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Local distinction, quadratic base change and
automorphic induction for GLn

par Nadir MATRINGE

Résumé. Ce titre sophistiqué dissimule un exercice élémentaire sur la théorie
de Clifford pour les sous-groupes d’indice deux et les représentations auto-
duales ou conjuguées-duales. Appliqué aux représentations du groupe Weil–
Deligne W ′

F d’un corps local non archimédien F , puis interprété en termes de
représentations de GLn(F ) via correspondance de Langlands locale lorsque
F est de caractéristique nulle, l’exercice en question établit divers énoncés
concernant le comportememnt de différents types de distinction sous change-
ment de base et induction automorphe quadratiques. Lorsque F est de carac-
téristique résiduelle non 2, en combinant un des résultats simples obtenus ici
avec la trivialité des valeurs centrales de facteurs epsilon des représentations de
W ′

F conjuguées-orthogonales ([8]), nous retrouvons sans faire appel à la corres-
pondance de Langlands locale un résultat de Serre sur la parité du conducteur
d’Artin de ces représentations ([23]). D’autre part, nous discutons cette pa-
rité pour les représentations symplectiques à l’aide de la correspondance de
Langlands locale et de la conjecture dite de Prasad et Takloo-Bighash.

Abstract. Behind this sophisticated title hides an elementary exercise on
Clifford theory for index two subgroups and self-dual or conjugate-dual repre-
sentations. When applied to semi-simple representations of the Weil–Deligne
group W ′

F of a non Archimedean local field F , and further translated in terms
of representations of GLn(F ) via the local Langlands correspondence when F
has characteristic zero, it yields various statements concerning the behaviour
of different types of distinction under quadratic base change and automorphic
induction. When F has residual characteristic different from 2, combining
of one of the simple results that we obtain with the tiviality of conjugate-
orthogonal root numbers ([8]), we recover without using the LLC a result of
Serre on the parity of the Artin conductor of orthogonal representations of W ′

F

([23]). On the other hand we discuss its parity for symplectic representations
using the LLC and the Prasad and Takloo-Bighash conjecture.
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2010 Mathematics Subject Classification. 1170, 22E50.
Mots-clefs. Représentations galoisiennes locales, représentations distinguées, conducteur

d’Artin.



904 Nadir Matringe

Introduction
Let E/F be a separable quadratic extension of non Archimedean lo-

cal fields. Then thanks to the known local Langlands correspondence for
GLn(E) and GLn(F ), one has a base change map BCE

F from the set of
isomorphism classes of irreducible representations of GLn(F ) to that of
GLn(E), and an automorphic induction map AIFE from the set or isomor-
phism classes of irreducible representations of GLn(E) to that of GL2n(F ).
A typical statement proved in this note (for F of characteristic zero) is
that if π is a generic unitary representation of GLn(F ) with orthogonal
Langlands parameter (orthogonal in short), then BCE

F (π) is orthogonal and
GLn(F )-distinguished, and that the converse holds if π is a discrete series
(see Corollary 3.2 for the general statement). Corollary 3.2 is itself a trans-
lation via the LLC of our main result which concerns representations of
the Weil–Deligne group of F (Proposition 3.1). Another lucky application
of Proposition 3.1 is that the result of [23] on the parity of Artin conduc-
tors of representations of the Weil–Deligne group of F is a consequence
of that in [6] on root numbers of orthogonal representations, when F has
odd residual characteristic, as we show in Corollary 4.1. We also discuss its
parity for symplectic representations using the LLC and the Prasad and
Takloo-Bighash conjecture in Corollary 4.4.

Acknowledgments. The motivation for writing this note is a question of
Vincent Sécherre, which it answers. We thank him for asking it. We also
thank Eyal Kaplan for useful explanations concerning [15] and [29]. We
are greatful to the referee for his accurate comments and corrections. This
work benefited from hospitality of the Erwin–Schrödinger institute, via the
Research in Teams Project: l-modular Langlands Quotient Theorem and
Applications.

