

Nadir MATRINGE

Local distinction, quadratic base change and automorphic induction for GL_n

Tome 34, nº 3 (2022), p. 903-916.

https://doi.org/10.5802/jtnb.1233

© Les auteurs, 2022.

Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE. http://creativecommons.org/licenses/by-nd/4.0/fr/

Le Journal de Théorie des Nombres de Bordeaux est membre du Centre Mersenne pour l'édition scientifique ouverte http://www.centre-mersenne.org/

e-ISSN: 2118-8572

Local distinction, quadratic base change and automorphic induction for GL_n

par Nadir MATRINGE

RÉSUMÉ. Ce titre sophistiqué dissimule un exercice élémentaire sur la théorie de Clifford pour les sous-groupes d'indice deux et les représentations autoduales ou conjuguées-duales. Appliqué aux représentations du groupe Weil–Deligne W_F' d'un corps local non archimédien F, puis interprété en termes de représentations de $\mathrm{GL}_n(F)$ via correspondance de Langlands locale lorsque F est de caractéristique nulle, l'exercice en question établit divers énoncés concernant le comportememnt de différents types de distinction sous changement de base et induction automorphe quadratiques. Lorsque F est de caractéristique résiduelle non 2, en combinant un des résultats simples obtenus ici avec la trivialité des valeurs centrales de facteurs epsilon des représentations de W_F' conjuguées-orthogonales ([8]), nous retrouvons sans faire appel à la correspondance de Langlands locale un résultat de Serre sur la parité du conducteur d'Artin de ces représentations ([23]). D'autre part, nous discutons cette parité pour les représentations symplectiques à l'aide de la correspondance de Langlands locale et de la conjecture dite de Prasad et Takloo-Bighash.

ABSTRACT. Behind this sophisticated title hides an elementary exercise on Clifford theory for index two subgroups and self-dual or conjugate-dual representations. When applied to semi-simple representations of the Weil–Deligne group W_F' of a non Archimedean local field F, and further translated in terms of representations of $\mathrm{GL}_n(F)$ via the local Langlands correspondence when F has characteristic zero, it yields various statements concerning the behaviour of different types of distinction under quadratic base change and automorphic induction. When F has residual characteristic different from 2, combining of one of the simple results that we obtain with the tiviality of conjugate-orthogonal root numbers ([8]), we recover without using the LLC a result of Serre on the parity of the Artin conductor of orthogonal representations of W_F' ([23]). On the other hand we discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture.

Manuscrit reçu le 18 août 2021, révisé le 16 juillet 2022, accepté le 23 septembre 2022. 2010 Mathematics Subject Classification. 1170, 22E50.

 $^{{\}it Mots\text{-}clefs}.$ Représentations galoisiennes locales, représentations distinguées, conducteur d'Artin.

Introduction

Let E/F be a separable quadratic extension of non Archimedean local fields. Then thanks to the known local Langlands correspondence for $\mathrm{GL}_n(E)$ and $\mathrm{GL}_n(F)$, one has a base change map BC_F^E from the set of isomorphism classes of irreducible representations of $\mathrm{GL}_n(F)$ to that of $\mathrm{GL}_n(E)$, and an automorphic induction map AI_E^F from the set or isomorphism classes of irreducible representations of $GL_n(E)$ to that of $GL_{2n}(F)$. A typical statement proved in this note (for F of characteristic zero) is that if π is a generic unitary representation of $GL_n(F)$ with orthogonal Langlands parameter (orthogonal in short), then $\mathrm{BC}_F^E(\pi)$ is orthogonal and $\mathrm{GL}_n(F)$ -distinguished, and that the converse holds if π is a discrete series (see Corollary 3.2 for the general statement). Corollary 3.2 is itself a translation via the LLC of our main result which concerns representations of the Weil-Deligne group of F (Proposition 3.1). Another lucky application of Proposition 3.1 is that the result of [23] on the parity of Artin conductors of representations of the Weil-Deligne group of F is a consequence of that in [6] on root numbers of orthogonal representations, when F has odd residual characteristic, as we show in Corollary 4.1. We also discuss its parity for symplectic representations using the LLC and the Prasad and Takloo-Bighash conjecture in Corollary 4.4.

Acknowledgments. The motivation for writing this note is a question of Vincent Sécherre, which it answers. We thank him for asking it. We also thank Eyal Kaplan for useful explanations concerning [15] and [29]. We are greatful to the referee for his accurate comments and corrections. This work benefited from hospitality of the Erwin–Schrödinger institute, via the Research in Teams Project: l-modular Langlands Quotient Theorem and Applications.

1. Notation, definitions and basic facts about self-dual and conjugate-dual representations

For K a non Archimedean local field we denote by W_K the Weil group of K (see [26]), and by $W_K' = W_K \times \operatorname{SL}_2(\mathbb{C})$ the Weil–Deligne group of K. By a representation of W_K we mean a finite dimensional smooth complex representation of W_K . By a representation of W_K' we mean a representation which is a direct sum of representations of the form $\phi \otimes S$, where ϕ is an irreducible representation of W_K and S is an irreducible algebraic representation of $\operatorname{SL}_2(\mathbb{C})$. We sometimes abbreviate " ϕ is a representation of W_K' " as " $\phi \in \operatorname{Rep}(W_K')$ ". We denote by $\phi^{\vee} \in \operatorname{Rep}(W_K')$ the dual of $\phi \in \operatorname{Rep}(W_K')$.

For the following facts on self-dual and conjugate-dual representations of W'_K , we refer to [8, Section 3]. We recall that a representation ϕ of W'_K

is self-dual if and only if there exists on $\phi \times \phi$ a W_K' -invariant bilinear form B which is non degenerate: we will say that B is W_K' -bilinear (which in particular means non degenerate). If moreover B is alternate, we say that B is $(W_K', -1)$ -bilinear in which case we say that ϕ is symplectic or (-1)-self-dual, whereas if B is symmetric, and we say that B is $(W_K', 1)$ -bilinear in which case we say that ϕ is orthogonal or 1-self-dual. If ϕ is irreducible and self-dual, then there is up to nonzero scaling a unique W_K' -bilinear form on $\phi \times \phi$, which is either $(W_K', -1)$ -bilinear or $(W_K', 1)$ -bilinear, but not both.

