaP(t) - 1 (mod pp(z)) and
apq,qapq(t) + pa9(t) - 1 (mod must have solutions which is equiv-
alent to apq,p being invertible modulo (q, and apq,q being invertible
modulo (p, cpp(x)).

Conversely, given a pair such that the polynomial apq,p is
invertible modulo (q, cpP(x)) and the polynomial apq,q is invertible modulo
(p, cpP(x)), we can define an O-module T generated by {tPq, ip, that

is structured and {aPq,P, aPq,q} is its coordinate system. Set T = 

Op s3 Oq as an abelian group and ipq = (1, 0, 0), ip = (0, 1, 0), tq = (0, 0, 1).
Let 7p(x) and 7q(x) be polynomials such that + 

1. A Z[x]-module structure on T is defined as d(x)(a(x), b(x), c(x)) _
(f (x), + b(x)d(x), + c(x)d(x)), where e(x) and

are the quotient and the remainder respectively after the division of
the polynomial by 

Assume now that we have two structured O-modules T and W generated
by tp, tq} and fwpq, wp, Wql respectively with the coordinate systems
{apq,P, apq,ql and {bP9,P, bpq,ql respectively.

If L : T ~ W is an O-morphism, then L(Tp) C Wp and L(Tq) C
TXT and therefore a(x) b(x) c(x) L(tP) = and L(tq) _Wq and therefore L(tpq) == Wpq Wp q tp == WP an L q) ==

for some a(x) E 0, b(x), d(x) E Op and c(x), e(x) E Oq. A map
L defined on generators in the above way is a morphism of O-modules
if = 1 for k (x) E 0, E Op and m (x) E Oq implies

1.
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Proposition 3.5 applied to T shows k(x)t1(x)tm (X) = 1 if and only if
Ic(x) - 0 (mod apq,pk(x) + ~(~c) = 0 (mod 

and

That means

and

. .......’....

Use Proposition 3.5 again for W to see that

and

The first congruence is clearly satisfied and the later ones are equivalent to

and

Since there are no restrictions on the values of k~ (x) we can choose
l~~ (x) = 1 to verify that both

and

must have solutions. These congruences provide a necessary and sufficient
condition for L to be an O-morphism from T to W.

If the following system of congruences

L- 3 7 1 ‘ , ,,, L , , , , 
- 

- , , , ,

has a solution, then we can compute b(x), c(x) as required to make L an
0-morphism.
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Assume now that L as above is an isomorphism. Then L(Tp) = Wp and

L(Tq) = Wq and since iuPO)L(x) and = the

classes of d(x) modulo and e(x) modulo cp9(x) must be invertible.
Since L(T) = W the class of modulo cpPq(x) must be invertible as well.
Conversely, we will show that if a(x) is invertible modulo d(x) is

invertible modulo Wp(x) and e(x) is invertible modulo cpQ(x), then L is an
isomorphism. Assume t E Ker(L) and k(x), l(x), m (x) are coordinates of t
with respect to the generators (tpq, tp, tq I. Then

implies a(x)k(x) - 0 (mod cppQ(x)) and since the class of is inver-

tible, we have = 0. Therefore L(t) = Then

= 1 implies = 1 and = 1. Since the
classes of d(x) and are invertible we must have = 0 and m(.r) = 0
hence t = 1. We have established that such map L is injective. If d( x) is

invertible modulo ’Pp(x) and e(x) is invertible modulo then clearly
L(Tp) = Wp and L(Tq) = Wq. If also the class of modulo is

invertible, then L also induces a map onto W = and hence L is

surjective.
Hence we determined the conditions for an isomorphism between struc-

tured modules.

