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Control Theorems for Fine Selmer Groups

par Debanjana KUNDU et Meng Fai LIM

Résumé. Nous étudions la croissance du groupe de Selmer fin p-primaire
R(E/F ′) d’une courbe elliptique sur une sous-extension intermédiaire F ′

d’une extension de Lie p-adique, L/F . Nous estimons le Zp-corang du noyau et
du conoyau de l’application de restriction rL/F ′ : R(E/F ′)→R(E/L)Gal(L/F ′),
où F ′ est une extension finie de F contenue dans L. Nous montrons égale-
ment que la croissance des groupes de Selmer fins dans ces sous-extensions
intermédiaires est liée à la structure du groupe de Selmer fin au niveau infini.
En spécialisant au cas des extensions de Lie p-adiques classiques (éventuelle-
ment non commutatives), nous prouvons la finitude du noyau et du conoyau
et fournissons des estimations de croissance de leurs ordres.

Abstract. We study the growth of the p-primary fine Selmer group,
R(E/F ′), of an elliptic curve over an intermediate sub-extension F ′ of a p-
adic Lie extension, L/F . We estimate the Zp-corank of the kernel and cokernel
of the restriction map rL/F ′ : R(E/F ′) → R(E/L)Gal(L/F ′) with F ′ a finite
extension of F contained in L. We show that the growth of the fine Selmer
groups in these intermediate sub-extension is related to the structure of the
fine Selmer group over the infinite level. On specializing to certain (possibly
non-commutative) p-adic Lie extensions, we prove finiteness of the kernel and
cokernel and provide growth estimates on their orders.

1. Introduction

Iwasawa theory began as the study of ideal class groups over infinite tow-
ers of number fields [16]. In his fundamental paper [32], Mazur developed an
analogous theory to study the growth of Selmer groups of Abelian varieties
in Zp-extensions. He proved what is nowadays called a “control theorem”,
which we describe briefly here. Let A be an Abelian variety defined over a
number field, F , with potential good ordinary reduction at all primes above
p, and let L be a Zp-extension of F . For every intermediate sub-extension
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F ′ of L/F , we have natural maps

sL/F ′ : Sel(A/F ′) −→ Sel(A/L)Gal(L/F ′)

on the Selmer groups induced by the restriction maps on cohomology.
Mazur’s Control Theorem asserts that the kernel and cokernel of sL/F ′

are finite and bounded independent of F ′. The Control Theorem has subse-
quently been generalized to general p-adic Lie extensions by Greenberg [11].
Such a Control Theorem has great importance in Iwasawa theory. In [32],
Mazur conjectured that the Selmer group Sel(A/F cyc) is cotorsion over
ZpJΓK, where Γ = Gal(F cyc/F ) and F cyc is the cyclotomic Zp-extension of
F . The first theoretical evidence towards this conjecture was provided by
Mazur himself; using the Control Theorem, he verified the conjecture when
Sel(A/F ) is finite. Till date, this conjecture is known only when E is an
elliptic curve over Q and F is an Abelian extension of Q; see [18, 38]. The
Selmer group Sel(A/F cyc) is known to be related to a p-adic L-function
via the main conjecture. Therefore, Mazur’s Control Theorem opens up a
channel to extract information on Sel(A/F ) from the said main conjecture
which provides an invaluable approach towards the study of the Birch and
Swinnerton-Dyer Conjecture (for instance, see [18, 38, 45]). The Control
Theorem connects the Selmer groups at the finite layers with the Selmer
group over the infinite tower, thereby allowing one to deduce properties of
this arithmetic object over the infinite tower from those at the finite layers,
and vice versa.

Recently, there has been an interest in the study the fine Selmer group
(see [6, 17, 23, 25, 27, 30, 36, 49, 51]). This is a subgroup of the classical
Selmer group obtained by imposing stronger vanishing conditions at primes
above p (see Section 5 for its definition). In [6], Coates and Sujatha initiated
a systematic study of the fine Selmer group and postulated conjectures on
its structure over a p-adic Lie extension. In this paper, we prove Control
Theorems for fine Selmer groups of elliptic curves in general p-adic Lie
extensions. This allows us to deduce properties of the fine Selmer group
over the infinite tower from those at the finite layers, and vice versa. We
remark that the (classical) Control Theorem can be proven only when the
Abelian variety has potential good ordinary reduction at primes above p
(see [10, p. 51]); however, our results do not require this hypothesis.

First, we establish estimates on the Zp-coranks of the kernel and cokernel
of the restriction maps

rL/F ′ : R(E/F ′) −→ R(E/L)Gal(L/F ′)

for a p-adic Lie extension L/F . Using these, we show how the module theo-
retic structure of R(E/L) determines the growth of Zp-coranks of R(E/F ′)
in intermediate sub-fields F ′. To obtain sharper results, we specialize to
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three cases of p-adic Lie extensions: Zd
p-extensions, multi-false-Tate exten-

sions, and the trivializing extension obtained by adjoining to F all the
p-power division points of the elliptic curve, E. In each of these cases, we
show (under appropriate assumptions) that the kernel and cokernel of the
restriction map are finite, and establish growth estimates for their orders.

For a Zd
p-extension, Control Theorems have been studied in [27, 39, 49,

51], often with additional hypotheses. Our results however, are more general
and can provide precise growth estimates for the kernel and cokernel of
rL/F ′ . Further, we prove that if R(E/F ) is finite, then R(E/F∞) is cotorsion
over ZpJGK, where G = Gal(F∞/F ) ∼= Zd

p. This provides the impetus to
conjecture the following.
Conjecture (Conjecture Yd). Let F∞ be a p-adic extension of F with G =
Gal(F∞/F ) ∼= Zd

p. Then R(E/F∞)∨ is a torsion ZpJGK-module.
When d = 1, this is conjectured by the second named author in [27].

Currently, we refrain from formulating a more general conjecture, such as
over a non-commutative p-adic extension not containing the cyclotomic
Zp-extension, as we feel there is insufficient evidence towards the same.

Control Theorems for fine Selmer groups over non-commutative exten-
sions (e.g. (multi) false-Tate extensions and trivializing extensions) have
not been recorded in the literature. The key step of controlling the growth
of the cokernel requires careful analysis of the local restriction maps at
primes above p. We emphasize that the method of proof differs from that
of Greenberg in [11], where he developed a Lie algebraic approach to at-
tack such problems. The main reason for requiring a different approach is
that we want to estimate the growth of cohomology groups of open sub-
groups of a p-adic Lie group. However, open subgroups share the same Lie
algebra, therefore the cohomology of the Lie algebra cannot distinguish the
cohomology groups of the subgroups. Our analysis is therefore significantly
different, intricate, and in fact, more effective than the case of the (classical)
Selmer group. Our results show that the (conjectured) structure of the fine
Selmer group at the infinite level has bearing on the growth of the size of
R(E/Fn)[pn]. Finally, we remark that our argument uses an improvement
of Tate’s Lemma (see Lemma 2.3) which should be interesting in its own
right, and should potentially have further applications.

It would seem that some of our results may be extended to fine Selmer
groups attached to Abelian varieties, modular forms or even broader classes
of Galois representations of interest. Our case of representations arising
from elliptic curves can therefore be seen as a first step in this line of study.

We now give an outline of the paper. In Section 2, 3, we record algebraic
facts required throughout this article. In Section 4, we estimate the growth
of cohomology groups of the p-division points of an elliptic curve in a p-
adic Lie extension of a local field. In Section 5, we prove a Control Theorem
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which studies the growth of the Zp-coranks of the kernel and cokernel of
the restrictions maps in a general p-adic Lie extension. We also study an
analogue where we vary the cyclotomic Zp-extensions of the intermediate
sub-extensions. In Section 6, we prove more precise versions of the Control
Theorem in special cases and establish (with growth estimates) the finite-
ness of the kernel and cokernel of the restriction map. In Section 7, we
provide numerical examples to illustrate our otherwise abstract results.

2. Some Basic Estimates on Cohomology

In this section, we record estimates on the cohomology groups which
are required throughout the article. For an Abelian group, M , let M [pj ]
denote the subgroup of M consisting of elements of M annihilated by pj .
Write M [p∞] for

⋃
j≥1 M [pj ]. If M is a discrete p-primary Abelian group

or a compact pro-p Abelian group, we define its Pontryagin dual, M∨ =
Homcont(M,Qp/Zp). For a profinite group, G, and a G-module, M , let
MG be the subgroup of M consisting of elements fixed by G and MG be
the largest quotient of M on which G acts trivially. If M is a discrete G-
module, we write H i(G, M) for the i-th Galois cohomology group of G with
coefficients in M .

