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New ramification breaks and additive Galois

structure

par NIGEL P. BYOTT et G. GRIFFITH ELDER

RESUME. Cauels invariants d’une p-extension galoisienne de corps
local L/K (de corps residuel de charactéristique p et groupe de
Galois G) determinent la structure des idéaux de L en tant que
modules sur l’anneau de groupe Zp[G], Zp l’anneau des entiers
p-adiques? Nous considérons cette question dans le cadre des
extensions abéliennes élémentaires, bien que nous considérions

aussi brièvement des extensions cycliques. Pour un groupe abélien
elementaire G, nous proposons et étudions un nouveau groupe
(dans l’anneau de groupe Fq [G] où Fq est le corps residuel) ainsi
que ses filtrations de ramification.

ABSTRACT. Which invariants of a Galois p-extension of local num-
ber fields L/K (residue field of char p, and Galois group G) de-
termine the structure of the ideals in L as modules over the group

ring Zp[G], Zp the p-adic integers? We consider this question
within the context of elementary abelian extensions, though we
also briefly consider cyclic extensions. For elementary abelian
groups G, we propose and study a new group (within the group
ring Fq[G] where Fq is the residue field) and its resulting ramifi-
cation filtrations.

1. Introduction

There is, at the present, a small collection of results [3, 4, 2, 5, 6] con-
cerning the structure (the explicit decomposition) of the ring of integers, in
a wildly ramified local number field extension L/K, as a module over the
group ring Zp[G]. Here G = Gal(L /K) , Zp denotes the p-adic integers and
K is a finite extension of the p-adic numbers, Qp.

Looking through this collection, one might notice the following: the

ramification invariants of the extension are sufficient to determine this
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suggestions including the short argument for Lemma 3.1. Elder was partially supported by NSF
grant DMS-0201080.
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Zp[G]-structure only when their number is maximal. Otherwise? In par-

ticular, what happens when there are not enough breaks in the Hilbert
ramification filtration of G?

As observed in [2] where G Ef CZ x C2, additional information is needed.
But how should this information be understood? In this paper, we propose
a refined ramification filtrationl and find that the information required for
[2] arises from breaks in this new filtration.
1.1. Notation. Recall that K is a finite extension of Qp, and let L be a
finite, fully ramified, Galois p-extension of K. Let T denote the maximal
unramified extension of Qp contained in K. Thus eo = [K : T] is the
absolute ramification index of K while f = [T : Qp] is its inertia degree.
Use subscripts to denote the field of reference. So 7rL denotes a prime
element in L, ,~L its ring of integers, fl3 L = 7rLD L the prime ideal of D L and
vL the valuation normalized so that = l. Let Fp denote the finite
field of p elements and IFq = the finite field of q = pf elements.
Let (xP - 1)1(x - 1) be the cyclotomic polynomial. Let 
denote the integers localized at p, and define truncated exponentiation by
the polynomial,

which results from a truncation of the binomial series.

By the ramification invariants of L/K, we mean the two integers, eo
and f , along with the information provided by the ramification filtration
of G = Gal(L/K): the list of the quotients GilGi+l of the ramification
groups Gi = ~~ E G : vL ( (~ - 1 ) ~rL ) &#x3E; i -~- 1 ~ . Naturally, we are primarily
interested in nontrivial quotients. These occur at a break, where Gi ;2 
To distinguish the collection of such breaks Cbj ;2 from other
’breaks’ (to be defined later), we will refer to them as Hilbert breaks. It
is easy to see, because G is a p-group, that there can be at most logp ( G (
Hilbert breaks - when each nontrivial quotient has order p. This is what
we mean by ’maximal number’ .

1.2. Cyclic extensions. Each quotient in a fully ramified

p-extension L/K is elementary abelian [9]. Thus cyclic fully ramified
p-extensions have a maximal number of ramification invariants. It was

determined in [3] (in [6] respectively) that ramification invariants are suffi-
cient to determine the Zp[G]-structure of the ring of integers in fully rami-
fied Cp2-extensions (in C23-extensions) . Does this generalize?
Question. Are ramification invariants sufficient for cyclic p-extensions?

The refined ramification filtration is, at this point, relative to an element cx E L and is not
(yet) guaranteed to be canonical.
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Of course, we are far more interested in the following general

Question. Are ramification invariants sufficient for p-extensions with a
maximal number of ramification invariants?

The first question, as it is phrased, is still open. Though based upon
[5, 11 ~ , we can answer it with a qualified ’yes’. We explain this now.

Let L/K be an arbitrary fully ramified cyclic extension of degree pn.
Let a generate its Galois group G, and let bl  b2  - - -  bn denote
its Hilbert breaks. The first Hilbert break satisfies 1 ~ Bl where
Bi = peo / (p - 1 ) . If we restrict bl to about one half of its possible values,
namely  then the Zp[G]-structure of the ring of integers of
L is given in [5]. It is determined completely by ramification invariants.

