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On genera containing non-split Eichler orders
over function fields

par Luis ARENAS-CARMONA et Claudio BRAVO

Résumé. Le théorème de Grothendieck–Birkhoff établit que tout faisceaux
vectoriel de dimension finie sur la droite projective P1 se scinde en somme
de faisceaux vectoriels unidimensionnels (fibrés en droites). Il peut être refor-
mulé en termes d’ordres comme l’énoncé que tous les P1-ordres maximaux se
scindent. Ceci est utile, car les ordres scindés jouent un rôle important dans
le calcul des graphes quotients. Dans ce travail, on étudie dans quelle mesure
ce résultat se généralise aux P1-ordres d’Eichler, lorsque le corps de base F est
fini. Pour être précis, on caractérise, d’une part, les genres des ordres d’Ei-
chler contenant uniquement des ordres scindés et, d’autre part, les genres ne
contenant qu’un nombre fini de classes d’isomorphie non scindées. La méthode
développée ici nous permet également de calculer les graphes quotients pour
certains sous-groupes de PGL2(F[t]) d’intérêt arithmétique.

Abstract. Grothendieck–Birkhoff Theorem states that every finite dimen-
sional vector bundle over the projective line P1 splits as the sum of one di-
mensional vector bundles (line bundles). This can be rephrased, in terms of
orders, as stating that all maximal P1-orders in a matrix algebra split. This
is useful, since split orders play an important role when computing quotient
graphs. In this work we study the extent to which this result can be gener-
alized to Eichler P1-orders when the base field F is finite. To be precise, we
characterize both the genera of Eichler orders containing only split orders and
the genera containing only a finite number of non-split isomorphism classes.
The method developed here also allows us to compute quotient graphs for
some subgroups of PGL2(F[t]) of arithmetical interest.

1. Introduction

Split orders in the 4-dimensional matrix algebra M2(k), where k is a local
field, were characterized by Hijikata in [13, §2.2]. By definition, an order in
M2(k) is split if it contains an isomorphic copy of the ring Ok × Ok, where
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Ok is the ring of integers in k, or equivalently, if it is a conjugate of

E(I, J) =
(

Ok I
J Ok

)
= OkE1,1 ⊕ OkE2,2 ⊕ IE1,2 ⊕ JE2,1,

for some pair (I, J) of fractional ideals, where {Ei,j |1 ≤ i, j ≤ 2} is the
canonical basis of M2(k). Hijikata proved these to be either maximal orders
or intersections of two different maximal orders. These are local properties,
and in fact, for any global field K, and for any ring OS ⊆ K of S-integers,
i.e., elements that are integral outside a nonempty finite set S of places that
includes the archimedean places if any, global split OS-orders in M2(K)
share the same characterization. This is, for example, a consequence of the
fact that the ring Ok ×Ok is non-selective for any genus of Eichler orders [4,
Ex. 5.5].

When K is a global function field, i.e., the field of rational functions on a
smooth irreducible projective curve X over a finite field F, we define (full)
X-orders in M2(K) as sheaves of rings for which the stalk at the generic
point is M2(K) [10]. This is usually regarded as the case S = ∅ in the theory
of orders, and this point of view has been fruitful in the past to study quo-
tients of Bruhat–Tits trees by groups of arithmetical interest (cf. [5]). The
preceding characterization fails in this setting, as one would expect, giving
the absence of a Strong Approximation Theorem with respect to the empty
set. However, we do have a result in this direction, although a significantly
more specific one. This is essentially Grothendieck–Birkhoff Theorem [8,
Thm. 2.1], which implies the following statement (cf. Section 2):

Theorem GB. Every maximal X-order in M2(K) is split when X is the
projective line P1.

There is also a finiteness result that can be regarded as a partial general-
ization of the preceding statement to an arbitrary smooth projective curve
defined over a finite field. It follows easily from [5, §1, Thm. S] and [5, §1,
Thm. 1.2] (cf. Section 3 below):

Finiteness Theorem. If X is an arbitrary smooth projective curve over a
finite field, all but finitely many isomorphism classes of maximal X-orders
in M2(K) contain only split orders.

The purpose of the present work is to study the extent to which similar
results apply to Eichler orders, i.e., intersections of two maximal orders. The
main results of the paper, namely Theorem 3.1 and Theorem 3.2, provide an
answer to this question. Our interest in the subject arises from the fact that
split orders play a significant role in the computation of quotient graphs,
which are a powerful tool for the study of some arithmetically significant
matrix groups. This can be seen in some of our previous work [5], or in
the work of R. Köhl, B. Mühlherr and K. Struyve [14]. Either reference
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describes a quotient graph of the form G\t(K∞), for an arithmetic group
of the form G = GL2(A), where A = O{P∞} ⊆ K is the ring of functions
that are regular outside a single place P∞ ∈ X, and t(K∞) is the Bruhat–
Tits tree of SL2 over the completion K∞ of K at P∞. See Section 5 for
details. A classical example of such results is due to Serre [28, Ch. II, §2.3]:
Theorem S. The quotient graph G\t(K∞) is combinatorially finite, i.e., it
is the result of attaching a finite set of infinite half lines, called cusps, to a
certain finite graph Y . The set of such cusps can be indexed by the elements
of the Picard group Pic(A) = Pic(X)/⟨P∞⟩ provided redundant cusps are
avoided.

This structural result was used by Serre to study the group G through
Bass–Serre Theory, which is developed in the same book. Thus, he extends
a classical work of Nagao (cf. [24]), on the existence of a decomposition of
the group of matrices with polynomial coefficients GL2(F[t]) as an amal-
gamation of simpler groups. Quotient graphs create the natural setting for
the study of the structure of related groups. Serre described the quotient
graphs precisely, whenever the degree of P∞ fails to exceed 4. The results
in [5] and [14] mentioned above generalized their computations, and also
results by W. Mason and A. Schweizer in [19], [20] and [23]. The latter au-
thors have applied this theory to the study of non-congruence subgroups in
Drinfeld modular groups [21], [22]. S. Takahashi has computed some quo-
tient graphs for elliptic curves in [31], and the case of orders on a division
algebra has also been studied [26]. The arithmetic groups mentioned in all
of the aforementioned references are closely related to normalizers of maxi-
mal orders. However, the general theory requires only working with orders
that are maximal at P∞, so these computations can be extended to a much
larger family of orders, including Eichler orders. As far as we are aware,
the present work is the first attempt to extend this type of results in such
direction.

We expect that the tools we have developed here inspire future study on
the structure of these groups. In fact, the theory introduced here to describe
Eichler orders can be used to characterize quotient graphs or, equivalently,
fundamental regions for some congruence subgroups of G. We illustrate
that in the last section of this paper. Theorem 3.3 below can bee seen as a
partial refinement of [27, §3.3, Lem. 8], since a more explicit description of
the fundamental region is given for the corresponding group.

More generally, the study of actions on buildings, in particular Bruhat–
Tits Buildings or BTB’s, plays a similar role for arithmetic groups in global
function fields to that of the upper half plain for subgroups of PSL2(R) [9,
§2]. In current literature, there exist a few significant results on the quotient
structure for these actions. As an example, we have some characterizations,
such as [30, Thm. 1] and [18, Thm. 2.1], of fundamental regions for groups
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of F[t]-points in some particular K-reductive groups, such as SLn. Both [30]
and [18] contain results on group structure that are deduced from the de-
scription of the quotient complex or fundamental region. A much more
general result along these lines can be found in [11, Prop. 13.6]. We have
reasons to believe that the interplay between orders and quotient buildings
will help to shed additional light on these structures in the future, for some
particular groups, specially when looking for descriptions of these quotient
sets that are more explicit than the result in [11].

Hijikata’s characterization has been generalized to higher dimensional
algebras in the local setting by Shemanske in [29] via BTB’s. Also, BTB’s
play a significant role in the study of the selectivity problem, i.e., under-
standing when a commutative order embeds into all, or just into some, of the
orders in a particular genus [12], [15], [16]. This problem arises naturally
from questions regarding spectral properties of hyperbolic varieties [32],
[17], and has been intensively studied in the quaternionic case, where the
relevant buildings are trees.

2. Conventions on vector bundles

We start by recalling some basic facts on bundles and lattices. In all
that follows, we let OX denote the structure sheaf of a smooth irreducible
projective curve X over a finite field F. We can assume that F is alge-
braically closed in K, so that OX(X) = F. We do so in the sequel. By an
n-dimensional X-lattice Λ, we mean a locally free sheaf of OX -modules of
rank n. In particular, for every open set U ⊆ X, the group Λ(U) is a lattice
over the Dedekind domain OX(U), in the classical sense (cf. [25, §81 A]).
The group Λ(X) of global sections is always a finite dimensional vector
space over the field F. One important example of an X-lattice is the sheaf
of sections of a vector bundle, which we usually identify with the bundle
itself. By a lattice in a K-vector space V , we mean a lattice Λ together with
a fix injection of the generic fiber Λ ⊗OX

K into V . When such injection
is an isomorphism, we say a full lattice. The same convention applies to
bundles. When V = Kn, such an isomorphism can be made explicit by
choosing n diferent K-linearly independent sections over some afine sub-
set U0 ⊂ X, which we identify with the canonical basis. This induces an
identification of the OX(U)−module of U -sections Λ(U) with a subset of
Kn, for an arbitrary open set U ⊆ X. An isomorphism of this type always
exists for n-dimensional vector bundles. Furthermore, two vector bundles
are isomorphic if the corresponding lattices satisfy an identity of the form
TΛ = Λ′, where T is an element in the general linear group GLn(K). At the
sheaf level, the preceeding notations mean TΛ(U) = Λ′(U) for every open
set U . We adopt similar conventions for other explicit vector spaces and
linear maps. An X-order R in a K-algebra A is an X-lattice in A whose
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group of sections R(U) is a ring, for any open subset U . If the lattice is full
we say a full order, e.g., the structure sheaf OX is a full X-order in K. We
let R, D and E denote full X-orders in M2(K) in all that follows.