Lemma 2.1. Let G be a pro-p group and M be a discrete G-module which
is cofinitely generated over Zp. If h1(G) = dimZ/pZ(H1(G,Z/pZ)) is finite,
then

dimZ/pZ(H1(G, M)[p]) ≤ h1(G)(corankZp(M) + ordp|M/Mdiv|).

If h2(G) = dimZ/pZ(H2(G,Z/pZ)) is finite, then

dimZ/pZ(H2(G, M)[p]) ≤ h2(G)(corankZp(M) + ordp|M/Mdiv|).

Proof. The first inequality is proven in [29, Lemma 3.2]. The second in-
equality is proven similarly. □

When M is a finite G-module, we have the following sharper conclusion.

Lemma 2.2. Let G be a pro-p group and M be a (finite) discrete G-module
which is a finite p-group. If h1(G) = dimZ/pZ(H1(G,Z/pZ)) is finite, then
H1(G, M) is finite with

ordp|H1(G, M)| ≤ h1(G) ordp|M |.
If h2(G) = dimZ/pZ(H2(G,Z/pZ)) is finite, then H2(G, M) is finite with

ordp|H2(G, M)| ≤ h2(G) ordp|M |.

Proof. This follows from a standard dévissage argument and noting that
the only simple discrete G-module is Z/pZ with trivial G-action (cf. [34,
Corollary 1.6.13]). □
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If F is a finite extension of Q or Qp which contains a primitive root of
unity, and Γ = Gal(F (µp∞)/F ), then Tate’s Lemma (see [46, p. 526]) asserts
that H1(Γ,Qp/Zp(i)) = 0 for i ̸= 0. Observe that H0(Γ,Qp/Zp(i)) is finite
by virtue of i ̸= 0. Motivated by this observation, we prove the following
lemma which can be thought of as a generalization of Tate’s Lemma. We
note that our argument is different from the classical proof.

Lemma 2.3. Let G ∼= Zp and M be a discrete, p-divisible G-module, which
is cofinitely generated over Zp. If MG is finite, then H1(G, M) = 0.

Proof. Set U = M∨. This is a compact ZpJGK-module which is finitely
generated over Zp. Thus, it is torsion over ZpJGK, and

0 = rankZpJGnK(U) = rankZp UG − rankZp UG.

This combined with the hypothesis that UG = (MG)∨ is finite, yields that
UG is finite. Since M is p-divisible, U is Zp-torsion free. Since UG is finite,
it follows that UG = 0. But,

H1(G, M)∨ ∼= (MG)∨ ∼= UG = 0,

where the first isomorphism follows from [34, Proposition 1.7.7(i)]. □

3. Modules over the Iwasawa Algebra

Throughout, p denotes a fixed prime. We record algebraic facts required
in this article.

3.1. Uniform pro-p groups. In this subsection, we lay out some facts
regarding a uniform pro-p group. For further background on these groups,
we refer the reader to [8].

For a finitely generated pro-p group, G, we write Gpn = ⟨gpn | g ∈ G⟩,
i.e., the group generated by the pn-th-powers of elements in G. We also
write G{pn} = {gpn | g ∈ G}, i.e., the set consisting of the pn-th-powers of
elements in G. The pro-p group G is said to be powerful if G/Gp (resp.
G/G4) is Abelian for odd p (resp. p = 2). Here (·) denotes the closure with
respect to the topology of the pro-p group. The lower p-series of G is defined
by P1(G) = G, and

Pn+1(G) = Pn(G)p[Pn(G), G], for i ≥ 1.

By [8, Theorem 3.6], if G is powerful, then Gpn = G{pn} = Pn+1(G). Fur-
ther, the p-power map

Pn(G)/Pn+1(G) ·p−→ Pn+1(G)/Pn+2(G)
is surjective for each n ≥ 1. If the p-power maps are isomorphisms for all n ≥
1, we say G is uniformly powerful (abbrv. uniform). Then, [G : P2(G)] =
[Pi(G) : Pn+1(G)] for every n ≥ 1. Consequently, [G : Pn+1(G)] = pnd,
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where d = dim G (see [8, Definition 4.1]). A well-known result of Lazard
(cf. [8, Corollary 8.34]) asserts that a compact p-adic Lie group always
contains an open normal uniform subgroup. Therefore, one can always re-
duce consideration for a general compact p-adic Lie group to the case of a
uniform group, which we will do throughout the paper. In particular, for a
uniform group, we have Gpn = G{pn}, which will be utilized without further
mention.

We record the following lemma which will also be applied frequently
without mention.

Lemma 3.1. Let G be a uniform group and N be a closed normal subgroup
of G such that R := G/N is uniform. Then N is also uniform. Furthermore,
writing Nn = Npn, Gn = Gpn, and Rn = Rpn, we have Nn = Gn ∩N and
Gn/Nn

∼= Rn.

Proof. Using [8, Proposition 4.31], N is a uniform group. Clearly, one has
Nn ⊆ Gn ∩N . Conversely, let x ∈ Gn ∩N . Then x = ypn for some y ∈ G;
hence, the coset yN is a torsion element in R = G/N . Since R is assumed
to be uniform, it has no p-torsion (cf. [8, Theorem 4.5]); so yN = N or
y ∈ N . Hence, x = ypn ∈ Nn. This proves the first equality. The second
follows from the observation that

Gn/Nn = Gn/(Gn ∩N) ∼= GnN/N = Gpn
N/N = (G/N)pn = Rn. □

3.2. Torsion modules and pseudo-null modules. For a compact p-
adic Lie group, G, its Iwasawa algebra is the completed group algebra of G
over Zp. It is given by

ZpJGK = lim←−
U

Zp[G/U ],

where U runs over the open normal subgroups of G and the inverse limit
is taken with respect to the canonical projection maps.

When G is pro-p and has no p-torsion, it is well-known that ZpJGK is an
Auslander regular ring (cf. [47, Theorem 3.26]; for the definition of Auslan-
der regular rings, see [47, Definition 3.3]). Furthermore, the ring ZpJGK has
no zero divisors (cf. [35]), and therefore, admits a skew field, Q(G), which
is flat over ZpJGK (see [9, Chapters 6 and 10] or [20, Chapter 4, §9 and
§10]). If M is a finitely generated ZpJGK-module, define the ZpJGK-rank of
M as

rankZpJGK M = dimQ(G) Q(G)⊗ZpJGK M.

A ZpJGK-module, M , is torsion if rankZpJGK M = 0. Equivalently, M is
torsion if and only if HomZpJGK(M,ZpJGK) = 0 (cf. [24, Lemma 2.2.1]).
A torsion ZpJGK-module, M , is pseudo-null if Ext1

ZpJGK(M,ZpJGK) = 0.
Finally, we record a result which will be frequently used in our discussion.
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Proposition 3.2 (Harris [13]). Let G be a d-dimensional uniform group.
Let M be a finitely generated ZpJGK-module. Then,

rankZp(MGn) = rankZpJGK(M)pdn + O(p(d−1)n).
3.3. µG-invariant. In this subsection, G will denote a uniform group.
Therefore, both ZpJGK and FpJGK are Auslander regular rings with no zero
divisors. For a finitely generated ZpJGK-module, M , it follows from [15,
Proposition 1.11] (or [47, Theorem 3.40]) that there is a ZpJGK-homomor-
phism

φ : M [p∞] −→
s⊕

i=1
ZpJGK/παi ,

whose kernel and cokernel are pseudo-null ZpJGK-modules. Furthermore,
the integers s and αi are uniquely determined. We define the µG-invariant,
µG(M) =

∑s
i=1 αi.

Lemma 3.3. Let M be a finitely generated ZpJGK-module. Suppose there
is a ZpJGK-homomorphism

φ : M [p∞] −→
s⊕

i=1
ZpJGK/pαi ,

whose kernel and cokernel are pseudo-null ZpJGK-modules. Then,

µG(M/pn) = n rankZpJGK(M) +
s∑

i=1
min{n, αi} for n ≥ 1.

