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On the structure of Milnor K-groups of certain

complete discrete valuation fields

par MASATO KURIHARA

RÉSUMÉ. Pour un exemple typique de corps de valuation discrète
complet K de type II au sens de [12], nous déterminons les quo-
tients gradués gri K2(K) pour tout i &#x3E; 0. Dans l’appendice, nous
décrivons les K-groupes de Milnor d’un certain anneau local à
l’aide de modules de différentielles, qui sont liés à la théorie de la
cohomologie syntomique.

ABSTRACT. For a typical example of a complete discrete valuation
field K of type II in the sense of [12], we determine the graded
quotients gri K2 (K) for all i &#x3E; 0. In the Appendix, we describe
the Milnor K-groups of a certain local ring by using differential
modules, which are related to the theory of syntomic cohomology.

0. Introduction

In the arithmetic of higher dimensional local fields, the Milnor K-theory
plays an important role. For example, in local class field theory of Kato
and Parshin, the Galois group of the maximal abelian extension is described
by the Milnor K-group, and the information on the ramification is in the
Milnor K-group, at least for abelian extensions. So it is very important to
know the structure of the Milnor K-groups.

Let K be a complete discrete valuation field, vK the normalized additive
valuation of K, OK the ring of integers, mK the maximal ideal of OK,
and F the residue field. For q &#x3E; 0, the Milnor K-group has a

natural filtration Ui Kr (K) which is by definition the subgroup generated
by {1 + m’, KX, ..., for all i &#x3E; 0 (cf. We are interested in the

graded quotients = The structures

of gr’ were determined in Bloch [1] and Graham [5] in the case that K is
of equal characteristic. But in the case that K is of mixed characteristics,
much less is known on the structures of gr2 Kr (K). They are determined by
Bloch and Kato [2] in the range that 0  i  eKp/(p-1) where eK = vK(p)
is the absolute ramification index. They are also determined in the case
eK = VK(P) = 1 (and p &#x3E; 2), in [14] for all i &#x3E; 0. This result was

generalized in J. Nakamura [17] to the case that K is absolutely tamely
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ramified (cf. also [16] where some special totally ramified case was dealt).
We also remark that I. Zhukov calculated the Milnor K-groups of some
higher dimensional local fields from a different point of view ([24]).
On the other hand, we encountered strange phenomena in [12] for certain

K (if K is of type II in the terminology of [12]). Namely, if K is of type
II, for some q we have gri Km (K) = 0 for some i (even in the case ~F :
FP] = pq-1), which never happens in the equal characteristic case. A typical
example of a complete discrete valuation field of type II is K = KO’Vp7T-)
where Ko is the fraction field of the completion of the localization of Zp [T] at
the prime ideal (p). The aim of this article is to determine all gri K2 (K)
for this typical example of type II (Theorem 1.1), and to give a direct
consequence of the theorem on the abelian extensions (Corollary 1.3). (For
the structure of the p-adic completion of see also Corollary 1.4).

I would like to thank K.Kato and Jinya Nakamura. The main result
of this article is an answer to their question. I would also like to thank
I.B.Fesenko for his interest in my old results on the Milnor K-groups of com-
plete discrete valuation fields. This paper was prepared during my stay at
University of Nottingham in 1996. I would like to express my sincere grat-
itude to their hospitality, and to the support from EPSRC(GR/L06560).
Finally, I would like to thank B. Erez for his constant efforts to edit the
papers gathered on the occasion of the Luminy conference (*).

Notation

For an abelian group A and an integer n, the cokernel (resp. kernel) of
the multiplication by n is denoted by A/n (resp. A[n]), and the torsion
subgroup of A is denoted by Ators. For a commutative ring R, R’ denotes
the group of the units in R. For a discrete valuation field K, the ring of
integers is denoted by OK, and the unit group of OK is denoted by UK.
For a Galois module M and an integer r E Z, M(r) means the Tate twist.
We fix an odd prime number p throughout this paper.