Now suppose that L/K is a separable quadratic extension so that W_L has index two in W_K , and fix $s \in W_K - W_L$. For ϕ a representation of W'_L , we denote by ϕ^s the representation of W'_L defined as $\phi^s := \phi(s.s^{-1})$. We say that ϕ is L/K-dual or conjugate-dual if $\phi^s \simeq \phi^{\vee}$. The representation $\phi \in \text{Rep}(W'_L)$ is conjugate-dual if and only if there is on $\phi \times \phi$ a non-degenerate bilinear form B such that

$$B(w.x, sws^{-1}.y) = B(x, y)$$

for all (w, x, y) in $W'_L \times \phi \times \phi$. We say that such a bilinear form B is L/K-bilinear (this in particular means non degenerate). If moreover there is $\varepsilon \in \{\pm 1\}$ such that B satisfies

$$B(x, s^2.y) = \varepsilon B(y, x)$$

for all (x,y) in $\phi \times \phi$ we say that B is $(L/K,\varepsilon)$ -bilinear, in which case we say that ϕ is $(L/K,\varepsilon)$ -dual or conjugate-symplectic if $\varepsilon=-1$ and conjugate-orthogonal if $\varepsilon=1$. All the definitions above do not depend on the choice of s. When ϕ is L/K-dual and also irreducible, then there is up to nonzero scaling a unique L/K-bilinear form on $\phi \times \phi$, which is either (L/K,-1)-bilinear or (L/K,1)-bilinear, but not both.

2. Preliminary results

2.1. Clifford–Mackey theory for index two subgroups. We refer to [5, Section 3] for the following standard results.

Theorem 2.1. Let G be a finite group, H a finite subgroup of index 2, $s \in G - H$, and let $\eta : G \to \{\pm 1\}$ be the nontrivial character of G trivial on H.

- For ϕ a (finite dimensional complex) representation of H which is irreducible, the representation $\operatorname{Ind}_H^G(\phi)$ is irreducible if and only if $\phi^s \not\simeq \phi$, which is also equivalent to the fact that ϕ does not extend to G. If it is reducible then ϕ extends to G, and if $\widetilde{\phi}$ is such an extension, then $\eta \otimes \widetilde{\phi}$ is the only other extension different from $\widetilde{\phi}$, and $\operatorname{Ind}_H^G(\phi) \simeq \widetilde{\phi} \oplus (\eta \otimes \widetilde{\phi})$.
- An irreducible representation ϕ' of G restricts to H either irreducibly, or breaks into two irreducible pieces, and the second case

occurs if and only if $\phi' \simeq \eta \otimes \phi'$, which is also equivalent to $\phi' = \operatorname{Ind}_H^G(\phi)$ for ϕ an irreducible representation of H such that $\phi^s \simeq \phi$.

For E/F a separable quadratic extension of non Archimedean local fields, we denote by $\eta_{E/F}: W_F' \to \{\pm 1\}$ the nontrivial character of W_F' trivial on W_E' . Theorem 2.1 has the following corollary.

Corollary 2.2. Let E/F be a separable quadratic extension of non Archimedean local fields, and fix $s \in W_F - W_E$.

- For $\phi_E \in \text{Rep}(W_E')$ an irreducible representation, the representation $\text{Ind}_{W_E'}^{W_F'}(\phi_E)$ is irreducible if and only if $\phi_E^s \not\simeq \phi_E$, which is also equivalent to the fact that ϕ_E does not extend to W_F' . If it is reducible then ϕ_E extends to W_F' , and if ϕ_F is such an extension, then $\eta_{E/F} \otimes \phi_F$ is the only other extension different from ϕ_F , and $\text{Ind}_{W_F'}^{W_F'}(\phi_E) \simeq \phi_F \oplus (\eta_{E/F} \otimes \phi_F)$.
- An irreducible representation ϕ_F of W_F' restricts to W_E' either irreducibly, or breaks into two irreducible pieces, and the second case occurs if and only if $\phi_F \simeq \eta_{E/F} \otimes \phi_F$, which is also equivalent to $\phi_F \simeq \operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ for ϕ_E and irreducible representation of W_E' such that $\phi_E^s \simeq \phi_E$.

Proof. We recall that by [4, 28.6], if α_K is an irreducible representation of W_K for K local and non Archimedean, then there exists an unramified character χ_K of W_K such that $\chi_K \otimes \alpha_K$ has co-finite kernel.

For the first part of the first point, write $\phi_E = \alpha_E \otimes S$, and suppose first that $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ is irreducible. Twist $\operatorname{Ind}_{W_E}^{W_F}(\alpha_E)$ by an unramified character χ_F so that $\operatorname{Ind}_{W_E}^{W_F}(\operatorname{Res}_{W_F}^{W_E}(\chi_F) \otimes \alpha_E)$ has a co-finite kernel (hence $\operatorname{Res}_{W_E}^{W_F}(\chi_F) \otimes \alpha_E$ has co-finite kernel as well, as it has to be trivial on $W_E \cap \operatorname{Ker}(\operatorname{Ind}_{W_E}^{W_F}(\operatorname{Res}_{W_E}^{W_F}(\chi_E) \otimes \alpha_E))$). Because $\operatorname{Res}_{W_E}^{W_F}(\chi_F)^s = \operatorname{Res}_{W_E}^{W_F}(\chi_F)$, one deduces from Theorem 2.1 applied to $\operatorname{Res}_{W_E}^{W_F}(\chi_E) \otimes \alpha_E$ that $\alpha_E^s \not\simeq \alpha_E$ and that α_E does not extend. This implies the same statements for ϕ_E . Conversely if $\phi_E^s \not\simeq \phi_E$, then the same holds for α_E . Take χ_E unramified such that $\chi_E \otimes \alpha_E$ has co-finite kernel, and χ_F any unramified extension of χ_E to W_F . Then $\operatorname{Ind}_{W_E}^{W_F}(\alpha_E) = \chi_F^{-1} \otimes \operatorname{Ind}_{W_E}^{W_F}(\chi_E \otimes \alpha_E)$ is irreducible by Theorem 2.1, and so is $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E) = \operatorname{Ind}_{W_E}^{W_F}(\alpha_E) \otimes S$. The second part of the first point is similar, using an unramified character χ_F of W_F such that $\chi_E \otimes \phi_E$ has cofinite kernel (just take such a χ_E and extend it to an unramified character of W_F).

