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Relations between jacobians of modular curves of
level p2

par IMIN CHEN, BART DE SMIT et MARTIN GRABITZ

RÉSUMÉ. Nous établissons une relation entre les représentations
induites sur le groupe GL2(Z/p2Z) qui implique une relation entre
les jacobiennes des certaines courbes modulaires de niveaux p2. La
motivation de la construction de cette relation est la détermination
de l’applicabilité de la methode de Mazur à la courbe modulaire
associée au normalisateur d’un subgroupe Cartan non-déployé de
GL2(Z/p2Z).

ABSTRACT. We derive a relation between induced representations
on the group GL2(Z/p2Z) which implies a relation between the
jacobians of certain modular curves of level p2. The motivation
for the construction of this relation is the determination of the

applicability of Mazur’s method to the modular curve associated
to the normalizer of a non-split Cartan subgroup of GL2(Z/p2Z).

1. Introduction

Let X (p~) denote the compactified modular curve classifying elliptic
curves with full level pn structure where p is an odd prime. This mod-
ular curve is defined over Q and has a right group action of 
which is also defined over Q.

Consider the following subgroups of which we refer to as
a non-split Cartan subgroup, and the normalizer of a non-split Cartan
subgroup of respectively, where E E is a non-square.

- I , ,

Let = be the quotient of by the subgroup N’.
This modular curve is defined over Q and classifies pairs (E, [0]) where
ElK is an elliptic curve defined over K together with an N’-equivalence
class of isomorphisms 0 : Z/pPZ x defined over K. In
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particular, a K-rational point on corresponds to an ElK (up to
K isomorphism) whose mod pn representation with respect to the basis §
has image lying in N’ ([3], Chapter 7).
A long standing question of Serre [8] asks whether the mod p represen-

tations of non-CM elliptic curves over Q are surjective if p &#x3E; CQ is greater
than some constant CQ (e.g. CQ = 37?). This can be translated into the

question whether the Q-rational points of certain modular curves all arise
from CM elliptic curves and cusps if p &#x3E; cQ.
One of the modular curves involved in Serre’s question is XN,(p). Un-

fortunately, the method used by Mazur [4] to determine the Q-rational
points on more conventional modular curves do not seem to apply directly
to XN,(p) as its jacobian conjecturally does not have any non-trivial rank
0 quotients, a vital starting condition for the method. One might therefore
ask if the jacobians of the modular curves XNI (pP) have non-trivial rank 0
quotients for some n &#x3E; 1, for instance n = 2.

In this note, we derive a relation of jacobians (see Theorem 3.1) which
relates the jacobian of XN, (p2) to that of more conventional modular curves
using the representation theory of This should make it pos-
sible to determine whether JN, has any non-trivial rank 0 quotients ~1~.

2. Relations between induced representations

Let p be an odd prime. Consider the local ring R = Z/p 2Z with maximal
ideal m = In what follows, conjugation by h of an element g will
mean hgh-1.
Lemma 2.1. Let g E GL2(R) and suppose E is a fixed non-square in RX.
Then g is conjugate to one of the following types of matrices below. More-
over, the matrices as enurraerated below represent distinct conjugacy classes
in GL2(R) (if H is a quotients of RX, we write fl E H to mean the /3 are
chosen from a complete set of inequivalent representatives in R’ for H).
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Proof. We give an explicit recipe for determining the conjugacy type of
a general element in GL2(R). Note that one can verify the list above is
complete by counting elements (see Table 1). The general framework for
this calculation can be described as follows. Let

be given and let

be the characteristic polynomial of g, where t and n are the trace and
determinant of g, respectively. Suppose R is a subring of S and Pg(A) = 0
for A E S. Then gv = av where

that is, v is an eigenvector for g with eigenvalue A. Now, the roots of 
are formally given by the expression

where A = t2 - 4n.
Suppose A = u2 where u E R~. Then A is one of .~1 = t1u, A2 = t2u.