Every full X-lattice in the space K is the sheaf of sections LB of the line
bundle defined by some divisor B, namely:

LB(U) =
{
f ∈ K

∣∣∣ div(f)|U +B|U ≥ 0
}
,

for every open subset U ⊆ X. These are usually called invertible bundles,
and have been extensively studied in existing literature. They can be seen
either as the projective equivalent of ideals, or as a multiplicative version
of divisors, as ilustrated by the following properties:

(1) Two divisors B and D are linearly equivalent if and only if LB and
LD are isomorphic as line bundles,

(2) for any pair (B,D) of divisors, we have LBLD = LB+D,
(3) we have LB(U) ⊆ LD(U), for all open sets U , precisely when B ≤ D

and
(4) Ldiv(g) = g−1OX .

Note that the product LBLD in (2) is defined locally, on open sets U , by
the relation (LBLD)(U) = LB(U)LD(U). With this definition, LBLD is
isomorphic to the tensor product LB ⊗OX

LD. In higher dimensions, we
adopt similar conventions for scalar products or any other bilinear maps.

An X-lattice (bundle) is called split if it is isomorphic to a direct sum of
one-dimensional lattices (invertible bundles). We are specifically interested
in split two dimensional lattices, i.e., lattices of the form Λ ∼= L1 × L2,
where L1 and L2 are invertible bundles. This must be understood as an
OX -module isomorphism. We often make this isomorphism explicit by the
choice of a basis. A basis {e1, e2} is call a splitting basis for a full X-bundle
Λ in K2 whenever Λ = L1e1 ⊕ L2e2, for some pair (L1,L2) of invertible
bundles. Note that a full bundle in K2 is split precisely when it has a
splitting basis. We often say that a given basis splits or diagonalizes a
bundle or lattice in this sense.

For every full X-lattice Λ in K2, there is a corresponding maximal order
DΛ = EndOX

(Λ) in the matrix algebra M2(K). It is defined, on open sets
U , by the following relation:

DΛ(U) =
{
a ∈ M2(K)

∣∣∣aΛ(U) ⊆ Λ(U)
}
.

Every maximal order in the algebra M2(K) has this form. Whenever the
canonical basis {e1, e2} splits Λ, namely

Λ = LBe1 ⊕ LCe2 =
(
LB

LC

)
,
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the corresponding order is DΛ =
(

OX LB−C

LC−B OX

)
. In particular, the projectors

( 1 0
0 0 ) and ( 0 0

0 1 ) belong to the ring of global sections DΛ(X). More generally,
an order E in M2(K) is called split whenever is conjugate to any order
of the form E(L1,L2) =

(
OX L1
L2 OX

)
, where (L1,L2) is a pair of invertible

bundles. An order is split precisely when it has a non-trivial idempotent
global section. Such orders are split as four-dimensional lattices, but the
converse does not hold in general. However, DΛ is split precisely when Λ is
split as an X-lattice.

The X-lattice LDΛ, for any divisor D, is referred to as a multiple of
Λ. Two lattices define the same maximal order precisely when they are
multiples of each other. A basis splits a lattice precisely when it splits every
multiple, which makes maximal orders the natural context for the study of
split lattices. In this sense, Theorem GB can be seen as a particular case
of the following well-known result:

Grothendieck–Birkhoff Theorem ([8, Thm. 2.1]). Every vector bundle
over P1 is a direct product of one dimensional bundles.

An Eichler order in M2(K) is an order of the form EΛ,Λ′ = DΛ ∩DΛ′ , for
a pair of lattices (Λ,Λ′), or equivalently, any intersection of two maximal
orders. Thus defined, the order EΛ,Λ′ splits precisely when there exists a
basis splitting the lattices Λ and Λ′ simultaneously. It follows easily from
Hijikata’s local characterization that split orders are Eichler, as being Eich-
ler is a local property, but the converse is not always true. It follows from
the results in this work that non-split Eichler orders exist for every curve
X. This is hardly surprising for geometry experts, as split bundles are a
thin subset of the moduli space for curves of higher genus.

Example 2.1. A consequence of Hijikata’s characterization of local split
orders is the following: For every pair of lattices Λ and Λ′ in k2, there exists
a basis {e1, e2} for which Λ = I1e1 ⊕ I2e2 and Λ′ = J1e1 ⊕J2e2, for suitable
ideals I1, I2, J1, J2 ⊆ Ok. In other words, there is a basis splitting both
lattices simultaneously. This also holds for arbitrary Dedekind domains,
and it is the foundation of the theory of invariant factors for lattices (cf. [25,
§81D]). Similarly, in the present context, characterizing split Eichler orders
solves the problem of determining whether there is a common basis splitting
two given lattices in K2, or equivalently, whether a common change of
variables can take a pair of vector bundles into a split form simultaneously.

3. Main results

Write |X| for the set of closed points in X. As we recall in Section 4
below, any full lattice Λ in a fix vector space V is completely determined
by the set

{
Λ̂P ⊆ VP

∣∣∣P ∈ |X|
}

of all its local completions Λ̂P . Equivalently,
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two orders in the same space are equal if and only if they coincide locally
at all places. One could hope, for this reason, that a similar property would
allow us to classify conjugacy classes locally. This is not so, but this line
of reasoning leads to the concept of genera. A genus is a maximal set of
locally isomorphic orders. Equivalently, two orders are in the same genus
if their completions at all local places are conjugate. Class Field Theory
has been used to classify orders in a genus, it allows to split a genus into
spinor genera. A spinor genus, in a given genus, is a maximal subset whose
lattices are isomorphic over all1 affine subsets of X. We recall part of this
theory in Section 4, where a more technical, but equivalent, definition of
spinor genus is given. For a full account, we refer the reader to [2]. Orders
in a spinor genus are classified via quotient graphs. We recall this theory in
Section 5, but we refer the reader to [5] for a full account on this subject.

A full description of the relation between the spinor genus of an Eichler
order and those of the maximal orders containing it is given in [7, §6]. We
just need to recall, for our purposes, that the genus of an Eichler order E
is determined by its level. At a local place P , the level of E is the natural
distance, in the Bruhat–Tits tree (cf. Section 5), between the unique pair
of maximal orders whose intersection is the completion ÊP . In the global
context, the level of an Eichler order EΛ,Λ′ is an effective divisor D =
D(DΛ,DΛ′) defined in terms of these local distances (cf. Section 4). It can
also be characterized by the following property:

For every affine open set U ⊆ X, we have isomorphisms of
OX(U)-modules
DΛ(U)/EΛ,Λ′(U) ∼= DΛ′(U)/EΛ,Λ′(U) ∼= OX(U)/L−D(U).

At this point, we are ready to state the main results of this work:

Theorem 3.1. Let X be an arbitrary smooth projective curve over a finite
field, and let D be an effective divisor on X. Then, the following statements
are equivalent:

• Only finitely many conjugacy classes of Eichler orders of level D
contain non-split orders.

• D is multiplicity free, i.e., D is a sum of different closed points.

Theorem 3.2. Let D be an effective divisor on the projective line P1,
defined over a finite field. If D ∈ {0, P1, P1 + P2}, for some pair (P1, P2)
of points of degree 1, then every Eichler order of level D splits. No other
divisor on P1 has this property.

The latter result is a partial generalization of Grothendieck–Birkhoff
Theorem. In proving these results, we rely heavily on the computation of

1In generalizations to quaternion division algebras, those affine sets containing the comple-
ment of the ramification locus of the algebra must be excluded.
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quotients of local Bruhat–Tits trees by suitable arithmetic groups. In fact,
these quotients are themselves interesting due to the fact that the structure
of the acting groups can be recovered from them, plus some suitable local
information on the vertex and edge stabilizers.

To make our final statement precise, we recall that the group

PGL2(F[t]) ⊆ PGL2(K∞)

acts naturally via Moebius transformation on the Bruhat–Tits tree for the
completion at infinity K∞ = F((t−1)) of F(t), which can be interpreted as
the tree g described in [1, §4], whose vertices are the closed balls in K∞.
We call g the Ball-tree in the sequel. There is a canonical bijection between
the ends of the Ball-tree and the elements in the set P1(K∞) of K∞-points
of the projective line. We use a technical definition of fundamental domain
that can involve half edges, see Section 5 for details.

Theorem 3.3. Let N = (t − λ1) · · · (t − λn) be a square-free polynomial
with all its roots in F. Let s be the smallest subtree containing the ends
0, ∞ and 1/M , for every proper monic divisor M of N . Then the Hecke
congruence subgroup

Γ0(N) =
{(

a b
c d

)
∈ GL2(F[t])

∣∣∣∣∣c ≡ 0 (modN)
}

has a fundamental domain of the form s ∪ f for a finite graph f.

4. Completions and spinor genera

This section lists the basic facts about spinor genera and spinor class
fields that are needed in the sequel. Further details on this topic can be
found in [2] or [3]. In all that follows we use the words order and lattice
with the meaning of X-order and X-lattice, respectively. When classical or-
ders or lattices over Dedekind domains are considered (in the sense defined
in [25, §81A]), we refer to them as affine lattices since all Dedekind do-
mains mention henceforth are of the form OX(U) for an affine open subset
U ⊂ X.

In all that follows, we consider the set |X| of closed points in a smooth
projective curve X with a function field K = K(X). For every closed point
P in |X|, we write KP for the completion of K at P . We write νP for
the valuation at P , and ÔP = {x ∈ KP |νP (x) ≥ 0} for the ring of local
integers. We also use x 7→ |x|P for the absolute value. We define the adele
ring A by the formula

A = AX =

a = (aP )P ∈
∏

P ∈|X|
KP

∣∣∣∣∣ ♯{P |aP /∈ ÔP } < ∞

 ,
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where ♯ denotes cardinality. It contains the subring OA =
∏

P ∈|X| ÔP of in-
tegral ideles. The ring A is assumed to be endowed with the adelic topology,
which has a basis of open sets of the form x+ yOA with y invertible and x
arbitrary [33, §IV.1]. We denote VA for the adelization V ⊗K A ∼= AdimK V

of any finite dimensional vector space V , and endow it with product adelic
topology. We canonically identify A with the adelization KA and the ring
EndA(VA) of A-linear maps with the adelization

(
EndK(V )

)
A. Given an

arbitrary X-lattice Λ, we write Λ̂P ⊆ VP for the ÔP -module generated by
Λ(U), for any affine Zarisky open neighborhood U ⊂ X of P . Thus defined,
Λ̂P depends on the sheaf Λ, but not on the neighborhood U . It is an open
and compact subgroup of VP .

