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On the Cyclicity of the Unramified Iwasawa
Modules of the Maximal Multiple Zp-Extensions

Over Imaginary Quadratic Fields

par Takashi MIURA, Kazuaki MURAKAMI, Keiji OKANO et Rei
OTSUKI

Résumé. Pour un nombre premier impair p, on s’intéresse au nombre de gé-
nérateurs des modules d’Iwasawa non ramifiés des Zp-extensions multiples
maximales sur l’algèbre d’Iwasawa. Dans notre article précédent, sous plu-
sieurs hypothèses sur un corps quadratique imaginaire, nous avons obtenu
une condition nécessaire et suffisante de cyclicité du module d’Iwasawa sur
l’algèbre d’Iwasawa. Le présent travail fournit des méthodes de calcul et des
exemples numériques des modules d’Iwasawa qui sont cycliques en tant que
modules sur l’algèbre d’Iwasawa. Nous remarquons que nos méthodes ne sup-
posent pas la véracité de la conjecture de Greenberg généralisée.

Abstract. For an odd prime number p, we study the number of generators of
the unramified Iwasawa modules of the maximal multiple Zp-extensions over
the Iwasawa algebra. In our previous paper, under several assumptions for an
imaginary quadratic field, we obtained a necessary and sufficient condition for
the cyclicity of the Iwasawa module over the Iwasawa algebra. The present
work provides computational methods and numerical examples of Iwasawa
modules that are cyclic as modules over the Iwasawa algebra. We remark
that our methods do not require the assumption that Greenberg’s generalized
conjecture holds.

1. Introduction

Let p be a prime number, Zp the ring of p-adic integers, K an algebraic
number field of finite degree, and Kc

∞ the cyclotomic Zp-extension of K.
One of the most important objects in classical Iwasawa theory is the Galois
group XKc

∞ of the maximal unramified abelian pro-p extension of Kc
∞. The

Galois group Gal(Kc
∞/K) acts on XKc

∞ by the inner automorphism, and
it is well known that XKc

∞ is a finitely generated torsion ZpJGal(Kc
∞/K)K-

module. We introduce here a well-known fact which we can reduce the
computation of the number of generators ofXc

K∞ to the computation of only
the p-Sylow subgroup AK of the ideal class group of K. If p does not split
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in K and is totally ramified in Kc
∞/K, then the Gal(Kc

∞/K)-coinvariant
of XKc

∞ is isomorphic to AK , and hence Nakayama’s lemma tells us that
the number of generators of XKc

∞ as a ZpJGal(Kc
∞/K)K-module coincides

with dimFp(AK/pAK) (see [15, Proposition 13.22]). In particular, XKc
∞ is

cyclic as a ZpJGal(Kc
∞/K)K-module if and only if AK is cyclic as an abelian

group.
The objective of our study is to generalize the basic facts to the case

of multiple Zp-extensions. In other words, for the Galois group X
K̃

of the
maximal unramified abelian pro-p extension of the maximal multiple Zp-
extension K̃ of K, we aim to describe the number of generators of X

K̃

as a ZpJGal(K̃/K)K-module, and also to determine the conditions under
which X

K̃
is ZpJGal(K̃/K)K-cyclic. There is an important conjecture called

Greenberg’s generalized conjecture, which states that X
K̃

would be pseudo-
null as a ZpJGal(K̃/K)K-module. Much evidence supporting the validity of
this conjecture has been reported. However, this important conjecture does
not seem to give the number of generators of X

K̃
. Therefore, we considered

that it would be worthwhile to describe the number of generators of X
K̃

as a
ZpJGal(K̃/K)K-module, to give necessary and sufficient conditions for X

K̃

to be ZpJGal(K̃/K)K-cyclic, to provide these numerical examples and so on.
We expect that these studies will help us to gain a deeper understanding
of various other properties of X

K̃
.

In our previous paper [10], we gave some conditions under which X
K̃

will
be ZpJGal(K̃/K)K-cyclic for imaginary quadratic fields K. In this paper,
we provide methods for computing such conditions and many examples. In
the remainder of this section, we will prepare the notation and introduce
the theorems in [10] (Theorems 1.1, 1.2). In Section 2, we describe our
method for computing the conditions in Theorem 1.1 and provide some ex-
amples to which we can apply Theorem 1.1. In Section 3, we introduce the
result of Sumida, which consists of a classification of the Iwasawa modules
of Zp-rank 2. In Section 4, we describe a method for computing the con-
ditions in Theorem 1.2 and provide some examples to which we can apply
Theorem 1.2.

1.1. Conditions for X
K̃

to be ZpJGal(K̃/K)K-cyclic. Let p be an
odd prime number, and K an imaginary quadratic field in which p does
not split. Denote by Kc

∞ and Kan
∞ the cyclotomic Zp-extension and the

anti-cyclotomic Zp-extension of K, respectively. Let K̃ = Kc
∞K

an
∞ . Then

K̃ is the maximal multiple Zp-extension over K and Gal(K̃/K) ∼= Z2
p. Fix

a topological generator σ̃ (resp. τ̃) of Gal(K̃/Kan
∞ ) (resp. Gal(K̃/Kc

∞)).
Then there exists a ring isomorphism between the complete group ring
ZpJGal(K̃/K)K and the formal power series ring ZpJS, T K by sending σ̃
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and τ̃ to 1 + S and 1 + T , respectively. Note that this ring isomorphism
depends on the choice of topological generators σ̃ and τ̃ . Also, we have the
commutative diagram

ZpJGal(K̃/K)K ∼−−−−→ ZpJS, T Ky y
ZpJGal(Kc

∞/K)K ∼−−−−→ ZpJSK,

where the left vertical arrow is induced by the projection Gal(K̃/K) →
Gal(Kc

∞/K), the right vertical arrow is defined by substituting T = 0, and
the lower horizonal arrow is induced by sending σ̃|Kc

∞ to 1 +S. We identify
ZpJGal(K̃/K)K (resp. ZpJGal(Kc

∞/K)K) with ZpJS, T K (resp. ZpJSK) via the
isomorphism above. For any algebraic number field F , denote by XF the
Galois group of the maximal unramified abelian pro-p extension LF of F .
If F is a finite extension of the rational number field Q, denote by AF the
p-Sylow subgroup of the ideal class group of F .

It is known that, for any Zp-extension K∞ of K, XK∞ is a finitely gen-
erated torsion ZpJGal(K∞/K)K-module. Similarly, X

K̃
is a finitely gener-

ated torsion ZpJS, T K-module by Greenberg [5]. Moreover, for the cyclo-
tomic Zp-extension Kc

∞, XKc
∞ is a finitely generated free Zp-module by

Ferrero and Washington [2] and by [15, Proposition 13.28]. By Nakayama’s
lemma, the number of generators of XKc

∞ (resp. X
K̃

) as a ZpJSK-module
(resp. a ZpJS, T K-module) coincides with dimFp XKc

∞/(p, S)XKc
∞ (resp.

dimFp XK̃
/(p, S, T )X

K̃
). Furthermore, since p does not split in K, we have

dimFp XKc
∞/(p, S)XKc

∞ = dimFp AK/pAK .