1. Statement of the result

Let Ko be a complete discrete valuation field with residue field F. We
assume that Ko is of characteristic 0 and F is of characteristic p &#x3E; 0, and
that p is a prime element of the integer ring OKo of Ko. We further assume
that [F : FP] = p and p is odd.
We denote by S2F the module of absolute Kahler differentials For

a positive integer n, we define the subgroups BnS2F by = dF c SZF
and = Bn+152F/B1SZF for rt &#x3E; 0 where C-1 is the inverse Cartier
operator (cf. [6] 0.2). Then gives an increasing filtration on S2F.
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We fix a p-base t of F, namely F = FP(t) . (Recall that we are assuming
[F : FP] = p.) We take a lifting T E UKo of the p-base t of F, and define
K = This is a discrete valuation field of type II in the sense of

[12].
In this article, we study the structure of K2(K) = K2m(K). As usual,

we denote the symbol by (which is the class of a 0 b in K2 (K) =
KX 0 KX j J where J is the subgroup generated by a ~ (1 - a) for a E
KX B ~l~). We write the composition of K2(K) additively. For i &#x3E; 0,
we define U2K2(K) to be the subgroup of K2(K) generated by 
where UK = 1 + We are interested in the graded quotients

We also use a slightly different subgroup Ui K2(K) which is, by definition,
the subgroup generated We have

It is known that K2(K)/U1K2(K) - K2(F). Further, by Bloch
and Kato [2] (cf. Remark 1.2), gri K2(K) is determined in the range 1 
i  p + 1 in our case (note that eK = vK(p) = p). In this article, we prove
Theorem 1.1. We put 7r = f/PT which is a prime elerraent of OK.
(1) If i &#x3E; p + 1 and i is prime to p, we have gr’ K2(K) = 0.
(2) For i = 2p, we have Lf2PK2(K) C and the homorraorphism
x ~ the class of ~l + p7PY, 7r}

(x is a lifting of x to OK) induces an isomorphism

(3) For i = np such that n &#x3E; 3, we have LfnPK2(K) C Unp+1 K2(K), and
the homomorphism the class of (iF is a lifting of x to OK)
gives an isorrcorphism

Remark 1.2. We recall results of Bloch and Kato [2]. Let K be a complete
discrete valuation field of mixed characteristics (0, p) with residue field F,
and 7r be a prime element of OK. The homomorphisms

and
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(x and y are liftings of x and y to OK, and the classes of the symbols do not
depend on the choices) are surjective. They determined the kernels of the
above homomorphisms in the range 0  i  ep~(p - 1) where e = vK(p).
In particular, for our K, the above homomorphisms (2) and (3) induce
isomorphisms

We also remark the surjectivity of (2) and (3) implies that
is generated by the image of and that

is generated by the image of in our case.

Let U’(K2(K)lp) be the filtration on K2(K)lp, induced from the fil-
tration UiK2(K). We put gr’(K2(K)lp) = 
Bloch and Kato [2] also determined the structure of grz (K2 (K) /p) for gen-
eral complete discrete valuation field K. In our case, (2) and (3) induce
isomorphisms

, -, , , - , - , ,

These results will be used in the subsequent sections.

Corollary 1.3. K does not have a cyclic extension which is totally ramified
and which is of degree p3.
Proof. Let M/K be a totally ramified, cyclic extension of degree p~. In

order to show n  2, since M/K is wildly ramified, it suffices to show
that p2(U1K2(K)/U1K2(K)nNM/KK2(M)) = 0 where NM/K is the norm
map. In fact, if K is a 2-dimensional local field in the sense of Kato [8] and
Parshin [18], this is clear from the isomorphism theorem of local class field
theory

In general case, U1K2(K)/U1K2(K) fl N M/KK2(M) contains an element
of order p~ by Lemma (3.3.4) in [12]. So it suffices to show

We will first prove that UP+2K2(K) C N M / K K 2 (M). If j is sufficiently
large, UK = 1 + mK is in (KX)pn, so UjK2(K) is in pnK2(K), hence
in NM/KK2(M). So by Theorem l.l, in order to prove Up+2 K2 (K) c
NM/KK2(M), it suffices to show is in NMIKK2(M). Since M/K
is totally ramified, there is a prime element ~r’ of OK such that 7r’ E

NM/K(MX). Hence, the subgroup ,7rl is contained in NM/KK2(M).
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We note that is generated by 7r’l and U’K2 (K) for all i &#x3E; 0.

Hence, Theorem l.l also tells us that is generated by 7r’l
and Uj K2 (K) for sufficiently large j. This shows that is in

In order to describe the structure of K2(K), we need the following ex-
ponential homomorphism introduced in [12] Lemma 2.4 (see also Lemma
2.2 in §2). We define K2(K)^ ( resp. f2bK ) to be the p-adic completion of
K2 (K) (resp. °bK). Then, there is a homomorphism

such that a - db H f exp(p2ab),bl for a E OK and b E Here

exp(x) = Concerning K2(K)^, we have

Corollary 1.4. Let K be as in Theorem l.l. Then, the image of

is and the kernel is the Zp -module generated by da with a E OK
and b(pdJr /Jr - dT/T) with b E OK.

