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On Dirichlet biquadratic fields

par Étienne FOUVRY et Peter KOYMANS

Résumé. Nous prouvons l’existence d’un sous–ensemble, de densité positive,
d’entiers n > 0 sans facteur carré, tels que le 4–rang du groupe de classes
d’idéaux de Q(

√
−n,

√
n) vaut ω3(n)−1. On a désigné par ω3(n) le nombre de

diviseurs premiers de l’entier n qui sont congrus à 3 modulo 4. Rappelons que,
pour les groupes de classes associés à Q(

√
n) et Q(

√
−n), un sous–ensemble

analogue d’entiers n n’existe pas.

Abstract. We prove the existence of a subset, with positive natural density,
of squarefree integers n > 0 such that the 4–rank of the ideal class group of
Q(

√
−n,

√
n) is ω3(n) − 1, where ω3(n) is the number of prime divisors of n

that are 3 modulo 4. Recall that for the class groups associated to Q(
√
n) or

Q(
√

−n) an analogous subset of n does not exist.

1. Introduction

The Cohen–Lenstra heuristics [2] predict the distribution of the p-parts of
class groups for the family of imaginary quadratic and real quadratic fields,
where p is an odd prime. These heuristics have been extended to p = 2 by
Gerth [10], and have recently been proven by Smith [17, Theorem 1.4] in a
major breakthrough in the context of imaginary quadratic fields. The last
paragraph of the introduction of [13] now explains how to develop Smith’s
method in the case of real quadratic fields.

The Cohen–Lenstra heuristics have been extended to more general fami-
lies of fields by Cohen and Martinet [3]. However, their work only deals with
the p-part with p coprime to the degree of the number field. In this work
we explore some of the interesting features when one considers the 2-part
of class groups of biquadratic fields. To the best of our knowledge, there are
no heuristics in this setting and it would be an interesting task to develop
such heuristics. The odd part of the class group is much better understood,
since it is known to be isomorphic to the direct product of the odd parts of
the class groups of its quadratic subfields (about this isomorphism, see [14,
p. 246] for instance).
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To present our results, we will use the following notations
• if K is a number field, OK is the ring of integers of K, Cl(K) is the

ordinary class group of ideals of OK and Cl+(K) is the correspond-
ing narrow class group,

• throughout this paper, n is a squarefree integer greater than 1 and
Kn is the biquadratic field defined by Kn := Q(

√
n,

√
−n). The

fields Kn were first studied by Dirichlet and are called Dirichlet
biquadratic fields,

• if G is a finite abelian group and k ≥ 1 is an integer, the 2k–rank
of G is by definition

rk2k(G) := dimF2(2k−1G)
/

(2kG),

• the letters p, p1,. . . , p′ are reserved to prime numbers. The total
number of prime divisors of n ≥ 1 is denoted by Ω(n). The number
of distinct prime divisors of n is denoted by ω(n) and the number of
distinct prime divisors congruent to 1 and 3 modulo 4 are denoted
by ω1(n) and ω3(n) respectively,

• we denote by E the following exceptional set
E := {n > 3 : n squarefree and there exist c, e ∈ Z with c2 − ne2 = ±2}.

Considerations on the prime divisors of n and classical sieve techniques
imply that E has O(x(log x)−1/2) elements n ≤ x. We can now state

Theorem 1.1. Let n > 3 be a squarefree integer satisfying the equalities
(1.1) rk4 Cl(Q(

√
n)) = rk4 Cl(Q(

√
−n)) = 0.

We then have the equality
rk4 Cl(Kn) = ω3(n) + δ(n) + ϵ(n) − 1,

where ϵ(n) = 1 if n ∈ E and 0 otherwise, and δ(n) is defined as follows

δ(n) =


1 if ω3(n) = 0 and ∃ p | n, p ≡ 5 mod 8,
0 if ω3(n) = 0 and ∀ p | n ⇒ p ̸≡ 5 mod 8,
0 if ω3(n) ≥ 1 and ∃ p | n, p ≡ 5 mod 8,
−1 if ω3(n) ≥ 1 and ∀ p | n ⇒ p ̸≡ 5 mod 8.