We introduce the Iwasawa invariants and the characteristic ideals. Let
O be the ring of integers of a finite extension over the field Qp of p-adic
numbers, and M a finitely generated torsionOJSK-module. By the structure
theorem of OJSK-modules, there is an OJSK-homomorphism

φ : M →
(⊕

i

OJSK/(πmi)
)
⊕

⊕
j

OJSK/(fj(S)nj )


with finite kernel and finite cokernel, wheremi, nj are non-negative integers,
π is a prime element in O, and fj(S) ∈ O[S] are distinguished irreducible
polynomials. We let

char(M) =

∏
i

πmi
∏
j

fj(S)nj

 ,
which is an ideal in OJSK and called the characteristic ideal of M . We define
the Iwasawa µ-invariant µ(K∞/K) and the Iwasawa λ-invariant λ(K∞/K)
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of a Zp-extension K∞ by
∑
imi and

∑
j nj deg fj for M = XK∞ , which is

regarded as a ZpJSK-module.
Now we introduce the theorems in [10] which give conditions for X

K̃
to

be ZpJGal(K̃/K)K-cyclic.

Theorem 1.1 ([10, Theorem 1.6]). Let p be an odd prime number and K
an imaginary quadratic field such that p does not split.

(i) (trivial case) Assume that LK ∩ K̃ = K, then

dimFp(X
K̃
/(p, S, T )X

K̃
) = dimFp(AK/pAK).

(ii) Suppose that LK ∩ K̃ ̸= K, and that dimFp(AK/pAK) = 1.
(ii-a) If λ(Kc

∞/K) = 1, then dimFp(X
K̃
/(p, S, T )X

K̃
) = 1.

(ii-b) If λ(Kc
∞/K) ≥ 2, then

dimFp(X
K̃
/(p, S, T )X

K̃
) =

{
1 if LK ⊂ K̃,
2 otherwise.

Theorem 1.2 ([10, Theorem 5.12]). Let p be an odd prime number, and
K an imaginary quadratic field such that p does not split. Assume that
both Gal(LK/LK ∩ K̃) and Gal(LK ∩ K̃/K) are non-trivial. Suppose the
following conditions:

• dimFp(AK/pAK) = 2 and Gal(LK/LK ∩ K̃) is a direct summand of
Gal(LK/K).
• λ(Kc

∞/K) = 2.
• Let α, β ∈ Qp be the roots of the distinguished polynomial generating

char(XKc
∞). Then α ̸= β.

We denote by ord the normalized additive valuation on the valuation ring
O of Qp(α, β). We may assume that ord(α) ≤ ord(β). Let x2 ∈ XKc

∞

be a preimage of a generator of Gal(LK/LK ∩ K̃) by the map XKc
∞ →

Gal(LK/K). Also, we denote by the vector (µ21, µ22) the image of x2 ⊗ 1
under the injective map

XKc
∞ ⊗Zp O → OJSK/(S − α)⊕OJSK/(S − β)

defined in Section 3. We regard µ21, µ22 ∈ O by the natural isomorphisms
of O-algebras OJSK/(S − α) ∼= O and OJSK/(S − β) ∼= O. Then, X

K̃
is

ZpJS, T K-cyclic if and only if one of the following holds:
(i) k > 0, ord(β − α)− k < ord(α),
(ii) k > 0, ord(β − α)− k = ord(α), ord(µ21) = 0,
(iii) k = 0, ord(β − α) = ord(α), n1 < n2, ord(µ21) = 0,

(iv) k = 0, ord(β−α) = ord(α), n1 ≥ n2,
{

ord(µ21)=0,
ord(µ22)=ord(β)−ord(α),
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where each n1 and n2 is defined by

pn1 = # Gal(LK ∩ K̃/K) and pn2 = # Gal(LK/LK ∩ K̃),
respectively, and k will be defined in Section 3.

Remark 1.3 (Erratum). In [10], the definition of O (see p. 423 and The-
orem 5.12 in [10]) needs to be corrected as above. Also, the assumption
that both Gal(LK/LK ∩ K̃) and Gal(LK ∩ K̃/K) are non-trivial and the
assumption that ord(α) ≤ ord(β) are dropped in Theorem 5.12 of [10].

Acknowlegdments. We would like to express our sincere gratitude to
Professor Masato Kurihara. His brilliant idea in [7], which appeared in the
argument about reducing the refined class number formula to the Gross’
conjecture, inspired the series of studies described in this paper and our
previous one [10]. He always encouraged us, gave helpful suggestions, and
kindly answered our many questions. We would also like to express our
thanks to Professor Satoshi Fujii for his useful comments. We are really
grateful to the anonymous referee for their patient review of the first version
of the manuscript and giving a lot of useful comments. Their very important
suggestions help us improve our results of the fisrt version. In particular,
we could refine Theorems 4.2 and 4.3, and obtain quite satisfactory results
thanks to the helpful advice of the referee.

2. Examples of Theorem 1.1

In this section, we will give examples of Theorem 1.1. As in the previous
section, let p be an odd prime number, and K an imaginary quadratic field
in which p does not split. We denote by XK the Galois group of the maximal
abelian pro-p extension MK/K unramified outside the primes lying above
p. Let EK be the unit group of K. Let E(1)

K = {u ∈ EK | u ≡ 1 mod p},
where p is the prime of K lying above p. Note that E(1)

K is trivial unless
K = Q(

√
−3) and p = 3. By class field theory, we have the following exact

sequence:

0→ TorZp

(
U

(1)
p /φ(E(1)

K )
)
→ TorZp XK → Gal(LK/LK ∩ K̃)→ 0,

where U (1)
p is the group of the principal units in the completion of K with

respect to p, φ : E(1)
K → U

(1)
p is the natural homomorphism, and φ(E(1)

K )
is the closure of φ(E(1)

K ) in U
(1)
p . We know LK ∩ K̃ ⊂ Kan

∞ . Combining
the exact sequence above with the following lemma, we can determine the
integer n such that LK ∩ K̃ = Kan

n .

Lemma 2.1 (Fujii [3, Lemma 4.3]). Let IK(p) be the group of fractional
ideals of K prime to p and SK(pn) the Strahl group of K modulo pn, which
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consists of all fractional principal ideals (α) of K satisfying α ≡ 1 mod pn.
Let pN = p exp(AK), where exp(AK) is the exponent of AK . If

(IK(p)/SK(pn))⊗ Zp ∼= A⊕ Z/pN1Z⊕ Z/pN2Z
for some abelian group A and some integers N1, N2 satisfying N + 2 ≤
n,N < Ni (i = 1, 2), then we have TorZp XK

∼= A, non-canonically.