Since n = .~1~2, it follows that À1, A2 E R~. Note that À1 t A2 E R/m are
distinct modulo m (we are assuming p is odd). It is not possible for the
reduction p modulo m to be a scalar in GL2(R/m) for then A would not be
a unit. Thus, either one of b, c E R’ or both b, c - 0 (mod m) but d

(mod m). In the latter case, conjugation by the matrix

gives a matrix with one of b, c E RX . Conjugating by the matrix
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if necessary, we may assume that c E R~. The vectors

are eigenvectors of g with eigenvalue À1, A2, respectively. It follows that g
is conjugate to the matrix

I- - I

by the matrix

which lies in GL2 (R) since its determinant is c(À1 - A2) E R" .
Suppose that A = ~u2 where 6 is one of E, p, or pe, and u E RX . First

note that one of b, c E RX , for if both are not, then A would be a non-zero
square modulo m or the reduction g modulo m would be a scalar. In the
latter case, go to case (2) of next paragraph. In the former case, conjugation
by the matrix

I - I

allows us to assume that 0 (mod m). Then A is one of Ai = t+2~ ~2 =
t- 2~ lying in the ring = R~X ~ / (X 2 - b) = The vectors

are eigenvectors of g with eigenvalue À1, ~2, respectively. Conjugating g by
the matrix 

, ,

,

gives us a matrix 9’ for which

are eigenvectors with eigenvalues ~1, ~2, respectively. By solving the equa-
tion

we see the resulting matrix must therefore be

which is of the form

where a E R, ,C3 E R~.
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Suppose that A = 0. The reduction g modulo m is therefore conjugate
to one of 

/. - , /. - - ,/. / -. B /. / ,., B

in GL2(R/m) . Thus, we may assume without loss of generality that one of
the following holds:

In case (1), we see that A = (a + d)2 - 4(ad - bc) = (a - d)2 + 4bc. Since
A = 0 in R, and b E Rx, it follows that in fact c = 0 in R. Thus,

, .,

Conjugating by

we may assume

Finally, conjugating by

shows that g is conjugate to

which conjugate to a matrix of the form
I - I

where a E RX.
In case (2), we either have b = c = 0 in R or one of b, c ~ 0 in R. In the

former subcase, g is a scalar in GL2(R) or g is of the form

which is conjugate to

by the matrix
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In the latter subcase, write c = pc’, b = pb’. Without loss of generality,
c’ E Rx. Conjugating by

I- - I

we may now assume

where b" = b’c’. Since d = a for some x E R, conjugation by

shows that g is conjugate to

where bo = (b’c’ + x2/4) which is of the form

where cx E E R. 

~ 

We have thus shown every g E GL2 (R) is conjugate to one of the listed
types of matrices. Matrices of type I, B, RI’, RB, RI have discriminant
0 E R, while matrices of type T’, T, RT’, RT, have discriminant 
(a - S) 2, pf32, respectively. Thus, matrices of different types are not
conjugate, except possibly for matrices from the former group. Matrices of
type I, B, RI’, RB, RI are mutually non-conjugate because the centralizers
of matrices of each of these types have differing orders (see next Lemma 2.2).
Finally, matrices within each type as enumerated are not conjugate by
consideration of trace and determinant, except for the types RI’, RB, RI,
which are mutually non-conjugate by a matrix calculation. D

Lemma 2.2. With notation as in Lemrraa ,~.1, the order of the centralizer
in G = GLZ(R) of an element of g only depends on the type of conju-
gacy class I, T’, B, T, RT’, RT, RI’, RB, RI. For the representatives given
in Lemma ,~.1, the centralizers are given explicitly as follows.
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Proof. This can be verified by a direct matrix calculation. D

The information contained in the following Table 1 is a useful summary
of conjugacy information for later computational purposes.

TABLE 1. Conjugacy information

Let 7r : GL2(R) -~ GL2(R/m) be the reduction mod m map. Let T’(p)
be a non-split Cartan subgroup of GL2(R/m). Let T(p) be a split Car-
tan subgroup of GL2(R/m). Let B(p) be a Borel subgroup of GL2(R/m).
Consider the following subgroups of GL2(R):
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Lemma 2.3. Let H be a subgroup of a group G. Let X be the character
Indfi 1 of G. Let Sg = (s e G ! I s-lg8 e H}. Then x(g) _ 
Proof. Note that g8H = sH if and only if 8-1g8 E H. D

Lemma 2.4. Let [g] be the conjugacy class of g. With the notation in
Lemma 2.3, we have #S9 = #CG(9) ’ #H n [g].