In particular, M is ZpJGK-torsion with trivial µG-invariant if and only if
µG(M/p) = 0.
Proof. The first equality is [24, Lemma 2.4.1]; the last assertion follows
immediately. □

Proposition 3.4. For G a d-dimensional uniform group, and M a finitely
generated FpJGK-module,

ordp|MGn | = µG(M)pdn + O(p(d−1)n).
Proof. See [37, Théorème 2.1] or [24, Proposition 2.5.1]. □

4. Local Considerations

We now estimate the growth of the first cohomology group of the p-
division points of an elliptic curve in a p-adic Lie extension of a local field.
For an extension L of a local field, and a Gal(L/L)-module, M , we write
H i(L, M) for the cohomology group H i(Gal(L/L), M). Throughout, K is
a local field and K∞ is a uniform p- adic Lie extension, i.e., it is a pro-p
extension of K with Galois group G = Gal(K∞/K) which is assumed to
be uniform. We write Gn = Gpn .
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4.1. Local field over Qℓ with ℓ ̸= p. Let K be a finite extension of Qℓ,
where ℓ ̸= p. By a classical result of Iwasawa (cf. [34, Theorem 7.5.3]), if
K∞/K is a uniform p-adic Lie extension, we know that Gal(K∞/K) ∼= Zp

or Zp ⋊ Zp. Further, Iwasawa’s result shows that the Zp ⋊ Zp-extension of
K is unique. We now estimate the growth of the first cohomology group in
both cases.

Proposition 4.1. Let E be an elliptic curve defined over K, and K∞/K
be a uniform extension of K. Then, the group H1(Gn, E(K∞)[p∞]) is finite
for every n. Furthermore, the following assertions are true.

(a) If Gal(K∞/K) ∼= Zp, then |H1(Gn, E(K∞)[p∞])| = O(1).
(b) If Gal(K∞/K) ∼= Zp⋊Zp, then dimZ/pZ(H1(Gn, E(K∞)[p∞])[p]) =

O(1) and ordp|H1(Gn, E(K∞)[p∞])| = O(n).

Proof.

(a). This is proven in [27, Lemma 3.4].

(b). The first estimate follows from Lemma 2.1. For the second estimate,
note that by Iwasawa’s result (cf. [34, Theorem 7.5.3]), K∞ has no non-
trivial p-extension, so H1(K∞, E[p∞]) = 0. By the inflation-restriction se-
quence, we obtain that

H1(Gn, E(K∞)[p∞]) ∼= H1(Kn, E[p∞]).
Here Kn refers to the field fixed by Gn. Since ℓ ̸= p, the latter is isomorphic
to H1(Kn, E)[p∞]; this in turn is isomorphic to (E(Kn)[p∞])∨ by Tate-
duality (cf. [33, Chapter I, Corollary 3.4]). It is now easy to see that this is
finite and ordp|(E(Kn)[p∞])∨| = O(n). □

4.2. Local field over Qp. We now consider the situation when K is a
finite extension of Qp, and E is an elliptic curve defined over K. We begin
with the following easy observation.

Proposition 4.2. Let K∞ be a uniform p-adic Lie extension of K of dimen-
sion d. Suppose E(K∞)[p∞] is finite. Then, the group H1(Gn, E(K∞)[p∞])
is finite and

ordp|H1(Gn, E(K∞)[p∞])| = O(1).

Proof. This follows from Lemma 2.2. □

Proposition 4.3. Let K∞ be a Zd
p-extension of K. Then

H1(Gn, E(K∞)[p∞]) is finite and ordp|H1(Gn, E(K∞)[p∞])| = O(n).

Proof. Observe that H0(Gn, E(K∞)[p∞]) = E(Kn)[p∞] is finite because for
any elliptic curve over a local field the torsion subgroup is finite, see [44,
Proposition VII.6.3]. The finiteness of H1(Gn, E(K∞)[p∞]) is then essen-
tially a consequence of this and [42, Chapter IV, Theorem 1]. (One may
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also consult p. 106 in op. cit., where they obtain a result for k[G], where k is
a field. But the same discussion carries over if k is replaced by Zp.) In view
of this finiteness observation, we may apply Lemma 2.1 to conclude that
dimZ/pZ H1(Gn, E(K∞)[p∞])[p] is bounded independent of n. On the other
hand, by [7, Theorem 2.8] (or [22, Lemma 2.1.1]) there exists a constant
c independent of n such that pdn+c annihilates H1(Gn, E(K∞)[p∞]). The
assertion follows from these observations. □

Remark 4.4. If Gal(K∞/K) = Zp, it is possible to prove the following
better estimate (see [27, Lemma 3.4])

ordp|H1(Gn, E(K∞)[p∞])| = O(1).

Let K∞ = K(µp∞ , p∞√α1, . . . , p∞√αd−1), where α1, . . . , αd−1 ∈K× whose
image in K×/(K×)p are linearly independent over Fp. This is a multi-false-
Tate extension of a local field, K.

Proposition 4.5. Let K∞ be a multi-false-Tate extension of a local field of
dimension ≥ 2. Suppose E is an elliptic curve defined over K with potential
good reduction. Then, the group H1(Gn, E(K∞)[p∞]) is finite with

ordp|H1(Gn, E(K∞)[p∞])| = O(1).

Proof. Since E has potential good reduction at K, we see that E(K∞)[p∞]
is finite by a result of Kubo–Taguchi [19, Theorem 1.1]. The claim follows
from this observation and Proposition 4.2. □

If E has split multiplicative reduction, then H1(Gn, E(K∞)[p∞]) can be
infinite. This is a well-known fact. However, for a lack of proper reference,
we supply an argument here.

Proposition 4.6. Let E be an elliptic curve defined over K with split
multiplicative reduction. Suppose that K contains a primitive p-th root of
unity. Let K∞ = K(µp∞ , p∞√

α) such that E[p∞] is not realized over K∞.
Then the group H1(G, E[p∞]) is infinite, where G = Gal(K∞/K).

Proof. From the theory of Tate curves, we have a short exact sequence
0 −→ µp∞ −→ E[p∞] −→ Qp/Zp −→ 0

of Gal(K/K)-modules. Taking Gal(K/K∞)-invariance, we obtain the exact
sequence,

0 −→ µp∞ −→ E(K∞)[p∞] f−→ Qp/Zp.

Since E[p∞] is not realized over K∞, the Zp-corank of E(K∞)[p∞] is at
most one. The above sequence implies that the image of f , B (say), is
finite. Thus, we have a short exact sequence,

0 −→ µp∞ −→ E(K∞)[p∞] f−→ B −→ 0
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of G-modules. Taking G-cohomology, we obtain the following exact se-
quence

BG −→ H1(G, µp∞) −→ H1(G, E(K∞)[p∞]).
Since B is finite, the proposition will follow once we show that H1(G, µp∞)
is infinite. For this, we appeal to the inflation-restriction sequence; there
exists a short exact sequence

0 −→ H1(Γ, µp∞) −→ H1(G, µp∞) −→ H1(H, µp∞)Γ −→ 0,

where Γ = Gal(Kcyc/K). By Kummer theory, H ∼= Tpµp∞ as Γ-modules.
Thus,

H1(H, µp∞)Γ ∼= Hom(Tpµp∞ , µp∞)Γ ∼= (Qp/Zp)Γ = Qp/Zp,

which is an infinite group. We have therefore established the propo-
sition. □

In Proposition 4.8, we will see that one can still say something on the
growth of the Zp-corank. Now consider the case of K∞ = K(E[p∞]), i.e.,
the extension obtained by adjoining all the p-power division points of the
elliptic curve, E. Here, we have no assumption on the reduction type of E.

Proposition 4.7. Let E/K be an elliptic curve such that K/Qp is finite,
and let K∞ = K(E[p∞]). Suppose G = Gal(K∞/K) is uniform. Writing
Gn = Gpn, the cohomology group H1(Gn, E[p∞]) is finite with p-power
order O(n).

Proof. By base changing, we assume that E[p] is rational over K and has
semi-stable reduction at K. If E has complex multiplication, then G ∼= Z2

p

and the conclusion follows from Proposition 4.3.
We will now consider the case of elliptic curves without complex multi-

plication. Suppose that E has split multiplicative reduction. By the theory
of Tate curves, there exists q ∈ K such that E(K) ∼= K×/qZ as Gal(K/K)-
modules. Since K is assumed to contain E[p], it also contains µp. There-
fore, K(µp∞) is a Zp-extension of K. Write H = Gal(K∞/K(µp∞)) and
Υ = Gal(K(µp∞)/K). The theory of Tate curves tells us that K∞ is ob-
tained from K(µp∞) by adjoining all the p-power roots of q. Thus, K∞ is
a false-Tate extension of K. Furthermore, there is a short exact sequence

0 −→ µp∞ −→ E[p∞] −→ Qp/Zp −→ 0

of Gal(K/K)-modules. Taking H-cohomology, we obtain the following ex-
act sequence

0→ µp∞ → H0(H, E[p∞])→ Qp/Zp
δ−→ H1(H, µp∞)

→ H1(H, E[p∞])→ H1(H,Qp/Zp)→ 0,
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where the final zero comes from the fact that H ∼= Zp has p-cohomological
dimension 1. By Kummer theory, the connecting homomorphism, denoted
by δ, is an isomorphism. Thus, we obtain H0(H, E[p∞]) ∼= µp∞ and
H1(H, E[p∞]) ∼= H1(H,Qp/Zp). Write Hn = Hpn and Υn = Υpn ; then a
similar argument also yields H0(Hn, E[p∞]) ∼= µp∞ and H1(Hn, E[p∞]) ∼=
H1(Hn,Qp/Zp) as Υn-modules. By the inflation-restriction sequence, we
obtain

0 −→ H1(Υn, E[p∞]Hn) −→ H1(Gn, E[p∞]) −→ H1(Hn, E[p∞])Γn −→ 0.