We also use the following criterion to determine whether LK ⊂ K̃.

Lemma 2.2 (Minardi [9, Corollary of Proposition 6.B]). Let K = Q(
√
−d)

with a square-free positive integer d. If p = 3 and d ̸≡ 3 mod 9, then LK ⊂
K̃ if and only if the class number of Q(

√
3d) is not divisible by 3.

Using Lemmas 2.1, 2.2 above and referring to Fukuda’s table for the λ-
invariants of imaginary quadratic fields ([4]), we get the following examples.

Example 2.3. Let p = 7 and K = Q(
√
−71). Then the prime 7 is inert in

K. In this case we have λ(Kc
∞/K) = 1. We can check that AK ∼= Z/7Z and

that LK ∩ K̃ = K by Lemma 2.1. Hence X
K̃

is cyclic as a ZpJGal(K̃/K)K-
module by Theorem 1.1(i).

Example 2.4. Let p = 3 and K = Q(
√
−61). Then the prime 3 is inert in

K. In this case we have λ(Kc
∞/K) = 1. We can check that AK ∼= Z/3Z and

LK ⊂ K̃ by Lemma 2.2. Hence X
K̃

is cyclic as a ZpJGal(K̃/K)K-module
by Theorem 1.1(ii-a).

Example 2.5. Let p = 3 and K = Q(
√
−1207). Then the prime 3 is inert

in K. In this case we have λ(Kc
∞/K) = 2. We can check that AK ∼= Z/32Z

and that LK ⊂ K̃ by Lemma 2.2. Hence X
K̃

is cyclic as a ZpJGal(K̃/K)K-
module by Theorem 1.1(ii-b).

Example 2.6. Let p = 3 and K = Q(
√
−186). Then the prime 3 is ramified

in K. In this case we have λ(Kc
∞/K) = 2. We can check that AK ∼= Z/3Z

and that LK ⊂ K̃ by Lemma 2.2. Hence X
K̃

is cyclic as a ZpJGal(K̃/K)K-
module by Theorem 1.1(ii-b).

Example 2.7. Let p = 3 and K = Q(
√
−6382). Then the prime 3 is inert in

K. In this case we have λ(Kc
∞/K) = 2. We can check that AK ∼= Z/32Z and

that K ̸= LK∩K̃ and LK ̸⊂ K̃. Hence X
K̃

is not cyclic as a ZpJGal(K̃/K)K-
module by Theorem 1.1(ii-b).

3. The results of Sumida

In this section, we prepare the notation to provide examples of Theo-
rem 1.2. Assume that λ(Kc

∞/K) = 2. Let α, β ∈ Qp be the roots of the
distinguished polynomial f(S) generating char(XKc

∞). In the following, we
denote Qp(α, β) by E. Let OE , πE , and ordE be the ring of integers in E, a
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prime element of E, and the normalized additive valuation on E such that
ordE(πE) = 1, respectively. Then

f(S) = (S − α)(S − β) ∈ OE [S], α, β ∈ πEOE .
We let ΛE := OEJSK, the ring of formal power series over OE .

For a finitely generated torsion ΛE-module M , we denote the ΛE-isomor-
phism class of M by [M ]E .

We consider finitely generated torsion ΛE-modules whose characteristic
ideals are (f(S)), and define the set ME

f(S) by

ME
f(S) =

{
[M ]E

∣∣∣∣M is a finitely generated torsion ΛE-module,
char(M) = (f(S)) and M is free over OE

}
.

Sumida [14] classified all the elements of ME
f(S) for any given separable

and reduceble distinguished polynomial f(S) of degree 2. (For more com-
plete classification for any given distinguished polynomial of degree 2, see
Koike [6].)

Let us introduce a special case of their results. Assume that α and β
are distinct. Let [M ]E be an element ofME

f(S). Since M has no non-trivial
finite ΛE-submodule, there exists an injective ΛE-homomorphism

φ : M ↪→ ΛE/(S − α)⊕ ΛE/(S − β)
with finite cokernel. For each isomorphic class [M ]E , we fix a representative
M ∈ [M ]E and φ as above, and regard M as a submodule in ΛE/(S−α)⊕
ΛE/(S−β). By using the canonical isomorphism ΛE/(S−α) ∼= OE (g(S) 7→
g(α)), we define an isomorphism

ι : E = ΛE/(S − α)⊕ ΛE/(S − β) −→ O⊕2
E

by (g1(S), g2(S)) 7→ (g1(α), g2(β)). We identify E with O⊕2
E via ι. Thus an

element in E is expressed as (a1, a2) ∈ O⊕2
E . Since the rank of M as an

OE-module is equal to two, we can write M of the form
M = ⟨(a, b), (c, d)⟩OE

⊂ ΛE/(S − α)⊕ ΛE/(S − β),
where ⟨∗⟩OE

is the OE-submodule generated by ∗. Furthermore, using this
notation, we can express the action of S by

S(a, b) = (αa, βb).
Then Sumida proved the following:

Proposition 3.1 (Sumida [14, Proposition 10]). Let f(S) be the polynomial
in the above. Then we have

ME
f(S) = {[M(k)]E | 0 ≤ k ≤ ordE(β − α)},

where
M(k) = ⟨(1, 1), (0, πkE)⟩OE

⊂ ΛE/(S − α)⊕ ΛE/(S − β).
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Furthermore, we have

M(k) ∼= M(k′)⇐⇒ k = k′.

The integer k in the above proposition is defined up to ΛE-isomorphism.
Consider the isomorphism class [XKc

∞⊗ZpOE ]E . Then there exists a unique
integer k such that [XKc

∞ ⊗Zp OE ]E = [M(k)]E . We define the integer k in
Theorem 1.2 in this way.

The following result is well-known, but we give a proof for convenience.

Corollary 3.2. Using the same notation as above, the condition k =
ordE(β − α) holds if and only if M is ΛE-cyclic.

Proof. We have only to show that if k = ordE(β − α), then M(k) is
ΛE-cyclic. In fact, then the converse follows simultaneously from Propo-
sition 3.1, since the ΛE-isomorphism class of ΛE-cyclic in ME

f(S) is only
[ΛE/(f(S))]. Assume that k = ordE(β − α). Then

(S − α)(1, 1) = (0, β − α) = (p-adic unit) · (0, πkE),

so M(k) is generated by the single element (1, 1). □

In the remainder of this section, we introduce a method to compute k in
Proposition 3.1 for a given element of ME

f(S) by the higher Fitting ideals,
which is briefly introduced in Kurihara [8].