The proof of the second point is similar.

We will tacitly use the above corollary from now on.

2.2. Distinction and LLC for GL_n . Let F be a non Archimedean local

field, we denote by LLC the local Langlands correspondence ([10, 11, 17]). For any $n \geq 1$, it restricts as a bijection from the set of isomorphism classes of n-dimensional representations of W_F' to that of (smooth and complex) irreducible representations of $\operatorname{GL}_n(F)$. If E/F is a quadratic extension, and $\pi = \operatorname{LLC}(\phi_F)$ for ϕ_F a representation of W_F' , we set $\operatorname{BC}_F^E(\pi) = \operatorname{LLC}(\operatorname{Res}_{W_E'}^{W_F'}(\phi_F))$ (the quadratic base change of π), whereas if $\tau = \operatorname{LLC}(\phi_E)$ for ϕ_E a representation of W_E' , we set $\operatorname{AI}_E^F(\tau) = \operatorname{LLC}(\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E))$ (the quadratic automorphic induction of τ). For π a representation of $\operatorname{GL}_n(F)$, we denote by π^\vee its dual. If π is irreducible, we call it a discrete series representation if it has a matrix coefficient c such that $|\chi \otimes c|^2$ is integrable on $\operatorname{GL}_n(F)/F^\times.I_n$ (with respect to any Haar measure on the group $\operatorname{GL}_n(F)/F^\times.I_n$) for some character χ of $\operatorname{GL}_n(F)$. A representation ϕ of W_F' is irreducible if and only if $\operatorname{LLC}(\phi)$ is a discrete series.

Let $N_n(F)$ be the subgroup of $\mathrm{GL}_n(F)$ of upper triangular unipotent matrices, and let ψ be a non trivial character of F, which in turn defines a character $\widetilde{\psi}: u \mapsto \psi(u_{1,2} + \dots + u_{n-1,n})$ of $N_n(F)$. We say that an irreducible representation π of $\mathrm{GL}_n(F)$ is generic if $\mathrm{Hom}_{N_n(F)}(\pi,\widetilde{\psi}) \neq \{0\}$ and this does not depend on the choice of ψ . Genericity can be read on the Langlands parameter from [30, Theorem 9.7] (one way to state it is that $\mathrm{LLC}(\phi)$ is generic if and only if the adjoint L factor of ϕ is holomorphic at s=1). From this one easily deduces the direct implications of the following proposition, the converse implications being special cases of [20, Theorem 9.1].

Proposition 2.3.

- Let π be an irreducible representation of $GL_n(F)$. If $BC_F^E(\pi)$ is generic, then π is generic, and conversely if π is generic unitary, then $BC_F^E(\pi)$ is generic (unitary).
- Let τ be an irreducible representation of $GL_n(E)$. If $AI_E^F(\tau)$ is generic, then τ is generic, and conversely if τ is generic unitary, then $AI_E^F(\tau)$ is generic (unitary).

We denote by $\operatorname{GL}_n(F)$ the double cover of $\operatorname{GL}_n(F)$ defined for example in [15, Section 2.1]. Following [15] we call a map $\gamma: F^\times \to \mathbb{C}^\times$ a pseudocharacter if it satisfies $\gamma(xy) = \gamma(x)\gamma(y)(x,y)_2^{\lfloor n/2 \rfloor}$ for all x and y in F^\times , where $(\ ,\)_2$ is the Hilbert symbol of F^\times . For γ a pseudo-character of F^\times we denote by $\theta_{1,\gamma}$ the corresponding Kazhdan–Patterson exceptional representation of $\operatorname{GL}_n(F)$ as in [15, Section 2.5]. We say that an irreducible representation π of $\operatorname{GL}_n(F)$ is Θ_F -distinguished if there exist pseudo-characters γ and γ' of F^\times such that $\operatorname{Hom}_{\operatorname{GL}_n(F)}(\theta_{1,\gamma}\otimes\theta_{1,\gamma'},\pi^\vee)\neq\{0\}$ (where $\theta_{1,\gamma}\otimes\theta_{1,\gamma'}$ indeed factors through $\operatorname{GL}_n(F)$ so that the defintion makes sense).

When n is even, we denote by $S_n(F)$ the Shalika subgroup of $\operatorname{GL}_n(F)$ consisting of matrices of the form $s(g,x) = \operatorname{diag}(g,g) \left(\begin{smallmatrix} I_{n/2} & x \\ & I_{n/2} \end{smallmatrix} \right)$ for $g \in \operatorname{GL}_{n/2}(F)$ and $x \in \mathcal{M}_{n/2}(F)$, and for ψ a non trivial character of F, we denote by Ψ the character of $S_n(F)$ defined by $\Psi(s(g,x)) = \psi(\operatorname{tr}(x))$. We say that an irreducible representation π of $\operatorname{GL}_n(F)$ is Ψ_F -distinguished if n is even and $\operatorname{Hom}_{S_n(F)}(\pi,\Psi) \neq \{0\}$ for some non trivial character ψ of F. This does not depend on the choice of ψ .

