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Algebraic independence over 

par PETER BUNDSCHUH et KUMIKO NISHIOKA

RÉSUMÉ. Soit f(x) une série entière 03A3n&#x3E;1 où (e(n))
est une suite récurrente linéaire d’entiers naturels, strictement
croissante, et (03B6(n)) une suite de racines de l’unité dans Qp, qui
satisfait à une hypothèse technique convenable. Alors nous nous
sommes particulièrement intéressés à caractériser l’indépendance
algébrique sur Qp des éléments f(03B11),..., f(03B1t) de Cp en fonction
des 03B11, ... , at ~ Qp, deux à deux distincts, avec 0  |03B103C4|p  1

pour 03C4 = 1, ... , t. Une application remarquable de notre résultat
principal dit que, dans le cas e(n) = n, l’ensemble {f(03B1)|03B1 ~
Qp, 0  |03B1|p  1} est algébriquement indépendant sur Qp, si

(03B6(n)) satisfait à "l’hypothèse technique". Nous terminerons par
une conjecture portant sur des suites (e(n)) plus générales.

ABSTRACT. Let f(x) be a power series 03A3n~1 03B6(n)xe(n), where
(e(n)) is a strictly increasing linear recurrence sequence of non-
negative integers, and (03B6(n)) a sequence of roots of unity in Qp
satisfying an appropriate technical condition. Then we are mainly
interested in characterizing the algebraic independence over Qp of
the elements f(03B11), ... , f(03B1t) from Cp in terms of the distinct
03B11,..., 03B1t ~ Qp satisfying 0  |03B103C4|p  1 for 03C4 =1, ... , t. A strik-
ing application of our basic result says that, in the case e(n) = n,
the set {f(03B1)| 03B1 ~ Qp, 0  |03B1|p  1} is algebraically independent
over Qp if (03B6(n)) satisfies the "technical condition". We close with
a conjecture concerning more general sequences (e(n)).

1. Introduction and results

Let p be a fixed prime, Qp be the p-adic completion of Q, let Qp be the
algebraic closure of Qp, and Cp be the p-adic completion of Qp, which is
an algebraically closed complete field with a valuation uniquely extended
from Qp.
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The question of transcendence or algebraic independence of elements
from Qp or even from Cp over Q is rather well investigated in the litera-
ture. In contrast to this situation, the corresponding question for Cp over
Qp has been studied in the past only occasionally. Seemingly, the first suf-
ficient criterion (of Liouville-type) for transcendence was stated implicitly
by Amice [1, p.74~ as an exercise. Concerning algebraic independence, there
is a first article by Lampert [8], who used p-adic series of the form

with infinite sequences (rk) of positive non-integral rational numbers to
answer two questions of Koblitz [6, p.75] about the transcendence degrees
of Cp over c;nr and of c;nr over Qp. Here c;nr denotes the p-adic closure
of in Cp, where Q;nr is the maximal unramified extension field of Qp.
A few years later, Nishioka [9], based on an approximation type criterion
for algebraic independence, gave more explicit examples for algebraically
independent elements from Cp over Cun, (and from Cpn, over Qp as well)
than Lampert did.

Whereas the ak in Lampert’s series (1) were certain roots of unity in Cp,
the first-named author and Chirskii [2], [3] very recently proved a variety of
results giving sufficient conditions for the algebraic independence over Qp
of numbers from Cp, again defined by infinite series of type (1), but now
with coefficients from the ring Zp := Ix E 1} of p-adic integers.

In the present paper, we will be mainly interested in the algebraic inde-
pendence of f (al), ... , f (at) over Qp, where al, ... , at E ~p := Qp B 101
and f (x) is a power series

with a strictly increasing sequence (e(n))n=1,2,... of non-negative integers.
Our motivation to consider series of type (2) originates from Gouv6a’s book
[4, p.165], where the transcendence of over Qp is proved under
assumptions which are much stronger than our’s will be in the sequel.

Before writing down the precise statement of our principal result, it is
useful to give the

Definition. A finite subset {al, ... , atl of cCp := Cp B 101 is called (e(n))-
dependent if there exist a E (CPX I roots of unity (i,..., (t, and numbers

cCp such that the following conditions hold:
(i) aT = Ta for r= 1,...,

t ..

for any large n.