Proposition 5.1. Let T and W be structured O-modules for n = pq with
coordinate systems and respectively. Then T =

W as O-modules if and only if there there is a(x) e 0 that is invertible
modulo e Op that is invertible modulo E Oq that
is invertible modulo and

The above criteria further simplifies when the class number of Z[(pq]
equals 1 and hence all units in Z[(pq], Z[(p] and Z[(q] cyclotomic
units. This is the case if and only if n = 6,10,14,15, 21, 22, 26, 33, 34, 35 or
38.
We will look first at the case when n == 2p, that is n = 6, 10, 14, 22, 26, 34,

38. If a(x) is invertible modulo p2p(z) then there is polynomial a*(x) such
that a(x)a*(x) == 1 (mod ’P2p(X)). Since = cpP(-x) it is equivalent
to a( -x)a*( -x) == 1 (mod cpP(x)) that is a(-x) is invertible modulo ’Pp(x).
But a(-~) (mod 2) shows that classes modulo (2, cpp(x)) repre-
sented by polynomials that are invertible modulo coincide with those
classes modulo (2, Wp (x)) represented by polynomials invertible modulo
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’Pp(x). We can therefore replace the first congruence of Proposition 5.1
by congruence = d~ (x) (mod (2, for a polynomial d (x)
invertible modulo ’Pp(x).
How about congruence classes of a(x) modulo (p, x+1) for a(x) invertible

modulo cp2~,(x)? For p = 3, 5,11, 13 and 19, the polynomial 1-x is invertible
modulo and 1 - x == 2 (mod x + 1), and since 2 is a primitive
root modulo p, every nonzero class modulo (p, x + 1) is represented by a
polynomial invertible modulo ~2p(~)’ For the remaining cases p = 7 and
17, the polynomial 1- ~ + x2 is invertible modulo W2p (x) and 1- ~ -f- ~2 = 3
(mod x + 1 ) and we use the fact that 3 is now a primitive root modulo p to
see that each nonzero class modulo (p, x-f-1) is represented by a polynomial
invertible modulo We have thus established that we can always
choose such that the second congruence is satisfied.
We have proved the following proposition.

Proposition 5.2. Let n = 6,10,14, 22, 26, 34 or 38. Then the structured

modules T and W are isomorphic as O-modules if and only if the inver-
tible class of modulo (2, can be represented by a polynomial
invertible modulo ’Pp (x) .
Corollary 5.3. If K is a totally real cyclic number field of degree n = 2p =

6, 10 or 14, then K contains a Minkowski unit if and only 
= UKP and = UK2.

Corollary 5.4. If K is a totally real cyclic nurraber field of degree n = 2p =

22, 26, 34 or 38 such that NormK/KpUK = UKP and NormK/K2UK = UK2,
then K contains a Minkowski unit if and only if the class of its coordinate
b2p,p modulo (2, is represented by a unit modulo ’Pp(x).
Proof. Assumption of the corollaries imply that T = UK is structured. For
W = 0 the coordinate system a2p,p = 1, a2p,2 = 1 and the modules UK
and 0 are isomorphic (meaning Minkowski unit exists for K) if and only
if the invertible class b2p,p modulo (p, ’Pp( x)) has a representative that is a
unit modulo ’Pp(x). For n = 2p = 6,10 powers of a cyclotomic unit 1 + x
modulo cpP(x) cover all nonzero classes modulo (2, ’Pp(x)). For n = 2p = 14
the prime 2 has index 2 modulo 7 and hence modulo factors into

a product of two irreducible polynomials of degree 3. Therefore there are
49 invertible classes modulo (2, all of which can be represented by
classes that are products of powers of cyclotomic units 1 + ~ and 1 + ~ + ~2
modulo ’P7(X). 0

In relation to Corollary 5.4 it is natural to ask how many possible classes
b2p,p modulo (2, cpp(x)) are represented by units modulo or better yet
what is the index of classes covered by units modulo in the subroup
of invertible classes modulo (2, ’Pp(x))? This index coincides with M(n) for
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these particular values of n. More generally, according to Proposition 5.1,
the index M(n) equals the index of all coordinate systems for
which bpq,p is represented by a unit modulo and bpq,q is represented
by a unit modulo in the set of all coordinate systems 

Proof. The claim can be established for n = 22, 26, 34 and 38 by using
Corollary 5.4 and computing the number of classes modulo (2, ’Pp(x)) that
can be covered by units modulo For the remaining classes n =

15,21,33 and 35 we have to use Proposition 5.1. Also, in this case we used
the generators for the n-th cyclotomic units from [2].
The computation of these values was done using the software package

PARI with the help of my undergraduate student Anthony Disabella. D
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