Finally if E/F is quadratic separable, identifying $\eta_{E/F}$ to the character of F^{\times} trivial on $N_{E/F}(E^{\times})$ via local class field theory, we say that an irreducible representation τ of $\mathrm{GL}_n(E)$ is $\mathbb{1}_{E/F}$ -distinguished if $\mathrm{Hom}_{\mathrm{GL}_n(F)}(\tau, \mathbb{1}) \neq \{0\}$ and $\eta_{E/F}$ -distinguished if $\mathrm{Hom}_{\mathrm{GL}_n(F)}(\tau, \eta_{E/F} \circ \det) \neq \{0\}$.

The following theorem follows from [1, 3, 12, 13, 14, 15, 16, 18, 19, 29]. Parts of it are known to hold when F is of positive characteristic and odd residual characteristic ([2, Appendix A]).

Theorem 2.4. Suppose that F has characteristic zero.

- Let $\pi = LLC(\phi_F)$ be a generic representation of $GL_n(F)$, then ϕ_F is symplectic if and only π is Ψ_F -distinguished, whereas ϕ_F is orthogonal if and only if π is Θ_F -distinguished.
- Let $\tau = LLC(\phi_E)$ be a generic representation of $GL_n(E)$, then ϕ_E is conjugate-symplectic if and only τ is $\eta_{E/F}$ -distinguished, whereas ϕ_E is conjugate-orthogonal if and only if τ is $\mathbb{1}_{E/F}$ -distinguished.
- **2.3.** A reminder on epsilon factors. Let K'/K be a finite separable extension of non Archimedean local fields. We denote by ϖ_K a uniformizer of K and by P_K the maximal ideal of the ring of integers O_K of K. If ψ is a non trivial character of K, we denote by $\psi_{K'}$ the character $\psi \circ \operatorname{tr}_{K'/K}$. We call the conductor of ψ and write $d(\psi)$ for the smallest integer d such that ψ is trivial on P_K^d . When K'/K is unramified, it follows from [27, Chapter 8, Corollary 3] that

$$(2.1) d(\psi_{K'}) = d(\psi).$$

Similarly if χ is a character of W_K' identified by local class field theory with a character of K^* , we call the Artin conductor of χ the integer $a(\chi)$ equal to zero if χ is unramified, or equal to the smallest integer a such that χ is trivial on $1 + P_K^a$ if χ is ramified. More generally one can define the Artin conductor $a(\phi)$ (which is an integer) of any representation ϕ of W_K' , see [26, 3.4.5] when ϕ is a representation of W_K and [9, Section 2.2, (10)] in general. The Artin conductor is additive:

$$a(\phi \oplus \phi') = a(\phi) + a(\phi')$$

for ϕ and ϕ' in Rep (W'_K) . If ϕ is a representation of W'_K , and ψ is a non trivial character of K, we refer to [26, 3.6.4] and [4, 31.3] or [9, Section 2.2] for the definition of the root number $\epsilon(1/2,\phi,\psi)$. One then defines the Langlands λ -constant:

$$\lambda(K'/K,\psi) = \frac{\epsilon(1/2, \operatorname{Ind}_{W_{K'}}^{W_K}(\mathbb{1}_{W_K}), \psi)}{\epsilon(1/2, \mathbb{1}_{W_K'}, \psi_{K'})}.$$

For $a \in K^{\times}$, we set $\psi_a = \psi(a)$. These constants enjoy the following list of properties, which we will freely use later in the paper.

- (1) $\epsilon(1/2, \phi \oplus \phi', \psi) = \epsilon(1/2, \phi, \psi)\epsilon(1/2, \phi', \psi)$ where ϕ' is another representation of W'_{K} ([26, (3.4.2)]).
- (2) $\epsilon(1/2, \phi, \psi_a) = \det(\phi(a)) \epsilon(1/2, \phi, \psi)$ ([26, (3.6.6)]). (3) $\epsilon(1/2, \phi, \psi)^2 = \det(\phi)(-1)$ when ϕ is self-dual ([9, Section 2.3, (11)])
- (4) If $d(\psi) = 0$ and μ is an unramified character of K^* , it follows from [9, Section 2.3, (9)] that:

$$\epsilon(1/2, \mu \otimes \phi, \psi) = \mu(\varpi_K^{a(\phi)})\epsilon(1/2, \phi, \psi).$$

(5) If K'/K is quadratic with K of characteristic not $2, \delta \in \ker(\operatorname{tr}_{K'/K}) \setminus$ $\{0\}$, and ϕ is a K'/K-orthogonal representation of $W'_{K'}$, then by [8, Proposition 5.2 (generalizing [7, Theorem 3]):

$$\epsilon(1/2, \phi, \psi_{K'}) = \det(\phi)(\delta).$$

(6) If $\phi_{K'}$ is an r-dimensional representation of $W'_{K'}$, then

$$\epsilon(1/2, \operatorname{Ind}_{W'_{K'}}^{W'_{K}}(\phi_{K'}), \psi) = \lambda(K'/K, \psi)^{r} \epsilon(1/2, \phi_{K'}, \psi_{K'})$$

([4, (30.4.2)]).

When applied to a K'/K quadratic and $\phi_{K'} = \operatorname{Res}_{W'_{K'}}^{W'_{K'}}(\phi)$ for ϕ a representation of W'_K , one gets

$$\epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{K'/K} \otimes \phi, \psi) = \lambda(K'/K, \psi)^r \epsilon \left(1/2, \operatorname{Res}_{W'_{K'}}^{W'_K}(\phi), \psi_{K'}\right)$$

(7) If K'/K is unramified with [K'/K] = n:

$$\lambda(K'/K, \psi) = (-1)^{d(\psi)(n-1)}$$

(for example [21] and (2), together with Equation (2.1)). In particular if $d(\psi) = 0$ then

$$\lambda(K'/K, \psi) = 1.$$

3. Distinction, base change, and automorphic induction

From now on E/F is a separable quadratic extension of non Archimedean local fields. Our main result is the following proposition, and we notice that half of its first point is [8, Lemma 3.5(i)].