We are now in a position to formulate our main result.
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Theorem 1. Let (e( n) )n=I,2,... be a strictly increasing sequence of non-
negative integers forming a linear recurrence. Assume (~(n))~-1,2 ". to be
a sequence of roots of unity, whose orders are all prime to p, satisfying
~(n) ~ ~p(~(1), ... , ((n - 1)) for any large n E N‘ := 11, 2,...}. Put

and let al, ... , at E Q~ be distinct with larlp  1 for T = 1, ... , t. Then

f (al), ... , f (at) are algebraically dependent I if and only if there exists a
non-empty subset of { aI, ... , at} which is (e(n))-dependent.
Remark 1. An example of a (-sequence as in Theorem 1 is the following.
Let ~ be a prime # p, and let ((n) be a primitive f’1-th root of unity for
any

Since, by a Vandermonde argument, no non-empty finite subset of C§
can be (n)-dependent, the case e(n) = n yields our first application.

Corollary 1. Let (((n)) be as in Theorem 1, and define

Then the set E Q;, lalp  11 is algebraically independent.

Corollary 2. Let (((n)) be as in Theorem 1, and define

for fixed dEN B f 11. Suppose a 1, ... , at E ~p to be distinct with I a, lp  1

for T = 1, ... , t. Then fd(al), ... , fd(at) are algebraically dependent if and
only if there exists a non-empty (dn)-dependent subset of f a,, ... , at I -
With regard to Corollary 2 we can even go one step further by allowing d

to vary over N B f 11. The corresponding result, which we state as Theorem
2, is not a direct consequence of Theorem 1, but its proof is rather similar.

Theorem 2. Assume (((n)) to be as in Theorem 1, and fd(x) as in

Corollary 2. Suppose al, ... , at E Qpx to be distinct with I a, lp  1 for
T =1, ... , t. Then the E N B f 11, T = l, ... , t} is algebraically
dependent if and only if there exist a do E ~1, ~1~ and a non-empty subset
of ... , at I which is (don) - dependent.
An immediate consequence of Theorem 2 is

1 In our paper "algebraically dependent or independent" means always "over Qp" .
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Corollary 3. Suppose that no (1  T  T’  t) is a root of unity.
Then the E I~, ~1}, T = l, ..., t} is algebraically independent.
To conclude this introduction we propose the following

Conjecture. Let be a strictly increasing sequence of non-negative
integers, and let (C(n))nEN be as in Theorem 1. Suppose f to be defined
by (3), and let al, ... , at E Qp’ be distinct with laTlp  1 for T = 1, ... , t.
Then f (al), ... , are algebraically dependent if and only if there exists
a non-empty (e(n))-dependent subset of {aI, ... , atl.

2. Theorem 1: The if-part and preparation of the only-if-part
Let be an (e(n))-dependent subset of {al, ... , at} C Qpx.

By definition, there exist a E C;, roots of unity (I, ... , ~t~, and numbers
ðl, E C; such that

From (i) we see a E Qp , and from (ii) we may suppose 61 ... , E Qp,
not all zero, compare the argument in [11, p.83].

To prove now the if-part, let a,, ... , at satisfy the hypotheses of our The-
orem 1, and let {c~i,..., at, ) be an (e(n))-dependent subset of fal7 .... 
Then, using (i) and (ii), we find

with 61 , ... , 6t, E Qp, not all zero. This last equation shows that 1, I(al), ...
f (at,) are linearly dependent over Qp, and the algebraic dependence of
f (al), ... , f( at’ ) (over Qp) follows. Clearly, this reasoning is independent
of the fact that (e(n~~ is a recurrence sequence.