Let Kl denote the fixed field of aPe Note that b2  b3  ...  bn
are the Hilbert breaks for If we restrict b1 to bl, so-called
stable rami cation, the other Hilbert breaks are determined by bl. In fact,
bi = [11]. Under this condition b2 satisfies B2/2  b2  B2,
where B2 = p2ep/(p -1) is the generic upper bound on b2, and so the main
result of [5] can be applied to the Zp[aP]-structure of the ring of integers of
L. Since this structure is completely determined by ramification invariants
and since is the maximal proper subgroup of G, we are justified in
saying that the Galois structure of the integers in a cyclic stably ramified
p-extension is ’almost’ completely determined by the ramification inva-
riants.

What about unstably ramified extensions? Wyman has shown that the
ramification filtration in Zp-extensions eventually stabilizes [11]. Thus,
among the infinitely many cyclic extensions of degree that lie in a

Zp-extension, only finitely many are not covered by the main result of [5].
So, in a sense, ramification invariants are ’generally sufficient’ for cyclic
p-extensions.

1.3. Elementary abelian extensions. On the other hand, extensions
with G Ef Cp may have from 1 to n Hilbert breaks. Indeed the situation,
where there are not enough ramification invariants, is essentially an ele-
mentary abelian problem - one of the quotients is not cyclic. As
such, the deficiency of Hilbert’s ramification filtration is a deficiency of ele-
mentary abelian Galois groups. We propose to repair it on the elementary
abelian level.

It is worth mentioning that our proposal arises from an effort to genera-
lize the main result of [2], concerning the Galois module structure of ideals
for biquadratic extensions, to bicyclic extensions, G ££ Cp x Cp . Curiously,
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we were led to truncated exponentiation: E G by w E i)*

This paper may be viewed as an attempt to understand this expression.
We begin by asking for an appropriate environment. There are two

natural candidates: and Weiss has shown that up to conju-
gation DT[G] contains only one finite p-group (namely G itself) [10]. As
we want the ’appropriate environment’ to generalize the Galois group (and
thus be finite), we choose 
Now truncated exponentiation xl’], of x E Fq [G] by w E Fq, can be

viewed as an Fq-action on Fq[G], and Theorem 2.1 explains that this action
is a consequence of certain natural properties. Define G-77 to be the closure
of G under this action. We suggest that a refined ramification filtration
upon G-77 should yield arithmetically interesting information. Indeed in §4,
we show this to be the case for G = C2 x C2.

Note that the idea of filtering something besides the Galois group to
obtain invariants related to Galois module structure is not new. For

example, see [1]. We have, however, chosen a minimal object. And though
our refined filtration cannot, at this point, be considered canonical (it de-
pends upon a choice of element a E L); given an a that is chosen ’well’,
Theorem 3.3 and its corollary say that G F is as ’big as possible’ - indicating
that the group G F is.

2. Elementary Abelian Groups under Fq-action
Recall that IFQ denotes the finite field with q = pf elements. Let G = CP

be an elementary abelian group, and let J = (cr20131 : Q E G) be the Jacobson
radical of the group ring Fq[G]. So 1 + J denotes the group of 1-units in
Fq[G]. The finite field Fp possesses a natural action (via exponentiation)
on the 1 + J. If this is extended to an Fq-action, what properties should
the Fg-action have?

Let (w,l + ~) E 1 + J, denote the effect of w E Fq acting upon 1 + x for
x E J. At a minimum we should ask that

(1) (l,l+x)=1~-~, for all E J, and

These properties determine the action of Fp and the fact that (0, 1 + X) =
(p,1+x) _ (1, l+x)P = 1. But for f &#x3E; 1, they are not sufficient to uniquely
determine an IFq-action. We must include further properties.

Observe that for x E J, xp = 0. To see this express x E J as a linear
combination of terms (o-1 - 1)al ~ ~ ~ (an - 1)an for ~l, ... , an generators of
G and ai &#x3E; 1 for at least one i. Now note that for w E Fp, (w,1 + x) _
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~p o ~ Z ~ x2 is a polynomial in x with coefficients dependent only upon w.
This should hold for all w e F q. And so we ask that there are functions
fi : Fq 2013~ Fq such that

Turn to the situation considered in §1.3. Given two nontrivial elements
al,a2 E Gi B we have = vL~~~a - = i + 1.

Since L/T is fully ramified, there is a unit i5 E DT such that 1 )7rL m
w(a2 - 1)7rL mod 7r. So [1 + w(a2 - mod We can

approximate the effect of one group element by the effect of an expression
involving another. Motivated by this and the fact that = Fq, we
ask that = w. In other words,

Finally, we require

Theorem 2.1. There is only one IFq-action on 1+J that satisfies properties
(1) through (5). It is provided by truncated exponentiation: (w, 1 + x) -

Proof. First we check that (1 + x)[w] satisfies the properties: (1), (3), (4)
are trivial, while (2), (5) rely upon the fact that xP = 0 for x E J.