1. Notation, definitions and basic facts about self-dual and
conjugate-dual representations

For K a non Archimedean local field we denote by WK the Weil group
of K (see [26]), and by W ′

K = WK × SL2(C) the Weil–Deligne group of K.
By a representation of WK we mean a finite dimensional smooth complex
representation of WK . By a representation of W ′

K we mean a representa-
tion which is a direct sum of representations of the form ϕ ⊗ S, where ϕ
is an irreducible representation of WK and S is an irreducible algebraic
representation of SL2(C). We sometimes abbreviate “ϕ is a representation
of W ′

K” as “ϕ ∈ Rep(W ′
K)”. We denote by ϕ∨ ∈ Rep(W ′

K) the dual of
ϕ ∈ Rep(W ′

K).
For the following facts on self-dual and conjugate-dual representations

of W ′
K , we refer to [8, Section 3]. We recall that a representation ϕ of W ′

K
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is self-dual if and only if there exists on ϕ×ϕ a W ′
K-invariant bilinear form

B which is non degenerate: we will say that B is W ′
K-bilinear (which in

particular means non degenerate). If moreover B is alternate, we say that B
is (W ′

K ,−1)-bilinear in which case we say that ϕ is symplectic or (−1)-self-
dual, whereas if B is symmetric, and we say that B is (W ′

K , 1)-bilinear in
which case we say that ϕ is orthogonal or 1-self-dual. If ϕ is irreducible and
self-dual, then there is up to nonzero scaling a unique W ′

K-bilinear form on
ϕ× ϕ, which is either (W ′

K ,−1)-bilinear or (W ′
K , 1)-bilinear, but not both.

Now suppose that L/K is a separable quadratic extension so that WL

has index two in WK , and fix s ∈ WK −WL. For ϕ a representation of W ′
L,

we denote by ϕs the representation of W ′
L defined as ϕs := ϕ(s.s−1). We

say that ϕ is L/K-dual or conjugate-dual if ϕs ≃ ϕ∨. The representation
ϕ ∈ Rep(W ′

L) is conjugate-dual if and only if there is on ϕ × ϕ a non-
degenerate bilinear form B such that

B(w.x, sws−1.y) = B(x, y)
for all (w, x, y) in W ′

L × ϕ × ϕ. We say that such a bilinear form B is
L/K-bilinear (this in particular means non degenerate). If moreover there
is ε ∈ {±1} such that B satisfies

B(x, s2.y) = εB(y, x)
for all (x, y) in ϕ×ϕ we say that B is (L/K, ε)-bilinear, in which case we say
that ϕ is (L/K, ε)-dual or conjugate-symplectic if ε = −1 and conjugate-
orthogonal if ε = 1. All the definitions above do not depend on the choice
of s. When ϕ is L/K-dual and also irreducible, then there is up to nonzero
scaling a unique L/K-bilinear form on ϕ × ϕ, which is either (L/K,−1)-
bilinear or (L/K, 1)-bilinear, but not both.

2. Preliminary results
2.1. Clifford–Mackey theory for index two subgroups. We refer
to [5, Section 3] for the following standard results.

Theorem 2.1. Let G be a finite group, H a finite subgroup of index 2,
s ∈ G − H, and let η : G → {±1} be the nontrivial character of G trivial
on H.

• For ϕ a (finite dimensional complex) representation of H which is
irreducible, the representation IndGH(ϕ) is irreducible if and only if
ϕs ̸≃ ϕ, which is also equivalent to the fact that ϕ does not extend
to G. If it is reducible then ϕ extends to G, and if ϕ̃ is such an
extension, then η ⊗ ϕ̃ is the only other extension different from ϕ̃,
and IndGH(ϕ) ≃ ϕ̃⊕ (η ⊗ ϕ̃).

• An irreducible representation ϕ′ of G restricts to H either irre-
ducibly, or breaks into two irreducible pieces, and the second case
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occurs if and only if ϕ′ ≃ η ⊗ ϕ′, which is also equivalent to ϕ′ =
IndGH(ϕ) for ϕ an irreducible representation of H such that ϕs ≃ ϕ.

For E/F a separable quadratic extension of non Archimedean local fields,
we denote by ηE/F : W ′

F → {±1} the nontrivial character of W ′
F trivial on

W ′
E . Theorem 2.1 has the following corollary.

Corollary 2.2. Let E/F be a separable quadratic extension of non Archim-
edean local fields, and fix s ∈ WF −WE.

• For ϕE ∈ Rep(W ′
E) an irreducible representation, the representa-

tion IndW
′
F

W ′
E

(ϕE) is irreducible if and only if ϕsE ̸≃ ϕE, which is also
equivalent to the fact that ϕE does not extend to W ′

F . If it is re-
ducible then ϕE extends to W ′

F , and if ϕF is such an extension,
then ηE/F ⊗ ϕF is the only other extension different from ϕF , and
IndW

′
F

W ′
E

(ϕE) ≃ ϕF ⊕ (ηE/F ⊗ ϕF ).
• An irreducible representation ϕF of W ′

F restricts to W ′
E either ir-

reducibly, or breaks into two irreducible pieces, and the second case
occurs if and only if ϕF ≃ ηE/F ⊗ ϕF , which is also equivalent to
ϕF ≃ IndW

′
F

W ′
E

(ϕE) for ϕE and irreducible representation of W ′
E such

that ϕsE ≃ ϕE.