We will prove this corollary in the end of §3.

2. p-torsions of K2(K)

Let ( be a primitive p-th root of unity. We define Lo = Ko (() and
L = K(() = LO(1r) where 7rP = pT as in Theorem 1.1.

Let be the filtration on K2 (L) defined similarly (UiK2(L) is
a subgroup generated + mi, L" } where mL is the maximal ideal of
OL). Since L/K is a totally ramified extension of degree p - 1, we have
natural maps U’K2(K) ~ U(p-1)iK2(L).
We also use the filtration on K2 (L) /p, induced from the

filtration U2K2(L). If 7y is in Ui(K2(L)jp) B U’+’(K2(L)lp), we write
filL(’q) = i. We also note that since L/K is of degreep-1, 2013~

U(p-1)i(K2(L)/p) is injective.
Our aim in this section is to prove the following Lemma 2.1.

Lemma 2.1. Suppose a E 
, "’.,. - ..... Ko’- . 

- , , . , . , . , , ,
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We introduced the map expp2 in Corollary 1.4, but more generally, we
can define expp as in the following lemma, whose proof will be done in
Appendix Corollary A2.10 (see also Remark A2.11). The existence ofexpp2
follows at once from the existence of expp. For more general exponential
homomorphism (exp, with smaller vK(c)), see [15].
Lemma 2.2. Let K be a complete discrete valuation field of mixed char-
acteristics (O,p). As in 91, we denote by (resp. the p-adic
completion of K2(K) (resp. Ql Then there exists a homomorphisms

such that a - (exp(pab) b} for a E OK and b E OK B f 0 1 -
We use the following consequence of Lemma 2.2.

Corollary 2.3. In the notation of Lemma 2.2, we have
- - 1) - - __ ,_ -, 

for any c E OK.

Proof. In fact, ~l = expp (p-2 log(l -~p2c) ~ dp). Hence, by Lemma
2.2 and dp = 0, we get the conclusion.
We also use the following lemma in Kato ~7~.

Lemma 2.4. (Lemma 6 in

Proof of Lemma 2.4.
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Using this lemma, we have

Put 7rL = (( - 1)/1f, and u = pl(( - I)P-1. Then 1f£ is a prime element of
OL, and u is a unit of Zp [(]. Since 7rP = pT, we have

Since u = vP(1 + w(~’ - 1)) for some v, w in

Thus, we obtain Lemma 2.1 (1).
Put x = a mod p E F. Lemma 2.1 (2) follows from Lemma 2.1 (1). In

By Lemma 2.2, we have

Hence by (5) (6) and (7), we obtain
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First of all, = 0 in K2(L)~. In fact, if we write du = w.d(
for some w E Zp[~],

Since (

By the same method, = 0, hence the second term of
the right hand side of (8) is equal to 7r I (from 7rL = (~-1)/~).
Hence by (8) we have

(recall that = pT). Thus, we have got Lemma 2.1 (3).
We go back to Lemma 2.1 (4). For p = 3 and i = p + 3, by the same

method, we obtain

But the right hand side is zero by Corollary 2.3.

3. Proof of the theorem

3.1. First of all, we prove Theorem 1.1 (1). Let i be an integer such that
~ -f- I  i. Then by Lemma 2.1 (1), we have

for a E 0 Ko. Hence, taking the multiplication by p, we get

U’K2(K) for all i with (i, p) = 1 and the surjectivity of (2) implies that
is generated by the image of it follows from

{1 - E Ui+1K2(K) that UiK2(K) = for all i with

(i, p) = 1.
We remark that by [12] Theorem 2.2, if i &#x3E; 2p and i is prime to p, we

already knew gri = 0 is generated by 7rT’-ld7r - dT, and
isomorphic to OK/(p)). So the problem was only to show gri K2(K) = 0
for i such that p + 1  i  2p.