Now H1(Υn, E[p∞]Hn) ∼= H1(Υn, µp∞) which vanishes by Lemma 2.3. By
Kummer theory, we know that H ∼= Tpµp∞ as Υ-modules. Therefore,

H1(Hn, E[p∞])Υn ∼= H1(Hn,Qp/Zp)Υn ∼= Hom(Tpµp∞ ,Qp/Zp)Υn ;

the last of which is easily seen to be finite with p-power order O(n). This
proves the proposition when E has multiplicative reduction.

When E does not have complex multiplication and has good ordinary
reduction, the dimension of G is 3 (cf. [4, Proposition 2.8]). We have a short
exact sequence of G-modules

(4.1) 0 −→ Ê[p∞] −→ E[p∞] −→ Ẽ[p∞] −→ 0,

where Ê (resp. Ẽ) denotes the formal group (resp. reduced curve) of E.
Taking Gn-invariance,

H1(Gn, Ê[p∞]) −→ H1(Gn, E[p∞]) −→ H1(Gn, Ẽ[p∞]).

The discussion in [11, p. 274] implies that H1(Gn, Ẽ[p∞]) is finite with
p-power order O(n). It remains to estimate H1(Gn, Ê[p∞]). For this, we
further analyse the structure of G. The Gal(K/K)-action on Ẽ[p∞] induces
a group homomorphism ρ : Gal(K/K) −→ Aut(Ẽ[p∞]). We denote L∞ :=
Kker ρ which is a Zp-extension of K contained in K∞ (recall that we are
assuming that E[p] is realized over K). By definition, Gal(K/Kur) acts
trivially on Ẽ[p∞], where Kur is the maximal unramified extension of K.
Hence, the extension L∞ is an unramified Zp-extension of K contained in
K∞. Set M∞ = L∞(µp∞); this is a Zp-extension of L∞. We claim that
Ê[p∞] is not rational over M∞. Indeed, since Ẽ[p∞] is realized over L∞, it
is also realized over M∞. If Ê[p∞] is also rational over K∞, then E[p∞] must
be rational over M∞ which in turn implies that K∞ = M∞. This contradicts
the fact that G = Gal(K∞/K) has dimension 3. By dimension counting,
Gal(K∞/M∞) is a one-dimensional p-adic Lie group. By enlarging K, we
may assume that Gal(K∞/M∞) ∼= Zp. For n ≫ 0, there exists a constant
c independent of n such that

Gal(K∞/M∞)pn = Gal(K∞
/

M∞(Ê[pn+c])).
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Now, write Un = Gal(K∞/M∞)pn and Vn = Gal(M∞/K)pn . For large
enough n, the inflation-restriction sequence gives us the following exact
sequence

0 −→ H1(Vn, Ê[pn+c]) −→ H1(Gn, Ê[p∞]) −→ H1(Un, Ê[p∞])Vn .

Since H0(Un, Ê[p∞]) = Ê[pn+c] is finite, it follows from an application of
Lemma 2.3 that H1(Un, Ê[p∞]) = 0. Now, by appealing to Lemma 2.2, we
obtain the required equality,

ordp|H1(Gn, Ê[p∞])| = ordp|H1(Vn, Ê[pn+c])| ≤ 2(n + c) = O(n).

We now come to the situation when E does not have complex multi-
plication and has good supersingular reduction. Under this assumption,
the dimension of G is 4 (cf. [41, IV A.2.2]). In particular, it is an open
subgroup of GL2(Zp). By the discussion in [47, p. 302], and upon enlarg-
ing K if necessary, we may assume that G = Z × H, where Z ∼= Zp and
H = Gal(K∞/Kcyc). We claim that E[p∞]Zn is finite, where Zn = Zpn .
Suppose for now that the claim holds. Then, by Lemma 2.3, we have
H1(Zn, E[p∞]) = 0. Therefore, the spectral sequence

H i(Hn, Hj(Zn, E[p∞])) =⇒ H i+j(Gn, E[p∞])

degenerates to yield

H i(Hn, E[p∞]Zn) ∼= H i(Gn, E[p∞]).

Writing L∞ = KZ
∞, we see that for sufficiently large n,

Zpn = Gal(K∞/L∞(E[pn+c]))

where c is a constant independent of n. By Lemma 2.1, we see that

ordp|H1(Gn, E[p∞])| = ordp|H1(Hn, E[p∞]Zn)|
≤ 3 ordp|E[p∞]Zn | = O(n).

It therefore remains to verify that E[p∞]Zn is finite. Without loss of gen-
erality, it suffices to show that E[p∞]Z is finite. Let T be the Tate module
of E[p∞]Z . Then T ⊗ Qp is a Gal(K/K)-submodule of TpE ⊗ Qp. Since
E is an elliptic curve without complex multiplication, the latter is an irre-
ducible Gal(K/K)-module by [41, IV 2.1]. So, T ⊗Qp is either zero or the
whole of TpE⊗Qp. As E[p∞] is not realized over L∞, we have T ⊗Qp = 0;
equivalently, E[p∞]Z is finite. □

Finally, we record an estimate on the Zp-coranks of the first cohomology
groups in intermediate extensions of a general p-adic Lie extension. This
result is independent of the reduction type of E.
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Proposition 4.8. Let K∞ be a d-dimensional uniform p-adic Lie extension
of K. Then,

dimZ/pZ(H1(Gn, E(K∞)[p∞])[p]) = O(1).

In particular,

corankZp(H1(Gn, E(K∞)[p∞])) = O(1).

Proof. This follows from Lemma 2.1 and noting that h1(Gn) = d for
all n. □

5. A General Control Theorem

We fix an algebraic closure Q of Q. Any algebraic (possibly infinite)
extension of Q is then a subfield of this fixed algebraic closure, Q. When
the subfield is a finite extension of Q, we call it a number field. Let E be
an elliptic curve defined over a number field, F , and let S be a finite set
of primes containing the primes above p, the primes of bad reduction of E,
and the Archimedean primes. Let FS be the maximal algebraic extension
of F unramified outside S. For every (possibly infinite) extension L of F
contained in FS , write GS(L) = Gal(FS/L). Let S(L) be the set of primes
of L above S. If L is a finite extension of F and w is a place of L, we
write Lw for its completion at w; when L/F is infinite, it is the union of
completions of all finite sub-extensions of L.

Over each L, the p-primary Selmer group and p-primary fine Selmer
group are defined as follows

0 // Sel(E/L) // H1(GS(L), E[p∞]) //
⊕

w∈S(L)
H1(Lw, E)[p∞],

0 // R(E/L) // H1(GS(L), E[p∞]) //
⊕

w∈S(L)
H1(Lw, E[p∞]).

Using the definition, it is a simple observation that R(E/L) is independent
of the choice of S (see [30, Lemma 4.1]). Indeed, this is because we have
the following exact sequence

0 −→ R(E/L) −→ Sel(E/L) −→
⊕
w|p

E(Lw)⊗Qp/Zp.

A uniform p-adic Lie extension F∞ of F is one where Gal(F∞/F ) is a
uniform group. For a given uniform p-adic Lie extension F∞ contained in
FS , define R(E/F∞) = lim−→L

R(E/L), where L runs through the finite sub-
extensions of F∞/F . In other words, we have

R(E/F∞) ∼= ker(H1(GS(F∞), E[p∞]) −→
⊕
v∈S

K1
v (E/F∞)),
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where K1
v (E/F∞) = lim−→L

⊕
w∈S(L) H1(Lw, E[p∞]). For a finite extension,

L/F , we shall sometimes write K1
v (E/L) =

⊕
w|v H1(Lw, E[p∞]).