Proof. We recall that by [4, 28.6], if αK is an irreducible representation
of WK for K local and non Archimedean, then there exists an unramified
character χK of WK such that χK ⊗ αK has co-finite kernel.

For the first part of the first point, write ϕE = αE ⊗ S, and suppose
first that IndW

′
F

W ′
E

(ϕE) is irreducible. Twist IndWF
WE

(αE) by an unramified
character χF so that IndWF

WE
(ResWE

WF
(χF ) ⊗αE) has a co-finite kernel (hence

ResWF
WE

(χF ) ⊗ αE has co-finite kernel as well, as it has to be trivial on
WE ∩Ker(IndWF

WE
(ResWF

WE
(χE)⊗αE))). Because ResWF

WE
(χF )s = ResWF

WE
(χF ),

one deduces from Theorem 2.1 applied to ResWF
WE

(χE) ⊗ αE that αsE ̸≃ αE
and that αE does not extend. This implies the same statements for ϕE .
Conversely if ϕsE ̸≃ ϕE , then the same holds for αE . Take χE unramified
such that χE ⊗ αE has co-finite kernel, and χF any unramified extension
of χE to WF . Then IndWF

WE
(αE) = χ−1

F ⊗ IndWF
WE

(χE ⊗ αE) is irreducible
by Theorem 2.1, and so is IndW

′
F

W ′
E

(ϕE) = IndWF
WE

(αE) ⊗ S. The second part
of the first point is similar, using an unramified character χF of WF such
that χE ⊗ ϕE has cofinite kernel (just take such a χE and extend it to an
unramified character of WF ).

The proof of the second point is similar. □

We will tacitly use the above corollary from now on.
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2.2. Distinction and LLC for GLn. Let F be a non Archimedean local
field, we denote by LLC the local Langlands correspondence ([10, 11, 17]).
For any n ≥ 1, it restricts as a bijection from the set of isomorphism
classes of n-dimensional representations of W ′

F to that of (smooth and
complex) irreducible representations of GLn(F ). If E/F is a quadratic ex-
tension, and π = LLC(ϕF ) for ϕF a representation of W ′

F , we set BCE
F (π) =

LLC(ResW
′
F

W ′
E

(ϕF )) (the quadratic base change of π), whereas if τ = LLC(ϕE)

for ϕE a representation of W ′
E , we set AIFE(τ) = LLC(IndW

′
F

W ′
E

(ϕE)) (the
quadratic automorphic induction of τ). For π a representation of GLn(F ),
we denote by π∨ its dual. If π is irreducible, we call it a discrete series
representation if it has a matrix coefficient c such that |χ ⊗ c|2 is inte-
grable on GLn(F )/F×.In (with respect to any Haar measure on the group
GLn(F )/F×.In) for some character χ of GLn(F ). A representation ϕ of W ′

F
is irreducible if and only if LLC(ϕ) is a discrete series.

Let Nn(F ) be the subgroup of GLn(F ) of upper triangular unipotent
matrices, and let ψ be a non trivial character of F , which in turn defines
a character ψ̃ : u 7→ ψ(u1,2 + · · · + un−1,n) of Nn(F ). We say that an
irreducible representation π of GLn(F ) is generic if HomNn(F )(π, ψ̃) ̸= {0}
and this does not depend on the choice of ψ. Genericity can be read on the
Langlands parameter from [30, Theorem 9.7] (one way to state it is that
LLC(ϕ) is generic if and only if the adjoint L factor of ϕ is holomorphic
at s = 1). From this one easily deduces the direct implications of the
following proposition, the converse implications being special cases of [20,
Theorem 9.1].
Proposition 2.3.

• Let π be an irreducible representation of GLn(F ). If BCE
F (π) is

generic, then π is generic, and conversely if π is generic unitary,
then BCE

F (π) is generic (unitary).
• Let τ be an irreducible representation of GLn(E). If AIFE(τ) is

generic, then τ is generic, and conversely if τ is generic unitary,
then AIFE(τ) is generic (unitary).