The following results are well known for affine lattices, and their exten-
sion to the sheaf context is straightforward:

(1) If Λ and Λ′ are two lattices in the same vector space V , we have
Λ̂P = Λ̂′

P for all but finitely many places P ,
(2) if we have Λ̂P = Λ̂′

P for every place P ∈ |X|, then we have Λ = Λ′,
and

(3) if we have a family {Λ̂′′(P )}P ∈|X|, where each Λ̂′′(P ) ⊆ VP is an
ÔP -lattice, that satisfies the following coherence condition:

There is a lattice Λ satisfying Λ̂′′(P ) = Λ̂P for almost all
P ∈ |X|,

then there exists a lattice Λ′′ satisfying Λ̂′′(P ) = Λ̂′′
P for all P ∈ |X|.

The last property above can be used to build lattices that differ from a given
lattice, in a controlled fashion, at any finite set of places. In particular, it
allow us to study P -variants, i.e., lattices that differ from a given lattice in a
unique place P . Similar statements hold for orders. We also use the notation
ΛA =

∏
P ∈|X| Λ̂P , and call it the adelization of the lattice. Such adelizations

can be characterized as the open and compact OA-submodules of VA. In
particular, for each X-lattice Λ and each a ∈ GL2(A) = EndA(VA)∗, we can
define the adelic image L = aΛ as the unique lattice satisfying LA = aΛA.
Note that L inherit each local property of Λ that is preserved coordinate-
wise by a. In particular, any adelic image, under a conjugation, of a full
order is a full order. The same apply to maximal orders. The genus of a full
order R is defined by Gen(R) = {aRa−1|a ∈ GL2(A)}. For instance, the
set of maximal X-orders is a genus [4].

We define the local distance dP as follows: If there is a basis where two
orders DP and D′

P take the form

D̂P =
(

ÔP ÔP

ÔP ÔP

)
and D̂′

P =
(

ÔP πd
P ÔP

π−d
P ÔP ÔP

)
,
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where πP ∈ KP is a uniformizing parameter, we set dP (D̂P , D̂
′
P ) = d. The

Eichler order D∩D′ can be defined locally by ÊP = D̂P ∩ D̂′
P = (D∩D′)P̂.

The local distance d above is, by definition, the local level of the Eichler
order. It is well known that the local Eichler order ÊP uniquely determines
the set {D̂P , D̂

′
P }. Two local Eichler order of the same level are conjugate

and conversely. In particular, for a global Eichler order E, the genus Gen(E)
is the set of orders whose local levels coincide everywhere with those of E.
This motivates the definition of a divisor-valued global distance

D(D,D′) =
∑

P ∈|X|
dP (D̂P , D̂

′
P )P ≥ 0.

In particular, the level λ(EΛ,Λ′) of the Eichler order EΛ,Λ′ defined at the end
of Section 2 is D = D(DΛ,DΛ′). We write OD = Gen(E) for any Eichler
order E of level D. Note that this genus depends only on D. We call it the
genus of Eichler orders of level D.

Let JX = A∗ be the idele group of X, and consider the coordinate-wise
determinant det : GL2(A) → JX . The spinor genus of a full order R in
M2(K) is defined by

Spn(R) =
{

(bc)R(bc)−1
∣∣∣b ∈ GL2(K), c ∈ M2(A), det(c) = 1A

}
.

In [2, §2], we gave the following characterization of spinor genera (cf.
Remark 4.2):

Lemma 4.1. For any two full orders R and R′ in M2(K), in the same
genus, we have R′ ∈ Spn(R) precisely when the two rings R(U) and R′(U)
are conjugate for any affine open subset U ⊆ X.

The class field Σ = Σ(O) corresponding to the group K∗H(R) ⊆ JX ,
where

H(R) = {det(a)|a ∈ M2(A), aRa−1 = R},
is called the spinor class field of R, and it depends only on the genus
O = gen(R). We also use the notation ΣD = Σ(OD). The spinor class field
classifies spinor genera in a genus, in the sense that there is a well defined
distance map ρ : O×O → Gal

(
Σ/K

)
, satisfying ρ(R,R′) = [det(a),Σ/K],

where t 7→ [t,Σ/K] is the Artin map on ideles, whenever a ∈ GL2(A) is
an element satisfying R′ = aRa−1. This distance map has the additional
properties

ρ(R,R′′) = ρ(R,R′)ρ(R′,R′′), ρ(R,R′) = IdΣ ⇐⇒ R′ ∈ Spin(R),

for any three orders R,R′,R′′ ∈ O. When O = O0 is the genus of maximal
orders, the distance ρ = ρ0 satisfies the formula ρ0(D,D′) = [[D(D,D′),
Σ0/K]], which relates it to the divisor-valued distance D via the Artin map
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on divisors B 7→ [[B,Σ0/K]]. Furthermore, for any level D, the distance
map ρD corresponding to the genus OD satisfies the identity

ρD(EΛ,Λ′ ,EL,L′) = ρ0(DΛ,DL)
∣∣∣
ΣD

,

for any four lattices Λ, Λ′, L and L′, as follows from [7, Prop. 6.1] and the
discussion thereafter. If D =

∑
P aPP , the field ΣD can be characterized as

the largest subfield of Σ0 splitting at all places P with an odd coefficient
aP . This is a straightforward generalization of [4, Thm. 1.2].

Assume that the orders in a genus O are maximal at some place P . Two
orders R,R′ ∈ O are called P -neighbors if both of the following conditions
are satisfied:

• dP (R̂P , R̂
′
P ) = 1, where dP is the local distance, equivalently, the

completions R̂P and R̂′
P correspond to neighbors in the tree t(KP )

(cf. Section 5).
• R̂Q = R̂′

Q for any place Q ̸= P .
One last fact, which we often quote in the sequel, is the formula
(4.1) ρ(R,R′) = [[P,Σ(O)/K]],
for the distance between P -neighbors. It is immediate from the definition
of ρ. The distance between P -variants can be computed by iteration from
the preceding formula.

Remark 4.2. In an arbitrary quaternion algebra A, we have the following
general version of Lemma 4.1 (cf. [2, §2]):

R′ ∈ Spn(R) precisely when R′(U) is conjugate to R(U)
whenever there is a place in the complement of U that
splits A.

5. Eichler orders and trees

In all that follows, by a graph h, we mean a 5-tuplet (V,E, s, t, r) satis-
fying the following statements:

• V = Vh and E = Eh are sets, called the vertex set and the edge set.
• The three last symbols denote functions. They are the source s :
E → V , the target t : E → V and the reverse r : E → E, and
satisfy the identities r(a) ̸= a, r

(
r(a)

)
= a and s

(
r(a)

)
= t(a), for

each edge a.
Graphs are the objects in a category Graphs whose morphisms are simplicial
maps γ : h → h′, i.e., pairs of functions γV : Vh → Vh′ and γE : Eh →
Eh′ commuting with the preceding functions. Group actions are defined
analogously. An action without inversions, of a group Γ on a graph h, is an
action by simplicial maps where no edge is in the same orbit as its reverse.
The definition of quotient graphs for these actions is straightforward. This
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type of quotients is used in Bass–Serre Theory to study the structure of
groups acting on trees, as we mention in Section 1. When the action has
inversions, the definition is more subtle. We replace the graph by its first
barycentric subdivision to obtain a bipartite graph, with old vertices (or
actual vertices) and new vertices (or baricenters). The only baricenters
drawn in pictures are those having valency one in the quotient. We call
them nonvertices2. For details on this definition, the reader can see [5,
Rem. 1.6] or [6, Rem. 3.1]. We use the term half-edge for the edge joining a
nonvertex to a vertex. We often speak of vertices with the meaning of actual
vertices. We also use other notations that purposely ignore baricenters. As
an example, we refer to paths of length 2, as defined below, joining two
actual vertices as edges. Likewise, we assume throughout that a simplicial
map always takes an actual vertex to an actual vertex, and a baricenter to
a baricenter.

To define the notion of path in a graph, we introduce the concept of
integral interval. We introduce the graph-theoretical “real line” as a graph
r satisfying Vr = {mj |j ∈ Z}, Er = {bj , r(bj)|j ∈ Z}, s(bj) = mj and
t(bj) = mj+1. An integral interval is defined as a connected subgraph of
the real line. For these intervals we use the notations ik,k′ , i−∞,k, ik,∞ and
i−∞,∞ = r in a way that correlates naturally with the standard notation
for closed intervals in the real line. The length of a finite interval is defined
by l(ik,k′) = k′ − k. Vertices in the real line have a natural order. A shift is
an order-preserving simplicial isomorphism between intervals. A path in a
graph h is a class of simplicial maps γ from integral intervals to h, under
the smallest equivalence relation ≡ satisfying γ ◦ σ ≡ γ whenever σ is a
shift. An order-reversing simplicial isomorphism between integral intervals
is called a flip. The reverse of the path represented by a simplicial map γ
is the path corresponding to γ ◦ ϕ where ϕ is a flip. The length of a path
is, by definition, the length of the interval, which is invariant under shifts.
This convention is naturally extended to infinite path, i.e., those defined
from the intervals i−∞,k, ik,∞ or i−∞,∞. A path γ : ik,∞ → h is called a ray,
and a path γ : i−∞,∞ → h is called a maximal path. A line is the graph-
theoretical image of a path. Note that such image is shift-invariant. We
also identify a line with a pair of mutually reverse paths. Maximal lines are
defined analogously. When dealing with quotient graphs with nonvertices,
baricenter can be added to the real line to define intervals and paths of
half-integral length. We skip the details.

It is often convenient to highlight the vertices v = γV (mk) and v′ =
γV (mk′) of the path with a representative γ : ik,k′ → h. They are called
initial and final vertices of the path, and also endpoints of the corresponding

2In previous work we used the expression “virtual endpoint”, but the word “endpoint” is
reserved for paths by most authors.
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line. We often say a path from v to v′, or between v and v′, in this context. A
tree is a connected graph with a unique path between every pair of vertices.

Bruhat–Tits trees. A vertex in the Bruhat-tits tree t(KP ) for SL2(KP )
[28, §II.1] can be described, for our purposes, by giving any of the following
three equivalent pieces of data:

• A ball B = B
[νP (u)]
a with center a ∈ KP and radius |u|P , for u ∈ KP .