Let us remark that the set of n satisfying (1.1) represents about 28% of
the set of squarefree integers, see Proposition 2.11. Theorem 1.1 shows that
rk4 Cl(Kn) = ω3(n) − 1 for the set of n < x satisfying equation (1.1) with
at most O(x/(log x)1/4) exceptions. This gives a non-trivial constraint that
any future heuristic regarding Cl(Kn) must take into account.

Our results ultimately follow from a class number formula due to Dirich-
let. Here the assumption that n satisfies equation (1.1) is vital, since it
ensures that the 8-rank of Cl(Kn) vanishes. Then the class number formula
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allows us to express rk4 Cl(Kn) in terms of the Hasse unit index, rk2 Cl(Kn),
rk2 Cl(Q(

√
n)) and rk2 Cl(Q(

√
−n)). The latter three quantities are com-

puted using genus theory.
After publication of this work, the authors have shown in joint work with

Pagano [9] that the 4-rank of Cl(Kn) equals ω3(n) − 1 for 100% of the odd,
squarefree integers n, which in turn has been extended to even n in [12].
The results in [9, 12] require more advanced analytic techniques than this
work, and furthermore do not offer any control over the exceptional set
(here exceptional means not satisfying rk4 Cl(Kn) = ω3(n) − 1) unlike our
Theorem 1.1.

Corollary 1.2. For every squarefree integer n > 3 satisfying (1.1) we have
the inequalities

max(ω3(n) − 2, 0) ≤ rk4 Cl(Kn) ≤ ω3(n) + 1.

Corollary 1.2 gives a rather precise formula for the function rk4(Cl(Kn))
provided that n satisfies (1.1). Furthermore, a classical result of analytic
number theory asserts that most of the integers n are such that ω(n) is very
close to its average value log logn. The same concentration phenomenon
holds for the function ω3(n) around the value (1/2) log logn (see Proposi-
tion 2.15 below). Combining these facts with Corollary 1.2, we deduce the
following.

Corollary 1.3. Let ε > 0 be given. Then, for x > x0(ε) we have that

|{3 ≤ n ≤ x : n squarefree, |rk4 Cl(Kn) − (1/2) log logn| ≤ ε log logn}|
|{3 ≤ n ≤ x : n squarefree}|

is at least 0.28.

This corollary shows that a positive proportion of squarefree n are such
that the associated Dirichlet biquadratic field has a large 4–rank. Since
the function log logn tends to infinity with n, we see that the situation is
completely different for the case of the quadratic fields Q(

√
n) and Q(

√
−n),

where the 4–rank has an average tendency to be much smaller. For a precise
statement, see Proposition 2.9 below.

2. Notations, lemmas and propositions

2.1. Notations. We complete the notations given in the introduction by
the following

• to shorten notations, we write Cl(n) and Cl+(n) for Cl(Q(
√
n))

and Cl+(Q(
√
n)) respectively. Their cardinalities are denoted by

h(n) and h+(n),
• the subset of invertible elements of OK is denoted by O∗

K ,
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• we also introduce the following set
D := {D : D fundamental discriminant},

and its two subsets D+ and D− containing the fundamental D > 0
and D < 0 respectively, and finally
N := {n ≥ 3 squarefree : rk4(Cl+(n)) = rk4(Cl(−n)) = 0},

• for every integer r ≥ 0, the function ηr : R+ → R+ is defined by
the formula

ηr(t) :=
r∏

j=1
(1 − t−j).

2.2. The 2–rank of class groups in the case of quadratic fields. The
first lemma is famous and was proved by Gauss in the context of binary
quadratic forms.

Lemma 2.1. Let D be an element of D. Then we have
rk2(Cl+(D)) = ω(|D|) − 1.

If D is negative, the two class groups Cl+(D) and Cl(D) coincide. This
may be not the case when D > 0. However we have

Lemma 2.2. Let D be an element of D+. We have
(i) Cl(D) is a factor group of Cl+(D) with index i(D) ∈ {1, 2}, in

particular we have the inequalities
rk2(Cl+(D)) − 1 ≤ rk2(Cl(D)) ≤ rk2(Cl+(D)),

(ii) i(D) is equal to 2 if and only if the fundamental unit of O∗
Q(

√
D) has

norm 1,
(iii) we have the equality

rk2(Cl(D)) = rk2(Cl+(D)) − 1
if and only if D is divisible by some p ≡ 3 mod 4.