We denote by G̃Ln(F ) the double cover of GLn(F ) defined for example
in [15, Section 2.1]. Following [15] we call a map γ : F× → C× a pseudo-
character if it satisfies γ(xy) = γ(x)γ(y)(x, y)⌊n/2⌋

2 for all x and y in F×,
where ( , )2 is the Hilbert symbol of F×. For γ a pseudo-character of F× we
denote by θ1,γ the corresponding Kazhdan–Patterson exceptional represen-
tation of G̃Ln(F ) as in [15, Section 2.5]. We say that an irreducible represen-
tation π of GLn(F ) is ΘF -distinguished if there exist pseudo-characters γ
and γ′ of F× such that HomGLn(F )(θ1,γ ⊗θ1,γ′ , π∨) ̸= {0} (where θ1,γ ⊗θ1,γ′

indeed factors through GLn(F ) so that the defintion makes sense).
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When n is even, we denote by Sn(F ) the Shalika subgroup of GLn(F )
consisting of matrices of the form s(g, x) = diag(g, g)

(
In/2 x

In/2

)
for g ∈

GLn/2(F ) and x ∈ Mn/2(F ), and for ψ a non trivial character of F , we
denote by Ψ the character of Sn(F ) defined by Ψ(s(g, x)) = ψ(tr(x)). We
say that an irreducible representation π of GLn(F ) is ΨF -distinguished if
n is even and HomSn(F )(π,Ψ) ̸= {0} for some non trivial character ψ of F .
This does not depend on the choice of ψ.

Finally if E/F is quadratic separable, identifying ηE/F to the
character of F× trivial on NE/F (E×) via local class field theory, we say
that an irreducible representation τ of GLn(E) is 1E/F -distinguished if
HomGLn(F )(τ,1) ̸= {0} and ηE/F -distinguished if HomGLn(F )(τ, ηE/F ◦
det) ̸= {0}.

The following theorem follows from [1, 3, 12, 13, 14, 15, 16, 18, 19, 29].
Parts of it are known to hold when F is of positive characteristic and odd
residual characteristic ([2, Appendix A]).

Theorem 2.4. Suppose that F has characteristic zero.
• Let π = LLC(ϕF ) be a generic representation of GLn(F ), then ϕF

is symplectic if and only π is ΨF -distinguished, whereas ϕF is or-
thogonal if and only if π is ΘF -distinguished.

• Let τ = LLC(ϕE) be a generic representation of GLn(E), then ϕE
is conjugate-symplectic if and only τ is ηE/F -distinguished, whereas
ϕE is conjugate-orthogonal if and only if τ is 1E/F -distinguished.

2.3. A reminder on epsilon factors. Let K ′/K be a finite separable
extension of non Archimedean local fields. We denote by ϖK a uniformizer
of K and by PK the maximal ideal of the ring of integers OK of K. If ψ is a
non trivial character of K, we denote by ψK′ the character ψ ◦ trK′/K . We
call the conductor of ψ and write d(ψ) for the smallest integer d such that ψ
is trivial on P dK . When K ′/K is unramified, it follows from [27, Chapter 8,
Corollary 3] that

(2.1) d(ψK′) = d(ψ).

Similarly if χ is a character of W ′
K identified by local class field theory with

a character of K∗, we call the Artin conductor of χ the integer a(χ) equal
to zero if χ is unramified, or equal to the smallest integer a such that χ is
trivial on 1 + P aK if χ is ramified. More generally one can define the Artin
conductor a(ϕ) (which is an integer) of any representation ϕ of W ′

K , see [26,
3.4.5] when ϕ is a representation of WK and [9, Section 2.2, (10)] in general.
The Artin conductor is additive:

a(ϕ⊕ ϕ′) = a(ϕ) + a(ϕ′)



Local distinction 909

for ϕ and ϕ′ in Rep(W ′
K). If ϕ is a representation of W ′

K , and ψ is a non
trivial character of K, we refer to [26, 3.6.4] and [4, 31.3] or [9, Section 2.2]
for the definition of the root number ϵ(1/2, ϕ, ψ). One then defines the
Langlands λ-constant:

λ(K ′/K,ψ) =
ϵ(1/2, IndWK

WK′ (1WK
), ψ)

ϵ(1/2,1W ′
K
, ψK′) .

For a ∈ K×, we set ψa = ψ(a. ). These constants enjoy the following list of
properties, which we will freely use later in the paper.