• As the homothety class of the ÔP -lattice Λ̂a,u,P =
〈(a

1
)
,
(u

0
)〉

.
• As the endomorphism ring D̂a,u,P = EndÔP

(Λ̂a,u,P ).
The natural graph distance in this tree coincide with the local distance
for maximal orders described in Section 4. In particular, neighbors are pre-
cisely the maximal orders at distance 1. More generally, there is a canonical
bijection between local Eichler orders ÊP of level k and lines of length k
in t(KP ). Furthermore, if we write D̂P,v for the maximal order correspond-
ing to a vertex v and ÊP,γ for the Eichler order corresponding to a line
represented by a map γ : i0,k → t(KP ), the maximal orders containing
ÊP,γ are precisely those of the form D̂P,γV (mi), for 0 ≤ i ≤ k, and in fact
ÊP,γ = D̂P,γV (m0) ∩ D̂P,γV (mk). This can be used to prove that the maxi-
mal orders in the expression of a local Eichler order as an intersection are
unique.

Grids and classifying graphs. Define the support of a divisor D =∑
P ∈|X| αPP by the formula Supp(D) =

{
P ∈ |X|

∣∣αP > 0
}
. Since con-

tention is a local property, the set of maximal orders containing a given
global Eichler order E, with completions ÊP = ÊP,γP

, can be interpreted as
the set of vertices in the product S(E) =

∏
P ∈Supp(D) Im(γP ). This product

can be visualized as a finite grid. A corner of the grid is a vertex whose P -
coordinates are all endpoints. Write Dv for the global order corresponding
to a vertex v. Then, next result is immediate:

Lemma 5.1. In the preceding notations, E = Dv1 ∩ Dv2 for every pair
(v1, v2) of opposite corners in the grid.

The divisor valued distance between orders is easily represented as a
coordinate-wise distance between the corresponding vertices. To compare
different orders, we fix an effective divisor D =

∑
P αPP , and a finite

set of places T ⊇ Supp(D). Call Eich(D,T ) the set of Eichler orders of
level D satisfying ÊQ = M2(ÔQ) for Q /∈ T . Then, the grid corresponding
to an Eichler order in this set can be seen naturally as a sub-complex of
the product

∏
P ∈T t(KP ). We often emphasize the fact that these grids

are contained in this explicit product of Bruhat–Tits trees by calling them
concrete D-grids.



660 Luis Arenas-Carmona, Claudio Bravo

Set D = D′ + αPP , where P /∈ Supp(D′). If the Eichler order E has
level D, the parallelotope S(E) is regarded as a concrete D-grid, for a suit-
able T . If αP > 0, there are precisely two Eichler orders E1 and E2 of
level D′ for which S(E) is the only D-grid containing simultaneously S(E1)
and S(E2). We refer to the latter grids as the P -faces of S(E).

Fix now a place Q ∈ |X|, write U = X ∖ {Q}, and consider a genus O
such that R̂Q is maximal for some (and hence every) order R ∈ O. Fix such
order R, and define Ψ = Ψ(R, Q) = {R′ ∈ O|R′(U) = R(U)}, the set of
Q-variants of R. Let N = N (R, Q) be the normalizer of R(U) in GL2(K).
Any element R′ ∈ Ψ is fully determined by its completion R̂′

Q at Q. The
local order R̂′

Q corresponds to a vertex of the Bruhat–Tits tree tQ = t(KQ),
whence the vertices of the quotient graph cQ(R) = N \tQ, which we call
the classifying graph, are in bijection with the N -orbits of orders in Ψ. It
follows from Formula (4.1) that all the orders in Ψ belong to the same spinor
genus precisely when |[Q,Σ(O)/K]| is the identity. Otherwise, these orders
belong to two different spinor genera and the quotient graph is bipartite.
Since R′′′(U) is conjugate to R(U), for any order R′′′ in the spinor genus
of R (cf. Lemma 4.1), next result follows:

Proposition 5.2. Under the preceding hypotheses and notations, every
conjugacy class in the spinor genus of R is represented in Ψ. In particular,
every conjugacy class in this spinor genus is represented by a vertex in
cQ(R).

Note that the groupGT = GL2
(
OX(X∖T )

)
acts naturally in the product∏

P ∈T t(KP ). Orbits are called D-grid classes. This action preserves P -faces,
so we can define the P -faces of a D-grid class, which are also grid classes.
We use this convention throughout.

Proposition 5.3. For any fix divisor D > 0, and for any finite set T
containing Supp(D), there is a natural bijection between the set of GT -orbits
in the set Eich(D,T ) and the set of D-grid classes in the corresponding
product of Bruhat–Tits trees. We can choose the set T in a way that every
conjugacy class of Eichler orders of level D contains a representative in
Eich(D,T ).

Proof. Everything is straightforward except for the last statement. Fix an
order E0 ∈ OD. Assume that the Frobenius maps of the placesQ1, . . . , QN ∈
T ∖ Supp(D) generate the Galois group Gal(ΣD/K). Then, for any order
E ∈ OD satisfying EP = E0,P for P /∈ {Q1, . . . , QN }, we have ρD(E0,E) =∏N

i=1[[Qi,ΣD/K]]βi , where βi = dQi(Ê0,Qi , ÊQi), as Formula (4.1) shows.
In particular, we can find an order E in any given spinor genus by choosing
a suitable family of local maximal orders ÊQi . Now the result follows from
Proposition 5.2, for any place Q ̸= Q1, . . . , QN in T ∖ Supp(D). □
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We have one quotient graph for every spinor genera, or pair of such, so we
can define the full classifying graph as the coproduct cQ(O) =

⋃
R cQ(R).

Here, we choose one representative R in each spinor genus or pair, gener-
alizing thus the definition in [5]. Next result is apparent at this point:

Proposition 5.4. Consider a divisor D > 0 and a point Q /∈ Supp(D).
There exists a canonical bijection between the vertices of the classifying
graph cQ(OD) and the set of D-grid classes, and another between the geo-
metric edges (i.e., pairs of the form {a, r(a)}) and the (D+Q)-grid classes,
such that the Q-faces of the grid corresponding to such an edge {a, r(a)}
correspond to the endpoints s(a) and t(a).

Remark 5.5. Classifying graphs can have multiple edges, or even loops
or half edges, the latter two only when |[Q,Σ(O)/K]| = IdΣ(O). See [5] for
some examples. In particular, two different (D +Q)-grid classes, as above,
can have the same, or even repeated, Q-faces.

6. Some preliminary results

In the sequel, we use the following convention:

(6.1) ψ = ( 0 1
1 0 ) , δf =

(
f 0
0 1

)
, η = ( 1 0

0 0 ) , ν = ( 0 0
1 0 ) .

Our next objective is to prove Lemma 6.7, which is the main result of this
section. This requires some preparation, which we have divided into six
lemmas. The first of them is a straightforward computation (cf. Section 2).

Lemma 6.1. The orders having the idempotent η as a global section are
those of the form R =

(
OX L1
L2 OX

)
, where L1 and L2 are bundles in K sat-

isfying L1L2 ⊆ OX . In particular, the maximal orders having η as a global
section have the form D =

(
OX L
L−1 OX

)
.

In particular, DB =
(

OX LB

L−B OX

)
is a maximal order for any divisor B.

Next result is an immediate consequence, as all nontrivial idempotents in
M2(KQ) are conjugates. See also [4, Cor. 4.3].

Lemma 6.2. For any place Q ∈ |X|, the Q-variants of the order DB con-
taining η as a global sections are those of the form DB+nQ, for n ∈ Z.
The maximal orders in M2(KQ) containing η are the completions D̂nQ,Q =(

ÔQ πn
QÔQ

π−n
Q ÔQ ÔQ

)
, whose corresponding vertices are in maximal path in the

Bruhat–Tits tree tQ. More generally, the maximal orders in M2(KQ) con-
taining any fix idempotent correspond to the vertices in a maximal path.

Lemma 6.3. The maximal orders DB and DB′ are conjugates precisely
when B is linearly equivalent to either B′ or −B′.
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Proof. In the notations of (6.1), we have DB = ψD−Bψ
−1 and DB =

δfDB+div(f)δ
−1
f . To prove the converse, we observe that the ring of global

sections DB(X) spans the four dimensional matrix algebra precisely when
LB and L−B have a non-trivial global section simultameously. This is possi-
ble only when B is principal. Therefore, we might assume neither B nor B′

is principal. Replacing B by −B if needed, we might assume L−B(X) = 0.
For the same reason, we might assume L−B′(X) = 0. Now, the condition
µDBµ

−1 = DB′ , for µ ∈ M2(K), implies µDB(X)µ−1 = DB′(X). It fol-
lows that the span V of DB(X) has the same dimension as the span V ′

of DB′(X). In particular LB(X) vanishes if and only if LB′(X) vanishes.
In either case V = V ′. If LB(X) = LB′(X) = 0, V is the ring of diagonal
matrices, so either µ or ψµ is a diagonal matrix. A straightforward compu-
tation finish the proof in this case. In the remaining case, V is the ring of
upper triangular matrices, so µ is upper triangular. Setting η′ = 1 − η, it
is easy to see that µ−1η = ηµ−1η and η′µ = η′µη′. On one hand we have
η′DB′η = LB′

ν, while on the other

η′
(
µDBµ

−1
)
η =

(
η′µη′)DB

(
ηµ−1η

)
= LB

(
η′µνµ−1η

)
.

A straightforward computation shows that the last parenthesis is a scalar
multiple of ν. The conclusion follows. □

Denote by [D] ∈ Pic(X) the class of a divisor D. The absolute value on
divisors is defined by |

∑
P αPP | =

∑
P |αP |P .

Lemma 6.4. Let D ∼= DB and D′ ∼= DB′ be two maximal orders whose
divisor valued distance is D. Assume that E = D ∩ D′ is split. Then there
exist two divisors B0 and B′

0 satisfying the following relations:
|B0 −B′

0| = D, [B0] ∈ {[B], [−B]} and [B′
0] ∈ {[B′], [−B′]}.

Proof. Replacing by a conjugate if needed, we might assume that the order
E contains the element η in (6.1), and therefore so do D and D′. In par-
ticular, we can write E = E[C,C ′] =

(
OX LC′

L−C OX

)
, with L−CLC′ ⊆ OX . In

particular, C − C ′ is an effective divisor, so we can write E = DC ∩ DC′ .
Note, however, that this is not the only way to write this order as an inter-
section. By Lemma 5.1, the orders D and D′ could be any pair of opposite
corners in the grid. It is not hard to see that the maximal orders contain-
ing E are precisely the orders of the form DC′′ with C ≤ C ′′ ≤ C ′. For
this reason, we need a formula for the level of any intersection of the form
DB0 ∩ DB′

0
.