For a commutative ring R and a finitely presented R-module M , we
consider the following exact sequence:

Rm
f→ Rn →M → 0,

where m and n are positive integers. For an integer i ≥ 0 such that 0 ≤
i < n, the i-th Fitting ideal of M is defined to be the ideal of R generated
by all (n− i)× (n− i) minors of the matrix corresponding to f . We denote
the i-th Fitting ideal of M by Fitti,R(M). This definition does not depend
on the choice of the exact sequence above (see [12]).

Let M be a ΛE-module satisfying [M ]E ∈ ME
f(S) and [M ]E = [M(k)]E

for some non-negative integer k with 0 ≤ k ≤ ordE(β−α). Since (1, 1) and
(0, πkE) constitute an OE-basis of M(k) by Proposition 3.1 and

S(1, 1) = (α, β)
= α(1, 1) + (β − α)π−k

E (0, πkE),
S(0, πkE) = β(0, πkE),

we have an exact sequence of ΛE-modules

0→ Λ⊕2
E

h→ Λ⊕2
E →M(k)→ 0
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such that the matrix Ah corresponding to the ΛE-homomorphism h is of
the form

Ah =
(
S − α (β − α)π−k

E
0 S − β

)
.

Therefore
Fitt0,ΛE

(M(k)) = ((S−α)(S−β)), Fitt1,ΛE
(M(k)) = (S−α, (β−α)π−k

E ).
Now, let M = XKc

∞ ⊗Zp OE and ωn(S) := (1 + S)pn − 1 ∈ Zp[S]. Then the
above exact sequence induces an exact sequence of ΛE/(ωn(S))-modules
(ΛE/(ωn(S)))⊕2 → (ΛE/(ωn(S)))⊕2 → (XKc

∞/ωn(S)XKc
∞)⊗Zp OE → 0.

Therefore we have the following:

Proposition 3.3. Using the same notation as above,

Fitt1,ΛE/(ωn(S))
(
(XKc

∞/ωn(S)XKc
∞)⊗Zp OE

)
=
(
S − α, (β − α)π−k

E , ωn(S)
)
/(ωn(S)).

If we take sufficiently large n, then we can get k in Proposition 3.1
by the equation in Proposition 3.3. Indeed, in Section 4, we compute k
in Proposition 3.1 for some Iwasawa modules associated with imaginary
quadratic fields.

4. Examples of Theorem 1.2

In this section, we give examples of Theorem 1.2. We use the same no-
tation as in the previous section and suppose that the assumption in The-
orem 1.2 holds.

4.1. Setting. We let Λ = ZpJSK and K = Q(
√
−d), where d is a positive

square-free integer. For each n ≥ 0, we denote by Kc
n the intermediate

field of the cyclotomic Zp-extension Kc
∞ such that Kc

n is the unique cyclic
extension over K of degree pn. Let AKc

n
be the p-Sylow subgroup of the ideal

class group of Kc
n. Then, by class field theory, we have XKc

∞
∼= lim←−AKc

n
,

where the inverse limit is taken with respect to the relative norms. As
in Section 1, XKc

∞ is a finitely generated torsion Λ-module via a fixed
isomorphism
(4.1) ZpJGal(Kc

∞/K)K ∼= ZpJSK (σ ↔ 1 + S),
where σ is a topological generator of Gal(Kc

∞/K). Let f(S) be the dis-
tinguished polynomial which generates char(XKc

∞). Since it is known that
XKc

∞ is a free Zp-module, we have [XKc
∞ ]Qp ∈ M

Qp

f(S). We can calculate
the polynomial f(S) mod pn for small n numerically by Mizusawa’s pro-
gram Iwapoly.ub [11, Research, Programing, Approximate Computation of
Iwasawa Polynomials by UBASIC].
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Let E = Qp(α, β). Note that f(S) is separable by the assumption in
Theorem 1.2.

Hence, as in Proposition 3.1, there exists an integer k with 0 ≤ k ≤
ordE(β − α), which depends only on the isomorphism class of XKc

∞ , and
an OE-basis e1, e2 of XKc

∞ ⊗Zp OE such that the homomorphism on ΛE-
modules

XKc
∞ ⊗Zp OE ↪→ ΛE/(S − α)⊕ ΛE/(S − β);(4.2)

e1 7→ (1, 1), e2 7→ (0, πkE)
is injective. In the case of k = 0, we have XKc

∞ ⊗Zp OE ∼= ΛE/(S − α) ⊕
ΛE/(S − β). In this case we use the standard basis {(1, 0), (0, 1)} instead
of {(1, 1), (0, 1)} and redefine e1, e2 so that

e1 7→ (1, 0), e2 7→ (0, 1)
by the map (4.2). We regard XKc

∞ ⊗Zp OE as a ΛE-submodule of ΛE/(S −
α)⊕ΛE/(S−β) by the above injection. We also regard XKc

∞ ⊂ XKc
∞⊗ZpOE

by the injection x 7→ x ⊗ 1. We can take generators x1 and x2 of XKc
∞

satisfying the following condition (CG) (see [10, Section 4]):
Condition of generator (CG).

• x1 and x2 generate XKc
∞ as a Zp-module.

• The image of x1 in Gal(LK/K) maps to a generator of Gal(LK ∩
K̃/K) by the natural projection. The image of x2 in Gal(LK/K)
becomes 0 in Gal(LK ∩ K̃/K).

We assumed that Gal(LK/LK ∩ K̃) is a direct summand of Gal(LK/K)
as in Theorem 1.2. In other words, there exists an isomorphism
(4.3) Gal(LK/K) ∼= Gal(LK ∩ K̃/K)⊕Gal(LK/LK ∩ K̃).
Write AK as AK ∼= Z/pn1Z⊕ Z/pn2Z for some positive integers n1, n2. By
exchanging n1 and n2 with each other if necessary, we may assume that the
order of Gal(LK ∩ K̃/K) is pn1 as in Theorem 1.2. Moreover, as Section 5
in [10], we may assume that the order of the projection of x1 in Gal(LK/K)
is just pn1 by (4.3). Then we have
(4.4) AK ⊗Zp OE ∼= OE/π

N1
E OE ⊕OE/π

N2
E OE ,

where Ni = eni (i = 1, 2) and e is the ramification index in E/Qp. Note
that the projection of x2 in Gal(LK/K) generates Gal(LK/LK ∩ K̃) whose
order is pn2 .

We denote by (µ11, µ12) (resp. (µ21, µ22)) the image of x1⊗1 (resp. x2⊗1)
under the map (4.2). Then we can write

x1 = λ11e1 + λ12e2 = (µ11, µ12),
x2 = λ21e1 + λ22e2 = (µ21, µ22)
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for some λij ∈ OE . Note that λ21 = µ21 in both cases where k = 0 and
those where k > 0, and that λ11λ22 − λ12λ21 ∈ O×

E . Moreover, if k = 0,
then λij = µij (i, j = 1, 2) since we take e1 = (1, 0), e2 = (0, 1).