(1) ϵ(1/2, ϕ⊕ ϕ′, ψ) = ϵ(1/2, ϕ, ψ)ϵ(1/2, ϕ′, ψ) where ϕ′ is another rep-
resentation of W ′

K ([26, (3.4.2)]).
(2) ϵ(1/2, ϕ, ψa) = det(ϕ(a))ϵ(1/2, ϕ, ψ) ([26, (3.6.6)]).
(3) ϵ(1/2, ϕ, ψ)2 = det(ϕ)(−1) when ϕ is self-dual ([9, Section 2.3,

(11)]).
(4) If d(ψ) = 0 and µ is an unramified character of K∗, it follows

from [9, Section 2.3, (9)] that:

ϵ(1/2, µ⊗ ϕ, ψ) = µ(ϖa(ϕ)
K )ϵ(1/2, ϕ, ψ).

(5) IfK ′/K is quadratic withK of characteristic not 2, δ ∈ ker(trK′/K)\
{0}, and ϕ is a K ′/K-orthogonal representation of W ′

K′ , then by [8,
Proposition 5.2] (generalizing [7, Theorem 3]):

ϵ(1/2, ϕ, ψK′) = det(ϕ)(δ).

(6) If ϕK′ is an r-dimensional representation of W ′
K′ , then

ϵ(1/2, IndW
′
K

W ′
K′

(ϕK′), ψ) = λ(K ′/K,ψ)rϵ(1/2, ϕK′ , ψK′)

([4, (30.4.2)]).
When applied to a K ′/K quadratic and ϕK′ = ResW

′
K

W ′
K′

(ϕ) for ϕ a
representation of W ′

K , one gets

ϵ(1/2, ϕ, ψ)ϵ(1/2, ηK′/K ⊗ ϕ, ψ) = λ(K ′/K,ψ)rϵ
(
1/2,ResW

′
K

W ′
K′

(ϕ), ψK′

)
(7) If K ′/K is unramified with [K ′/K] = n:

λ(K ′/K,ψ) = (−1)d(ψ)(n−1)

(for example [21] and (2), together with Equation (2.1)). In partic-
ular if d(ψ) = 0 then

λ(K ′/K,ψ) = 1.
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3. Distinction, base change, and automorphic induction
From now on E/F is a separable quadratic extension of non Archimedean

local fields. Our main result is the following proposition, and we notice that
half of its first point is [8, Lemma 3.5(i)].

Proposition 3.1.
(1) Let ϕE be a semi-simple representation of W ′

E which is either ε-
self-dual or (E/F, ε)-dual, then IndW

′
F

W ′
E

(ϕE) is ε-selfudal.

(2) Conversely if ϕE is irreducible and IndW
′
F

W ′
E

(ϕE) is ε-self-dual:

(a) if IndW
′
F

W ′
E

(ϕE) is irreducible, i.e. ϕsE ̸≃ ϕE, then either ϕE is
ε-self-dual or (E/F, ε)-dual, but not both together,

(b) if IndW
′
F

W ′
E

(ϕE) is reducible, i.e. ϕsE ≃ ϕE, then ϕE is both ε-self-
dual and (E/F, ε)-dual.

(3) Let ϕF be a semi-simple representation of W ′
F which is ε-self-dual,

then ResW
′
F

W ′
E

(ϕF ) is ε-self-dual and (E/F, ε)-dual.

(4) Conversely, if ϕF is irreducible and ResW
′
F

W ′
E

(ϕF ) is ε-self-dual and
(E/F, ε)-dual then ϕF is ε-self-dual.

Proof.

(1). First suppose that BE is a (E/F, ε)-bilinear form on ϕE . Write an
element v (resp. v′) in IndW

′
F

W ′
E

(ϕE) under the form v = x + s−1.y (resp.
v′ = x′ + s−1.y′) for x, x′, y, y′ in ϕE , and set

BF (v, v′) = BE(x, y′) + εBE(x′, y).
Then BF is W ′

E-invariant because BE is (W ′
E , ε)-conjugate (it is non-

degenerate because so is BE). Finally

BF (s.v, s.v′) = BE(y, s2.x′) + εBE(y′, s2.x)
= εBE(x′, y) +BE(x, y′) = BF (v, v′).

Similarly if BE is (W ′
E , ε)-bilinear, then one checks that

BF (x+ s−1y, x′ + s−1.y′) = BE(x, x′) +BE(y, y′)
defines a (W ′

F , ε)-bilinear form on ϕF .