In the polynomial ring Q [x, y, z] / (xP), we have (1 + (1 + x)~z~ =

resulting polynomial identities in y, z] / (xP) yield (2) and (5) respec-
tively.
We use induction to prove that truncated exponentiation is the only

such Fq-action. Note f 1 (w) _ ~ i ~ . Suppose == (~) for all i such

that consider fk (w). Since ((1 + 

mod xk+l for Wi E Fp, x E J. Compare this to

the similar expression from property (5),

mod . Subtract, note that fi(cv) _ (’0)



92

for all 1 ::; i  k, and look at the coefficient of xk. Thus (wl - 
, / ,/ , L. W , , L. , , W -·, .....

We are interested in G, a subgroup of 1 + J, which is closed under Fp
but not under IFQ. Thus we are led to the following

Definition. Let G-7 be the least subgroup with G C G~ C 1 + J that is
closed under IE’q.
2.1. Near Spaces. A near space is a group upon which Fq operates,
satisfying all the properties of a vector space except the distributive prop-
erty [8]. Since JP fl {0} if G Cp (even though xP = 0 for x E J),
distribution does not generally hold and G-7 is a near space. For example
consider p = 2. If w E ~1F2, x, y E J and xy =1= 0, then ( ( I +z) (I +y) ) I"1 =

distribution holds only for G -- Cp or Fp = IFq . So we will focus on G-97
under G ~ &#x3E; p and Fp C IFq. A near basis will be a minimal generating set
over Fq. *

Define the w-commutator, [a, b]w = for a, b E G-7 and
c,v E Fq. We could equally well call this the w-distributor: If [a, 1,
the JF q-action does not distribute. However when c, = 1 this expression
resembles the usual commutator of group theory. Following [8], we define
an ideal I of to be any subgroup of that is closed under the Fq-action
with E I for g E G-77, i E I and w E Fq.

Define a commutator of ideals, A and B, to be the ideal generated by
the commutators [A, B] = ([a, b]w : a E A, b E B, w E Fq). Let the derived
series of G-7 be defined by ,A.o = G-7 and ,.4n+1 := (,A.n, An] . Note 
is a vector space. So if f (G-7) is the length of the derived series, the minimal
integer such that = Ill or oo, then £(G’) measures the lack of the
distributivity.

2.2. A bound on the length of the derived series. Let G E£ C~ . In
this section we bound .~(G~)  oo. Indeed, for a fixed n, it is almost always
the case that f (G-c) = 2. First we need a lemma.

Recall that denotes the localization of Z at p. Consider the com-

mutator,
[X, Y, W]. We shall relate this to the polynomial
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Lemma 2.2. In the quotient ring R := [X, Y, YP) we have
the congruence [1 + X,1 + 1 + (WP - W)Q(X, Y) (mod pR).

Proof. Set we have T2p-l = 0, ,
while The usual binomial expansions result in

These expressions are all in 7Z since for 0 ~ro - 1,

To analyse the expression for (1 + T)w further, note that we have the
congruences p(~) m W - WP and m 

(mod for 0  i  p - 1. Hence

Therefore

(mod pR). Since (

The result now follows since (1-~X)~~’i’~(1-~X)~-u’~ _ (1+X)j’~’(1+X)-i’~’ _

Corollary 2.3. For any x, y E J and cv E Fq we have [1 ~- + y]w =
1 + (wP - ~) . In particular C 1 -~ JP.

Proof. Since xp = 0 and yP = 0, there is a ring homomorphism G~
given by reduction mod p followed by the specialization X = x, Y = y,
W = w. The identity in the lemma then yields the first assertion. The
second assertion follows since G C 1-- J, and ,.41 is generated by elements
of the form [1 + x,1 + ylw. D

Let r x 1 denote the least integer function (the ceiling function).

Proposition 2.4. If G ^--’ Cp and Fp C Fq, then

Proof. Using the pigeon hole principle, = f 01. Note G-7 =Ao C
- - - L--l

Corollary 2.5. Let G Ef C~ . If Fp C Fq and p &#x3E; n - 1, then .~(G~) = 2.
It is natural to ask the following
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Question. Is the bound given by Proposition 2.4 tight?

For p = 2, Q(x, y) = xy is a monomial. Indeed it is a simple calculation
to check

And so we are able to answer the question in this particular case.

Proposition 2.6. Let G ~ C2 and F2 g Fq, then G~ = 1 + J and £(G’) =

Proof. First we prove that GT = 1-+- J. To do so, it is helpful to note that
we can express any element of 1 + J as a product of elements of the form

where w* E IFq and X (’) = (a, - 1) ... for ~o-l, ... , am)
a subgroup of G with degree p’~~. To prove that 1 + J C GF it suffices to
prove that each 1 -E- e GT. This follows by induction using (6).
Note that

Again using (6), it is easy to show that [
- 1, -, I- - I-

To prove 1 C [1 + J2k, 1 + J2~ ~ , we again note that any element
of 1 + J2k+l can be decomposed into a product of elements of the form
1 + where m &#x3E; 2k+l. One can break into the product of
two monomials of degree &#x3E; 2~ . Using (6), we can prove that 1 E