For a finite extension L of F contained in F∞, we have the following
commutative diagram

0 // R(E/L) //

rL

��

H1(GS(L), E[p∞]
)

//

hL��

⊕
v∈S

K1
v (E/L)

gL
��

0 // R(E/F∞)Gal(F∞/L) // H1(GS(F∞), E[p∞]
)Gal(F∞/L) //

⊕
v∈S

K1
v (E/F∞)Gal(F∞/L)

with exact rows, where the maps hL and gL are the restriction maps on
cohomology, and rL is the map induced by these. The above diagram will be
the main tool for our discussion. We first prove a general result independent
of any hypothesis on the reduction type.

For the remainder of the section, the elliptic curve E will be defined
over the number field, F , and F∞ will be a uniform p-adic Lie extension
over F contained in FS with Galois group, G = Gal(F∞/F ). We will write
Gn = Gpn and denote by Fn the fixed field of Gn.

Theorem 5.1. Let E be an elliptic curve defined over F , and let F∞ be
a d-dimensional uniform p-adic Lie extension of F . Then the kernel and
cokernel of the restriction map

rn : R(E/Fn)→ R(E/F∞)Gn

are cofinitely generated over Zp. Furthermore,

corankZp(ker rn) = O(1) and corankZp(coker rn) = O(p(d−1)n).

Proof. Consider the following diagram

0 // R(E/Fn) //

rn

��

H1(GS(Fn), E[p∞]) //

hn
��

⊕
vn∈S(Fn)

H1(Fn,vn , E[p∞])
gn
��

0 // R(E/F∞)Gn // H1(GS(F∞), E[p∞])Gn //
⊕
v∈S

K1
v (E/F∞)Gn

with exact rows. By the Hochschild–Serre spectral sequence, we have

ker hn = H1(Gn, E(F∞)[p∞]) and coker hn ⊆ H2(Gn, E(F∞)[p∞]).

Lemma 2.1 asserts that

dimZ/pZ((ker hn)[p]) = O(1) and dimZ/pZ((coker hn)[p]) = O(1).

In particular, corankZp(ker hn) (hence, also corankZp(ker rn)) is finite and
bounded independent of n.
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For the estimate of coker rn, we now study the growth of corankZp(ker gn).
By Shapiro’s Lemma,

ker gn =
⊕

vn∈S(Fn)
H1(Gn,vn , E(F∞,vn)[p∞]).

If v is a prime which splits completely in F∞/F , then H1(Gn,vn ,
E(F∞,vn)[p∞]) = 0 for every vn above v. Thus, we consider primes which
do not split completely in F∞/F . By Proposition 4.1, for v ∤ p, the group
H1(Gn,vn , E(F∞,vn)[p∞]) is finite and has no Zp-corank contribution. We
are reduced to studying v|p which do not split completely in F∞/F . In
this case, the dimension of the decomposition group of G at v is at least
1, so the number of primes of Fn above each v is O(p(d−1)n). By Proposi-
tion 4.8, each H1(Gn,vn , E(F∞,vn)[p∞]) has bounded Zp-corank growth. It
follows that corankZp(ker gn) = O(p(d−1)n). This completes the proof of the
theorem. □

Corollary 5.2. Retain the setting of Theorem 5.1. Then,

|corankZp(R(E/Fn))− corankZp(R(E/F∞)Gn)| = O(p(d−1)n).

In particular, R(E/F∞) is cotorsion over ZpJGK if and only if

corankZp(R(E/Fn)) = O(p(d−1)n).

Proof. The first assertion follows from Theorem 5.1. By Harris’ result (see
Proposition 3.2),

corankZp(R(E/F∞)Gn) = corankZpJGK
(
R(E/F∞)

)
pdn + O(p(d−1)n).

The final assertion is now immediate from this and the above estimate. □

We now consider an analogue of Theorem 5.1 for the p-rank.

Theorem 5.3. Retain the setting of Theorem 5.1. Then,

|dimZ/pZ(R(E/Fn)[p])− dimZ/pZ(R(E/F∞)Gn [p])| = O(p(d−1)n).

In particular, the Pontryagin dual of R(E/F∞) is a torsion ZpJGK-module
with trivial µG-invariant if and only if dimZ/pZ(R(E/Fn)[p]) = O(p(d−1)n).

Proof. The proof of this estimate is similar to (and easier than) that of
Theorem 5.1. Thus,

dimZ/pZ(R(E/Fn)[p]) = O(p(d−1)n)

⇐⇒ dimZ/pZ(R(E/F∞)Gn [p]) = O(p(d−1)n).

By Pontryagin duality, the latter is equivalent to

dimZ/pZ((R(E/F∞)∨/p)Gn) = O(p(d−1)n).
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In view of Proposition 3.4, this is the same as µG(R(E/F∞)∨/p) = 0.
Equivalently (see Lemma 3.3), R(E/F∞)∨ is a torsion ZpJGK-module with
trivial µG-invariant. □

When G = Zp, the conclusion of the theorem was mentioned in [30, Proof
of Theorem 5.5]. Thus, Theorem 5.3 is a generalization of the discussion
there. This theorem is related to a conjecture of Coates–Sujatha (see [6])
which we now describe.

Conjecture ([6, Conjecture A]). Let F cyc denote the cyclotomic Zp-ext-
ension of F . The fine Selmer group R(E/F cyc) is cofinitely generated over
Zp, i.e., R(E/F cyc)∨ is a torsion ZpJΓK-module with trivial µΓ-invariant,
where Γ = Gal(F cyc/F ).

By Theorem 5.3, Conjecture A holds if and only if dimZ/pZ(R(E/Fn)[p])=
O(1) (see [30, discussion in the proof of Theorem 5.5]). For a general p-adic
Lie extension, the following result holds.

Corollary 5.4. Let E be an elliptic curve defined over F , and let F∞
be a d-dimensional uniform p-adic Lie extension of F contained in FS.
Suppose that F∞ contains F cyc. If Conjecture A of Coates–Sujatha holds,
then dimZ/pZ(R(E/Fn)[p]) = O(p(d−1)n).

Proof. If Conjecture A holds, R(E/F cyc)∨ is finitely generated over Zp.
By [6, Lemma 3.2], this implies R(E/F∞)∨ is finitely generated over ZpJHK
where H = Gal(F∞/F cyc). Applying an observation of Howson [14, Lem-
ma 2.7], we see that R(E/F∞)∨ is torsion over ZpJGK with trivial µG-
invariant. The result follows from combining these observations with The-
orem 5.3. □

Next, we prove an H-analogue of Theorem 5.1.

Theorem 5.5. Let E be an elliptic curve defined over F . Let F∞ be a
uniform p-adic Lie extension of F contained in FS with Galois group, G =
Gal(F∞/F ) of dimension d ≥ 2. Suppose that F∞ contains F cyc. Write
H = Gal(F∞/F cyc) and let Fn be the fixed field of Hn := Hpn. Then the
kernel and cokernel of the restriction map

sn : R(E/Fn) −→ R(E/F∞)Hn

are cofinitely generated over Zp. Furthermore,

corankZp(ker sn) = O(1) and corankZp(coker sn) = O(p(d−2)n).
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Proof. Consider the following diagram

0 // R(E/Fn) //

sn

��

H1(GS(Fn), E[p∞]) //

βn
��

⊕
v∈S

K1
v (E/Fn)

γn
��

0 // R(E/F∞)Hn // H1(GS(F∞), E[p∞])Hn //
⊕
v∈S

K1
v (E/F∞)Hn

with exact rows. The kernels and cokernels of the vertical maps are cofinitely
generated over Zp (see [6, Proof of Lemma 3.2]). An argument similar to
Theorem 5.1 shows that both corankZp(ker βn) and corankZp(coker βn) are
bounded independent of n, and that corankZp(ker γn) = O(p(d−2)n). □

Remark 5.6. In some special cases more can be said:
(1) When E(F∞)[p∞] is finite, both ker βn and coker βn are finite

and bounded independent of n. In particular, |ker sn| = O(1).
Indeed, by applying the inflation-restriction sequence ker βn =
H1(Hn, E(F∞)[p∞]) and coker βn ⊆ H2(Hn, E(F∞)[p∞]). Since
E(F∞)[p∞] is finite, it follows that ker βn and coker βn are finite.
Upon noting that h1(Hn) = d−1 for all n, it follows from Lemma 2.2
that the bound is independent of n.

(2) When F∞ = F (E[p∞]), both ker βn and coker βn are finite [5, Corol-
lary 6]. Thus, ker sn is finite. In fact, dimZ/pZ(ker sn)[p] = O(1), but
we are unable to estimate ordp|ker sn|.