(2). Suppose that ϕE is irreducible and that IndW
′
F

W ′
E

(ϕE) is ε-self-dual with
(W ′

F , ε)-bilinear form BF .

(a) If ϕsE ̸≃ ϕE , because IndW
′
F

W ′
E

(ϕE) is self-dual then either ϕE is self-
dual, or ϕsE ≃ ϕ∨

E but not both together. In the first case, say that
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ϕE is ε′-self-dual, then so is IndW
′
F

W ′
E

(ϕE) by (1), but then ε′ = ε by

irreducibility of IndW
′
F

W ′
E

(ϕE). If ϕsE ≃ ϕ∨
E we conclude in a similar

manner.
(b) If ϕsE ≃ ϕE then IndW

′
F

W ′
E

(ϕE) ≃ ϕ⊕ηE/F ⊗ϕ for ϕ extending ϕE , and
ϕ ̸≃ ηE/F ⊗ ϕ. Because ϕ ̸≃ ηE/F ⊗ ϕ there are two disjoint cases.
The first is when ϕ is self-dual, in which case ϕ ⊥ ηE/F ⊗ϕ and BF
restricts non trivially to ϕ×ϕ (and ηE/F ⊗ϕ× ηE/F ⊗ϕ). Then ϕE
is ε-dual and (ε, s)-dual by (3). Otherwise ϕ∨ ≃ ηE/F ⊗ ϕ and BF
is zero on ϕ×ϕ and ηE/F ⊗ϕ× ηE/F ⊗ϕ. In this case there is up to
scaling a unique W ′

F -invariant bilinear form on IndW
′
F

W ′
E

(ϕE), namely
BF . Because ϕ∨

E ≃ ϕE (by restricting the relation ϕ∨ ≃ ηE/F ⊗ϕ to
W ′
E), ϕE must be ε′-self-dual, hence IndW

′
F

W ′
E

(ϕE) as well by (1), but
then we have ε′ = ε by multiplicity one of W ′

F -invariant bilinear
form on IndW

′
F

W ′
E

(ϕE). Moreover because ϕsE = ϕE the parameter ϕE
is also (ε′′, s)-self-dual and by (1) again we deduce that ε′′ = ε.

(3). Let BF be a (W ′
F , ε)-bilinear form on ϕF , then it remains a (W ′

E , ε)-
bilinear on ResW

′
F

W ′
E

(ϕF ), and on the other hand

BE(x, y) = BF (x, s−1.y)

is an (E/F, ε)-bilinear form on ResW
′
F

W ′
E

(ϕF ).

(4). We suppose that ϕF is irreducible and that ResW
′
F

W ′
E

(ϕF ) is ε-self-dual
and also (E/F, ε)-dual. There are two cases to consider.

First if ResW
′
F

W ′
E

(ϕF ) is irreducible, then denote by BE the (W ′
E , ε)-bilinear

form on ResW
′
F

W ′
E

(ϕF ). Now setDE(x, y) =BE(x, s−1.y) for x, y ∈ ResW
′
F

W ′
E

(ϕF ).

Clearly DE is E/F -bilinear, but by irreducibility ResW
′
F

W ′
E

(ϕF ) affords at
most one such form up to scalar, hence DE must be (E/F, ε)-bilinear. This
implies that for x and y in ResW

′
F

W ′
E

(ϕF ) one has

BE(s.x, s.y) = DE(s.x, s2.y) = εDE(y, s.x) = εBE(y, x) = BE(x, y).

All in all, when ResW
′
F

W ′
E

(ϕF ) is irreducible we deduce that BE is in fact
WF -invariant hence that ϕF is ε-self-dual.

It remains to treat the case where ResW
′
F

W ′
E

(ϕF ) is reducible. In this case it
is of the form ϕE⊕s−1.ϕE where ϕE is an irreducible of W ′

E such that ϕsE ̸≃
ϕE and ϕF = IndW

′
F

W ′
E

(ϕE). First because ResW
′
F

W ′
E

(ϕF ) is ε-self-dual, then the
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(W ′
E , ε)-bilinear form BE on ResW