[1 + J2k, ,1-yI2’~ ~ . Thus Ak = 1 + J2k. D

2.3. A basis for (Cp )-~. In this section, we restrict our attention to one
particular elementary abelian group, C~ with generators a, q, and give
a complete description of GF. Assume IFp ç Fq. Using Proposition 2.4,
.~(G~)  2. Thus Al is a vector space. Our first result establishes the
existence of p - 1 elements of Al that are linearly independent over Fq.
Lemma 2.7. Choose w E IFq B Fp and set ~Z := Then

1  i  p - basis for the Fq-vector space (1 + + 

Moreover, for 1 ::; j ::; p - 1,

Since q? = (1 + y)Z = 1 + i~ (mod y2), using Corollary 2.3 and (7) we find
that (mod 1 + JP+1). Because
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the product of any two elements in JP is zero,

where

mod p for r a primitive root. Thus if j = 1~, Cj,k = 1 mod p. Otherwise
D

To prove that the 1/Ji span we need the following

Lemma 2.8. Choose w E Fp and define 4fj as in Lemma ~.7. Then

Proof. Specializing the polynomial ring 1z, Zl, Z2, X, yP) modulo
p by =wi (for i = 1,2), we obtain
a ring into which 1Fp [w, WI, W2] [G] has an obvious injection. Our proof will
rely upon Corollary 2.3 and the verification of an identity (resulting from
expression above) in the polynomial ring, 

Consider the right-hand-side of the identity. Recall the expression for
Wj in Lemma 2.7. Note that since Wj E 1 + JP, (Wj - 1) = 0.

. Now identify with [1 + x, (1 + 
Since yi = y . Y for some Y E

we find that Thus using Lemma 2.2,

mod p. The right-hand-side of the identity to be proven is mapped to
mod p. It is worth

mentioning that this expression differs from 1 by a linear combination of
monomials with r, s  p and r + s &#x3E; p.
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Now consider the left-hand-side of the identity. Set ( 1 + = 1 + x,
and ( 1 + y) ~z2~ = 1 + y’. As was the case with yi, (x’)p = (y’)P = 0. So using
Lemma 2.2,
(mod p).
Taking into account the p in the denominator of ~P~, the lemma is verified

if we can show in Z(p) [Z, Zl, z2, x, yP) that

where

Expand the pth powers in (8), use (7) to replace (k). Now compare
coefficients of xTys on both sides, where r, s  p and r+s &#x3E; p. Our identity,
which was reduced to (8), is now further reduced to determining whether

(mod p2) for all pairs (r, s), or whether

We verify this condition now, an identity in Z2] with the ci as in
(9), for all relevant pairs (r, s) . Recall that for an indeterminate X and an
integer r &#x3E; 1 we have , for some coefficients

-- - - - - . -

(Stirling numbers of the first kind ~7, p249J.) The lett-hand side of
(10) becomes
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Replacing the ci using (9), the right-hand side of (10) becomes

Note that (11) and (12) agree. D

This leads to the main result of the section.

Theorem 2.9. Let G = C~. SupPose JF q and choose w E 
IFp. Then a vector space over Fq with basis { ~Q, 1i]w : i = !,...,?20131}.
Indeed,

Proof. Set This is clearly a sub-

group. It is easy to see, since GT, that A C G~. To

show that G~ C A, we need only show that A is closed under Fq . Note

The result will follow from Lemma 2.8 and the fact
. r..i ~ , ~ ,

Remark. For a given value of p, Theorem 2.9 can be verified computa-
tionally. In fact this is how it was discovered, using MAPLE.

3. Ramification Filtrations

Elementary abelian groups G can be viewed as vector spaces over Fp.
From this perspective, the fact that dimpp G may exceed the number of
Hilbert breaks is a deficiency. In this section we define a family of refined
ramification filtrations of GF and prove that these refined filtrations lack
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the deficiency of the Hilbert filtration: dimJFq G-17 equals the number of
refined breaks.

3.1. Refined Ramification Filtration. To define a ramification filtra-
tion of G-17 we need G-17 C to act in a well-defined manner upon
elements of L. Naturally, the action should be through We also
need a well-defined notion of valuation. Consider the following example:
Suppose 0. Choose x = 1 E Fq[G], and for k &#x3E; 1, Yk = 1 = 1

elements of View elements of as cosets of in 

Then for all k, and i
, , , , , - .

...  = oo. Since one would reasonably expect (x - I)a to
have infinite ’valuation’, we are led to the following definition: For a E L
and x E G F define

where sup denotes the supremum. Note that = oo for a E L and

Definition. A refined ramification filtration of is defined for a E L by

The purpose of these filtrations is to provide interesting arithmetic infor-
mation. If a E K, then wa (x) = oo for all x E G-7. So GT = G:;Oa and the
filtration is decidedly uninteresting. To avoid this problem, we will restrict
ourselves to a from

To prove 0, we consider another class of element. By the Normal
Basis Theorem there are elements a E L that generate a normal basis for
L over K. Collect these elements together as

Note the following

Lemma 3.1. 0 ~ Nb C N

Proof. By the Normal Basis Theorem, 0 # N6. Now observe the following
basic property of DT-lattices: Given any DT-lattice Lf C L there is a bound
Bu such that for u 

Without restriction we may suppose that T,f is a full-dimensional lattice.
Then there exist a  b E Z with C and PU c
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Now let a E A4. Note that DT[G]A is an DT-lattice. Let y E 
with y + = x. Then y 0 1 mod p, (y - and so

Therefore

Lemma 3.2. For a E N, ideal of G~.