3.2. Next we proceed to i = 2p. By 7rP = pT, we have p ~ dT = 
Hence, expp(p - dT) = d7r/7r), namely
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(this also follows from [12] Theorem 2.2).
For a E UKo, by an elementary calculation

we know that FP is contained in the kernel of the map z - {1 + 7rl
in (3) from F to gr2P K2(K) because of U2PK2 (K) = 

Next we assume that a E UKo and x = a mod p is not in FP. We will prove
{1 U2p+1K2(K). Let L = K ((), Ui(K2(L)/p), be as in

§2. Since x 0 FP, by Remark 1.2 (iv) we have filK( {I + mod p) = p
and

Let A = Gal(L/K) be the Galois group of L/K. Consider the following
commutative diagram of exact sequences

where P1 is the restriction to the A-invariant part of the

map -&#x3E; f,x (we used 
K2(K)/p), and P2 is the map induced from the multiplication by p
(a mod p H pa modp2). The left vertical arrow is bijective, and the central
and the right vertical arrows are also bijective by Mercurjev and Suslin.

This diagram says that the kernel of p2 is equal to the image of ~~, L" I A
in The filtration UL = I + mL on Lx induces a filtration on

and its graded quotients are calculated as 
= ul/ui+1 if i == -I modp - 1, and = 0 otherwise ((LX /UL 0 Z/p(l))~
also vanishes). Since the image of 1 + (7ri/(( - 1))UK,, generates

Imagepl C (K2(L)lp)", then n can be
written as q - ~~, 1+(~r2/(~-1))ai} (mod U(p-1)i+1K2(L)) for some i &#x3E; 0

with ai E UKo. Hence, by Lemma 2.1 (2), we have # (p - l)p.
Therefore by (9), fl + does not belong to {~, L" }~ in

= K2(K)/p. So by the above exact sequence,

~ 0 in grP K2(K). Hence, the kernel of the map {1 + p7rPiF, 7r I from
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F to gr~ K2(K), coincides with FP. This completes the proof of Theorem
1.1 (2).

3.3. We next prove (3) of Theorem 1.1. Let n &#x3E; 3. By the same method
as in 3.2, we have UnPK2(K) = (this also follows from [12]
Theorem 2.2), in particular, the map

is surjective.
Suppose that a E OKo . By Corollary 2.3, we have

in ~"2(~)~? hence we get

Since n &#x3E; 3, the above formula implies

Recall that we fixed a p-base t of F such that T mod p = t. We define
subgroups of F by = for n &#x3E; 0. Suppose that x is in
,~n-2. Let a = x be a lifting of x to OKo . Then by [14] Proposition 2.3, we
get

Let Kz(Ko) ~ K2 (K) be the natural map. Then, we have

iK/Ko(Un K2(Ko)) C UnpK2(K), but by the formula (11),
C also holds. Hence by (12), (13), and

iK/Ko(UnK2(Ko)) C U(n+’)PK2 (K), we know that {1 + is in

Namely, is in the kernel of the map (10).
Since is generated by the elements of the form ~dt/t such

that x E F and 1  i  pn-2 - l, is isomorphic to and we
obtain a surjective homomorphism

We proceed to the proof of the injectivity of (14). We assume that

7r I is in the kernel of K2(K)jpn-1 ~ K2(K)/pn (a mod pn-1 H
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As in 3.2, we consider a commutative diagram of exact se-
quences with vertical bijective arrows

where P1 is the restriction to of the map L~/(L~)P(1) ~
KZ(L)~p’‘ 1; x E--&#x3E; {~, x} I (we also used (K2(L)~pn 1)~ - K2(K)/pn-1).
From this diagram, we know that {1 + pn-la, is in the image of pi. We
write {1 + = {~, c} for some c E So by the

argument in 3.2, c is in for some i &#x3E; 1. If c was in ULP yi-p
for some i with I  i  p, we would have by Lemma 2.1 (2)

c} mod p) = (p-1)i. But is zero in K2(L)/p (because
1 E so c must be in We write c = CIC2 with

ci E Ur~2(1)Ó and c2 E U~ 1»P+1)-P(1)p. Again by the same argument
using Lemma 2.1 (2), C2 must be in ULP l~~p+2)-P(1)~. By Lemma 2.1 (3)
and (4), we can write

for some c3 E OKa in K2(L)/p~-1. Let NLIL,, : K2(L) -&#x3E; K2(Lo) be
the norm homomorphism. Taking the norm NL/Lo of the both sides of the
equation (15), we get

where is the trace, and we used = pTC3 TrL/Lo(7r2) =
0. On the other hand, the left hand side of (16) is equal to {1 
by Corollary 2.3. Hence, the equation (16) implies that f 1 T} = 0
in K2(Lo)~pn-1, hence in K2(Ko)/pn-1.