Proposition 3.1.

- (1) Let ϕ_E be a semi-simple representation of W_E' which is either ε -self-dual or $(E/F, \varepsilon)$ -dual, then $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ is ε -selfudal.
- (2) Conversely if ϕ_E is irreducible and $\operatorname{Ind}_{W'_E}^{W'_F}(\phi_E)$ is ε -self-dual:
 - (a) if $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ is irreducible, i.e. $\phi_E^s \not\simeq \phi_E$, then either ϕ_E is ε -self-dual or $(E/F, \varepsilon)$ -dual, but not both together,
 - (b) if $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ is reducible, i.e. $\phi_E^s \simeq \phi_E$, then ϕ_E is both ε -self-dual and $(E/F, \varepsilon)$ -dual.
- (3) Let ϕ_F be a semi-simple representation of W_F' which is ε -self-dual, then $\operatorname{Res}_{W_E'}^{W_F'}(\phi_F)$ is ε -self-dual and $(E/F, \varepsilon)$ -dual.
- (4) Conversely, if ϕ_F is irreducible and $\operatorname{Res}_{W_E'}^{W_F'}(\phi_F)$ is ε -self-dual and $(E/F, \varepsilon)$ -dual then ϕ_F is ε -self-dual.

Proof.

(1). First suppose that B_E is a $(E/F, \varepsilon)$ -bilinear form on ϕ_E . Write an element v (resp. v') in $\operatorname{Ind}_{W'_E}^{W'_F}(\phi_E)$ under the form $v = x + s^{-1}.y$ (resp. $v' = x' + s^{-1}.y'$) for x, x', y, y' in ϕ_E , and set

$$B_F(v, v') = B_E(x, y') + \varepsilon B_E(x', y).$$

Then B_F is W'_E -invariant because B_E is (W'_E, ε) -conjugate (it is non-degenerate because so is B_E). Finally

$$B_F(s.v, s.v') = B_E(y, s^2.x') + \varepsilon B_E(y', s^2.x)$$

= $\varepsilon B_E(x', y) + B_E(x, y') = B_F(v, v')$.

Similarly if B_E is (W'_E, ε) -bilinear, then one checks that

$$B_F(x+s^{-1}y,x'+s^{-1}.y') = B_E(x,x') + B_E(y,y')$$

defines a (W'_F, ε) -bilinear form on ϕ_F .

- (2). Suppose that ϕ_E is irreducible and that $\operatorname{Ind}_{W'_E}^{W'_F}(\phi_E)$ is ε -self-dual with (W'_F, ε) -bilinear form B_F .
 - (a) If $\phi_E^s \not\simeq \phi_E$, because $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ is self-dual then either ϕ_E is self-dual, or $\phi_E^s \simeq \phi_E^{\vee}$ but not both together. In the first case, say that

- ϕ_E is ε' -self-dual, then so is $\operatorname{Ind}_{W_F'}^{W_F'}(\phi_E)$ by (1), but then $\varepsilon' = \varepsilon$ by irreducibility of $\operatorname{Ind}_{W_E'}^{W_E'}(\phi_E)$. If $\phi_E^s \simeq \phi_E^{\vee}$ we conclude in a similar
- (b) If $\phi_E^s \simeq \phi_E$ then $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E) \simeq \phi \oplus \eta_{E/F} \otimes \phi$ for ϕ extending ϕ_E , and $\phi \not\simeq \eta_{E/F} \otimes \phi$. Because $\phi \not\simeq \eta_{E/F} \otimes \phi$ there are two disjoint cases. The first is when ϕ is self-dual, in which case $\phi \perp \eta_{E/F} \otimes \phi$ and B_F restricts non trivially to $\phi \times \phi$ (and $\eta_{E/F} \otimes \phi \times \eta_{E/F} \otimes \phi$). Then ϕ_E is ε -dual and (ε, s) -dual by (3). Otherwise $\phi^{\vee} \simeq \eta_{E/F} \otimes \phi$ and B_F is zero on $\phi \times \phi$ and $\eta_{E/F} \otimes \phi \times \eta_{E/F} \otimes \phi$. In this case there is up to scaling a unique W'_F -invariant bilinear form on $\operatorname{Ind}_{W'_F}^{W'_F}(\phi_E)$, namely B_F . Because $\phi_E^{\vee} \simeq \phi_E$ (by restricting the relation $\phi^{\vee} \simeq \eta_{E/F} \otimes \phi$ to W_E'), ϕ_E must be ε' -self-dual, hence $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$ as well by (1), but then we have $\varepsilon' = \varepsilon$ by multiplicity one of W'_F -invariant bilinear form on $\operatorname{Ind}_{W_E'}^{W_F'}(\phi_E)$. Moreover because $\phi_E^s = \phi_E$ the parameter ϕ_E is also (ε'', s) -self-dual and by (1) again we deduce that $\varepsilon'' = \varepsilon$.
- (3). Let B_F be a (W'_F, ε) -bilinear form on ϕ_F , then it remains a (W'_E, ε) bilinear on $\operatorname{Res}_{W_E'}^{W_F'}(\phi_F)$, and on the other hand

$$B_E(x,y) = B_F(x,s^{-1}.y)$$

is an $(E/F, \varepsilon)$ -bilinear form on $\operatorname{Res}_{W_F'}^{W_F'}(\phi_F)$.

(4). We suppose that ϕ_F is irreducible and that $\operatorname{Res}_{W'_F}^{W'_F}(\phi_F)$ is ε -self-dual and also $(E/F, \varepsilon)$ -dual. There are two cases to consider.