′
F

W ′
E

(ϕF ) either induces an isomorphism
ϕsE ≃ ϕ∨

E or ϕE ⊥ s−1.ϕE for BE . Similarly the (E/F, ε)-bilinear form CE

on ResW
′
F

W ′
E

(ϕF ) either induces an isomorphism (ϕsE)∨ ≃ ϕsE ⇐⇒ ϕE ≃ ϕ∨
E or

ϕE ⊥ s−1.ϕE for CE . Suppose that BE induces an isomorphism ϕsE ≃ ϕ∨
E ,

then one must have ϕE ⊥ s−1.ϕE for CE because ϕE ̸≃ ϕsE ≃ ϕ∨
E . This

implies that CE induces an (E/F, ε)-bilinear form on ϕE and by point (1)
we deduce that ϕF is ϵ-self-dual. On the other hand if ϕE ⊥ s−1.ϕE for BE
then BE induces an (W ′

E , ε)-bilinear form on ϕE and ϕF is ε-self-dual again
by point (1). □

Supposing that F has characteristic zero, we translate Proposition 3.1 via
the LLC, in view of the results recalled in Section 2.2. For this we denote
by σ the Galois conjugation of E/F and its extension to GLn(E), and set
τσ = τ ◦ σ for any representation of GLn(E).

Corollary 3.2.
(1) Let τ be an irreducible representation of GLn(E) such that AIFE(τ)

is generic (for example τ generic unitary). If τ is either ΘE-disting-
uished or 1E/F -distinguished, then AIFE(τ) is ΘF -distinguished,
whereas if τ is either ΨE-distinguished or ηE/F -distinguished, then
AIFE(τ) is ΨF -distinguished.

(2) Conversely if τ is a discrete series representation of GLn(E).
(a) Suppose that AIFE(τ) is ΨF -distinguished:

(i) if AIFE(τ) is a discrete series, i.e. if τσ ̸≃ τ , then either τ
is ΨE-distinguished or ηE/F -distinguished, but not both
together,

(ii) if AIFE(τ) is not a discrete series, i.e. τσ ≃ τ , then τ is
both ΨE-distinguished and ηE/F -distinguished.

(b) Suppose that AIFE(τ) is ΘF -distinguished:
(i) if AIFE(τ) is a discrete series, i.e. τσ ̸≃ τ , then either τ

is ΘF -distinguished or 1E/F -distinguished, but not both
together,

(ii) if AIFE(τ) is not a discrete series, i.e. τσ ≃ τ , then τ is
both ΘE-distinguished and 1E/F -distinguished.

(3) Let π be an irreducible representation of GLn(F ) such that BCE
F (π)

is generic (for example π generic unitary). If π is ΘF -distinguished,
then BCE

F (π) is ΘE-distinguished and 1E/F -distinguished, whereas
if π is ΨF -distinguished, then BCE

F (π) is ΨE-distinguished and
ηE/F -distinguished.

(4) Conversely suppose that π is a discrete series. If BCE
F (π) is ΘE-

distinguished and 1E/F -distinguished, then π is ΘF -distinguished,
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whereas if BCE
F (π) is ΨE-distinguished and ηE/F -distinguished, then

π is ΨF -distinguished.

4. Parity of the Artin conductor of self-dual representations
In this section F is again a non Archimedean local field. First, using [8,

Proposition 5.2] (which is itself a quick but non trivial consequence of a
difficult result of Deligne [6] on root numbers of orthogonal representations),
we quickly recover in odd residual characteristic from Proposition 3.1(3)
the following result due to Serre [23] (the result in question also holds in
even residual characteristic by [23]). In other words we show that the result
of [6] implies that of [23] for non Archimedean local fields of odd residual
characteristic.

Corollary 4.1 (of Proposition 3.1, [23]). Let ϕ be an orthogonal repre-
sentation of W ′

F . We have the following congruence of Artin conductors:
a(ϕ) = a(det(ϕ))[2].

Proof. As we said the result is true for F of any residual characteristic, and
we recover it in this proof for F of residual characteristic different from 2.
Let E be the unramified quadratic extension of F , and take ψ a character
of F of conductor zero. We have according to Section 2.3, Points (6) and (7)

(4.1) ϵ
(
1/2,ResW

′
F

W ′
E

(ϕ), ψE
)

= ϵ(1/2, ϕ, ψ)ϵ(1/2, ηE/F ⊗ ϕ, ψ).