(3) If F∞/F is a p-adic Lie extension such that the primes in S are
finitely decomposed, then ker γn has finite Zp-corank bounded in-
dependent of n.

Before continuing further, we recall another conjecture of Coates–Sujatha
[6, Conjecture B].
Conjecture ([6, Conjecture B]). Let F∞ be a p-adic Lie extension of F
containing F cyc, which is unramified outside a finite set of primes, and
whose Galois group G = Gal(F∞/F ) has dimension ≥ 2. Then R(E/F∞)∨

is a pseudo-null ZpJGK-module.
This conjecture is very much open. Some examples verifying Conjec-

ture B are given in [3, 17, 23, 25, 36, 43]. As a corollary of Theorem 5.5,
we show that Conjecture B can be characterized in terms of the growth of
the fine Selmer groups in the intermediate cyclotomic extensions.
Corollary 5.7. Retain the setting of Theorem 5.5. Suppose that R(E/F cyc)
is a cofinitely generated Zp-module. Then every R(E/Fn) is cofinitely gen-
erated over Zp and R(E/F∞) is cofinitely generated over ZpJHK. Further-
more,

|corankZp(R(E/Fn))− corankZp(R(E/F∞)Hn)| = O(p(d−2)n).
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In particular, R(E/F∞)∨ is pseudo-null over ZpJGK if and only if

corankZp(R(E/Fn)) = O(p(d−2)n).

Proof. Since R(E/F cyc) is a cofinitely generated Zp-module, we may ap-
ply [6, Lemma 3.2] to conclude that R(E/F∞) is cofinitely generated over
ZpJHK. Once again applying [6, Lemma 3.2] yields that every R(E/Fn) is
also cofinitely generated over Zp. This establishes the first assertion. The
second assertion on the estimate is an immediate consequence of Theo-
rem 5.5. For the final assertion, we remind the readers of an equivalent
definition of pseudo-nullity (due to Venjakob) when R(E/F∞) is cofinitely
generated over ZpJHK. By [48, Example 2.3 and Proposition 5.4], we know
that R(E/F∞)∨ is pseudo-null over ZpJGK if and only if R(E/F∞) is co-
torsion over ZpJHK. By the result of Harris (cf. Proposition 3.2),

corankZp(R(E/F∞)Hn) = corankZpJHK
(
R(E/F∞)

)
p(d−1)n + O(p(d−2)n).

The final assertion follows from combining these observations with the es-
timate of the corollary. □

6. Control Theorem over Certain p-adic Lie Extensions

In this section, we consider specific p-adic Lie extensions and prove
sharper Control Theorems for these extensions. These results are then ap-
plied to give asymptotic estimates on the growth of non-divisible part of
fine Selmer groups in the intermediate subfield of the p-adic Lie extension.

Throughout this section, F is a number field and F∞ is a uniform p-adic
Lie extension of F with Galois group, G. We write Gn = Gpn and denote
by Fn the fixed field of Gn. As a start, we record a finiteness result which
will be useful for our discussion.

Lemma 6.1. Let E be an elliptic curve defined over F , and F∞ be a p-adic
Lie extension of F at which E[p∞] is not realized over F∞. Suppose that at
least one of the following statements is valid.

(a) The elliptic curve, E, has no complex multiplication.
(b) The p-adic Lie extension, F∞, contains the cyclotomic Zp-extension

F cyc.
Then E(F∞)[p∞] is finite.

Proof. If statement (a) holds, the conclusion follows from [28, Lemma 6.2].
When statement (b) is valid, the conclusion follows from [52, Proposi-
tion 10]. □

6.1. Zd
p-extensions. When d = 1, the Control Theorem for fine Selmer

groups has been studied in [27, 49]. Therefore, we concentrate on the case
d ≥ 2. Pertaining to this, Rubin proved that the kernel and cokernel of the
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natural restriction map are finite (see [39, Chapter VII, §3]). Here, we refine
this result by giving an estimate on the orders of the kernels and cokernels.

Theorem 6.2. Let E be an elliptic curve defined over F , and F∞ be a Zd
p-

extension of F , with d ≥ 2. Then the kernel and cokernel of the restriction
map

rn : R(E/Fn) −→ R(E/F∞)Gn

are finite. Furthermore,

ordp|ker rn| = O(n) and ordp|coker rn| = O(p(d−1)n).

Proof. Consider the following diagram

0 // R(E/Fn) //

rn

��

H1(GS(Fn), E[p∞]) //

hn
��

⊕
vn∈S(Fn)

H1(Fn,vn , E[p∞])
gn
��

0 // R(E/F∞)Gn // H1(GS(F∞), E[p∞])Gn //
⊕
v∈S

K1
v (E/F∞)Gn

with exact rows. By the Hochschild–Serre spectral sequence, we have
ker hn = H1(Gn, E(F∞)[p∞]) and coker hn ⊆ H2(Gn, E(F∞)[p∞]).

Using an argument similar to that in Proposition 4.3, we see that both
H1(Gn, E(F∞)[p∞]) and H2(Gn, E(F∞)[p∞]) are finite with p-power order
O(n). In particular, ordp|ker rn| = O(n). It remains to estimate ker gn =⊕

vn
H1(Gn,vn , E(F∞,vn)[p∞]). As in the proof of Theorem 5.1, we only

need to consider the primes which do not split completely. Now, if the
decomposition group of G at the prime v is at least 2, it follows from
Proposition 4.3 that H1(Gn,vn , E(F∞,vn)[p∞]) is finite with p-power order
O(n). Since the decomposition group has dimension at least 2, the number
of primes above such v grows like O(p(d−2)n). Hence, for such a prime v,
we have

ordp

∣∣∣∣∣⊕
vn|v

H1(Gn,vn , E(F∞,vn)[p∞])
∣∣∣∣∣ = O(np(d−2)n).

If the decomposition group at v has dimension 1, then the number of
primes above such a v grows like O(p(d−1)n). But for these primes, we know
that H1(Gn,vn , E(F∞,vn)[p∞]) is finite and the growth is bounded. This is
Proposition 4.1(a) when v ∤ p and Remark 4.4 when v|p. Hence,

ordp

∣∣∣∣∣⊕
vn|v

H1(Gn,vn , E(F∞,vn)[p∞])
∣∣∣∣∣ = O(p(d−1)n).

Combining these estimates yields the required estimate for ker gn; hence,
also for coker rn. □
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Using a results of Liang–Lim, we estimate the growth of R(E/Fn)∨[p∞].

Corollary 6.3. Let E/F be an elliptic curve, and F∞ be a Zd
p-extension

of F , with d ≥ 2. Then

ordp(R(E/Fn)∨[p∞]) = µG(R(E/F∞)∨)pdn + O(np(d−1)n).

If F∞ contains F cyc and Conjecture A of Coates–Sujatha holds, then

ordp(R(E/Fn)∨[p∞]) = O(np(d−1)n).

Finally, if F contains F cyc and Conjecture B of Coates–Sujatha is also
valid, then

ordp(R(E/Fn)∨[p∞]) = O(p(d−1)n).

Proof. Since R(E/F∞)∨ is a finitely generated ZpJGK-module, by a result
of Liang–Lim (cf. [22, Theorem 2.4.1]) we know that

ordp((R(E/F∞)∨)Gn [p∞]) = µG(R(E/F∞)∨)pdn + O(np(d−1)n).

The estimate in the corollary is now immediate from this and Theorem 6.2.
For the second assertion, it can be seen from the proof of Corollary 5.4 that
if Conjecture A holds, then

µG(R(E/F∞)∨) = 0.

If both Conjecture A and Conjecture B are valid, applying [22, Proposi-
tion 2.2.1] we obtain

ordp((R(E/F∞)∨)Gn [p∞]) = O(p(d−1)n).

Combining this with Theorem 6.2, we obtain the required estimate. □

We mention another corollary of Theorem 6.2.

Corollary 6.4. Retain the settings of Theorem 6.2. Suppose that R(E/F )
is finite. Then R(E/F∞)∨ is torsion over ZpJGK.

Proof. By Theorem 6.2 and hypothesis of the corollary, R(E/F∞)G is finite.
The conclusion of the corollary now follows from this and the main theorem
of [2, p. 5–6]. □

In view of the above result, we make the following conjecture.

Conjecture Yd. Let E be an elliptic curve defined over F , and F∞ be a
Zd

p-extension of F . Then, R(E/F∞)∨ is torsion over ZpJGK.