In the proof of [14] Corollary 2.5, we showed that expp2 induces

which is injective. In we have {1 +
pn-la, T } = 0, hence by the injectvity of the above map, we know that

mod pn-2 is in d(OKo/pn-2). This implies that x - dt/t is in
where x = a mod p E F ([6] Corollaire 2.3.14 in Chapter 0). Hence,

x is in Bn-2. Thus, the kernel of the map (10) coincides with .13n_z. Namely,
the map (14) is bijective. This completes the proof of Theorem I.I.
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3.4. Finally we prove Corollary 1.4. Let A4 be the Zp-submodule of 
generated by da with a E OK and dT/T) with b E OK- It

follows from 7rP = pT that = p2Td7r/7r = pdT in . Hence, the
existence of expp implies that dT/T) is in the kernel of expp2.
Further, da is also in the kernel of expp2 by Lemma A2.3 in Appendix. So

expp2 factors through SZoK /.Nl. Since b(pd7r/7r - dT/T) E A4, 
is generated by the classes of the form cd7r/7r. We define Fil’ to be the
Zp-submodule of generated by the classes of with 

i - 2p, and consider gri = Fil’ / 
We can easily see that gr’ = 0 for i which is prime to p. In fact, if i is

prime to p, for a E UK, a7rid7r/7r = ai-1d7ri = -7rida (mod A4). We can
write da = a1dT + aiTpd7r/ir + a27rd7r/7r (mod M) for some al,
a2 E Ox, hence a7r’d7r/7r is in For i  2p, we also have gr’ = 0.

Suppose that n &#x3E; 3 and consider a homomorphism

This does not depend on the choice of x. Suppose that x is in (for
~n-2, see the previous subsection). We write x dt/t as
in 3.3, and take a lifting a = dT /T where 55i is a lifting of
x2 to We have pn-2 ad7r/7r - (mod A4) = db (mod Filnp )
for some b E OKo . Hence, pn-2 ad7r/7r E A4, and Bn-2 is in the kernel of
(17). So the restriction of (17) to gives a surjective homomorphism
Fpn 2 2013 grnp as in 3.3. This is also injective because the composite

--~ grnp grnp K2 (K) with the induced map by expp2 is bijective
by Theorem 1.1 (3). Therefore, comparing gri with we know

that expp2 : is bijective.

Appendix A. Milnor .K-groups of a local ring over a ring of
p-adic integers

In this appendix, we show the existence of expp (Corollary A2.10). To do
so, we describe the Milnor K-groups of a local ring over a complete discrete
valuation ring of mixed characteristics, by using the modules of differen-
tials with certain divided power envelopes. (For the precise statement, see
Proposition AI.3 and Theorem A2.2.) This description is related to the
theory of syntomic cohomology developed by Fontaine and Messing.
On a variety over a complete discrete valuation ring of mixed characteris-

tics, Fontaine and Messing [4] developed the theory of syntomic cohomology
which relates the etale cohomology of the generic fiber with the crystalline
cohomology of the special fiber. In [9] Kato studied the image of the syn-
tomic cohomology in the derived category of the etale sites, and considered
the syntomic complex on the etale site. He also used the Milnor K-groups
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in order to relate the syntomic complex with the p-adic etale vanishing cy-
cles, and obtain an isomorphism between the sheaf of the Milnor K-groups
and the cohomology of the syntomic complex after tensoring with an al-
gebraically closed field ([9] Chap.I 4.3, 4.11, 4.12). Our description of the
Milnor K-groups says that this isomorphism exists without tensoring with
an algebraically closed field (for the precise statement cf. Remark A2.12
(28)). This appendix is a part of the author’s master’s thesis in 1986.

A.I. Smooth case.

A.1.1. Let A be a complete discrete valuation ring of mixed characteris-
tics (0,p). We further assume that p is an odd prime number, and that A
is absolutely unramified, namely pA is the maximal ideal of A. We denote
by F = A/pA the residue field of A.

Let (R, rrzR) be a local ring over A such that R/pR is essentially smooth
over F, and R is flat over A. Further, we assume that R is p-adically
complete, i.e. R limR/pnR, and define B = R[[X]]. In this section, we

-

study the Milnor K-group of B. (One can deal with more general rings by
the method in this section, but for simplicity we restrict ourselves to the
above ring.)