To begin with the only-if-part, we suppose f (al), ... , f (at) to be alge-
braically dependent whereas, w.l.o.g., every t-1 of these numbers are alge-
braically independent. Then there exists a polynomial F E 7G~,~xl, ... , xt] B
101 with minimal total degree such that

Clearly, with we have
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Assuming

and defining

we have, with

From (7) we see ~r~!p ~ 1 and

for T = and any k E N. Using this and (4) we deduce from (8)

With Kk := ~p(~(1), ... , ~(k)) for every large k e N, let Q(k) E

id. As we shall explain in Remark 2 below, we can
extend a( k) to an isometric automorphism of Cp over Qp, and therefore we
find from (9)

Subtracting (9) from (10) we get
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Since = the last line can be equivalently
written as

We put

this maximum exists because of the discreteness of 1.lp on If ~(1~) _
0, then 

- - -/-*,_ _,, B

Assume M(k) &#x3E; 0, and let l~~ &#x3E; k be such that
.L i ~_i~

Then, for any n &#x3E; 1~’, we have

. - 1-

Replacing in (11) k by k’, and taking I((k’)u(k’) - ((k’)lp = 1 into account,
we get

Combining this with (13) we find, by latip  1,

with 0  ~ :=  1. By (14) we have, in particular,
/-~B 

~ 

1 ~ -- - !1
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Clearly, (14) and (15) hold both in the anticipated case M(k) = 0 as well.

Remark 2. Writing Q for the above a( k), we let Q be an automorphism
of Qp over Qp. For each x E Qp, we define lxl* := Ixulp. Then 1 . 1* is an
absolute value on Qp coinciding on Qp with [ - ip. and

thus lx,71P = Ixlp for any x E Qp.
In the above deduction of (10) from (9), we first extend a E 

to Q E Then a is isometric, and it can be further extended to
an isometric automorphism of Cp over Qp.

To finish the proof of the only-if-part of our Theorem 1 we need the
following lemma concerning the quotients aT/at (T = s + 1, ... , t) from Qp
of p-adic value 1, compare (6).
Lemma 1. Denoting q := p for p &#x3E; 2, and q := 4 for p = 2 there exist
distinct rl, ..., qm E 1 + and roots of unity (,+l, (t such
that the representations

hold with appropriate p(T) E f 1, ... , mi.
The proof follows immediately from [4, Corollary 4.3.8]. Clearly, no

quotient 7~,~~y~,~ (,a 54 ~,~~ can be a root of unity.

3. A pedagogical example
Before concluding the proof of Theorem 1 in section 4 in the general

situation of linear recurrence sequences (e(n)), we treat, for pedagogical
reasons, first the particular case e(.) = g(.) with g E 7G(x~. To do this we
need

Lemma 2. Suppose G E Z[x] such that (G(V))VEN is a strictly increasing
sequence of non-negative integers. Let ... , be as in Lemma 1, and
assume 81, ... , 6m e Cp, not all zero. Then

Proof. W.l.o.g. we may assume 1 for {L = 1,..., m. Then the

Skolem-Lech-Mahler theorem (for relatively simple proofs compare, e.g.,
[5], or [10, Theorem 2.5.3]) implies that there are at most finitely many

with 2:;=1 = 0, since no quotient (p # ~~,~) is a root of
unity. Thus, by our hypothesis on G, there exists vo E N such that

m
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and this sum has p-adic value p-v with rational v &#x3E; 0. Defining M := [vl E
No we see ~ - 1 E and thus, for any ~ E N

with appropriate E N, p~,(~~ E Zp. From this we see

for any t E N, and therefore

This proves Lemma 2.
To prove the only-if-part of Theorem 1 in the particular case e = g, g E

we write2 n = (p - 1)v + r with r E ~0, ... , ~ - 21, thus getting
g(n) - g(r) (mod(p - 1)). Using this and Lemma 1 we deduce

...... r - ,

Defining for any fixed r E {0,..., p - 2} the new integer-valued polynomial
Gr by Gr(v) := g((p - 1)v + r), it is clear, that every Gr satisfies the
conditions on G in Lemma 2. On the other hand, it follows from (12), (15)
and (16) that for every r E ~0, ... , p - 2}

t ~ ~ ’B

where we defined

2 Obviously, we leave the case p = 2 to the reader.
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Using Lemma 2 we see for any r E ~0, ... , p - 2}

This leads to

t’°l’ l-r"’

for any rt E N.
Fix now ~co E fl,..., m} such that the set of T E Is + 1, tj with
= po is not empty. Then we find for those T with p(T) = ¡to

This, combined with equation (19) for p = shows that po)
is a (g(n))-dependent subset of f a 1, - .. , Here we recall the fact that

DrF(f(a)) =I 0 (T = s + 1, ... , t), see (5).