When d = 1, the above conjecture is made in [27, Conjecture Y].
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6.2. Multi-False-Tate extensions. In this subsection, we suppose that
the number field, F , contains a primitive p-th root of unity. For d ≥ 2,
we will consider the extension F∞ = F (µp∞ , p∞√α1, . . . , p∞√αd−1), where
α1, . . . , αd−1 ∈ F × whose image in F ×/(F ×)p are linearly independent over
Fp. Then Gal(F∞/F ) ∼= Zd−1

p ⋊ Zp and we call F∞/F a multi-false-Tate
curve extension of dimension d. Throughout this subsection, we assume
that E has (potential) good reduction at primes above p.

Theorem 6.5. Let E be an elliptic curve defined over a number field F
with potential good reduction at every prime of F above p. Let F∞/F be a
multi-false-Tate curve extension of dimension d ≥ 2 which is contained in
FS. Then the kernel and cokernel of the natural restriction map

rn : R(E/Fn) −→ R(E/F∞)Gn

are finite with |ker(rn)| = O(1) and ordp|coker(rn)| = O(p(d−1)n). If the
dimension of the decomposition group of G at every v ∈ S is at least 2,
then ordp|coker(rn)| = O(np(d−2)n).

Proof. As before, we start by considering the following commutative dia-
gram

0 // R(E/Fn) //

rn

��

H1(GS(Fn), E[p∞]) //

hn

��

⊕
vn∈S(Fn)

H1(Fn,vn , E[p∞])

gn

��

0 // R(E/F∞)Gn // H1(GS(F∞), E[p∞])Gn //
⊕
v∈S

K1
v (E/F∞)Gn

By Lemma 6.1, E(F∞)[p∞] is finite. Now by applying the inflation-restri-
ction sequence and using Lemma 2.2, we see that ker(hn) and coker(hn)
are finite and bounded independent of n.

We will now estimate ker gn. For the primes not above p, using Proposi-
tion 4.1 we conclude that

ordp

∣∣∣∣∣⊕
vn|v

H1(Gn,vn , E(F∞,vn)[p∞])
∣∣∣∣∣

=
{

O(p(d−1)n), if the decomposition group at v has dimension 1,
O(np(d−2)n), if the decomposition group at v has dimension 2.

Since we assume that the elliptic curve E has potential good reduc-
tion at all primes above p, it follows from Proposition 4.5 that H1(Gn,vn ,
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E(F∞,vn)[p∞]) is finite with bounded growth. Thus,

ordp

∣∣∣∣∣⊕
vn|v

H1(Gn,vn , E(F∞,vn)[p∞])
∣∣∣∣∣

=
{

O(p(d−1)n), if the decomposition group at v has dimension 1,
O(p(d−2)n), if the decomposition group at v has dimension ≥ 2.

The assertions of the theorem are now immediate from these estimates. □

Using a result of Perbet (see [37, Théorème 2.1]) we estimate the growth
of R(E/Fn)[pn].

Corollary 6.6. Let E be an elliptic curve defined over a number field F
with potential good reduction at every prime of F above p. Let F∞/F be a
multi-false-Tate curve extension of dimension d ≥ 2 which is contained in
FS. Then

ordp(R(E/Fn)[pn]) = (rankZpJGK(R(E/F∞)∨)n

+ µG(R(E/F∞)∨))pdn + O(np(d−1)n).
If the Conjecture A of Coates–Sujatha holds, then

ordp(R(E/Fn)[pn]) = O(np(d−1)n).

Proof. Since R(E/F∞)∨ is a finitely generated ZpJGK-module, the result of
Perbet implies that

ordp
(
(R(E/F∞)∨)Gn

/
pn) = (rankZpJGK(R(E/F∞)∨)n

+ µG(R(E/F∞)∨))pdn + O(np(d−1)n).
The estimate is now immediate from Theorem 6.5. For the final remark,
one sees that from the proof of Corollary 5.4 that if Conjecture A holds,
then

rankZpJGK(R(E/F∞)∨) = µG(R(E/F∞)∨) = 0. □

Under the validity of Conjecture B of Coates–Sujatha, we have an even
better upper bound.

Corollary 6.7. Retain the settings of Theorem 6.5. If both Conjecture A
and Conjecture B of Coates–Sujatha hold, then

ordp(R(E/Fn)[pn]) = O(p(d−1)n).

Proof. Since R(E/F∞)∨ is a finitely generated ZpJHK-module by the valid-
ity of Conjecture A, we may apply [26, Proposition 2.4] to obtain

ordp
(
(R(E/F∞)∨)Gn

/
pn) ≤ rankZpJHK(R(E/F∞)∨)np(d−1)n + O(p(d−1)n).
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If Conjecture B holds, then as in the proof of Corollary 5.7,
rankZpJHK(R(E/F∞)∨) = 0. Hence,

ordp
(
(R(E/F∞)∨)Gn

/
pn) = O(p(d−1)n).

Combining this with Theorem 6.5, we obtain the required estimate. □

6.3. Trivializing Extension. We now consider the case of the trivializing
extension. The case of elliptic curve with and without complex multiplica-
tion will be treated separately.

When E has complex multiplication, it is well known that the Galois
group Gal(F∞/F ) with F∞ = F (E[p∞]) contains an open subgroup which
is Abelian and isomorphic to Zp×Zp. In this situation, Theorem 6.2 (with
d = 2) says that ordp(ker rn) = O(n) and ordp(coker rn) = O(pn). In the
next theorem, we show that a sharper estimate for the cokernel is possible
in this case.

Theorem 6.8. Let E/F be an elliptic curve with complex multiplication.
Suppose that F∞ = F (E[p∞]) and G = Gal(F∞/F ) is uniform. Then the
kernel and cokernel of the restriction maps

rn : R(E/Fn) −→ R(E/F∞)Gn

are finite. Furthermore, ordp|ker rn| = O(n) and ordp|coker rn| = O(n).

Proof. In view of the proof of Theorem 6.2, it suffices to show that
ordp|coker rn| = O(n). This in turn reduces us to showing that ker gn has
the same growth. Let K be the imaginary quadratic field which gives E the
complex multiplication. By base-changing, we may assume that E[p] is re-
alized over F , that K ⊆ F , that E has good reduction at every prime of F ,
and that Gal(F∞/F ) ∼= Z2

p. Choose S to be the set of primes above p and
the infinite primes. From the theory of complex multiplication, we see that
F∞ is the compositum of F and K∞, where K∞ is the unique Z2

p-extension
of K. By [21, Théorème 3.2], there are finitely many primes of K∞ above
p. So, there are finitely many primes of F∞ above p. Combining this latter
observation with Proposition 4.3, shows that ordp|ker gn| = O(n). □

In this situation, Corollary 6.3 (or Theorem 6.8) yields

ordp(R(E/Fn)∨[p∞]) = µG(R(E/F∞)∨)p2n + O(npn).

In particular, if Conjecture A of Coates–Sujatha holds, then

ordp(R(E/Fn)∨[p∞]) = O(npn).

There is one case where we have the above estimate without assuming
Conjecture A holds.
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Proposition 6.9. Let K be an imaginary quadratic field at which the prime
p splits completely in K, say p = pp. Let F0 be a finite extension of K which
is unramified at p. Let E be an elliptic curve defined over F0 which satisfies
all the following properties.

(a) E has complex multiplication given by the ring of integers of K.
(b) E has good ordinary reduction at all primes of F0 above p.
(c) F0(Etor) is an Abelian extension of K.

Let F = F0(E[p]) and F∞ = F0(E[p∞]) = F (E[p∞]). Then

ordp(R(E/Fn)∨[p∞]) = O(npn).

Proof. Under the hypothesis of the proposition, one can show that
µG(R(E/F∞)∨) = 0 by appealing to the results of Gillard and Schneps.
(For the details of this argument, we refer readers to [31, Proposition 4.1].)
Hence, it follows from this that we have the estimate as asserted. □

We now come to the case of an elliptic curve without complex multipli-
cation.

Theorem 6.10. Let E be an elliptic curve defined over F without com-
plex multiplication. Suppose that F∞ = F (E[p∞]) and G = Gal(F∞/F ) is
uniform. Then the kernel and cokernel of the restriction maps

rn : R(E/Fn) −→ R(E/F∞)Gn

are finite. Furthermore, the power of p in ker rn is O(n) and the power of
p in coker rn is O(np2n).

In [40], Serre proved that H i(Gn, E[p∞]) is finite for every i ≥ 0. For
our purpose, we need to go one step further by analyzing its growth (for
i = 1, 2), which is the content of the next lemma.