Note that the intersection of two invertible sheaves is given by the for-
mula LD1 ∩ LD2 = Lmin{D1,D2}, where, as one would expect, the mini-
mum is defined by min{D1, D2} = 1

2(D1 + D2 − |D1 − D2|). Analogously,
we set max{D1, D2} = − min{−D1,−D2}. With this in mind, it is easy
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to see that the level of DB0 ∩ DB′
0

= E[max{B0, B
′
0},min{B0, B

′
0}] is

max{B0, B
′
0} − min{B0, B

′
0} = |B0 −B′

0|. The result is, therefore, a conse-
quence of Lemma 6.3. □

Finally, we need to recall a few facts from the description of the classifying
graph cP (O0) for maximal orders in the case X = P1.
Lemma 6.5 (cf. [5, Fig. 1 and Fig. 7])). Assume X = P1, and consider a
point P of degree d = 1. Then cP (O0) is a ray whose vertices correspond
to the conjugacy classes {c0, c1, . . . }, with cn = [DnP ] for n ∈ Z≥0. When
d = 2, then cP (O0) is the graph depicted in Figure 6.1.

∗ •
c1

•
c3

•
c5

∗
•

c0
•

c2
•

c4

Figure 6.1. The two connected components of cP (O0)
when X = P1 and deg(P ) = 2.

The reader must be warned that the identification cn = [DnP ] is valid
only for a point P ∈ |P1| of degree 1. For a point P of degree d > 1, cn

corresponds to the class cn = [DqP +rP1 ], where n = qd+ r, for an arbitrary
point P1 of degree 1. Note that we have a linear equivalence P ∼ dP1.
Lemma 6.6. Assume X = P1, and let P ∈ X be a place of degree d, then,
in the notations of previous lemma, the following statements hold:

(1) For each residue class r ∈ Z/dZ, there is a ray kr in cP (O0) whose
vertices, in order, are the classes cr, cr+d, cr+2d, cr+3d, . . . .

(2) If d is odd, then cP (O0) is connected. Otherwise, there are two con-
nected components.

(3) When d is even, the connected component containing the class cr

depends only on the parity of r.
Proof. Statement (1) is a direct application of Lemma 6.2, while state-
ment (2) is in [5, Thm. 1.3]. To prove statement (3), we observe that, for
any idele a ∈ JX , the element a2 is the determinant of the scalar matrix
a1M2(A), whence a2 ∈ H(D), for any D ∈ O0. This shows that Σ0/K is
an extension of exponent two, and therefore, if P1 is a place of degree 1,
then ρ(DrP1 .Dr′P1) = |[P1,Σ0/K]|r−r′ is trivial when r − r′ is even. We
conclude that cr and cr′ are in the same connected component in this case.
If this were so also when r − r′ is odd, there would be just one connected
component, so this is not the case. □

Lemma 6.7. Assume X = P1, and consider a point P of degree d ≥ 2.
Then the genus OP contains non-split orders.
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Proof. Assume first that d > 2. We claim that there are two rays in the
same connected component that are not of the form kr and kd−r. When d
is odd, we can choose k0 and k1, while for an even integer d > 2, we can
choose k0 and k2. We conclude that there is, at least, one edge joining a pair
of vertices of the form (cm, cn), where neither m+n nor m−n is a multiple
of d. Now we are in the setting of Lemma 6.4. If the Eichler order of level
P corresponding to a preimage of that edge is split, we can find divisors
B′

0 of degree ±n and B0 of degree ±m such that |B0 − B′
0| = P . This is

only possible if we have B0 − B′
0 = ±P , which contradicts the preceding

assumptions on their degrees, thus proving the statement in this case. For
the case d = 2, we use Lemma 6.5. Note that there is a half edge, denoted
by a double line in Figure 6.1, connecting the class c0 to itself, i.e., we can
find an Eichler order contained precisely in two maximal orders that are
conjugate to D0. If it corresponds to a split Eichler order, we must have
a pair (B0, B

′
0) of degree-0 divisors satisfying |B0 − B′

0| = P , which is not
possible. □

Remark 6.8. We could use Lemma 6.2 to prove that, in fact, the line
corresponding to the set of P -variants of a given order containing a fixed
idempotent global section has one of the following images in cP (O0):

• The double line obtained as the union of two rays of the form kr

and kd−r, plus an edge joining its endpoints.
• The ray k0.
• The ray k

d/2 with a half line attached to the endpoint.
This tell us, in particular, that the conjugacy class of the non-split Eichler
order is unique in the case d = 2. The edge joining two vertices in the class
c1 corresponds to a split order.
On valency computations. In order to compute vertex valencies, it is
often useful to consider the S-graph as defined in [5]. This is an older notion
than the classifying graph we consider above, as it was already studied by
Serre in [28]. Let us recall the definition here. Write U = X ∖ {Q} for a
maximal affine subset, and consider the unit group ΓR = K∗R(U)∗ ⊆ N
of R. The S-graph is defined by sQ(R) = ΓR\t(KQ). This is useful for us
because there is a ramified cover of graphs ϕ : sQ(R) → cQ(R), as ΓR ≤ N
is normal. In this context, a ramified cover is, by definition, a simplicial map
ϕ that induces a surjective map from the set of neighbors of each vertex v to
the set of neighbors of the image ϕV (v). To compute the valency in sQ(R)
of the vertex v′ corresponding to an order R′ ∈ Ψ with R̂′

Q = EndÔQ
(Λ̂′

Q),
we need to observe that matrices in the stabilizer R′(X)∗ can be viewed
as invertible linear maps on the vector space Λ̂′

Q/πQΛ̂′
Q

∼= F(Q)2, where
πQ is a local uniformizer. As usual, this induces an action by Moebius
transformations on the projective space P1(F(Q)

)
. The neighbors of v′ in
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the S-graph are in correspondence with the orbits of the latter action (cf.
[5, §5]).

In the notations of (6.1), we have ψE[B,B′]ψ−1 = E[−B′,−B]. When
the divisor B − B′ is effective and non-zero, this allows us to assume that
B has positive degree, so that L−B(X) = {0}, whence the ring of global
sections has the following form:

(6.2) E[B,B′](X) =
(
F LB′(X)
0 F

)
.

Next result is an immediate consequence:

Lemma 6.9. Let E = E[B,B′], with B − B′ an effective non zero divisor
as above, i.e., E is a non-maximal Eichler order. Assume B has positive
degree. Then ∞ is left invariant by the E(X)∗-action on the projective line
P1(F(Q)

)
. The remaining orbits are in correspondence with F∗\(F(Q)/V ),

where
V = V (B′, Q) = LB′(X)/LB′−Q(X).

In particular, if q = ♯F, the valency of the corresponding vertex vE of sQ(E)
is given by

val(vE) = 2 + (q − 1)−1
(
qdeg(P )−dimF V (B′,Q) − 1

)
.

Corollary 6.9.1. In the notations of the lemma, if degP = 1 the valency
is 2 or 3.

Next result follows from applying, to both B′ and B′−Q, Riemann–Roch
Theorem:

Corollary 6.9.2. In the notations of the lemma, the valency is 2 whenever
deg(B′) ≥ 2g.

The same holds for split maximal orders, when B = B′ has positive
degree, or when it is non-principal of degree 0. When B is principal, the
computation is more involved, but the valency is 1 when deg(Q) = 1, see [5]
for details.

7. Proof of Theorem 3.1 and Theorem 3.2

In all that follows, we let ψ and δf be as in Equation (6.1), and use the
following straightforward identities:
(7.1) ψδfE[B,D] (ψδf )−1 = E[div(f) −D,div(f) −B]
and
(7.2) δfE[B,D]δ−1

f = E[B − div(f), D − div(f)].
To simplify the proofs of our main results, we subdivide them in several

lemmas that take care of the individual borderline cases.
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Lemma 7.1. If P1, P2, P3 ∈ |P1| denote three diferent points of degree 1,
the genus OP1+P2 contains only split orders, while the genus OP1+P2+P3
contains a unique conjugacy class of non-split orders.

Proof. According to Lemma 6.2, the P1-variants of the maximal order
D0 = M2 (OX) containing the idempotent η are the orders of the form
DrP1 , and they are all in a maximal line m, as shown in Figure 7.1.B. Fur-
thermore, the classifying graph cP1(D0) is a ray, as shown in Figure 7.1.A,
and there is a two-to-one ramified cover α : m → cP1(D0). (cf. Lemma 6.5
and Lemma 6.3). Note that any order in a genus OB+P , with B supported
away from P , can be uniquely written as the intersection of two P -neighbors
in OB (cf. Proposition 5.4). The main trick in this proof is taking advantage
from this fact to export most of the preceding description to the next genus,
adding one place at a time. For instance, the edges of cP1(D0) correspond
precisely to conjugacy classes of orders in the genus OP1 . Each has a rep-
resentative in m. We conclude that every order in this genus is split. More
precisely, all conjugacy classes in the latter genus have a representative in
the following set:
(7.3) {E[P1, 0],E[2P1, P1],E[3P1, 2P1], . . . }.
To continue the proof, we draw the classifying graph cP2(OP1). In order
to accomplish this, we replace the representatives in (7.3) by a set of P2-
variants. We obtain

[
E[P1 + nP2, nP2]

]
=
[
E[(n + 1)P1, nP1]

]
from Equa-

tion (7.2). We write bn to denote this common class. By Corollary 6.9.2,
all vertex valencies equal 2, as in Figure 7.1.C. Edges in the latter graph
correspond to conjugacy classes in the genus OP1+P2 . Note that, again, η
is a common global section for all the vertices, and therefore also for all
the edges of this graph. This proves that every order in the genus OP1+P2
splits. A set of representatives for all conjugacy classes is

{E[P1,−P2],E[P1 + P2, 0],E[P1 + 2P2, P2],E[P1 + 3P2, 2P2], . . . }.
It is easy to draw the grid corresponding to each of these orders and de-
duce which is the corresponding line based on the orders containing each
P2-face. For example, consider the order E[P1,−P2]. The maximal orders
containing it are those of the form DB for −P2 ≤ B ≤ P1, which gives
B ∈ {0, P1,−P2, P1 − P2}. The first two correspond to the vertices c0 and
c1 in cP1(D0). The same holds for the second pair. We conclude that both
P2-faces of this order correspond to the vertex b0 in cP2(OP1), and therefore
E[P1,−P2] corresponds to the half edge in Figure 7.1.C.