Proof. Throughout xj will denote an element of and yj E 
with Yj = xj and 1 a &#x3E; VL (a) + i. Let w E IF9 and
cv E DT with cv + = w. First we check that the sets are closed un-
der multiplication. Note that yl . y2 = X2 and yly2 - 1 =

J denote the preimage of J under DT [G] -~ To check that the sets

are closed under Fq, note that
Observe that since L/K is a fully ramified

p-extension, vL((y-1)~) &#x3E; for all y E J, J-L E L. Finally we check that

Note y* - 1, yl - 1 E J and [y*, [x*, xl]6-,. Use Lemma 2.2.
Since Q(X, Y) is a polynomial divisible by Y, C~(y* - 1, yl -1) E J(yl -1).

Refined ramification filtrations have breaks, where G5[. We
will refer to these integers as refined breaks. Moreover refined ramification
invariants will refer to eo, f and the quotients G~’a /G +’ 1. Our main result
is the following

Theorem 3.3. For a e N, refined ramification filtrations possess dimJFq G’
breaks.

Proof. Each element 1 E G~, is associated with an integer wa(x)  00.

As a result, there is an integer T such that Gt ’a == {1} for t &#x3E; T . Let Qi
be a set of distinct coset representatives of G~~/(9~B and set q2 = .

The result will follow if we can prove that for all integers i &#x3E; 1

Suppose that qi =1= 1. First we prove qi &#x3E; q. Since qi &#x3E; 1, choose x E G~
with z g G4l. By Lemma 3.2, x[6’-] E for each w E Fog. We need
only prove that if WI =1= W2 E Fq then 0 X[’7121 mod G +’ 1. But this

is equivalent to for all w =I 0. And this is obvious, since if
, . , 1 .. -

Now we prove q2  q. Pick any two nontrivial coset representatives
Xl, X2 E Qi. We need to prove that X2 = zf’l mod G)? for some w E IF .1 2 z h 2 I i--I q,
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for j = 1, 2. Since vL((yl - 1)a) = vL((y2 - 1)a), there is a w E ,~7T such
that Therefore &#x3E;

vL(a) + i since i &#x3E; 1. Since X2 in a unit in Fq[G], y2 is a unit in 
Therefore y2 1 E and Thus

This leads to the following generalization of [9, IV 91 Prop 7].

Corollary 3.4. Given a refined ramification filtration (depending upon a E
N), one can choose a near-basis for G-F in one-to-one correspondence
with the values of the refined breaks. Moreover each nontrivial quotient of
refined ramification groups is canonically isomorphic to the corresponding
quotient of unit groups. For refined break number b, the isomorphism § :

~ is defined by = ya/a where y E 
with y + = x such that for all y’ E DT [G] with y’ + x,

3.2. On the values of refined breaks. Let Ra denote the set of refined
breaks from the refined ramification filtration that depends upon a E N.
Let H denote the set of Hilbert breaks. To be justified in the use of the
term ’refined’, we would like ?~ C TZa. But this requires a restriction on
a. As a first step, we restrict to a E Nb. Note that the group ring K [G]
acts faithfully on L. So al, a2 E Vb if and only if there is a unit u E K[G]*
such that a2 = ual. Note also that the elements of N6 are quite natural
for Galois structure.
Now consider the following

Example. Let L/K be a fully ramified Cp-extension with Hilbert break
h  peo/(p - 1), and Galois group G = (Q). Pick any element a E L
with vL(a) = h. Since gcd(p, h) = 1 and 1)Za) _ (i + 1)h for

, we find a C Nb . Let . Since

 U for each character x, it follows that xj E thus E JVb .
- . ,

In the situation that we are considering I There
is one Hilbert break and one refined break. Note that vL((a - 
VL(pi) + 2h and vL(Xja) = ph. Since gcd(h,p) = 1, WXja(a) = VL(¡)) + 2h.

To find H C 7Za we need to restrict a to a proper subset of Nub. What
should that be? Consider the fact that p ~ I in this example. Since
elements in K have valuation divisible by p, perhaps this is the problem.
T -,

Proposition 3.5. For noncyclic, elementary abelian extensions, if a E N~
th e n 
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This proposition however, does not say whether the refined breaks in
?~C are canonical. It does not answer the following question: For

is = There is an equivalence relation on Ne. Define
ai - a2 if there is a u E 7r~. such that al = ua2.

Lemma 3.6. If

Proof. This is clear since u E fixes valuations. D

Based upon Lemma 3.6, we might answer the question above by choosing
an equivalence class of -. However as the following example illustrates,
N is not the weakest equivalence relation that yields the conclusion of
Lemma 3.6.