First if $\operatorname{Res}_{W_E'}^{W_F'}(\phi_F)$ is irreducible, then denote by B_E the (W_E', ε) -bilinear form on $\operatorname{Res}_{W'_F}^{W'_F}(\phi_F)$. Now set $D_E(x, y) = B_E(x, s^{-1}.y)$ for $x, y \in \operatorname{Res}_{W'_F}^{W'_F}(\phi_F)$. Clearly D_E is E/F-bilinear, but by irreducibility $\operatorname{Res}_{W'_F}^{W'_F}(\phi_F)$ affords at most one such form up to scalar, hence D_E must be $(E/F, \varepsilon)$ -bilinear. This implies that for x and y in $\operatorname{Res}_{W_F'}^{W_F'}(\phi_F)$ one has

$$B_E(s.x, s.y) = D_E(s.x, s^2.y) = \varepsilon D_E(y, s.x) = \varepsilon B_E(y, x) = B_E(x, y).$$

All in all, when $\operatorname{Res}_{W_F'}^{W_F'}(\phi_F)$ is irreducible we deduce that B_E is in fact

 W_F -invariant hence that ϕ_F is ε -self-dual. It remains to treat the case where $\operatorname{Res}_{W_E'}^{W_F'}(\phi_F)$ is reducible. In this case it is of the form $\phi_E \oplus s^{-1}.\phi_E$ where ϕ_E is an irreducible of W_E' such that $\phi_E^s \not\simeq$ ϕ_E and $\phi_F = \operatorname{Ind}_{W_F}^{W_F'}(\phi_E)$. First because $\operatorname{Res}_{W_F'}^{W_F'}(\phi_F)$ is ε -self-dual, then the

 (W'_E, ε) -bilinear form B_E on $\operatorname{Res}_{W'_E}^{W'_F}(\phi_F)$ either induces an isomorphism $\phi_E^s \simeq \phi_E^\vee$ or $\phi_E \perp s^{-1}.\phi_E$ for B_E . Similarly the $(E/F, \varepsilon)$ -bilinear form C_E on $\operatorname{Res}_{W'_E}^{W'_F}(\phi_F)$ either induces an isomorphism $(\phi_E^s)^\vee \simeq \phi_E^s \iff \phi_E \simeq \phi_E^\vee$ or $\phi_E \perp s^{-1}.\phi_E$ for C_E . Suppose that B_E induces an isomorphism $\phi_E^s \simeq \phi_E^\vee$, then one must have $\phi_E \perp s^{-1}.\phi_E$ for C_E because $\phi_E \not\simeq \phi_E^s \simeq \phi_E^\vee$. This implies that C_E induces an $(E/F, \varepsilon)$ -bilinear form on ϕ_E and by point (1) we deduce that ϕ_F is ϵ -self-dual. On the other hand if $\phi_E \perp s^{-1}.\phi_E$ for B_E then B_E induces an (W'_E, ε) -bilinear form on ϕ_E and ϕ_F is ε -self-dual again by point (1).

Supposing that F has characteristic zero, we translate Proposition 3.1 via the LLC, in view of the results recalled in Section 2.2. For this we denote by σ the Galois conjugation of E/F and its extension to $GL_n(E)$, and set $\tau^{\sigma} = \tau \circ \sigma$ for any representation of $GL_n(E)$.

Corollary 3.2.

- (1) Let τ be an irreducible representation of $GL_n(E)$ such that $AI_E^F(\tau)$ is generic (for example τ generic unitary). If τ is either Θ_E -distinguished or $\mathbb{1}_{E/F}$ -distinguished, then $AI_E^F(\tau)$ is Θ_F -distinguished, whereas if τ is either Ψ_E -distinguished or $\eta_{E/F}$ -distinguished, then $AI_E^F(\tau)$ is Ψ_F -distinguished.
- (2) Conversely if τ is a discrete series representation of $GL_n(E)$.
 - (a) Suppose that $AI_E^F(\tau)$ is Ψ_F -distinguished:
 - (i) if $AI_E^F(\tau)$ is a discrete series, i.e. if $\tau^{\sigma} \not\simeq \tau$, then either τ is Ψ_E -distinguished or $\eta_{E/F}$ -distinguished, but not both together,
 - (ii) if $\operatorname{AI}_E^F(\tau)$ is not a discrete series, i.e. $\tau^{\sigma} \simeq \tau$, then τ is both Ψ_E -distinguished and $\eta_{E/F}$ -distinguished.
 - (b) Suppose that $AI_E^F(\tau)$ is Θ_F -distinguished:
 - (i) if $AI_E^F(\tau)$ is a discrete series, i.e. $\tau^{\sigma} \not\simeq \tau$, then either τ is Θ_F -distinguished or $\mathbb{1}_{E/F}$ -distinguished, but not both together,
 - (ii) if $AI_E^F(\tau)$ is not a discrete series, i.e. $\tau^{\sigma} \simeq \tau$, then τ is both Θ_E -distinguished and $\mathbb{1}_{E/F}$ -distinguished.
- (3) Let π be an irreducible representation of $GL_n(F)$ such that $BC_F^E(\pi)$ is generic (for example π generic unitary). If π is Θ_F -distinguished, then $BC_F^E(\pi)$ is Θ_E -distinguished and $\mathbb{1}_{E/F}$ -distinguished, whereas if π is Ψ_F -distinguished, then $BC_F^E(\pi)$ is Ψ_E -distinguished and $\eta_{E/F}$ -distinguished.
- (4) Conversely suppose that π is a discrete series. If $BC_F^E(\pi)$ is Θ_E -distinguished and $\mathbb{1}_{E/F}$ -distinguished, then π is Θ_F -distinguished,

whereas if $BC_F^E(\pi)$ is Ψ_E -distinguished and $\eta_{E/F}$ -distinguished, then π is Ψ_F -distinguished.

4. Parity of the Artin conductor of self-dual representations

In this section F is again a non Archimedean local field. First, using [8, Proposition 5.2] (which is itself a quick but non trivial consequence of a difficult result of Deligne [6] on root numbers of orthogonal representations), we quickly recover in odd residual characteristic from Proposition 3.1 (3) the following result due to Serre [23] (the result in question also holds in even residual characteristic by [23]). In other words we show that the result of [6] implies that of [23] for non Archimedean local fields of odd residual characteristic.