4. The general case

To finish the proof of the only-if-part of Theorem 1 in the general case of
linear recurrence sequences we note the existence of 
such that e(n + h) = e(n) (mod (p - 1)) (or (mod 2) if p = 2) holds for
any n &#x3E; no. Equivalently written, with e(n) = e(hv + r) =: Er(v) for any
v E No, r E {~o?... no + h - 1}, this means Er (v) * ET(0) (mod (p - 1))
(or (mod 2) if p = 2). Then we can proceed as in section 3: Combination
of (12) and (14) yields, by reasoning parallel to (16),

where J,(r) is defined by (17) with g(r) now replaced by e(r) = Er(0).
Using the postponed Lemma 3 we deduce from (20) that the m equa-

tions (18), with g(r) again replaced by e(r) = ET(0), hold for any r E
(no, ... , no + h - 11 - Therefore the equations (19) hold for any n &#x3E; no with
g(n) replaced by e(n), and from here on the proof terminates as explained
at the end of section 3.

Remark 3. For the proof of Lemma 3 below we need a few facts on (ho-
mogeneous) linear recurrence sequences with constant coefficients, for short
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recurrence sequences, which the reader may find in the introductory chapter
"Recurrence Sequences" of the book of Shorey and Tijdeman [12].

First, for our integral recurrence sequence there exists a unique
recurrence relation of minimal order L, say,

with 0. As it is easily seen, the recurrence coefficients ao, ... , 
are rational, in fact, by a theorem due to Fatou, integral. Secondly, from
[12, Theorem C.la)~ we know

where the distinct non-zero algebraic integers dl,... , di are the roots of
order pl, ... , pt E N ( pl + ... + pt = L) of the companion polynomial

of the recurrence (21). The uniquely determined gx E (dl, ... , have

degrees  pa (A =1, ... , ,~). Thirdly, we have from [12, Theorem C.lb)~: If
dl, ... , de E ex are distinct, pi,.... Pi E N, and if one defines ao, ... , 
by

and if the gx are any polynomials of degree  pa (~ = 1, ... , ,~), then the
sequence (e(n)) defined by (22) satisfies the recurrence relation (21).
When we applied earlier Lemma 3 to the sequences (Er(v))" for fixed r,

we must be sure that these are recurrence sequences for every fixed r. But
this follows easily from our above statement and

where D1, ... , Dfl are the distinct numbers among the powers d1, ... , d~ .
Lemma 3. Let ~yl, ... , ,’)’m E Cp be distinct and satisfy 
=: R~ (~ = 1, ... , m). Let (E(v)) be a strictly increasing recurrence se-
quence of non-negative integers, and let bl, ... , ,8m E Cp. If

holds for v - oo, with a fixed non-negative real number 79  1, then 61 =
...-b~-p.
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Remark 4. Obviously, if 1/1- is as in Lemma 1, then 11/1- -lip  Rp for any
prime p. Furthermore, it should be pointed out that, under the conditions
on the 1’S in Lemma 3, no quotient 1/1-/1/1-’ (p ~ ~c’) can be a root of unity,
see [4, p.154, xiii)].

Proof. From Remark 3, and rewriting (22) a little, we know

with distinct non-zero algebraic integers Dl, ... , De and with non-zero poly-
nomials Ga having their coefficients in ~(Dl, ... , Therefore we know
0  1 (A = 1, ... , ,~), and we may assume w.l.o.g.

Denoting

,,-,&#x26;. ,,-"" I...&#x26;.

we have - 0 as v - oo, by (24). Since 1 we may

suppose 1 for every v E No. Defining := 

for it = 1, ... , m, the /31, . 13m are distinct, and the inequalities 
11J.t - lip  Rp hold. The sum on the left-hand side of (23) is

W.l.o.g. we may suppose  1 (p = 1, ... , m) . We assume further
that at least one of the 61 , ... , 6m is non-zero, and derive a contradiction
according to the cases t’ = t and t’  t.