Example. Suppose that ~L were free over its associated order A on the
normal basis a. Then = Ra, whenever a’ = ucx with u E c A*.

We close by repeating the question.

Question. We need a canonical subset N? such that al, a2 E N?
implies = What should N? be?

4. Biquadratic Extensions

Let p = 2 and consider L/K a fully ramified biquadratic extension. The
structure of each ideal fl3£ in L as a DT [G]-module (and by restriction of
coefficients also as a Z2[G]-module) was studied in [4, 2]. It was found that
ramification invariants are suflicient to determine the Galois structure of
each ideal when there are two Hilbert breaks [4]. But if there is only one
Hilbert break, additional information is required [2]. The main result of
this section is that all the information required to determine the Galois
structure of ideals in biquadratic extensions is contained in the refined
ramification filtration.
As noted in the proof of Proposition 2.6, G~ = 1 + J for p = 2 and

F2 C Fq . So for G = (()", ,,1 +((}"-1)Cy-1)).
This is, of course, also a consequence of Theorem 2.9. For a E N, there will
be three refined breaks in the filtration of G~. To determine what those
breaks might be, we need to begin with a listing of the possible Hilbert
breaks. There are three cases to consider: (1) one Hilbert break h, (2)
two congruent Hilbert breaks hl  h2 with hl - h2 mod 4, and (3) two
incongruent Hilbert breaks hl  h2 with hl 0- h2 mod 4.
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4.1. Case (1) : One Hilbert break extensions. Let L/K be a fully
ramified biquadratic extension with one Hilbert break, h. As noted in [2],
h is odd, 1  h  2eo, the residue class degree f of must exceed 1,
and L must be expressible as L = K(x, y) for

with 13,7 E K, cv a nontrivial 2f - 1 root of unity, = 2eo - h, and
vK(T) = 2eo - t for some 0  t  h (if t ~ 0 then t must be odd). Let

G = Gal(L/K) = (a, "() where u(x) = x and 7(y) = y. As we will want to
refer directly to results in [2], it is important to point out that our notation
differs in two ways. Here we call the Hilbert break h (instead of b). The 
of this paper is w in [2, (2.1)]. (So in [2], y2 = (w2 + T).) Otherwise
the notation is the same.

4.2. Cases (2) &#x26; (3) : Two Hilbert break extensions. Let L/K be a
fully ramified biquadratic extension with two Hilbert breaks, hl  h2, and
let G = Ghl = (a, q) where Gh2 = (Q). Then s = h, and t = (h2 + hl)/2
are the two upper ramification numbers of L/K [9, IV §3]. Since upper
ramification groups behave well upon passing to quotients, 8 will be the
Hilbert break of La/K where L’ is the fixed field of (Q), and t will be the
Hilbert break of Let L" = K(x) and L~ = K(y) where ~2, y2 E K.
Since 1  s  t  2eo, s is odd. So we may assume that x2 = 1 + 13 for
some 13 C K with VK(j3) = 2eo - s. Either t  2eo and odd, or t = 2eo. If
t odd then y2 = 1 + T for some T E K with VK(7) = 2eo - t. If t = 2eo,
then y2 = 7rK for some prime element 7rK. In any case, the Hilbert breaks
of L/K where L = K(x, y) are hl = s and h2 = 2t - s. Case (2), where
hl - h2 mod 4, occurs when t is odd. Case (3), where hi fl h2 mod 4,
occurs when t = 2eo.

4.3. Refined filtration for Cases (1) and (2). Let denote the

largest Hilbert break of L/K, and let

We will find if there is one Hilbert break or two congruent Hilbert breaks
that Nmax C Nc and that the set of refined breaks Ra is independent of
choice of a e Nmax. So in these two cases Nmax gives an answer to the
question of §3.2.

Proposition 4.1. For fully ramified biquadratic extensions with one Hilbert
break or two congruent Hilbert breaks, Nmax C Ne.

Proo f. Since hmax is odd, we only need to check that Nmax C Nb. Let

h2 denote the Hilbert breaks. So if there is one Hilbert break, hi =
h2 = h. Let cx E L be any element with vL(a) = h2 + 4m, m C Z. Then
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=2~2+4~,~((7-1)(~+1)~) =2h1+2h2-~4m. Following
[4, Lemma 3.15, 3.17], we find p E L such that VL(p) = 2h, + h2 + 4m
and p = (1’ - 1)a + (Q - 1)0 for some 0 E L with = hl + 4m.
Since hl, h2 are odd, h2, 2h2,2hi + + h2 yield the residues modulo
4. So L = Ka + K(o + 1)a + K(7 - + 1)a + Kp C K[G]a + Kp.
We want to prove that p E K[G]a. For the one Hilbert break case, this

follows immediately from [2, Prop 2.1]. We will however treat both cases
simultaneously.