Lemma 6.11. Retain the setting of Theorem 6.10. Then for i = 1, 2, the
groups H i(Gn, E[p∞]) are finite and ordp|H i(Gn, E[p∞])| = O(n).

Proof. Since E is an elliptic curve without complex multiplication, the
group G has dimension 4. By the discussion in [47, p. 302], and enlarg-
ing F if necessary, we may assume that G = Z × H, where Z ∼= Zp and
H = Gal(F∞/F cyc). By Lemma 6.1(a), E[p∞]Zn is finite; it follows from
Lemma 2.3 that H1(Zn, E[p∞]) = 0. Therefore, the spectral sequence

H i(Hn, Hj(Zn, E[p∞])) =⇒ H i+j(Gn, E[p∞])

degenerates to yield

H i(Hn, E[p∞]Zn) ∼= H i(Gn, E[p∞]).
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Now, applying Lemma 2.1, we see that

ordp|H1(Gn, E[p∞])| = ordp|H1(Hn, E[p∞]Zn)|
≤ 3 ordp|E[p∞]Zn | = O(n)

and

ordp|H2(Gn, E[p∞])| = ordp|H2(Hn, E[p∞]Zn)|

≤
(

3
2

)
ordp|E[p∞]Zn | = O(n).

This completes the proof of the lemma. □

Proof of Theorem 6.10. In view of Lemma 6.11, it remains to study the
growth of ker gn. By base-changing, we may assume that E has no additive
reduction outside p. Let S be the set of primes of F consisting of the primes
above p, the multiplicative primes of E outside p, and the Archimedean
primes. For all v ∈ S, the decomposition group has dimension ≥ 2 (see [4,
Lemma 2.8]). The rest of the argument proceeds as before building on
Propositions 4.1 and 4.7. □

Remark 6.12. When the elliptic curve has potential good ordinary reduc-
tion at all primes above p, more can be said. Indeed, under this assumption,
Greenberg showed (cf. [11, Proposition 5.3]) that the kernel of the restric-
tion map on the classical Selmer groups sn : Sel(E/Fn) −→ Sel(E/F∞)Gn

is finite and bounded. Hence, ker rn is also bounded in this case.

Corollary 6.13. Let E be an elliptic curve defined over a number field
F without complex multiplication and F∞/F be the trivializing extension.
Then

ordp(R(E/Fn)[pn]) = µG(R(E/F∞)∨)p4n + O(np3n).

If Conjecture A of Coates–Sujatha holds, then

ordp(R(E/Fn)[pn]) = O(np3n).

Proof. Since F∞/F is the trivializing extension, it follows from [6, Lem-
mas 2.4 and 3.1] that R(E/F∞)∨ is a torsion ZpJGK-module. By [37, Théo-
rème 2.1], we have

ordp
(
(R(E/F∞)∨)Gn

/
pn) = µG(R(E/F∞)∨)p4n + O(np3n).

The estimate follows from Theorem 6.10. The final assertion follows from
Corollary 5.4. □
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Corollary 6.14. Let E be an elliptic curve defined over a number field F
and F∞/F be the trivializing extension. If both Conjecture A and Conjec-
ture B of Coates–Sujatha hold, then

(a) ordp(R(E/Fn)∨[p∞]) = O(pn) if E is an elliptic curve with complex
multiplication.

(b) ordp(R(E/Fn)[pn]) = O(p3n) if E does not have complex multipli-
cation.

Proof. In the case when E is an elliptic curve with complex multiplication,
the assertion follows from Corollary 6.3 with d = 2. When E does not
have complex multiplication, the proof of the statement is similar to the
argument in Corollary 6.7. □

Remark 6.15. It is natural to ask if the above growth formula can allow
us to estimate the growth of fine Shafarevich–Tate groups (see [50] for the
definition) as done for the classical Shafarevich–Tate groups in [10]. A key
ingredient used in this proof is the p-divisibility of E(Fn)⊗Zp Qp/Zp. How-
ever, as the fine Mordell–Weil group need not be p-divisible (see [50, §7]),
the torsion part of the Pontryagin dual of the fine Shafarevich–Tate group
and R(E/Fn)[p∞]∨ need not agree. Therefore, the above asymptotic for-
mula for the fine Selmer group does not carry over to the fine Shafarevich–
Tate group automatically. For Zp-extensions, asymptotic growth estimates
for the fine Shafarevich–Tate group has been obtained by the second named
author in [27] under certain hypotheses. Unfortunately, the results rely on
finer aspects of the structure theory of ZpJΓK-modules which are not avail-
able for more general Iwasawa algebras, and so the techniques of [27] do
not carry over.

7. Examples

Example 7.1. Let E be the elliptic curve defined by y2 + y = x3 − x. Let
p = 5. By [12, Example 4.13], we know that Sel(E

/
Q(µ5∞ , α−5∞)) = 0

for every α = (±5)m. From this, it is then easy to verify that for every
finite extension F of Q contained in Q(µ5∞ , α−5∞), one has Sel(E/F ) = 0
which in turn implies that R(E/F ) = 0. By Corollary 6.4, it follows that
R(E/F∞) is cotorsion over Z5JGal(F∞/F )K for every multiple Z5-extension
F∞ of F .

Example 7.2. Let E be the elliptic curve 150a1 of Cremona’s table which
is given by

y2 + xy = x3 − 3x− 3.

Let p = 5 and F = Q(µ5). Let S be the set of primes of F lying above
2, 3, 5, and ∞. Then, E has good ordinary reduction at the unique prime
of F above 5 and split multiplicative reduction at the unique primes of F
above 2 and 3. By [3, Example 23] and [25, §6], we know that R(E/F∞)∨
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is a pseudo-null Z5JGal(F∞/F )K-module when F∞ is one of the following
5-adic extension

Q(E[5∞], 35−∞), Q(E[5∞], 25−∞
, 35−∞),

Q(E[5∞], 35−∞
, 55−∞), Q(E[5∞], 25−∞

, 35−∞
, 55−∞),

L∞(E[5∞], 25−∞
, 35−∞), L∞(E[5∞], 35−∞

, 55−∞),

L∞(E[5∞], 25−∞
, 35−∞

, 55−∞),
where L∞ is any Zr

5-extension of F for 1 ≤ r ≤ 3. Therefore, Corol-
lary 5.7 applies to yield corankZ5(R(E/Fn)) = O(5(d−2)n), where Fn =
F

Gal(F∞/F cyc)5n

∞ .

Example 7.3. Let E be the elliptic curve 79a1 of Cremona’s tables given by
y2 + xy + y = x3 + x2 − 2x.

Let p = 3 and F = Q(µ3). Let S be the set of primes of F lying above 3, 79
and∞. By [17, p. 362] and [25, §6], we see that R(E/F∞)∨ is a pseudo-null
Z3JGal(F∞/F )K-module when F∞ is one of the following 3-adic extensions

Q(µ3∞ , 33−∞),Q(µ3∞ , 33−∞
, 793−∞).

Corollary 6.7 then tells us that ord3(R(E/Fn)[3n]) is O(3n) and O(32n) for
the above two extensions, respectively.

Example 7.4. Let E be one of the following elliptic curves (with Cremona
label): 256a1, 256a2, 256d1, 256d2 with complex multiplication by Q(

√
−2)

or 121b1, 121b2 with complex multiplication by Q(
√
−11). These elliptic

curves have good reduction at p = 3. In [1, Theorem 3.11], it was shown
that these satisfy Conjecture A for p = 3 over the base field F = Q(E[3])
which is non-Abelian over Q. However, it does not seem that the validity of
Conjecture B is known for any p-adic Lie extension over F . Nevertheless,
we can still apply Corollary 6.6 to obtain

ord3(R(E/Fn)[3n]) = O(n3(d−1)n)
for every multi-false-Tate extension, F∞ of F of dimension d ≥ 2, and apply
Theorem 6.8 to yield

ord3(R(E/Fn)[3n]) = O(n3n),
when F∞ = F (E[3∞]) is the trivializing extension over F .

Example 7.5. Let E be the elliptic curve 3136u1 from Cremona’s table with
complex multiplication by Q(

√
−1). This is given by the equation

y2 = x3 − 343x.

This elliptic curve has good ordinary reduction at all primes satisfying p ≡ 1
(mod 4). For p large, the validity of Conjecture A does not appear to be
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verified in literature. Nevertheless, when F∞ = F (E[p∞]) is the trivializing
extension over F , we can still apply Proposition 6.9 to obtain

ordp(R(E/Fn)∨[p∞]) = O(npn).
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