For comments on this last item, see [7, Lemma 1]. From Lemmas 2.1
and 2.2 we deduce the following statement.

Lemma 2.3. Let n ≥ 3 be a squarefree integer. Then we have

(2.1) rk2(Cl(n)) =


ω(n) − 2 if n ≡ 1, 2 mod 4 and ω3(n) ≥ 1,
ω(n) − 1 if n ≡ 1, 2 mod 4 and ω3(n) = 0,
ω(n) − 1 if n ≡ 3 mod 4,

and also

(2.2) rk2(Cl(−n)) =
{
ω(n) if n ≡ 1 mod 4,
ω(n) − 1 if n ≡ 2, 3 mod 4.
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Proof. It is based on the fact that the discriminant of the field Q(
√

±n) is
either ±n or ±4n according to the congruence class of ±n mod 4. □

We gather (2.1) and (2.2) of Lemma 2.3 in the following statement which
will be useful in Section 3.

Proposition 2.4. Let n ≥ 3 be a squarefree integer. We then have the
equality

rk2(Cl(n)) + rk2(Cl(−n)) =
{

2ω(n) − 1 − 1n≡2 mod 4 if ω3(n) = 0,
2ω(n) − 2 − 1n≡2 mod 4 if ω3(n) ≥ 1.

2.3. The 2–rank of class groups in the case of Dirichlet biquadratic
fields. We will prove the following

Proposition 2.5. Let n ≥ 3 be a squarefree integer. We have the equality

rk2 Cl(Kn) =
{

2ω1(n) + ω3(n) − 1 + 1n≡2 mod 4 if ∀ p | n ⇒ p ̸≡ 5 mod 8,
2ω1(n) + ω3(n) − 2 + 1n≡2 mod 4 if ∃ p | n, p ≡ 5 mod 8.

The following lemma plays a central role.

Lemma 2.6. For all squarefree integers n ≥ 3 we have the equality

(2.3) 2rk2(Cl(Kn)) = |{β ∈ Z[i] : β | n, β ≡ ±1 mod 4}|
22−1n≡2 mod 4

.

Proof. Since Q(i) is a PID, we see that the action of Gal(Kn/Q(i)) on
Cl(Kn) is by inversion. In particular, we see that any unramified, abelian
extension L of Kn is Galois over Q(i). Furthermore, the exact sequence

1 → Gal(L/Kn) → Gal(L/Q(i)) → Gal(Kn/Q(i)) → 1

is split. Indeed, using once more that Q(i) is a PID, we see that Kn/Q(i)
is ramified at some place, so a splitting is given by inertia. Hence any
quadratic unramified extension L of Kn has Galois group C2 × C2 over
Q(i) and is therefore of the shape Kn(

√
β) with β ∈ Z[i].

By straightforward ramification considerations we see that Kn(
√
β)/Kn

is unramified at all odd places if and only if β | n. For now suppose that n is
odd and take β | n. Then a local computation at 2 shows that Kn(

√
β)/Kn

is unramified at all primes above 2 if and only if β ≡ ±1 mod 4. For α ∈ K∗
n,

let χα is the continuous group homomorphism GKn → {±1} given by

σ 7→ χα(σ) = σ(
√
α)√
α

.

Call an element β ∈ Z[i] odd if it is coprime to 1 + i. If I is an ideal of
Z[i] coprime to 1 + i, then it has a unique generator that is congruent to
1 mod 2+2i. This allows us to define the gcd of two odd elements α, β ∈ Z[i]
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to be the unique generator of the ideal (α) + (β) that is congruent to
1 mod 2 + 2i. Consider the abelian group

{β ∈ Z[i] : β | n, β odd},

where we define the group law β ∗ β′ to be
ββ′

gcd(β, β′)2 .

We have now shown that, for n odd, there is a surjective group homomor-
phism

{β ∈ Z[i] : β | n, β ≡ ±1 mod 4} → Cl(Kn)∨[2]
by sending β to χβ. Since the kernel is generated by −1 and n, the lemma
follows in case n is odd.

Now suppose that n is even and take β | n. In this case Kn(
√
β)/Kn

is unramified at all primes above 2 if and only if β ≡ 1, 2, 3, 2i mod 4.
Therefore the characters χβ with β ∈ Z[i], β | n and β ≡ 1, 2, 3, 2i mod 4
generate the group of characters Cl(Kn)∨[2]. Thus we get a surjection

{β ∈ Z[i] : β | n, β ≡ 1, 2, 3, 2i mod 4} → Cl(Kn)∨[2].