Since 0 E L we find that 0 = aa + b(Q + 1)a + c(y - 1)(Q + + dp
for some a, b, c, d E K. Note that  vL(dp). So h2.
It is important to observe here that since hl + h2  4eo (in the two cases
which we are considering) we have d ~ 1/2. Substitute in for 0. So p =

(q - 1)a + (a - 1) ~aa + dp~. Thus [1 - d (0- - 1)~ p = [(-y - 1) + a(Q - 1)~a.
We need to prove that 1 - d(Q - 1) E But this follows since

Proposition 4.2 (One Hilbert Break). Assume the notation of §,~.1. Since
f &#x3E; 1~ there are three refined breaks. For a E the refined breaks are
rl = h, r2 = and r3 = 3h. Moreover =

where w is the image of w in IFq.

Proof. Clearly, since h  2eo  4eo and vL(a) is odd, = vL(a) + h.
Since f &#x3E; 1, 1+(a-1)()’-1) E GF. We claim that wa(1+(~-1)(y-1)) _
vL(a) + 3h. It is easy to check that + 1)a) = vL(a) + h. Since

vK~y~((~y-f--1)a) is odd, vL((~-1)(~y+1)a) = To prove our claim

we need to understand
Since h is odd, 3h # 4eo. If 3h  4eo, this valuation is vL(a)+3h regardless
of -~). So consider 4eo  3h. We may write f (Q, ~y) = u + j where either
u = 0 or u E ~7T, and j is in the ideal generated by 2, If zt E ~7T
then vL(((~ - 1)(~y + 1) + 2 f (Q, ~y))a) = vL(a) + 4eo. On the other hand,
if u = 0 then since h  2eo, VL(2ja) &#x3E; 4eo + h + &#x3E; 3h + vL(a~. So
~(((~-1)(7+1)+2/(~7))~)=~M+3~ ° Thus wa(1+(~-1)(y-1)) _
vL(cY) + 3h.
To determine another refined break we quote directly from [2], keep-

ing in mind the two notational differences mentioned in §4.1. First we
restrict our attention to the particular a e L defined in the proof of
[2, Prop 2.1]. Note that it satisfies vL(a) = h. Use [2, Prop 2.1] to find
that -t- 1 + w(a + 1))a) = vL(a) + min{4eo - h, 3h - 2t, 2hl - Since
min , we find that 1

= vL((~y-1-f-w(~-1))a) = vL(a)+min{4eo-h, 3h-2t, 2hl.
Now we extend this to all a’ E L with mod 4. Let L’ denote the
fixed field of Q. Then a’ can be expressed as a’ = for some n E La

with vL(a’~ = vL(ma)  vL(n). Note that = 
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(-y - 1)m ~ + (y - 1)n where vL((y - 7U["] a) &#x3E; vL(a) + 2h and
1)n) &#x3E; vL(n) + 2h. Therefore VL ((7U - 1)a’) = min{4eo - h,

3h - 2t, 2h} + vL(a’). Thus vL(a’) -f- minf4eo - h,
3h - 2t, 2h}. 0

Proposition 4.3 (Two Congruent Hilbert Breaks). Let L/K be a fully
ramified biquadratic extension with two Hilbert breaks, hl  h2 and hl -
h2 mod 4. Regardless of a E Nmax, the first two breaks are rl = hl, r2 = h2,
and if f &#x3E; 1 there is a third refined break r3 = h2 + 2hl -

Proof. Adopt the notation of §4.2. So (~, ~y~ = G = Ghl, and (Q~ = G =
Gh2. Since h2  4eo and vL(a) is odd, = + hi and w, (o,) =
vL(a) + h2. If f = 1 there are only these two refined breaks. If f &#x3E; 1, then
1 + (Q - 1)(’"’( - 1) E G~. It is easy to check, since (a + 1) a E L’, that
vL((~y - 1) (Q + 1)a) = vL(a) + h2 + Now follow the argument in Prop
4.2 to determine that wa(1 + (~ - 1)(y - 1)) = vL(cx) + h2 + 2hi. 0

4.4. On refined filtrations in Case (3). We turn to the case of two
incongruent Hilbert Breaks. Using [4, Lem 3.22], one finds that there are
elements a E L with vL(a) = and (~-1)(y+1)a = 0. So Nmax ct M.
And as the following example illustrates, neither will jvm,,x n .N6 serve as
the ’canonical’ set of §3.2.

Example. Recall the notation of §4.2: L = K(x, y) where x2 = 1 K,
= 2eo - s is odd, 1  s  2eo, and y 2 = 7rK. Assume that f &#x3E; 1,

so 1 + (~ - 1)(-y - 1) E G~. The two Hilbert breaks of L/K are hi = s,
h2 = 4eo - s. As in [4, Lem 3.22], there are a, p E L such that (Q - 1)a =
(y - 1)p Note that vL(a) - -s mod 4 and vL(p) - s mod 4. Clearly
(y + I)a E K and 0 fl (7 + l)p E K. So E = (7 + -f- 1)p E K.
First we show that if k E K with k g f 0, 1, £}, then a - kp E Nb. Let
A = a - kp. We need to prove that if (r + sa + t~y -f- = 0 for some