We need to compute one more graph in the study of the genus OP1+P2+P3 .
In Figure 7.1.D, we draw cP3 (OP1+P2). Again, we have representatives for
all vertices dn =

[
E[P1 + nP3, nP3 − P2]

]
=
[
E[nP2 + P1, (n− 1)P2]

]
in the

maximal path corresponding to η, but now the vertex d0 has valency 3 in
the S-graph, as follows from Lemma 6.9.
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Figure 7.1. All graphs used in the proof of Lemma 7.1.

Two of its edges, say e′ and e′′, are represented by the edges joining
E[P1,−P2] with E[P1 +P3, P3 −P2] and E[P1 −P3,−P3 −P2], respectively,
and they coincide in the classifying graph, but the third edge must remain
distinct there, as the covering is only two-to-one. This implies that the S-
graph, and therefore also the classifying graph, has an edge sticking out of
the maximal path, that can only be a half edge in the latter. We claim that
the corresponding Eichler order E cannot be split. Since the corresponding
edge joins the vertex d0 to itself, the corresponding grid must look like the
one in Figure 7.1.E, where we label each vertex with the corresponding
class. In fact, we can assume that D0 is a vertex of a concrete grid in
this class. If it where split, we would have an idempotent global section in
E(X) ⊆ D0(X) = M2(F). By an F-rational change of basis, we can assume
it to be η. In that case, each neighbor of D0 must be DPi or D−Pi , for
i = {1, 2, 3}, but no choice of the signs gives us the correct configuration of
classes, whence we must conclude that the order is non-split. □

Recall that the S-graph of a maximal order, as defined after Remark 6.8,
is combinatorially finite, as defined in Section 1 (cf. Theorem S). We make
the latter definition precise by considering as cusps all the images of rays
γ : i0,∞ → g, where γV (ni) has valency 2 for i ≥ 1, and the valency of
γV (n0) is different from 2. These would be typically all cusps in the graph.
We make an exception if g looks like the classifying graph in Figure 7.1.C,
where we assume the initial vertex of the only cusp is γV (n0) = b0, or when
g is a maximal path. In the latter case, we assume there are two cusps and
we choose an arbitrary point as the initial vertex of either cusp.
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e′
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e′
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Figure 7.2. Horizontal neighbors are P -neighbors, while
vertical neighbors are P ′-neighbors.

Example 7.2. The procedure to compute the quotient graphs in the pre-
ceding proof can be iterated to describe the classifying graph at P∞ for
every genus of the form OP1+···+Pn , where P1, . . . , Pn, P∞ ∈ |P1| are differ-
ent points of degree 1. Note that n ≤ q = ♯F. In every step, almost all edges
in the cusp of the previous step become vertices in a cusp of the new graph,
which is therefore unique. In fact, Equation (7.2), with div(f) = n(P ′ −P ),
tells us that δf sends the edge en in Figure 7.2 to the edge e′

n. The square
between e′

n and e′
n+1 corresponds to an edge in the next step.

Lemma 7.3. For any arbitrary smooth projective curve X, and for any
closed point P ∈ |X|, there are infinitely many conjugacy classes of non-
split orders in the genus O2P .
Proof. Let E denote a fix Eichler order of level 2P and let D = DB ⊇ E
be a maximal order. Consider a ray of the classifying graph whose vertices
correspond to the classes an = [DB+nP ], as in Lemma 6.2. Note that Corol-
lary 6.9.2 proves that this ray contains a cusp, which, by redefining B, we
can assume that look as in Figure 7.3.A. Moreover, by Lemma 6.9, we can
further assume that, for n ≥ 1, every order in the class an = [DB+nP ]
has precisely one neighbor in the class an+1 and all the remaining neigh-
bors in the class an−1. Recall that the Eichler orders E′ ∈ Ψ(E, P ) are in
natural bijection with the lines of length 2 in the Bruhat–Tits tree t(KP )
(cf. Proposition 5.4). In particular, for every integer n > 1 there is an
Eichler order contained precisely in one order of the class an and in two
orders of the class an−1, located in the corresponding branch as depicted
in Figure 7.3.B. We claim that every such order E, for n > − deg(B), is
non-split. They are pairwise non-conjugate, whence the result follows from
our claim. Assume E is split. Replacing by a conjugate if needed, we can
assume E = E[D,D′], for some pair of divisors satisfying D −D′ = 2P , or
equivalently D′ = D − 2P . In this case, the maximal orders in the branch
must equal DD, DD−P and DD−2P , respectively, whence D − P = D′ + P
must be linearly equivalent to either B + nP or −(B + nP ). Permuting D
and −D′ if needed, we can assume D−P is linearly equivalent to B+nP ,
and therefore it has positive degree.
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Figure 7.3. The graphs used to prove Lemma 7.3. The box
marked with a “Y ” denotes a connected subgraph.

This implies that the integers deg(D) and deg(D − 2P ) have different
absolute values, whence the orders corresponding to the divisors D and
D−2P must fail to be conjugate. The contradiction concludes the proof. □

Example 7.4. Consider the case X = P1, and let P,Q ∈ X be two different
points of degree 1. Set U = X∖{P}, and fix a representative E ∈ O2P . The
conjugacy classes in O2P are canonically in bijection with either, the vertices
of the classifying graph cQ(E) or the N (D, P )-orbits of length 2 lines in
t(KP ), for any maximal order D ⊇ E (cf. Section 5). In this particular case,
such orbits of lines are in bijection with the simplicial maps of the form
γ : i0,2 → cP (D), up to reverse, that can be lifted to paths in Bruhat–Tits
tree. It is easy to see that lines in the same orbit define the same map, so
we prove the converse. For this we need to describe all such maps, which
can be done by looking at Figure 7.1.A. Note that a simplicial map Γ can
be described in this setting by the triplet E(γ) =

(
γV (n0), γV (n1), γV (n2)

)
.

The simplicial map satisfying E(γ) = (cn+1, cn, cn+1), for n ≥ 1, cannot
be lifted to a path, as any order in the class cn has a unique neighbor
in the class cn+1. The map for which E(γ) = (cn−1, cn, cn−1) defines a
unique conjugacy class since the stabilizer of a vertex in the class cn+1
acts transitively on pairs of neighbors in cn, as this action corresponds to
the action by linear maps on the standard affine part of the projective
line over the residue field. A similar, but simpler argument works for the
map satisfying E(γ) = (cn−1, cn, cn+1). The path where E(γ) = (c1, c0, c1)
needs to be consider separately, but again, the stabilizer of a vertex in
c0 is shown to act 2-transitively (or even 3-transitively) on its neighbors,
as the corresponding action is the one by Moebius transformations on the
projective line. The latter simplicial map corresponds to the class of the split
Eichler order E[P, P ]. We denote its class by e0. If E(γ) = (cn−1, cn, cn+1),
for n ≥ 1, we can choose the representative E[(1+n)P, (n−1)P ]. We denote
its class by en. For the case E(γ) = (cn−1, cn, cn−1), the corresponding order
Fn is not split. We denote its class by fn. This gives us all vertices of the
classifying graph. To find the edges we study the grids corresponding to
orders of level 2P + Q (see Figure 7.4.A). These correspond to simplicial
maps of the form γ : i0,2 → cP (E′), for an Eichler order E′ of level Q. The
corresponding classifying graph is depicted in Figure 7.1.C. The analysis
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Figure 7.4. A 2 × 1 grid (A), The graph in Example 7.4.
(B), and the classes of the orders in the grids corresponding
to each on the central edges (C-E).

is very similar in this case, with every stabilizer of a vertex in bn acting
2-transitively on the neighbors in the class bn−1. A few differences must be
noted however. The map corresponding to the triplet (b1, b0, b1) cannot be
lifted in this case, while the presence of a half-edge, force us to consider
the triplets (b0, b0, b1) and (b0, b0, b0). These two triplets correspond to the
grids in Figure 7.4.E and Figure 7.4.D, respectively, while the grid depicted
in Figure 7.4.C corresponds to the triplet (b0, b1, b0). These three grids give
us the three central edges of the classifying graph in Figure 7.4.B.

Proof of Theorem 3.2. Consider an effective divisor D on X = P1. Assume
first that 0 ≤ D ≤ P1 + P2 for two degree-1 places P1 ̸= P2 in |X|, and
set E ∈ OD. Equivalently, there exists a paralellotope S(E′), for an order
E′ ∈ OP1+P2 , which is a concrete 1-times-1 square grid, where horizon-
tal neighbors represent P1-neighbors and vertical neighbors represent P2-
neighbors, satisfying S(E) ⊆ S(E′), or, what is the same, E′ ⊆ E. Lemma 7.1
shows that E′ splits, whence its ring E′(X) of global sections contains a
non-trivial idempotent. The same must happen for the overorder E. This
concludes the proof in this case. Assume now that D is not bounded by the
sum of two degree-1 places. Then D ≥ B for some divisor B satisfying one
of the following conditions:

(1) B = P , for a place P of degree 2 or larger,
(2) B is the sum of three degree-1 places, or
(3) B = 2P , for some place P of degree 1.

We conclude by applying Lemma 6.7, Lemma 7.1 or Lemma 7.3, respec-
tively, and following a similar line of reasoning. □

In what follows, we need to quote a version of [28, Ch. II, Thm. 9], a
result by Serre. Due to our slightly different setting, we provide a sketch of
the proof. See the reference for details.



On genera containing non-split Eichler orders 671

Lemma 7.5. Let D be a maximal order. The classifying graph cP (D) =
N (D, P )\t(KP ), where P ∈ |X|, is obtained by attaching a finite number
of cusps, or infinite half lines, to a certain finite graph Y . The vertices in
the cusps correspond to split orders.