Corollary 4.1 (of Proposition 3.1, [23]). Let ϕ be an orthogonal representation of W'_F . We have the following congruence of Artin conductors: $a(\phi) = a(\det(\phi))[2]$.

Proof. As we said the result is true for F of any residual characteristic, and we recover it in this proof for F of residual characteristic different from 2. Let E be the unramified quadratic extension of F, and take ψ a character of F of conductor zero. We have according to Section 2.3, Points (6) and (7)

(4.1)
$$\epsilon \left(1/2, \operatorname{Res}_{W_F'}^{W_F'}(\phi), \psi_E \right) = \epsilon (1/2, \phi, \psi) \epsilon (1/2, \eta_{E/F} \otimes \phi, \psi).$$

Now denoting by q the residual cardinality of F, let u be an element of order q^2-1 in E^{\times} , so that $\delta:=u^{(q+1)/2}$ does not belong to F but $\Delta:=\delta^2$ belongs to F. Note that the image of Δ generates $O_F^{\times}/1+P_F$. Then $\epsilon(1/2,\operatorname{Res}_{W_E'}^{W_F'}(\phi),\psi_{E,\delta}^{-1})=1$ by Proposition 3.1(3) and Section 2.3(5), hence

$$\epsilon \left(1/2, \operatorname{Res}_{W_E'}^{W_F'}(\phi), \psi_E \right) = \det \left(\operatorname{Res}_{W_E'}^{W_F'}(\phi) \right) (\delta)$$
$$= \det(\phi) (N_{E/F}(\delta)) = \det(\phi) (-\Delta)$$

thanks to Section 2.3(2). Now observe that $\det(\phi)$ is quadratic as ϕ is selfdual, but because q is odd it is trivial on $1 + P_F$, hence it has conductor 0 or 1, and it is of conductor zero if and only if $\det(\phi)(\Delta) = 1$, hence $\det(\phi)(\Delta) = (-1)^{a(\det(\phi))}$, so

$$\epsilon \left(1/2, \operatorname{Res}_{W_F'}^{W_F'}(\phi), \psi_E\right) = (-1)^{a(\det(\phi))} \det(\phi)(-1).$$

Now $\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi) = (-1)^{a(\phi)} \epsilon(1/2, \phi, \psi)$ thanks to Section 2.3(4), hence Section 2.3(3) implies the following:

$$\epsilon(1/2, \phi, \psi)\epsilon(1/2, \eta_{E/F} \otimes \phi, \psi)$$

$$= (-1)^{a(\phi)}\epsilon(1/2, \phi, \psi)^2 = (-1)^{a(\phi)} \det(\phi)(-1).$$

The result now follows from Equation (4.1).

One can legitimately ask about the parity of the Artin conductor of symplectic representations of W_F' . The answer seems much more complicated, and one way to adress it is via the LLC, using the so called Prasad and Takloo-Bighash conjecture, which is now a theorem when F has characteristic zero and residual characteristic different from 2 ([22, 24, 25, 28]). To this end we recall that for E/F a separable quadratic extension, then the matrix algebra $\mathcal{M}_n(E)$ embeds uniquely up to $\mathrm{GL}_{2n}(F)$ -conjugacy into $\mathcal{M}_{2n}(F)$ as an F-subalgebra by the Skolem–Noether theorem. We fix such an embedding, which in turn gives rise to an embedding of $\mathrm{GL}_n(E)$ into $\mathrm{GL}_{2n}(F)$. We then say that an irreducible representation π of $\mathrm{GL}_{2n}(F)$ is $\mathbb{1}^{E/F}$ -distinguished if and only if $\mathrm{Hom}_{\mathrm{GL}_n(E)}(\pi, \mathbb{1}) \neq \{0\}$. We recall the following theorem, which is a consequence of one part of the Prasad and Takloo-Bighash conjecture.

Theorem 4.2 ([22, 25, 28]). Suppose that F has characteristic zero and residual characteristic different from 2. If ϕ is an irreducible symplectic representation of W_F of dimension 2n, then

$$\epsilon(1/2, \phi \otimes \operatorname{Ind}_{W_E'}^{W_F'}(1)) = \eta_{E/F}(-1)^n$$

if LLC(ϕ) is $\mathbb{1}^{E/F}$ -distinguished and

$$\epsilon \Big(1/2, \phi \otimes \operatorname{Ind}_{W_E'}^{W_F'}(\mathbb{1}) \Big) = -\eta_{E/F} (-1)^n$$

otherwise.

Remark 4.3. In the statement above, as the determinant of a symplectic representation is equal to 1, we suppressed the dependence of the root number $\epsilon(1/2, \phi \otimes \operatorname{Ind}_{W_E'}^{W_F'}(\mathbb{1}), \psi)$ on the non-trivial additive character ψ of F.

As an immediate corollary we obtain the following result on the parity of Artin conductors of symplectic representations.

Corollary 4.4. Suppose that F has characteristic zero and residual characteristic different from 2, denote by E the unramified quadratic extension of F, and let ϕ be an irreducible symplectic representation of W'_F . Then $a(\phi)$ is even if and only if $LLC(\phi)$ is $\mathbb{1}^{E/F}$ -distinguished.

Proof. It easily follows, along the lines of the proof of Corollary 4.1, from Theorem 4.2, noting that $\eta_{E/F}(-1) = 1$.

Remark 4.5. A general symplectic representation ϕ of W_F' being a direct sum of the form $\bigoplus_{i=1}^r \phi_i \bigoplus_{j=1}^s (\phi_j' \oplus {\phi_j'}^{\vee})$ for ϕ_i irreducible symplectic and ϕ_j' irreducible, we deduce the parity of $a(\phi)$ from Corollary 4.4 and such a

decomposition. Namely, by Corollary 4.1 $a(\phi'_j \oplus {\phi'}_j^{\vee}) \equiv 0$ [2]. Hence setting $\epsilon_i \in \{\pm 1\}$ being equal to 1 if and only if $LLC(\phi_i)$ is $\mathbb{1}^{E/F}$ -distinguished, we deduce by additivity of the Artin conductor that $(-1)^{a(\phi)} = \prod_{i=1}^r \epsilon_i$.