Case t’ = i. Then B(v) = 0 and A(v) = E(v) for every v. By the
Skolem-Lech-Mahler theorem, there is a vo with 0, say,

with rational v &#x3E; 0.

Suppose now L E N large enough, to be specified later. Then there is an
N E N such that for any E No the following inequalities hold
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These imply

where ci &#x3E; 0 depends only on G1, ... , G£. Then for v = vo + Nx we get

by (25). Here the right-hand side is  p-v if we take L large enough.
Therefore 

--- -

for all large v of the form Since this contradicts hypothesis
(23) of Lemma 3, we have Ji = ... = 8m = 0 in the first case.

Case i’  f. If B(v) = 0 holds infinitely often, then the infinite set
IV E Gx(v)D’ = 01 is a union of a finite set and of finitely
many (at least one) arithmetical progressions, by the Skolem-Lech-Mahler
theorem. This implies the existence of c, d E N such that B(c+ dv) = 0 for
each P E No. Putting

we are back to the first case with E.
Therefore we may suppose from now on that 0 for all but finitely

many v. Indeed, we may even assume w.l.o.g. 0 for any v E No.
Next we transform a little the sum on the left-hand side of (23)

For every v E No, at least one of the sums
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is non-zero, by a Vandermonde argument, and since not all 81, ... ,8m van-
ish. Therefore, for any v E No, there exists j (v) E ~0, ... , ~n -1 } such that
(27) vanishes for j = 0, ... , j (v) -1, but not for j = j (v). Thus there exists
a jo E ~0, ... , m -1 ~ such that the sum (27) vanishes for any v E No and
j=0,...,jo-1 but

for an appropriate vo E N. With some rational w &#x3E; 0 we define

As we saw in the first case there exists N E N such that

holds for every x e No .
Replacing now the linear recurrence (E(v)) by the new one 

where E*(K) := E(vo + NK), we find from (26)

Using (28) and I B (vo + the last equation yields
«

for every large x. This equation, combined with hypothesis (23) in Lemma
3, shows that the case jo = 0 is impossible. Hence we know m &#x3E; 1 and

jo E ~1, ... , m -1}. Since

holds for any a E QX we find from our previous definition of B(v)

with some real c2 &#x3E; 1 (independent of v). Using this, (29) and (23) we find

and thus



532

for every large x E No .
On the other hand, since t’  t, there is a Ao with 0  I Dxo ip  1. From

(30) follows I D-xol &#x3E; 1, thus at least one of the conjugates of Dxo (which
occur all among the D1, ... , Dt) must be larger than 1 in absolute value,
thus leading to

Estimating the positive E*(x) from below, at least for infinitely many x,
(31) leads now quickly to the desired contradiction.
The precise conclusion is as follows. The representation of E(v) from

the very beginning of our proof and our definition of E*(K) leads us to

where the non-zero Di,..., D~ are the distinct among the DN D) . To
this representation of the recurrence we apply Kubota’s result
[7, Corollary 3(ii)], and we deduce the existence of a constant c6 &#x3E; 0 such
that

holds for infinitely many where d := maxf deg (jA I = E No.
Thus Lemma 3 is completely proved.

5. Sketch of proof of Theorem 2

Let dl, ... , d,"i E I~1 ~ {1~ be distinct; w.l.o.g. we may suppose dl &#x3E; ... &#x3E;

dm &#x3E; 1. Since Corollary 2 allows us to assume m &#x3E; 1, we may further
assume inductively that the

vu’2B--~ / B- I I - I - - I - - - I - - - - /

are algebraically independent. For each t’ t~ we have to prove
that the f dm (aT) (T = 1, ... , t’) are algebraically independent over the field

We suppose to be algebraically dependent over K,
whereas, (if t’ &#x3E; 1) every t’ - 1 of these are algebraically independent.
Then there exists a polynomial

with minimal total degree such that
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We may assume las,lp  = ~ ~ ’ = lat,lp. If a E

7G~,~fd1(al),... then, with a(k) and n &#x3E; k as in section 2,

taking dm-1 &#x3E; dm into account. Hence, we have (11) with s’, t’ instead of
s, t and can continue in the same way as in section 2.
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