Since R/pR is essentially smooth over F, R/pR has a p-base. Namely,
there exists a family (ea)aEL of elements of R/pR such that any a E R/pR
can be written uniquely as

where as E R/pR, and s ranges over all functions L 2013~ {0, l, ..., p - 1}
with finite supports.

For a ring A, S2A denotes the module of Kahler differentials. Let ea be
as above, then (dex) is a basis of the free module * We consider a

lifting I c R of a p-base Then f dT; T E 11 gives a basis of the free
R-module Ök where Ök is the p-adic completion of S2R. Since R is local,
we can take I from R’. In the following, we fix I such that I C R~.

For the lifting I of a p-base, we can take an endomorphism f of R
such that f (T) = TP for any T E I, and that (mod p) for any
x E R. We fix this endomorphism f , and call it the frobenius endomorphism
relative to I.
We put B = R[[X]]. We extend f to an endomorphism of B by f (X)

XP. So f satisfies (mod p) for any x E B. Let XB be the ideal
of B generated by X.

Lemma A.1.1. Put fl = -~~ f : B[l/p] - lï = fl o ... o 11 (n
times), I and Then, for a E B, is in BX , and
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El defines a homomorphism (Shafarevich function)

It suffices to show is in B’ for a E B. We define an E B

inductively by ao = a and

where = .f o ... o .f (rt times), and IVn (To, - - ., Tn) is the ivitt polynomials

([19] Chap.II). (It is easily verified that
is divisible by pn . Hence, an is well-defined.) By the formula of Artin-Hasse
exponential = we have

Hence, E B’.

A.1.2. Let be the (p, X)-adic completion of For an integer r E Z,
let for r &#x3E; 0, and f2’ = 0 for r  0. Let r be positive. Then

f naturally acts on ÓÉ, and the image is contained in So we can

define f r = on 

We define IB = I U {X}. Then ... A dTr; Ti E IB ~ is a base of 
For i &#x3E; 0 we define to be the subgroup (topologically) generated by
the elements of the form adT1Â ... A dTr, and bdT1Â ... l~ dX where

a E X’B, b E and Tl, ..., Tr E I.

A.1.3. For a ring k and q &#x3E; 0, the Milnor K-group Kf (k) is by definition

where J is the subgroup generated by the elements of the form a1 0 ...0 aq
such that ai + aj = 0, or 1 for some i j. (The class of a1 0 ... is

denoted by (at , ..., aq~.)
We will define a homomorphism Eq which is regarded as 

from the module of the differential (q - I)-forms to the q-th Milnor K-
group. First of all, we remark that in the symbol {1 + Xa, X)
makes sense for a E B. Namely, for any x in the maximal ideal mB, we
define {1 + xa, ~~ to be

Then, usual relations like

the image of 1
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the notation {I + ~~,&#x26;i,...~g-2~} also makes sense in where

We define to be the (p, X)-adic completion of namely
the completion with respect to the filtration where Vi is the sub-

group generated by {I + (~X)~~...~}. Let be the

subgroup (topologically) generated by (I + and (I +
We define

by

where a E B and 1
can be regarded as 

Lemma A.1.2. Eq vanishes on

We may assume q = 2. So we have to prove E2(d(Xa)) = 0. By the
additivity of the claim, we may assume that a is a product of elements
of IB, namely a = IITi where Ti E IB. In particular, f(a) = aP. Using
Xa = XI-IT,, we have

This completes the proof of Lemma 2.2.

Proposition A.1.3. Eq induces an isomorphzsm

which preserves the filtrations.

Proof. Using Vostokov’s pairing [23], Kato defined in [9] a symbol map
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such that

and ..., aq~ _ A ... l, 

Concerning the map Sf,q we will give two remarks. If are in

IB (and ~a, Tl, ..., Tq_1 ~ is defined), then

Here, we are allowed to take TZ = X . To see this, since the definition of 
is compatible with the product structure of the Milnor K-group, we may
assume q = 2 and T1 = X . Since ~a, X ~ is defined, by our convention, a
can be written as a = I + bX . The image of {a, X ~ under the symbol map