We can easily check the condition (i) in Theorem 1.2. On the other hand,
it is not easy to check the condition (ii), (iii), and (iv) in Theorem 1.2.
Indeed, we need to compute the p-adic valuations of µ21 and µ22. In the
following subsections, we consider the method of computation of ordE(µ21)
and ordE(µ22).

4.2. Computing ordE(µ21) and ordE(µ22) in Theorem 1.2.

Lemma 4.1. Using the same notation as in Section 4.1, we have the fol-
lowing:

(i) If k > 0, we have

Sx1 = αλ11λ22 − βλ12λ21 − γλ11λ21
det(λij)ij

x1 + (β − α)λ11λ12 + γλ2
11

det(λij)ij
x2,

Sx2 = (α− β)λ21λ22 − γλ2
21

det(λij)ij
x1 + −αλ12λ21 + βλ11λ22 + γλ11λ21

det(λij)ij
x2,

where γ := (β − α)π−k
E .

(ii) If k = 0, we have

Sx1 = αλ11λ22 − βλ12λ21
det(λij)ij

x1 + (β − α)λ11λ12
det(λij)ij

x2,

Sx2 = (α− β)λ21λ22
det(λij)ij

x1 + −αλ12λ21 + βλ11λ22
det(λij)ij

x2.

Proof. Let δ = 0 or 1 according to whether or not k = 0. Then we have(
x1
x2

)
=
(
λ11 λ12
λ21 λ22

)(
e1
e2

)
, S

(
e1
e2

)
=
(
α γδ
0 β

)(
e1
e2

)
.

Therefore we have

S

(
x1
x2

)
=
(
λ11 λ12
λ21 λ22

)(
α γδ
0 β

)(
λ11 λ12
λ21 λ22

)−1 (
x1
x2

)
.

We obtain the results from this equation. □

Let A be the coefficient of x1 in the right hand side of each equation of
Sx2 in Lemma 4.1:

A =


(α− β)λ21λ22 − γλ2

21
det(λij)ij

if k > 0

(α− β)µ21µ22
det(µij)ij

if k = 0.
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Note that A ∈ Zp, since x1, x2 are elements in the ZpJSK-module XKc
∞ .

Then, we obtain the following theorem, which reduces computing ordE(µ21)
and ordE(µ22) in Theorem 1.2(ii)(iii)(iv) to computing ordE(A).
Theorem 4.2. Using the same notation as above, we assume that
ordE(α) ≤ ordE(β) as in Theorem 1.2.

(a) Suppose that k > 0. Then ordE(µ21) = 0 if and only if
ordE(A) = ordE(β − α)− k.

(b) Suppose that k = 0 and ordE(β − α) = ordE(α).
(b-i) Assume that n1 < n2. Then ordE(µ21) = 0 if and only if

ordE(A) = ordE(α).
(b-ii) Assume that n1 ≥ n2. Then ordE(µ21) = 0 and ordE(µ22) =

ordE(β)− ordE(α) if and only if
ordE(A) = ordE(β).

Proof.

(a). Suppose that k > 0. Note that λ11λ22 − λ12λ21 ∈ O×
E . Hence

ordE(A) = ordE(λ21) + ordE((α− β)λ22 − (β − α)λ21π
−k
E )

= ordE(λ21) + ordE(α− β)− k + ordE(λ21 + λ22π
k
E).

Assume that ordE(µ21) = ordE(λ21) = 0. Then ordE(λ21 + λ22π
k
E) = 0

since k > 0, and hence
ordE(A) = ordE(α− β)− k.

Conversely, if ordE(A) = ordE(β − α)− k, then we have
ordE(λ21) + ordE(λ21 + λ22π

k
E) = 0.

This implies that ordE(µ21) = ordE(λ21) = 0.

(b). Similarly, if we suppose that k = 0 and ordE(β − α) = ordE(α), then
we obtain
(4.5) ordE(A) = ordE(µ21) + ordE(µ22) + ordE(α).
On the other hand, using [10, Lemma 5.2], we have
(4.6) AK ⊗Zp OE ∼= OE/αOE ⊕OE/βOE .

(b-i). Suppose that n1 < n2. Comparing (4.4) with (4.6), we have N1 =
ordE(α) < N2 = ordE(β), since we assumed that ordE(α) ≤ ordE(β).
This induces ordE(µ12) > 0. In fact 1, if µ12 ∈ O×

E , then the OE-submodule
generated by the projection of x1 = (µ11, µ12) ∈ ΛE/(S−α)⊕ΛE/(S−β) in
AK⊗ZpOE is isomorphic to OE/πN2

E . On the other hand, by our assumption

1The same argument appears in [10, Lemma 5.10].



On the Cyclicity of the Unramified Iwasawa modules 893

of x1 (see the paragraph following the condition (CG)), the projection of
x1 in Gal(LK/K) generates a subgroup which is isomorphic to Z/pn1Z.
This implies N1 = N2, which is a contradiction. Thus, ordE(µ12) > 0. This
implies that, in the case (b-i),

ordE(µ22) = 0
holds, since µ11µ22 − µ12µ21 ∈ O×

E . Combining (4.5) with this, it follows
immediately that ordE(µ21) = 0 if and only if ordE(A) = ordE(α).

(b-ii). Suppose that n1 ≥ n2. If ordE(µ21) = 0 and ordE(µ22) = ordE(β)−
ordE(α) hold, then

ordE(A) = ordE(β)
by (4.5). Conversely, assume that ordE(A) = ordE(β). Then

ordE(µ21) + ordE(µ22) = ordE(β)− ordE(α)
by (4.5). Since µ11µ22 − µ12µ21 ∈ O×

E , we have only to consider two cases
where ordE(µ21) = 0 and where ordE(µ22) = 0. If ordE(µ21) = 0, then
ordE(µ22) = ordE(β) − ordE(α). Next, we consider the case where
ordE(µ22) = 0. Since we assumed that ordE(α) ≤ ordE(β), we have N1 =
ordE(β) ≥ N2 = ordE(α). This induces

ordE(α) = ordE(β).
In fact2, since N2 = ordE(α), we know that αx2 ∈ SXKc

∞ ⊗Zp OE . There-
fore, there exist some s, t ∈ OE ,

α(µ21, µ22) = S(s(1, 0) + t(0, 1)) = s(α, 0) + t(0, β).
Hence αµ22 = tβ. Combining µ22 ∈ O×

E with this and ordE(β) ≥ ordE(α),
we have ordE(α) = ordE(β). Therefore we obtain

ordE(µ21) = ordE(β)− ordE(α) = 0.
This completes the proof. □

Our strategy is to compute A modulo some power of p by calculating the
Galois action on ideal classes of a large enough intermediate subfield and
to compare its order ordE(A) with ordE(β − α)− k, etc.