r, s, t, u C K, then = 0. Apply (~y + 1)(~ - 1) to both
sides. Since ("I -l)(a + l)p == 0
and 0, we find r + t - s - u = 0. Now apply (y - + 1)
instead. This results in r + s - t - u = 0. Thus r = ~ and s = t. We
have reduced the equation to (r + + a-y)A = 0. Apply (a - 1) to
this new equation. The result is ( 1 - l~~ (r - + = 0. Since

k # 1 and (Q + 1) ( , - 1 ) p = 0, we find that r = s. The original equation,
(r + sa + t’"’( + ua-y)A = 0, is now r(l + Q)(1 + = 0. But this is the
same as r[2(-y + l)a -2k(a+ I)p] = 0. Since k # (7 + 1)a/(a + 1)p, r = 0.
Now if we furthermore assume vL(a)  vL(kp), then
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If we further restrict k, namely assume eo then we can easily prove
that

vL(2(y + or = VK(S). But since s E eo 

Remark (Two Incongruent Hilbert Breaks). As a result of the example
(and until a ’canonical’ is determined), we can only determine the first
two refined breaks of fully ramified biquadratic extensions with two Hilbert
breaks, h,  h2, and hi fl h2 mod 4. If a the first two refined breaks
are rl = hl, r2 = h2. If f &#x3E; 1 there is a third refined break. Its value

depends upon choice of a E L.

4.5. Galois structure in biquadratic extensions. Fortunately, for bi-
quadratic extensions the first two refined breaks are sufficient for additive
Galois structure.

Theorem 4.4. The Galois module structure of the ring of integers in a
biquadratic extension is determined by refined ramification invariants.

Proof. Compare the information in Propositions 4.2, 4.3 and the Remark
with the requirements of [4, Thm 3.6, 3.9] and [2, Thm 3.2~. D

4.6. Twists. Recall the question and example of [2, §4].
(auestion. Let V be a continuous Galois representation of G = Gal(K/K),
k be the kernel of V and let L be the fixed field of k. Associated with
V there is an integral representation (indeed a whole sequence of them)
given by the valuation ring ~L (or by the sequence of ideals 93’ - the
Galois structure of ideals). Suppose now that we twist V to obtain a new
representation V’ with kernel k’ fixing L’, and that G/k’. How are
these two associated integral representations of the (abstract) finite group

and G/k’ related?
The following example suggests that when the twist is "weak" the inte-

gral representations, the Galois structure of ideals, associated to V and V’
will be isomorphic.

Example. Let Ll = K(x, y) be a biquadratic extension of K with x2 =
1 + 0, y2 = w-2 + /3 where VK(0) = 2eo - h, 1  h  2eo is odd, and w is a
nontrivial 2f - 1 root of unity. Therefore L1/K has one Hilbert break, h.
Let K(z) be a quadratic extension with z2 = 1+-r, vK(T) = 2eo - t and
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0  t  2eo (if t ~ 0 then t is odd). Let Xy, Xxy, XZ be quadratic characters
of Gal(K/K) with fixed fields K(~), K(xy) and K(z) respectively. Let

Vi be the 2-dimensional representation of G = Gal(K/K) with character
xy + xzy , kernel kl and fixed field Li . Note that the kernel kz of Vz = V10Xz
has fixed field Lz = K(x, yz).

To be sure that Glkl G/kz, assume that K(y)~K and K(z)/K have
distinct Hilbert breaks, h ~ t. Using Proposition 4.2, and as in §4.1, making
repeated reference to [2, Thm 3.2], observe the following: If the twist is

’weak’, the ramification number associated to the twist is small (namely
t  h/2 or t  2h - 2eo), then the Hilbert breaks, the refined breaks
and the Galois structure of ideals are preserved by the twist (Li and Lz
look the same). However, if we strengthen the twist (so h/2  t  h and
2h - 2eo  t  h) then ’things begin to break down’: The refined breaks
and the Galois structure of ideals in Lz no longer agree with that in L1,
although the Hilbert breaks are preserved. And finally if we strengthen the
twist even further (so h  t), ’everything breaks down’: there will be two
Hilbert breaks in Lz but only one in Ll. And so the refined breaks and
Galois structure of ideals will also disagree.

Observation. Apparently, twists effect the Galois structure of ideals

through their effect on ramification filtrations (Hilbert and refined).

5. Questions

As mentioned in §1.3, this paper can be viewed as an attempt to under-
stand truncated exponentiation. This led to G~ and its filtrations. One
would like to see G’ generalized. However there are difficulties with ex-
tending the definition of G~ to other abelian groups. There seem to be

prohibitive difficulties involved in extending the definition to nonabelian
p-groups. Could it be that GF is defined only in the context of elementary
abelian groups?
A number of other questions remain. Is the bound provided by Propo-

sition 2.4 tight? What is dimJFq GF in general? However the most pressing
question remains the one asked in §3.2: How should we choose a E L so
that the refined ramification filtration is canonical? Naturally, we propose
to address the question by placing appropriate restrictions on a. But a

canonical filtration should provide interesting arithmetic information, and
so no answer will be complete until we understand the deeper question:
How and to what extent do refined ramification filtrations determine addi-
tive Galois structure?
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