- 

L-’ --J

which belongs to the image of 1

L--J---/-

Next we remark the assumption p &#x3E; 2 is enough to show that factors

through In fact, by the compatibility of -3f,q with the product
structure of the Milnor K-group, the problem again reduces to the case
q = 2. So Chapter I Proposition (3.2) in [9] implies the desired property.
We do not need the q-th divided power or Sn(q) with q &#x3E; 2 in [9] to
see this.
We go back to the proof of Proposition A1.3. We have

This means that o Eq = -id. Thus, Eq is injective.
On the other hand, by [2] (4.2) and (4.3), we have a surjective homo-

morphism



393

such that

where a E B, and bi o This shows that is

generated by the elements of the aX i, Tl, ..., where a E B,
and Tl , ...,Tq_ 1 are in IB . Hence, .Eq is surjective, which completes the
proof.

A.2. Smooth local rings over a ramified base.

A.2.1. In this section, we fix a ring B as in ~ 1, and study a ring

Here, u is a unit of B, and is the ideal of B generated by X e - pu. We
put = X e - pu. We denote by

the canonical homomorphism. (For example, if A is a complete discrete
valuation ring with mixed characteristics, one can take A as in §Al such
that A/A is finite and totally ramified. Suppose that R = A, B = R[[X]],
and f(X) = Xe - pu (u E B X) is the minimal polynomial of a prime
element of A over A. Then, A - B/(Xe - pu) and the above condition on
A is satisfied.)

Let D be the divided power envelope of B with respect to the ideal ill,
namely D = r &#x3E; 0]. We also denote by

the canonical homomorphism which is the extension of 0 : B -&#x3E; A.

We define J = Ker(D ~ A). Then, the endomorphism f of B naturally
extends to D. Since cp = Xe - pu, we have D = r &#x3E; 0] =

r &#x3E; 01. Hence, f (J) c pD holds. So fl = p-11 : J ) D can
be defined. Since
~ --l 1 -

can be defined on

can be also defined.
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A.2.2. Recall that B = R[[X]]. We denote the image of X in A by the
same letter X. For i &#x3E; 0, we define = 1+XiA. We note that 
is p-adically complete.

Lemma A.2.1. Let e’ = [e/(p - 1)] + I be the smallest integer i such that
I 

gives an isomorphism

The proof is standard (cf. [19] Chap.V Lemme 2) .
For an element x e by Lemma A2.1, there is a unique y E

such that yP = x. We denote this element by xl. By the same

way, for x e a unique element y e such that x, is

denoted by x1/pn. Since is a Zp-module, we also use the notation
for an integer m with (p, m) = 1 for x E 

Recall that D = r &#x3E; 0] = r &#x3E; 0]. Let be the

ideal of D generated by all with r &#x3E; 0. We define a homomorphism

by

where a E B, and El : XB - B’ is the map defined in §A.l. Since
er &#x3E; e ordp (r! ) + is well-defined by the above remark.

A.2.3. For q &#x3E; 0, we will define Eq,A similarly as in 1.3. For i &#x3E; 1,
- ^- I

be the subgroup generated by

be the q-th Milnor K-group. As in 1.3, for i &#x3E; 0, let

(A) be the subgroup generated by 11 + Xi A, A x, ..., and f 1 +
and define Kqm(A)A to be the completion of Kf (A)

with respect to the filtration We denote by the

closure of in Note that is p-adically
complete, namely = We also note that by

-

definition, a natural homomorphism
We define

by

where Ti E IB .
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Recall that ,
put

The filtration on induces a filtration on B), which we denote
by Our aim in this section is to prove

Theorem A.2.2. Eq,A induces an isomorphism

which preserves the filtrations.

A.2.4. Let be the p-adic completion of 0~-1. We begin with the
following lemma.

Lemma A.2.3. There exists a homomorphism

such that

where a E A, bi E AX, and
contained in the kernel of expp2.

Proof. By Corollary 2.5 in [14], we have a homomorphism

such that

where a E B and bi E B  . Consider the exact sequence

Since ill 0 is clearly in the kernel of ~ o (
2013~ the map expp2,B induces the desired homomor-

phism 
’

Corollary A.2.4. For any a E A B {0}, in K2(A)^ we have
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Proof. In the proof of Lemma 2.5 in ~12~, we showed that

This formula holds for a, b such that a, b, a + b E A ~ ~0~, hence (1) is

reduced to the case a E AX, so follows from Lemma A2.3.
The equation (2) is a consequence of (1). In fact,

by ( 1 ) . So we have

But the latter is zero again by (1).