Proof. The orbit of g under conjugation is bijective with G/CG(g). D

Using the above two lemmas and the derivation in Lemma 2.1, one can
compute the characters G = GL2(R) induced by the trivial character on a
subgroup in the list above. These values are summarized in Tables 2 and
3. For example, let x = Ind) 1. Let us compute X(g) for

VO. /

of type RI. First, we count the number of elements

which are conjugate to g. By consideration of discriminants, it must be
the case that a - d (mod m) so write d = a + Using the derivation in
Lemma 2.1, h is conjugate to
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where x 0 0 (mod m). Thus, there are 2 elements in T which are conjugate
to g. Alternatively, it would be possible to count this by using centraliz-
ers, trace, and determinant to distinguish conjugacy classes. Applying the
lemmas above, we see that x(g) = 2p2.

TABLE 2. Characters of some induced representations of
G = GL2(R)

TABLE 3. Characters of some induced representations of
G = GL2(R)

In Tables 2 and 3, t denotes the trace of the conjugacy class in question.
From these tables, we deduce the following relations between characters.
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Theorem 2.5. We have the following character relations:

Another relation between the characters considered in Theorem 2.5 is

given by lifting the first relation in [2] for to 

Together with the three relations in Theorem 2.5 this provides a Z-basis of
the lattice of all relations between the 11 characters under consideration.

3. Relations between jacobians of modular curves

Let H  GL2(R) be a subgroup and let XH = be its quotient
by H. Let JH be the jacobian of XH defined as its Picard variety. By the
results in [6] [7], the Picard variety of XH exists and is an abelian variety
defined over Q. Applying the general methods in [2], the character relation
in Theorem 2.5 for instance implies the following relation of jacobians.
Theorem 3.1. The following Q-isogeny of abelian varieties over Q holds.

Let us briefly recall the principle involved. In [2], arguments for the
following theorem are given (strictly speaking, stated only for a specific
character relation but the arguments clearly work for the general case).
Theorem 3.2 (de Smit-Edixhoven). Let G be a finite group and let C
denote an additive Q-linear category. Suppose M is an object of C with an
action of G and which admits invariants by subgroups Hi, Kj of G. If

then we have an isorrLOrphism in C

Note first that the character relation gives the existence of an isomor-
phism of Q[G]-modules

To show Theorem 3.2 one now uses Yoneda’s lemma. More specifically,
note that Home (X, Y) is a Q-vector space for any X, Y E C as C is additive
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Q-linear. Now, for each X E C, we obtain an isomorphism of Q-vector
spaces using Frobenius reciprocity and the defining property of invariants

These isomorphisms are functorial in X, so by Yoneda’s lemma, we obtain
the desired isomorphism of objects in C.

Let A denote the category of abelian varieties over Q and A @ Q
the category whose objects are the objects of A but 
HomA(X, Y) 0 Q. The category .A ~ ~ is additive and Q-linear by basic
properties of abelian varieties (c.f. [5]). Moreover, A, B E .A are Q-isogenous
if and only if A, B E A ~ ~ are isomorphic.

Let J be the jacobian of X(p2). The object J has an action a of G =
GL2(R) by Picard functoriality and H-invariants exists for each subgroup
H of G by taking the image of the idempotent rkr ¿hEH h. Moreover,

JH in the category A ~ Q. Applying Theorem 3.2, we deduce the
desired relation of jacobians in Theorem 3.1.

4. Applicability of Mazur’s method

From [3], Chapter 11, one has that

where Wp4 denotes the Fricke involution of XO(p4). Thus, Theorem 3.1
implies the following

Corollary 4.1.

where JO(pT) is the jacobian of Xo(pT) and Jt(pT) is the jacobian of
Xt(pT). The factors in this relation are all jacobians of conventional mod-
ular curves except for JN,. This should make it possible to determine
whether JN, has any non-trivial rank 0 quotients ~1~.
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