Remark 4.6. Looking at it from another angle, one sees that a symplectic discrete series representation of $GL_{2n}(F)$ is $\mathbb{1}^{E/F}$ -distinguished (E/F) unramified) if and only if it has even conductor.

References

- U. K. ANANDAVARDHANAN, A. C. KABLE & R. TANDON, "Distinguished rep- resentations and poles of twisted tensor L-functions", Proc. Am. Math. Soc. 132 (2004), no. 10, p. 2875-2883.
- [2] U. K. ANANDAVARDHANAN, R. KURINCZUK, N. MATRINGE, V. SÉCHERRE & S. STEVENS, "Galois self-dual cuspidal types and Asai local factors", J. Eur. Math. Soc. 23 (2021), no. 9, p. 3129-3191.
- [3] U. K. ANANDAVARDHANAN & C. S. RAJAN, "Distinguished representations, base change, and reducibility for unitary groups", Int. Math. Res. Not. 2005 (2005), no. 14, p. 841-854.
- [4] C. J. BUSHNELL & G. HENNIART, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer, 2006.
- [5] T. CECCHERINI-SILBERSTEIN, F. SCARABOTTI & F. TOLLI, "Clifford theory and applications",
 J. Math. Sci., New York 156 (2009), no. 1, p. 29-43.
- [6] P. Deligne, "Les constantes locales de l'équation fonctionnelle de la fonction L d'Artin d'une représentation orthogonale", *Invent. Math.* 35 (1976), p. 299-316.
- [7] A. FRÖHLICH & J. QUEYRUT, "On the functional equation of the Artin L-function for characters of real representations", *Invent. Math.* 20 (1976), p. 125-138.
- [8] W. T. GAN, B. H. GROSS & D. PRASAD, "Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups", in On the conjectures of Gross and Prasad. I, Astérisque, vol. 346, Société Mathématique de France, 2012, p. 1-109.
- [9] B. H. GROSS & M. REEDER, "Arithmetic invariants of discrete Langlands parameters", Duke Math. J. 154 (2010), no. 3, p. 431-508.
- [10] M. HARRIS & R. TAYLOR, "Regular models of certain Shimura varieties", Asian J. Math. 6 (2002), no. 1, p. 61-94.
- [11] G. Henniart, "Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique", $Invent. \ Math. \ 139 \ (2000), \ no. \ 2, \ p. \ 439-455.$
- [12] ——, "Correspondance de Langlands et fonctions L des carrés extérieur et symétrique", Int. Math. Res. Not. 2010 (2010), no. 4, p. 633-673.
- [13] Y. Jo, "Derivatives and exceptional poles of the local exterior square L- function for GLm", Math. Z. 294 (2020), no. 3-4, p. 1687-1725.
- [14] A. C. Kable, "Asai L-functions and Jacquet's conjecture", Am. J. Math. 126 (2004), no. 4, p. 789-820.
- [15] E. Kaplan, "The characterization of theta-distinguished representations of GL(n)", Isr. J. Math. 222 (2017), no. 2, p. 551-598.
- [16] P. K. KEWAT & R. RAGHUNATHAN, "On the local and global exterior square L-functions of GLn", Math. Res. Lett. 19 (2012), no. 4, p. 785-804.
- [17] G. LAUMON, M. RAPOPORT & U. STUHLER, "D-elliptic sheaves and the Langlands correspondence", *Invent. Math.* 113 (1993), no. 2, p. 217-338.
- [18] N. MATRINGE, "Distinguished generic representations of GL(n) over p-adic fields", Int. Math. Res. Not. 2011 (2011), no. 1, p. 74-81.
- [19] ——, "Shalika periods and parabolic induction for GL(n) over a non- archimedean local field", Bull. Lond. Math. Soc. 49 (2017), no. 3, p. 417-427.
- [20] A. MITRA & E. SAYAG, "Models of representations and Langlands functoriality", Can. J. Math. 72 (2020), no. 3, p. 676-707.

- [21] A. Moy, "Local constants and the tame Langlands correspondence", Am. J. Math. 108 (1986), p. 863-930.
- [22] V. SÉCHERRE, "Représentations cuspidales de GL(r,D) distinguées par une involution intérieure", https://arxiv.org/abs/2005.05615v1, to appear in Ann. Sci. Éc. Norm. Supér., 2020.
- [23] J.-P. SERRE, "Conducteurs d'Artin des caractères réels", Invent. Math. 14 (1971), p. 173-183.
- [24] M. SUZUKI, "Classification of standard modules with linear periods", J. Number Theory 218 (2021), p. 302-310.
- [25] M. SUZUKI & H. XUE, "Linear intertwining periods and epsilon dichotomy for linear models", preprint, 2020.
- [26] J. TATE, "Number theoretic background", in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33.2, American Mathematical Society, 1979, p. 3-26.
- [27] A. Weil, Basic number theory, 3rd ed., Grundlehren der Mathematischen Wissenschaften, vol. 144, Springer, 1974.
- [28] H. Xue, "Epsilon dichotomy for linear models", Algebra Number Theory 15 (2021), no. 1, p. 173-215.
- [29] S. Yamana, "Local symmetric square L-factors of representations of general linear groups", Pac. J. Math. 286 (2017), no. 1, p. 215-256.
- [30] A. V. ZELEVINSKY, "Induced representations of reductive p-adic groups. II: On irreducible representations of GL(n)", Ann. Sci. Éc. Norm. Supér. 13 (1980), p. 165-210.

Nadir Matringe

Université Paris Cité, France

E-mail: nadir.matringe@imj-prg.fr

URL: https://perso.imj-prg.fr/nadir-matringe/