Proof. We know that the vertices in cP (D) correspond to conjugacy classes
of P -variants of D, that the vertices corresponding to splits orders are
precisely the vertices in a finite number of rays and maximal paths, and
that every vertex sufficiently far into any of these paths has valency 2 by
Corollary 6.9.2, whence almost all of them are located in a finite number
of cusps. It remains to show that the graph Y that is left when the cusps
are removed is finite. It suffices, therefore, to find a constant bound for the
distance from every P -variant D′ of D to the closest split P -variant D′′.

To find this bound, we write every maximal order in the form D′ = DΛ,
for some bundle Λ in K2. Recall that DLΛ = DΛ for every invertible bundle
L, so we can assume that the bundle is chosen in a way that 2g − 2 <
deg(Λ) ≤ 2g, where g is the genus ofX. Riemann–Roch Theorem (for higher
dimensional bundles) gives us the inequality dim Λ(X) ≥ deg(Λ)+2(1−g) >
0. This implies that Λ contains a line bundle F with non-trivial global
sections. Let W ⊆ K2 be the K-span of F. Replacing F by W ∩Λ if needed,
we can assume that F′ = Λ/F is a line bundle in the space K2/W . Since F
has nontrivial global section, we have deg(F) ≥ 0, whence

N(Λ;F) := deg(F) − deg(F′) = 2 deg(F) − deg(Λ) ≥ 2g.

If Fv and Λv are the P -variants of F and Λ satisfying F̂v
P = π−1

P F̂P and
Λ̂v

P = Λ̂P + F̂v
P , then N(Λv;Fv) = N(Λ;F) + deg(P ), and the maximal

order corresponding to Λv is a P -neighbor of DΛ. By successively taking
P -neighbors in this way, we reach, in no more that 4g steps, a pair (ΛV ,FV )
that satisfies N(ΛV ;FV ) > 2g − 2. Now [28, §II.2.2, Prop. 7] proves that
ΛV splits, whence so does the order DΛV . □

Lemma 7.6. Consider an arbitrary smooth curve X,and assume P1, . . . ,Pn

are different closed points in X. Then the genus OP1+···+Pn contains only
a finite number of conjugacy classes of non-split orders.

Proof. The graph cP (O0) has finitely many connected components, and
each one is a graph like the one described in Lemma 7.5. This proves the
case n = 0. Next assume that the statement holds in the case n = t,
i.e., all but finitely many vertices in cPt+1(OP1+···+Pt) correspond to con-
jugacy classes of split orders. Consider a cusp like the one depicted in
Figure 7.3.A. The induction hypothesis tells us that, for m large enough,
the vertex am corresponds to a conjugacy class of split orders. One repre-
sentative is an order of the form E = E[B,B′], by definition of split order.
Certainly B − B′ =

∑t
i=1 Pi. Furthermore, two neighbors are the orders
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E′ = E[B + Pt+1, B
′ + Pt+1] and E′′ = E[B − Pt+1, B

′ − Pt+1]. Addition-
ally, we can assume without loss of generality that deg(B′) > 0, for large
m. In that case, E′ and E′′ cannot be conjugates, as the former is con-
tained in DB+Pt+1 , while the second is contained only in orders of the form
DB′′ with B′ − Pt+1 ≤ B′′ ≤ B − Pt+1, none of which is conjugate to
DB+Pt+1 by Lemma 6.3. We conclude that one is a representative of the
class corresponding to am+1, while the other is a representative of the class
corresponding to am−1. A straightforward computation shows that either
edge corresponds to a split order, and the result follows. □

Proof of Theorem 3.1. When the effective divisor D is multiplicity-free, the
result is a direct applications of the preceding lemma. Assume this is not
the case. Then 2P ≤ D for some place P ∈ |X|. We conclude from the
combinatorics of the tree that every order in O2P contains some order
in OD, while each order in OD is contained into finitely many orders of
the genus O2P . As splitting is equivalent to having an idempotent global
section, every order containing a split suborder is split. Lemma 7.3 tell us
that there is an infinite set of pairwise non-conjugate non-split orders in
O2P , so the same holds for OD. The result follows. □

8. Computing fundamental domains for congruence subgroups
of GL2(A)

In all of this section, we set A = F[t],K = F(t), and we letK∞ = F((t−1))
be the completion of K at P∞. We set Ô∞ = F[[t−1]], the ring of integers
of K∞, and we let ν = νP∞ = − deg denote the valuation map on K∞.
In particular, we assume deg(0) = −ν(0) = −∞. The same conventions
apply to the absolute value x 7→ |x| = |x|P∞ . We identify the Bruhat–
Tits tree for SL2(K∞) with the Ball-tree g, as in Section 3. In this tree,
two balls are neighbors if one is a maximal proper sub-ball of the other.
See [1, §4] for details. By an end of a graph h, we mean an equivalence class
of rays ρ : i0,∞ → h, where two rays ρ and ρ′ are equivalently precisely
when ρE(an) = ρ′

E(an+t) for a fixed integer t and every big enough positive
integer n. There is a natural bijection between the ends of the Ball tree,
or its subgraphs, and the elements of P1(K∞). We say that a subgraph h′

contains an end a ∈ P1(K∞) if there is at least one ray ρ : i0,∞ → h′ in
the corresponding equivalence class. We write a ∈ h′ in this case. As it
is the case for any tree, g contains a unique path γa,b between any pair
(a, b) of vertices or ends. The smallest subtree containing any set S of
ends and vertices, like s in Theorem 3.3, is the graph-theoretical union⋃

(a,b)∈S×S Im(γa,b).
Recall that, to define quotient graphs in full generality, it is convenient

to work with the barycentric subdivision. We extend this convention in
the sequel to fundamental domains. To define a fundamental domain, we
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perform a finite number of surgeries to transform the quotient graph q into
a tree. See Figure 8.1. A surgery consists on replacing an edge by a pair
of half edges, provided that the resulting graph is still connected. Once we
get a tree q′, we fix a vertex v, choose a preimage ṽ in the Bruhat–Tits
tree, and successively lift the path from v to any vertex or nonvertex in
q′ in a consistent fashion. The union of the images of such liftings is the
fundamental domain under consideration. See Figure 8.1.C. Note that the
quotient graph can be recovered from the fundamental domain and the
pairs of corresponding nonvertices. This is done by gluing the latter in an
obvious manner.

Example 8.1. Assume A = F[t]. In Figure 8.2 we can see the minimal
subgraph s containing 0, ∞ and each M−1 with M dividing N , for N =
t(t− 1) or N = t(t− 1)(t− 2). In the latter case we assume char(F) > 2.

Proof of Theorem 3.3. Denote by Pi ∈ |P1| the point corresponding to λi,
or equivalently, assume div(t−λi) = Pi−P∞. Repetitive use of Example 7.2
shows that the classifying graph cP (OP1+···+Pn) has a unique cusp. Consider
the natural cover ϕ : sP (OP1+···+Pn) ↠ cP (OP1+···+Pn) defined in Section 5.
Note that Γ0(N) = ΓE for a suitable choice of E. The cover ϕ is at most m
to one, where m = ♯ (N/ΓE).
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Assume a matrix ρ satisfies ρDρ−1 = D for some maximal A-order.
Then, as A is principal, we might assume D = M2(A). If Λ = A2 ⊆ K2,
then ρΛ = fΛ for some scalar f ∈ K. It follows that ρ ∈ K∗D∗. We
conclude that ΓE is the point-wise stabilizer, in GL2(K), of the grid S(E).
Since N can only act on the grid by switching the endpoints of each local
line, it follows that ♯(N/ΓE) ≤ 2n.

It suffices, therefore, to prove that the restriction of ϕ to the tree s is an
injection. Consequently, the result follows from next statement, which we
prove following the techniques in [19]:

Lemma 8.2. The vertices in s are in different Γ0(N)-orbits.

Proof. Note that, if N = 1, or equivalently if E is maximal, the lemma is
essentially Nagao’s result, which follows from the description of the graph
depicted in Figure 7.1.A. We assume throughout that this is not the case.
We use B|s|

x for the ball of radius |π|s centered at x ∈ K∞, where π = t−1 is
a uniformizing parameter at P∞. Set B0 = B

|0|
0 , the ball corresponding to

the local maximal order D̂0,1,P∞ , in the notations used to describe t(KP )
in Section 5. Let B1 = B

|r1|
x1 and B2 = B

|r2|
x2 be two vertices in s, where

the center x1 is either 0 or the multiplicative inverse of a proper monic
divisor of N , and the same holds for x2. Assume that there exists a matrix
g =

(
a b

Nc d

)
∈ Γ0(N) satisfying g · B1 = B2. Set h1 =

(
x1 πr1
1 0

)
and h2 =(

x2 πr2
1 0

)
, so that we have both B1 = h1 · B0 and B2 = h2 · B0. Then, for

some λ ∈ K∗
∞, we must have h−1

2 gh1 ∈ λGL2(Ô∞), since K∗
∞ GL2(Ô∞)

is the stabilizer of B0. By taking determinants, we get 2ν(λ) = r1 − r2.
Hence, r1 − r2 is an even integer and g̃ = π

r2−r1
2 h−1

2 gh1 ∈ GL2(Ô∞). After
a simple computation we have

(8.1) g̃ =
(

π
r2−r1

2 (d+Ncx1) π
r2+r1

2 Nc

π
−r1−r2

2 (ax1 − dx2 + b−Ncx1x2) π
r1−r2

2 (a−Ncx2)

)
.

We conclude that π
r1−r2

2 (a−Ncx2), π
r2−r1

2 (d+Ncx1) ∈ Ô∞. On the other
hand, the polynomials a − Ncx2 and d + Ncx1 either vanish or have non-
positive valuations. This leaves us three alternatives:

(i) r := r1 = r2, together with ν(a−Ncx2) = ν(d+Ncx1) = 0,
(ii) a = Ncx2 or
(iii) d = −Ncx1.

The last two alternatives imply det(g) /∈ F∗, so (i) must hold. The result
follows if x1 = x2, as this implies B1 = B2. The same holds if r ≤ 0, as
ν(x1), ν(x2) > 0, since B1 = B

|r|
0 = B2 in this case. We assume in the

sequel that x1 ̸= x2 and r > 0. From (8.1) and (i) we deduce the following
facts:
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(a) a−Ncx2 = a0 ∈ F∗,
(b) d+Ncx1 = d0 ∈ F∗,
(c) Nc ∈ π−rÔ∞, or equivalently deg(Nc) ≤ r, and
(d) a0x1 − d0x2 + b+Ncx1x2 = ax1 − dx2 + b−Ncx1x2 ∈ πrÔ∞.