4.3. A method of computing. In this section, we give a method of
computing ordE(A) in Theorem 4.2. Since p does not split in K, we have
Λ-isomorphisms

ψn : XKc
∞/ωn(S)XKc

∞
∼→ AKc

n

for any non-negative integers n, where ωn(S) = (1 + S)pn − 1 (see [15,
Proposition 13.22]). We fix a non-negative integer n which satisfies the
following condition (CKc

n):

2The same argument appears in [10, Lemma 5.11].
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Condition of Kc
n (CKc

n).

• If k > 0, then 0 < ordE(β − α)− k < ordE(pn1+n).
• If k = 0 and n1 < n2, then 0 < ordE(α) < ordE(pn1+n).
• If k = 0 and n1 ≥ n2, then 0 < ordE(β) < ordE(pn1+n).

Here, ordE(β − α) − k ̸= 0 by Corollary 3.2. Recall that the Iwasawa
λ-invariant of Kc

∞/K is 2. Hence AKc
n

is generated by two elements as a Zp-
module. Since the order of Gal(LK ∩ K̃/K) is pn1 , we have LK ∩ K̃ = Kan

n1 ,
where Kan

n1 is the n1-th layer of the anti-cyclotomic Zp-extension Kan
∞ /K.

For a fractional ideal a in Kc
n, we denote its ideal class by [a]. Also, for

readability, we denote additively the operation on AKc
n
. We take generators

[b1], [b2] of AKc
n

satisfying the following:

(i) [b1] = s[Q1], [b2] = t[L1] for some non-negative integers s, t and for
some prime ideals Q1,L1.

(ii) Q1,L1 are prime ideals in Kc
n lying above primes q, ℓ, respectively.

(iii) q and ℓ split completely in Kc
n/Q, respectively.

In fact, the Chebotarev density theorem ensures the existence of such prime
ideals Q1, L1. Let q, q, l, and l be prime ideals in K such that qOK = qq
and ℓOK = ll. We write

qOKc
n

= Q1Q1 · · ·QpnQpn , Qi | q, Qi | q (i = 1, . . . , pn),

ℓOKc
n

= L1L1 · · ·LpnLpn , Li | l, Li | l (i = 1, . . . , pn),

where Qi, Qi, Li, and Li are prime ideals in OKc
n
. Since the norm map

NKc
n/K

: AKc
n
→ AK is surjective, we have

(4.7) Gal(LK/K) =
〈(

LK/K

q

)s
,

(
LK/K

l

)t〉
,

where
(
LK/K

q

)
,
(
LK/K

l

)
are the Frobenius endomorphism of q, l, respec-

tively. By our assumption (4.3), there exist non-negative integers u, v such
that s | u, t | v and

(4.8) Gal(LK/LK ∩ K̃) = Gal(LK/Kan
n1 ) =

〈(
LK/K

q

)u
,

(
LK/K

l

)v〉
.

Let Q be the field corresponding to the subgroup generated by
(
LK/K

q

)s
.

Then, by exchanging [b1] and [b2] with each other if necessary, we may
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assume that LK = QKan
n1 . Furthermore, by using the commutative diagram

XKc
∞y

XKc
∞/ωn(S)XKc

∞
∼−−−−→
ψn

AKc
ny yNKc

n/K

XKc
∞/SXKc

∞
∼−−−−→
ψ0

AK ,

we know that there exist x1, x2 ∈ XKc
∞ such that

ψn(x1 mod ωn(S)) = s[Q1], ψn(x2 mod ωn(S)) = u[Q1] + v[L1].
By Nakayama’s lemma and our assumptions, we obtain XKc

∞ = ⟨x1, x2⟩
and AKc

n
= ⟨s[Q1], u[Q1] + v[L1]⟩.

These x1 and x2 satisfy the condition (CG). Moreover, the projection of
x1 in Gal(LK/K) generates Gal(LK/Q) ∼= Z/pn1Z. So we adopt these x1
and x2, which we have constructed up to modulo ωn(S) computationally,
as those taken in Section 4.1.

Finally, because Zp[Gal(Kc
n/K)] ∼= Λ/ωn(S)Λ, we get some A′, B′ ∈

Zp ∩Q such that
(4.9) S([uQ1 + vL1]) = A′(s[Q1]) +B′(u[Q1] + v[L1])
in AKc

n
, where S = S mod ωn(S). Since

AKc
n
∼= Z/pn1+nZ⊕ Z/pn2+nZ

by [6, Proposition 2.2], the order of s[Q1] in the ideal class group AKc
n

is
pn1+n. Therefore, A′ is determined up to mod pn1+n. In particular, if A′ ≡ 0
mod pn1+n, then we may assume that A′ = 0. Since the image of x1 in AKc

n

by the commutative diagram above is s[Q1], we know that A in Section 4.2
satisfies A ≡ A′ mod pn1+n. Hence, if A′ ̸≡ 0 mod pn1+n, then ordE(A′) is
uniquely determined and

ordE(A) = ordE(A′) < ordE(pn1+n).
On the other hand, if A′ ≡ 0 mod pn1+n, then ordE(A′) is infinity by the
choice of A′. Then we have the following.

Theorem 4.3. Using the same notation as above, we suppose the assump-
tion in Theorem 1.2. We fix a non-negative integer n which satisfies the
condition (CKc

n). Then X
K̃

is cyclic as a ZpJGal(K̃/K)K-module if and
only if one of the following holds:

(i) k > 0, ordE(β − α)− k < ordE(α),
(ii) k > 0, ordE(β−α)−k = ordE(α), ordE(A′) = ordE(β−α)−k,
(iii) k = 0, ordE(β − α) = ordE(α), n1 < n2, ordE(A′) = ordE(α),
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(iv) k = 0, ordE(β − α) = ordE(α), n1 ≥ n2, ordE(A′) = ordE(β),
where A′ is given by (4.9).

Proof. The condition (i) is the same as in Theorem 1.2(i). Consider the case
(ii). By Theorem 1.2(ii) and Theorem 4.2(a), we have only to show that
ordE(A′) = ordE(β−α)−k if and only if ordE(A) = ordE(β−α)−k. First,
suppose that ordE(A′) = ordE(β − α)− k holds. If A ≡ 0 mod pn1+n, then
we obtain A′ ≡ 0 mod pn1+n and ordE(A′) = ∞ by the above definition,
which contradicts the assumption. Hence A ̸≡ 0 mod pn1+n and ordE(A) =
ordE(A′) = ordE(β−α)−k. Conversely, suppose ordE(A) = ordE(β−α)−k
holds. Then, by the assumption about ordE(β−α)−k, we have A ̸≡ 0 mod
pn1+n. Hence ordE(A′) = ordE(A) = ordE(β − α)− k.