A.2.5. We first show

Lemma A.2.5. Eq,A vanishes on d(Ul(D 0 flq-2)).
As in Lemma A 1.2, it suffices to show

be the Artin-Hasse exponential. We have

Hence, Lemma A2.5 is reduced to show the following.

Lemma A.2.6. For any a E A ~ {0}~

Proof of Lemma A2.6. From . , in order to

prove Lemma A2.6 (1), it is enough to show
0, which follows from Corollary A2.4 (2). By the same method, Lemma
A2.6 (2) follows from Corollary A2.4 (1).
By Lemma A2.5, Eq,A induces a homomorphism
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A.2.6. Next we have to show that Eq,A vanishes on

We assume that

satisfies

We write u = uo + with uo E R’
and U1 E B. We put

- , , .

The assumption (23) implies that

Lemma A.2.7. q can be written as Tj = such that TJ1 E d(f2q-2).
By the standard method, Lemma A2.7 is obtained from (24) (cf. [6]

Chap.O Corollaire 2.3.14).
We put

So by (22),

From (24) and the definition of Eq,A, we have

If we write (
, . , , .. ,

IB, by the definition of Eq,A,

Next we calculate We write
Then by the definition of Eq,A, we
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get

By Lemma A2.7,

and Hence by Lemma A2.3,

This shows that

is in the kernel of Eq,A. Namely, Eq,A induces a homomorphism

A.2.7. As in § 1, Eq,A has the inverse. The target group of the symbol
map in [9] has two components as in ~ 1, and its projection to the first
component is 

1t,r .I- - --

which satisfies

where a2 is an element of D~ such = ai . This does not depend
on the choices of ai .

are in IB, then

(As we note in §Al, we are allowed to take Ti = X using our conven-
tion.) So Eq is injective. On the other hand, by considering 

in §Al , we know that Eq is surjective. Hence, Eq is bijec-
tive. It is clear that Eq preserves the filtrations. This completes the proof
of Theorem A2.2.



399

Remark A.2.8. By a slight modification, we can deal with more general
ring, for example, a ring of the form R[X1, ..., .....

pu) by the same method.

Remark A.2.9. Assume that ~I  q - 2. Then we have 
and = KM (A) A. So Theorem 1.1 says that we have

an isomorphism

This isomorphism in this special case was obtained in Kato (10~.

Corollary A.2.10. There exists a homomorphism

such that

Proof. By [2] Lemma 4.2, it suffices to show
I

for a2, E A x such that ~ai = £a§. So we may assume q = 2.
Let s f,2,A be the map as above. Then, for a E A" , taking a E B sucr

= a, we can calculate

Here, we used a) = 0 in S)(A, B) . The final equation is
clearly additive in a. Since

is bijective by Theorem A2.2, {exp(pa), a} is additive in a, and (27) is
satisfied. Hence, expp is a homomorphism.

sense in by our convention (cf. 1. 3)) because 6
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= (cf. remark after the definition of Sf,q
in the proof of Proposition A1.3). Hence, we have

Remark A.2.12. Theorem 1.1 gives a different proof of the main result
in [13]. Let K be a complete discrete valuation field with integer ring OK,
and X be a smooth scheme over OK. We denote by i : Y ----&#x3E; X the special
fiber of X and by j : X", --+ X the generic fiber of X.

Let be the sheaf of Milnor K-groups, and Sn(r) be the syntomic
complex on D(Yet) defined in [9] for rc &#x3E; 0. Then by using (a modified
version of ) Theorem A2.2, we can show the existence of an isomorphism

for q such that 0  q  p - 1. In fact, Theorem A2.2 says that
(Here U1i*Kr(Ox) is defined similarly

as above.)
Comparing this isomorphism (28) with a result in [2], we have an exact

sequence

This exact sequence was proved in [13] by a different method.
For r such that can also prove the bijectivity of

by a similar method as in this paper. Then by (29), (30), and the theory of
Fontaine and Messing, we can show the existence of a distinguished triangle

which was the main theorem of [13]. Tsuji extended this result to much
more general setting [20] [21], and proved the semi-stable conjecture by
Fontaine and Jannsen.

(*) Note. This paper was written long time ago, but the author still thinks
the problems to determine all for complete discrete valuation
fields of mixed characteristics, and also to determine the kernels of the
exponential homomorphisms for Milnor K-groups (cf. [15]) are interesting
problems.
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