Since 2i = (1 + i)2, we see that the map is still surjective if we impose that
2 ∤ β. Hence we get a surjective group homomorphism

{β ∈ Z[i] : β | n, β ≡ ±1 mod 4} → Cl(Kn)∨[2].

In this case the kernel is generated by −1, which completes the proof of the
lemma also in this case. □

It remains to count the cardinality, denoted by F (n), of the set of divisors
β appearing in the right–hand side of (2.3). We have

Lemma 2.7. Let n ≥ 3 be a squarefree integer. We then have the equality

F (n) =
{

22ω1(n)+ω3(n)+1 if ∀ p | n ⇒ p ̸≡ 5 mod 8,
22ω1(n)+ω3(n) if ∃ p | n, p ≡ 5 mod 8.

Proof. Let ϕn : {β ∈ Z[i] : β | n, β odd} → (Z[i]/4Z[i])∗ be the homo-
morphism of abelian groups given by reducing β modulo 4. Then F (n) =
|ϕ−1

n ({1,−1})|. Observe that

|{β ∈ Z[i] : β | n, β odd}| = 22ω1(n)+ω3(n)+2.

Now the lemma follows immediately if we can prove that

im(ϕn) =
{

{1,−1, i,−i} if ∀ p | n ⇒ p ̸≡ 5 mod 8,
(Z[i]/4Z[i])∗ if ∃ p | n, p ≡ 5 mod 8.
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Clearly, {1,−1, i,−i} ⊆ im(ϕn). Furthermore, simple considerations of con-
gruences modulo 8 imply that

ϕn(β) ̸∈ {1,−1, i,−i} ⇔ NQ(i)/Q (β) ≡ 5 mod 8.
This concludes the proof. □

2.4. The 4–rank of class groups in the case of quadratic fields.
We recall a weaker form of the results of Fouvry and Klüners ([5, 6]) giving
strong evidence for the truth of the Cohen–Lenstra–Gerth heuristics (see
Section 1).

Lemma 2.8. For every integer r ≥ 0, there exist two constants α+
r > 0

and α−
r > 0, satisfying the equalities∑

r≥0
α±

r = 1,

and such that, as X → +∞, one has

|{D ∈ D± : 0 < ±D < X, rk4(Cl(D)) = r}| ∼
α±

r |{D ∈ D± : 0 < ±D < X}|.
Similar statements hold with the following three congruence restrictions on
the fundamental D :

D ≡ 1 mod 4, D ≡ 4 mod 8, D ≡ 0 mod 8.

The constants α±
r do not depend on the three congruences above and

they can be expressed in terms of the ηr–function. From the remark that
a squarefree integer n ≥ 3 is either a fundamental discriminant (when
n ≡ 1 mod 4) or one quarter of a fundamental discriminant (when n ≡
2, 3 mod 4) we deduce from Lemma 2.8 the following

Proposition 2.9. Let ψ : R+ → R+ be an increasing function tending to
infinity. Then as X tends to infinity, we have

|{n : 1 ≤ n ≤ X, n squarefree, rk4(Cl(n)) ≥ ψ(n)}| = o(X).
A similar statement holds for negative n.

We will appeal to another result of Fouvry and Klüners concerning the
values of the pair (rk4(Cl(n)), rk4(Cl(−n))). We have

Lemma 2.10. [8, Theorem 1.8] For any integer r ≥ 0 we have

lim
X→∞

|{D ∈ D+ : D ≡ 1 mod 4, D ≤ X, rk4 Cl+(D) = rk4 Cl(−D) = r}|
|{D ∈ D+ : D ≡ 1 mod 4, D ≤ X}|

= 2−r2−r(1 − 2−(r+1))η∞(2)ηr(2)−1ηr+1(2)−1.

A similar statement holds true when the congruence D ≡ 1 mod 4 is re-
placed by D ≡ 4 mod 8 or D ≡ 0 mod 8.
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Apply this lemma with r = 0. Since n or 4n is a fundamental discriminant
and computing numerically the value of η∞(2), we deduce

Proposition 2.11. We have

lim
X→∞

|{1 ≤ n ≤ X : n ∈ N }|
|{1 ≤ n ≤ X : n squarefree}|

= η∞(2) = .28878 80950 . . .