The rest is the same as in (ii). □

4.4. Examples of Theorem 1.2.

Example 4.4. Let p = 3 and K = Q(
√
−12394). Using PARI/GP [13],

we have AK ∼= Z/9Z ⊕ Z/3Z. By Lemma 2.1, we have LK ∩ K̃ = Kan
2 .

Indeed, we have (I(3)/S(35))⊗Z3 ∼= Z/3Z⊕Z/34Z⊕Z/36Z. Hence we get
Gal(LK/LK ∩ K̃) ∼= Z/3Z. This implies that LK ∩ K̃ = Kan

2 . Moreover,
using [1, Theorem 2], we obtain

S18 + 18S16 + 1069S14 − 4372S12 + 152180S10 − 1347136S8

+ 2053184S6 + 36414976S4 − 166023168S2 + 203063296
as a defining polynomial ofKan

2 over Q. By Mizusawa’s program Iwapoly.ub,
we have

f(S) ≡ S2 + 90S + 189 mod 35.

Let E be the minimal splitting field of f(S). We let f(S) = (S−α)(S−β),
where α and β ∈ E. Then we have α + β ≡ −90 mod 35. Thus we get
(α − β)2 = (α + β)2 − 4αβ ≡ 902 − 4 · 189 ≡ 24 · 33 · 17 mod 35. Since the
discriminant of f(S) is 24 ·33 ·17 mod 35, E/Qp is a ramified extension and
we get ordE(α− β) = 3. By the table in [6], we obtain

XKc
∞ ⊗Zp OE ∼= ⟨(1, 1), (0, π2

E)⟩OE
,

which implies that k = 2 in Theorem 1.2. Since we have ordE(α− β) = 3,
we obtain ordE(α− β)− k = 1 < 3.

Therefore X
K̃

is cyclic as a ZpJGal(K̃/K)K-module by Theorem 1.2(i).

We can also obtain the same result as above by the following.

Proposition 4.5. We use the same notation as in Section 4.3. Suppose
the following conditions:

(i) AK ∼= Z/pm1Z⊕ Z/pm2Z (m1 < m2),
(ii) LK ∩ K̃ = Kan

m2,
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(iii) ordE(α) = ordE(β).
Then X

K̃
is cyclic as a ZpJGal(K̃/K)K-module.

Proof. Using [10, Lemma 5.2], we have

AK ⊗Zp OE

∼=

OE/αOE ⊕OE/βOE if ordE(β − α)− k ≥ m,
OE/(β − α)π−k

E OE ⊕OE/
αβ

(β−α)π−k
E

OE . if ordE(β − α)− k < m,

where m = min{ordE(α), ordE(β)}. This implies that k > 0 by assumptions
(i) and (iii). Hence we have ordE(β−α)−k < m. Moreover, Gal(LK/LK∩K̃)
is a direct summand of Gal(LK/K) by (ii). By Theorem 1.2(i), we get the
conclusion. □

By Proposition 4.5 and Table 4.2, which is obtained by Mizusawa’s pro-
gram Iwapoly.ub, we obtain Table 4.1. The second, the third and the fifth
columns in Table 4.1 imply that the examples in the table satisfy (i), (ii)
and (iii) in Proposition 4.5, respectively.

Table 4.1.

d AK LK ∩ K̃ E/Q3 (ordE(α), ordE(β)) ordE(α− β) k X
K̃

5703 (3, 9) Kan
2 ramified (3,3) 3 2 cyclic

12394 (3, 9) Kan
2 ramified (3,3) 3 2 cyclic

50293 (3, 9) Kan
2 ramified (3,3) 3 2 cyclic

54931 (3, 9) Kan
2 ramified (3,3) 3 2 cyclic

89269 (3, 27) K3
an unramified (2,2) 3 2 cyclic
(The integer k is defined by (4.2).)

Table 4.2.

d a generator of char(XKc
∞) mod 35

5703 S2 + 63S + 135
12394 S2 + 63S + 27
50293 S2 + 54S + 189
54931 S2 + 135S + 216
89269 S2 + 63S + 81

The following example is a case in which X
K̃

is not cyclic as a
ZpJGal(K̃/K)K-module.
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Example 4.6. Let p = 3 and K = Q(
√
−42619). Using PARI/GP, we have

AK ∼= Z/3Z⊕ Z/3Z. We have LK ∩ K̃ = Kan
1 . Hence Gal(LK/LK ∩ K̃) is

a direct summand of Gal(LK/K). We get

f(S) ≡ S2 + 573S + 981 mod 37.

By Hensel’s Lemma, there exist α, β ∈ Zp such that f(S) = (S−α)(S−β).
Then we have α+β ≡ −573 mod 37. Thus we get (α−β)2 = (α+β)2−4αβ ≡
5732−4 ·981 ≡ 36 mod 37. Hence we have the p-adic order ordp(α−β) = 3.
In this case, although [6] could not determine the isomorphism class of
XKc

∞ , we can determine it using the method in Section 3 as follows.
We compute

AKc
2

= Z/27Z [b1]⊕ Z/27Z [b2]
for some ideals b1 and b2 in OKc

2
. Take a generator ρ of Gal(Kc

2/K). These
b1, b2, and ρ are computed by PARI/GP. We will not describe the com-
plicated computation of ρ due to space limitations. There is a topological
generator ρ ∈ Gal(Kc

∞/K) such that ρ is an extension of ρ. Note that
we have the isomorphism (4.1) by fixing the topological generator σ, and
that we regard XKc

∞ as a ZpJSK-module by the isomorphism. We can easily
check that ordp(α), ordp(β), ordp(α−β), andMQp

f(S) do not depend on the
choice of σ, although f(S) depends on the choice of σ. Therefore, since we
do not use the form of f(S) in the rest of this example, we may replace σ
with ρ. We also compute that

σ[b1] = 4[b1], σ[b2] = 4[b2].

Hence we have

Fitt1,ZpJSK/(ω2(S))(XKc
∞/ω2(S)XKc

∞) = (S − 3, 27, ω2(S))/(ω2(S)).

Using Proposition 3.3, we obtain k = 0. Indeed, applying Proposition 3.3
for n = 2, we have

(S − α, (β − α)π−k, ω2(S))/(ω2(S)) = (S − 3, 27, ω2(S))/(ω2(S))
= (S − 3, 27, ω2(3))/(ω2(S))
= (S − 3, 27)/(ω2(S)),

since ordp(ω2(3)) = 3. Thus we have ordp((β − α)π−k) ≥ 3 and k = 0.
We can easily check that none of the conditions in Theorem 1.2 holds.

Therefore X
K̃

is not cyclic as a ZpJGal(K̃/K)K-module by Theorem 1.2.