Now denoting by q the residual cardinality of F , let u be an element of
order q2 − 1 in E×, so that δ := u(q+1)/2 does not belong to F but ∆ :=
δ2 belongs to F . Note that the image of ∆ generates O×

F /1 + PF . Then
ϵ(1/2,ResW

′
F

W ′
E

(ϕ), ψ−1
E,δ) = 1 by Proposition 3.1(3) and Section 2.3(5), hence

ϵ
(
1/2,ResW

′
F

W ′
E

(ϕ), ψE
)

= det
(
ResW

′
F

W ′
E

(ϕ)
)
(δ)

= det(ϕ)(NE/F (δ)) = det(ϕ)(−∆)
thanks to Section 2.3(2). Now observe that det(ϕ) is quadratic as ϕ is self-
dual, but because q is odd it is trivial on 1 + PF , hence it has conductor
0 or 1, and it is of conductor zero if and only if det(ϕ)(∆) = 1, hence
det(ϕ)(∆) = (−1)a(det(ϕ)), so

ϵ
(
1/2,ResW

′
F

W ′
E

(ϕ), ψE
)

= (−1)a(det(ϕ)) det(ϕ)(−1).

Now ϵ(1/2, ηE/F ⊗ ϕ, ψ) = (−1)a(ϕ)ϵ(1/2, ϕ, ψ) thanks to Section 2.3(4),
hence Section 2.3(3) implies the following:

ϵ(1/2, ϕ, ψ)ϵ(1/2, ηE/F ⊗ ϕ, ψ)

= (−1)a(ϕ)ϵ(1/2, ϕ, ψ)2 = (−1)a(ϕ) det(ϕ)(−1).
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The result now follows from Equation (4.1). □

One can legitimately ask about the parity of the Artin conductor of sym-
plectic representations of W ′

F . The answer seems much more complicated,
and one way to adress it is via the LLC, using the so called Prasad and
Takloo-Bighash conjecture, which is now a theorem when F has charac-
teristic zero and residual characteristic different from 2 ([22, 24, 25, 28]).
To this end we recall that for E/F a separable quadratic extension, then
the matrix algebra Mn(E) embeds uniquely up to GL2n(F )-conjugacy into
M2n(F ) as an F -subalgebra by the Skolem–Noether theorem. We fix such
an embedding, which in turn gives rise to an embedding of GLn(E) into
GL2n(F ). We then say that an irreducible representation π of GL2n(F ) is
1E/F -distinguished if and only if HomGLn(E)(π,1) ̸= {0}. We recall the
following theorem, which is a consequence of one part of the Prasad and
Takloo-Bighash conjecture.

Theorem 4.2 ([22, 25, 28]). Suppose that F has characteristic zero and
residual characteristic different from 2. If ϕ is an irreducible symplectic
representation of W ′

F of dimension 2n, then

ϵ
(
1/2, ϕ⊗ IndW

′
F

W ′
E

(1)
)

= ηE/F (−1)n

if LLC(ϕ) is 1E/F -distinguished and

ϵ
(
1/2, ϕ⊗ IndW

′
F

W ′
E

(1)
)

= −ηE/F (−1)n

otherwise.

Remark 4.3. In the statement above, as the determinant of a symplectic
representation is equal to 1, we suppressed the dependence of the root
number ϵ(1/2, ϕ ⊗ IndW

′
F

W ′
E

(1), ψ) on the non-trivial additive character ψ
of F .

As an immediate corollary we obtain the following result on the parity
of Artin conductors of symplectic representations.

Corollary 4.4. Suppose that F has characteristic zero and residual char-
acteristic different from 2, denote by E the unramified quadratic extension
of F , and let ϕ be an irreducible symplectic representation of W ′

F . Then
a(ϕ) is even if and only if LLC(ϕ) is 1E/F -distinguished.

Proof. It easily follows, along the lines of the proof of Corollary 4.1, from
Theorem 4.2, noting that ηE/F (−1) = 1. □

Remark 4.5. A general symplectic representation ϕ of W ′
F being a direct

sum of the form ⊕r
i=1ϕi ⊕s

j=1 (ϕ′
j ⊕ ϕ′

j
∨) for ϕi irreducible symplectic and

ϕ′
j irreducible, we deduce the parity of a(ϕ) from Corollary 4.4 and such a
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decomposition. Namely, by Corollary 4.1 a(ϕ′
j ⊕ ϕ′∨

j ) ≡ 0[2]. Hence setting
ϵi ∈ {±1} being equal to 1 if and only if LLC(ϕi) is 1E/F -distinguished, we
deduce by additivity of the Artin conductor that (−1)a(ϕ) =

∏r
i=1 ϵi.

Remark 4.6. Looking at it from another angle, one sees that a symplec-
tic discrete series representation of GL2n(F ) is 1E/F -distinguished (E/F
unramified) if and only if it has even conductor.
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