2.5. The 8–rank of some Dirichlet biquadratic fields.

Proposition 2.12. For all n ∈ N we have
rk8(Cl(Kn)) = 0.

Proof. This is a particular case of Lemma 3.2 of [1]. □

2.6. A formula due to Dirichlet.

Proposition 2.13. Let n ≥ 3 be a squarefree integer. Then we have the
equality

(2.4) 1
2h(n)h(−n)Q(n) =

∣∣Cl(Kn)
∣∣,

where Q(n) takes the values 1 or 2. More precisely Q(n) is the Hasse unit
index

Q(n) :=
[
O∗

Kn
: O∗

Q(
√

n)Z[i]∗
]
.

This formula, in the context of quadratic forms, was first discovered by
Dirichlet, who derived it from his class number formula, see [4]. It can for
instance be found in the famous Zahlbericht of Hilbert [11, Theorem 115
p. 153].

2.7. Study of the Hasse unit index.

Proposition 2.14. Let n > 3 be a squarefree integer. Then we have Q(n) =
2 if and only if n ∈ E.

Proof. We apply [15, Theorem 1(ii)] with m = 2, K = Q(
√
n) and L =

Q(i,
√
n). It follows that Q(n) = 2 if and only if 2 ramifies in Q(

√
n) and

the unique prime t above 2 is principal. Hence it suffices to show that the
latter condition is equivalent to n ∈ E .

First suppose that 2 ramifies in Q(
√
n) and that t is principal. Choose a

generator c+ e
√
n of t. Computing the norm of c+ e

√
n, we see that n ∈ E .

Conversely, suppose n ∈ E . Looking at the equation
c2 − ne2 = ±2

modulo 4, we deduce that n ≡ 2, 3 mod 4, so 2 ramifies in Q(
√
n). Further-

more, the unique prime t above 2 is generated by c + e
√
n, and therefore

principal. □
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2.8. Distribution of the function ω3(n). It is well known that the
function Ω(n) concentrates around its average value log logn, see for in-
stance [16, Theorem 7.20]. The extension of this result to the function ω(n)
is easy. The case of the function ω3(n) is straightforward, since we have a
good knowledge of the set of primes congruent to 3 mod 4. We have

Proposition 2.15. For every ε > 0 there exists c(ε) > 0 such that, uni-
formly for x ≥ 2, one has the inequalities

|{n ≤ x : ω3(n) ≤ (1/2 − ε) log log x}| ≪ x(log x)−c(ε),

and
|{n ≤ x : ω3(n) ≥ (1/2 + ε) log log x}| ≪ x(log x)−c(ε),

We could even be more precise in the description of ω3(n) around its
average value by adapting the Erdős–Kac Theorem, see for instance [16,
Theorem 7.21].

3. The proof of Theorem 1.1

The proof is a straightforward application of the propositions contained
in Section 2. We start from (2.4). Taking the 2–parts of both sides of this
equality, and taking the logarithm in basis 2, we deduce the following equal-
ity

(3.1) log2Q(n)−1+
∞∑

k=1

(
rk2k

(
Cl(n)

)
+rk2k

(
Cl(−n)

))
=

∞∑
k=1

rk2k

(
Cl(Kn)

)
,

which is true for any squarefree integer n > 3. If n is such that

rk4
(
Cl(n)

)
= rk4

(
Cl(−n)

)
= 0,

then trivially, we have

rk2k

(
Cl(n)

)
= rk2k

(
Cl(−n)

)
= 0 (k ≥ 3)

and also thanks to Proposition 2.12, the equalities rk2k(Cl(Kn)) = 0
(k ≥ 3). These remarks simplify (3.1) into

(3.2) rk4(Cl(Kn))

=
(
rk2

(
Cl(n)

)
+ rk2

(
Cl(−n)

))
− rk2(Cl(Kn)) + log2Q(n) − 1.

Propositions 2.4 and 2.5 give the values of each of the two first terms on
the right–hand side of the equality (3.2) in terms of the number of prime
divisors of n satisfying some congruence conditions. Proposition 2.14 gives
the value of Q(n). Then a simple case distinction completes the proof of
Theorem 1.1.
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