By the same methods as in Example 4.6 for p = 3 and by Table 4.4,
which is obtained by Mizusawa’s program Iwapoly.ub, we obtain Table 4.3.

On the other hand, using Theorems 1.2(iv) and 4.3(iv), we obtain the
following example in which X

K̃
is cyclic as a ZpJGal(K̃/K)K-module.
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Table 4.3.

d AK LK ∩ K̃ E/Q3 (ordE(α), ordE(β)) ordE(α− β) k X
K̃

32137 (3, 3) Kan
1 E = Qp (1,1) 2 0 non-cyclic

34989 (3, 3) Kan
1 ramified (2,2) 5 3 non-cyclic

42619 (3, 3) Kan
1 E = Qp (1,1) 3 0 non-cyclic

(The integer k is defined by (4.2).)

Table 4.4.

d a generator of char(XKc
∞) mod 37

32137 S2 + 1047S + 1386
34989 S2 + 66S + 117
42619 S2 + 573S + 981

Example 4.7. Let p = 3 and K = Q(
√
−2437). We will prove that X

K̃

is a ZpJGal(K̃/K)K-cyclic module using PARI/GP. In this case we have
ClK ∼= Z/6Z ⊕ Z/3Z and ClKc

1
∼= Z/3906Z ⊕ Z/9Z. Hence we have AK ∼=

Z/3Z⊕ Z/3Z and AKc
1
∼= Z/9Z⊕ Z/9Z. On the other hand, we have

f(S) ≡ S2 + 9S + 9 mod 33

by Mizusawa’s program Iwapoly.ub. Let E be the minimal splitting field
of f(S). We set f(S) = (S − α)(S − β), where α and β ∈ E. Since the
discriminant of f(S) is 45 mod 33, E/Qp is an unramified extension and
we get ordE(α− β) = 1. By the table in [6], we obtain

XKc
∞ ⊗Zp OE ∼= ⟨(1, 0), (0, 1)⟩OE

,

which implies that k = 0 in Theorem 1.2.
By Lemma 2.1, we have LK ∩ K̃ = Kan

1 . Indeed, we have (I(3)/S(34))⊗
Z3 ∼= Z/3Z⊕Z/33Z⊕Z/34Z. Hence Gal(LK/LK ∩ K̃) is a direct summand
of Gal(LK/K). Using [1, Theorem 2], we obtain

x6 − 20x4 + 100x2 + 38992

as a defining polynomial of Kan
1 over Q. We can check that both 53 and

251 are primes which split completely in Kc
1/Q. We set

q = (251, −18 +
√
−2437),

l = (53, 1 +
√
−2437),

which are prime ideals in K lying above 251, 53, respectively. Using
PARI/GP, we compute prime ideals Qi,Qi,Li, Li in OKc

1
(i = 1, 2, 3)
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which satisfy

251OKc
1

= Q1Q1 · · ·Q3Q3,

53OKc
1

= L1L1 · · ·L3L3

and Qi | q, Qi | q, Li | l, Li | l for i = 1, 2, 3. We also compute

ClKc
1

= Z/(434 · 9)Z [c1]⊕ Z/9Z [c2]

for some ideals c1 and c2 in OKc
1
, which was computed by PARI/GP. Pick

one of Qi | q (resp. Li | l) and we may assume that it is Q1 (resp. L1). As in
Section 4.3, we take generators {434[Q1], 434[L1]} of AKc

1
; in other words,

AKc
1

= Z/9Z 434[Q1]⊕ Z/9Z 434[L1].

This implies that both s and t in Section 4.3 are 434.
Now, to obtain a representation as (4.9), we consider the Galois action

of Gal(Kc
1/K) to [Q1] and [L1]. Write [Q1] and [L1] as linear forms of [c1]

and [c2]:
[Q1] = 2677[c1] + [c2], [L1] = 3004[c1] + 8[c2].

On the other hand, we can compute

Gal(LK/Kan
1 ) =

〈(
LK/K

q

)
·
(
LK/K

l

)〉
=
〈(

LK/K

q

)434
·
(
LK/K

l

)434〉
;

in other words, both u and v in Section 4.3 are 434. Let ρ be a generator of
Gal(Kc

1/K), which was computed by PARI/GP. We will not describe the
complicated computation of ρ due to space limitations. Then, by computa-
tion of ρ[c1] and ρ[c2], we can write ρ[Q1] and ρ[L1] as linear forms of [c1]
and [c2]:

ρ[Q1] = 2659[c1] + 4[c2],
ρ[L1] = 1318[c1] + 8[c2].

Take a topological generator ρ ∈ Gal(Kc
∞/K) such that ρ is an extension of

ρ. As in Example 4.6, we may replace σ, which gives the isomorphism (4.1),
with ρ, since ordp(α), ordp(β), ordp(α − β), and MQp

f(S) do not depend on
the choice of σ and we do not use the form of f(S) in the rest of this
example. Since Zp[Gal(Kc

1/K)] ∼= Λ/ω1(S)Λ, we get

S[Q1] = − 9156
18412[Q1] + 8049

18412[L1],

S[L1] = −13488
18412[Q1] + 1686

18412[L1],
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where S = S mod ω1(S). Using the commutative diagram before Theo-
rem 4.2, we can take x1, x2 ∈ XKc

∞ such that

ψ1(x1 mod ω1(S)) = 434[Q1], ψ1(x2 mod ω1(S)) = 434[Q1] + 434[L1].

These equations imply that (4.9) becomes

Sx2 mod ω1(S) = −32379
18412x1 + 9735

18412x2 mod ω1(S).

Thus A′ in Section 4.3 is−32379
18412 . We have ordE

(
32379
18412

)
= 1 = ordE(β). This

means that X
K̃

is a cyclic ZpJGal(K̃/K)K-module by Theorem 4.3(iv).

By the same methods as in Example 4.7 and Table 4.6, which are ob-
tained by [1, Theorem 2] and PARI/GP, respectively, we obtain Table 4.5.

Table 4.5.

d AK LK ∩ K̃ E/Q3 (ordE(α), ordE(β)) ordE(α− β) k X
K̃

2437 (3, 3) Kan
1 unramified (1,1) 1 0 cyclic

3886 (3, 3) Kan
1 E = Qp (1,1) 1 0 cyclic

4027 (3, 3) Kan
1 E = Qp (1,1) 1 0 cyclic

7977 (3, 3) Kan
1 unramified (1,1) 1 0 cyclic

(The integer k is defined by (4.2).)

Table 4.6.

d Defining polynomial of Kan
1

2437 x6 − 20x4 + 100x2 + 38992
3886 x6 − 66x4 + 1089x2 + 62176
4027 x6 − 44x4 + 484x2 + 4027
7977 x6 − 2x5 − 53x4 + 126x3 + 8634x2 − 1944x+ 1296
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