Note that x1 and x2 do not vanish simultaneously by the previous as-
sumption. If we suppose that either ν(Ncx1x2) > 0 or x1x2 = 0, then the
dominant term on the left hand side of identity (d) is b ∈ F[t], unless it van-
ishes. As r > 0 we must conclude the latter. It follows that g =

(
a 0

Nc d

)
, in

particular a, d ∈ F∗. This can only mean Ncx2, Ncx1 ∈ F, and then c = 0,
as at least one element xi ∈ {x1, x2} is the inverse of a proper monic divisor
of N . Such xi can be written in the form xi = πν + ε, where ν := ν(xi) and
ν(ε) > ν. In particular, there are two possibilities, either r ≤ ν, in which
case 0 ∈ Bi, or r > ν, and then every center of the ball has the same form.
In the first case Bi is invariant by any diagonal matrix, so B2 = g · B1
implies B1 = B2. In the second case B2 = g · B1 means B|r|

x2 = B
|r|
ax1/d, so

neither ball contains 0, and a = d, as both x−1
1 and x−1

2 are monic. Again
we conclude B1 = B2.

Finally, assume that both x1, x2 ̸= 0 and ν(Ncx1x2) ≤ 0. We can assume
r > max {ν(x1), ν(x2)} or we could redefine x1 or x2 as 0 and return to the
preceding case. Let
(8.2) ϵ = b+Ncx1x2 ∈ −a0x1 + d0x2 + πrÔ∞ ⊆ πÔ∞.

By a simple computation, we get det(g) = a0d0 − ξ ∈ F∗, where ξ =
Nc(a0x1 − d0x2 + ϵ) ∈ F. If ξ = 0, we have that c = 0 or
(8.3) Nc+ bx−1

1 x−1
2 = ϵ(x1x2)−1 = d0x

−1
1 − a0x

−1
2 .

In the former case b ∈ πÔ∞ by (8.2), so that b = 0 and we argue as in
the previous paragraph. In the latter case, Equation (8.3) implies that x−1

1
divides x−1

2 and inversely, as either divides N , whence B1 = B2.
Assume now that ξ ̸= 0, so by applying, successively, (c), the definition

of ξ, the definition of ϵ, and (d), we prove the following chain of inequalities:
r ≥ −ν(Nc) = ν(a0x1 − d0x2 + ϵ) = ν(a0x1 − d0x2 + b+Ncx1x2) ≥ r.

From here we conclude the following identity:
(8.4) ν(a0x1 − d0x2 + ϵ) = −ν(Nc) = r.

In this case we have
|πr| = |a0x1 − d0x2 + ϵ| = |x1x2||a0x

−1
2 − d0x

−1
1 + ϵ(x1x2)−1| ≥ |x1x2|,

as the second factor in the third expression is a polynomial by definition
of ϵ. On the other hand, the hypothesis ν(Ncx1x2) ≤ 0 implies |x1x2| =
|Ncx1x2||Nc|−1 ≥ |πr|. Thus, r = ν(x1x2), which together with (8.4) shows
that σ = a0x

−1
2 −d0x

−1
1 +b(x1x2)−1+Nc is a non zero constant polynomial.
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But σ is divisible by gcd(x−1
1 , x−1

2 ), and therefore gcd(x−1
1 , x−1

2 ) = 1. If ϵ ̸= 0
we conclude that b(x1x2)−1 + Nc is a multiple of (x1x2)−1. By the strong
triangular inequality, |σ| = 1 implies

|a0x
−1
1 − d0x

−1
2 | = |b(x1x2)−1 +Nc| ≥ |x1x2|−1.

The preceding inequality is impossible by a degree argument. To finish
the proof we consider ϵ = 0, in which case |a0x

−1
1 − d0x

−1
2 | = 1 by (8.4).

As the polynomials are monic, this is only possible when a0 = d0 and
|x1 − x2| ≤ |πr|. We conclude that B1 = B2. □

References
[1] M. Arenas, L. Arenas-Carmona & J. Contreras, “On optimal embeddings and trees”,

J. Number Theory 193 (2018), p. 91-117.
[2] L. Arenas-Carmona, “Representation fields for commutative orders”, Ann. Inst. Fourier

62 (2012), no. 2, p. 807-819.
[3] ——— , “Representation fields for cyclic orders”, Acta Arith. 156 (2012), no. 2, p. 143-158.
[4] ——— , “Eichler orders, trees and representation fields”, Int. J. Number Theory 9 (2013),

p. 1725-1741.
[5] ——— , “Computing quaternion quotient graphs via representations of orders”, J. Algebra

402 (2014), p. 258-279.
[6] ——— , “Roots of unity in definite quaternion orders”, Acta Arith. 170 (2015), no. 4, p. 381-

393.
[7] ——— , “Spinor class fields for generalized Eichler orders”, J. Théor. Nombres Bordeaux 28

(2016), no. 3, p. 679-698.
[8] L. Bodnarchuk, I. Burban, Y. Drozd & G.-M. Greuel, “Vector bundles and torsion free

sheaves on degenerations of elliptic curves”, in Global aspects of complex geometry, Springer,
2006, p. 83-129.

[9] F. Bruhat & J. Tits, “Groupes réductifs sur un corps local”, Publ. Math., Inst. Hautes
Étud. Sci. 41 (1972), p. 5-251.

[10] J. Brzezinski, “Riemann–Roch Theorem for locally principal orders”, Math. Ann. 276
(1987), p. 529-536.

[11] K.-U. Bux, R. Köhl & S. Witzel, “Higher Finiteness Properties of Reductive Arithmetic
Groups in Positive Characteristic: the Rank Theorem”, Ann. Math. 177 (2013), no. 1,
p. 311-366.

[12] T. Chinburg & E. Friedman, “An embedding theorem for quaternion algebras”, J. Lond.
Math. Soc. 60 (1999), no. 1, p. 33-44.

[13] H. Hijikata, “Explicit formula of the traces of Hecke operators for Γ0(N)”, J. Math. Soc.
Japan 26 (1974), p. 56-82.

[14] R. Köhl, B. Mühlherr & K. Struyve, “Quotients of trees for arithmetic subgroups of
PGL2 over a rational function field”, J. Group Theory 18 (2015), no. 1, p. 61-74.

[15] B. Linowitz, “Selectivity in quaternion algebras”, J. Number Theory 132 (2012), no. 7,
p. 1425-1437.

[16] B. Linowitz & T. R. Shemanske, “Embedding orders in central simple algebras”, J. Théor.
Nombres Bordeaux 24 (2012), p. 405-424.

[17] B. Linowitz & J. Voight, “Small isospectral and nonisometric orbifolds of dimension 2
and 3”, Math. Z. 281 (2015), no. 1-2, p. 523-569.

[18] B. Margaux, “The structure of the group G(k[t]): Variations on a theme of Soulé”, Algebra
Number Theory 3 (2009), no. 4, p. 393-409.

[19] A. W. Mason, “Serre’s generalization of Nagao’s theorem: an elementary approach”, Trans.
Am. Math. Soc. 353 (2001), no. 2, p. 749-767.

[20] ——— , “The generalization of Nagao’s theorem to other subrings of the rational function
field”, Commun. Algebra 31 (2003), no. 11, p. 5199-5242.



On genera containing non-split Eichler orders 677

[21] A. W. Mason & A. Schweizer, “The minimum index of a non-congruence subgroup of SL2
over an arithmetic domain”, Isr. J. Math. 133 (2003), p. 29-44.

[22] ——— , “The minimum index of a non-congruence subgroup of SL2 over an arithmetic
domain II. The rank zero cases”, J. Lond. Math. Soc. 71 (2005), no. 1, p. 53-68.

[23] ——— , “The stabilizers in a Drinfeld modular group of the vertices of its Bruhat-Tits tree:
an elementary approach”, Int. J. Algebra Comput. 23 (2013), no. 7, p. 1653-1683.

[24] H. Nagao, “On GL(2, K[x])”, J. Inst. Polytechn., Osaka City Univ., Ser. A 10 (1959),
p. 117-121.

[25] O. T. O’Meara, Introduction to quadratic forms, Grundlehren der Mathematischen Wis-
senschaften, vol. 117, Springer, 1963.

[26] M. Papikian, “Local Diophantine properties of modular curves of D-elliptic sheaves”, J.
Reine Angew. Math. 664 (2012), p. 115-140.

[27] J.-P. Serre, “Le Probleme des Groupes de Congruence Pour SL2”, Ann. Math. 92 (1970),
p. 489-527.

[28] ——— , Trees, Springer, 1980.
[29] T. R. Shemanske, “Split orders and convex polytopes in buildings”, J. Number Theory 130

(2010), no. 1, p. 101-115.
[30] C. Soulé, “Chevalley groups over polynomial rings”, in Homological group theory (Durham,

1977), London Mathematical Society Lecture Note Series, vol. 36, Cambridge University
Press, 1979, p. 359-368.

[31] S. Takahashi, “The fundamental domain of the tree of GL(2) over the function field of an
elliptic curve”, Duke Math. J. 72 (1993), no. 1, p. 85-97.

[32] M.-F. Vignéras, “Variétés Riemanniennes isospectrales et non isométriques”, Ann. Math.
112 (1980), p. 21-32.

[33] A. Weil, Basic Number Theory, Grundlehren der Mathematischen Wissenschaften, vol. 144,
Springer, 1973.

Luis Arenas-Carmona
Universidad de Chile, Facultad de Ciencias,
Casilla 653, Santiago, Chile
E-mail: learenas@u.uchile.cl

Claudio Bravo
Universidad de Chile, Facultad de Ciencias,
Casilla 653, Santiago, Chile
E-mail: claudio.bravo.c@ug.uchile.cl

mailto:learenas@u.uchile.cl
mailto:claudio.bravo.c@ug.uchile.cl

	1. Introduction
	2. Conventions on vector bundles
	3. Main results
	4. Completions and spinor genera
	5. Eichler orders and trees
	Bruhat–Tits trees
	Grids and classifying graphs

	6. Some preliminary results
	On valency computations

	7. Proof of Theorem 3.1 and Theorem 3.2
	8. Computing fundamental domains for congruence subgroups of GL2(A)
	References

