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Root number of the Jacobian of y2 = xp + a

par Matthew BISATT

Résumé. Soit C/Q une courbe hyperelliptique donnée par un modèle affine
de la forme y2 = xp + a. Nous déterminons le signe de la Jacobienne de C, en
particulier nous nous concentrons sur le signe local en p, où C est sauvagement
ramifiée.

Abstract. Let C/Q be a hyperelliptic curve with an affine model of the
form y2 = xp + a. We explicitly determine the root number of the Jacobian
of C, with particular focus on the local root number at p where C has wild
ramification.

1. Global case
Let A/Q be an abelian variety. One of the consequences of the famed

Birch and Swinnerton-Dyer conjecture is that the parity of the rank of A/Q
should be controlled by the expected sign in its functional equation. The
expected sign is known as the (global) root number of A and denoted by
W (A/Q); the parity conjecture states that W (A/Q) = (−1)rankA(Q).

Root numbers of elliptic curves are completely understood, but the same
cannot be said in higher dimensions. Whilst root numbers only conjec-
turally control the rank, current computer algebra packages are often un-
able to compute either the L-function or rank explicitly in high dimension;
when these computations are coupled with the root number however, one
is more likely to be able to predict the rank exactly. For example, a root
number calculation may predict that the Jacobian of a curve has rank 0,
and thus make the curve more amenable to Chabauty-type arguments since
one generally needs to know explicit generators of a finite index subgroup
to apply them.

The author has previously described the root number when A has ev-
erywhere tame reduction [2], with an explicit description when A arises as
the Jacobian of a hyperelliptic curve. The purpose of this note is to com-
pute the root number of the Jacobian of a hyperelliptic curve of the form
y2 = xp + a when p is an odd prime. We concentrate on the case when
a is not a p-th power in Qp although this restriction is not necessary (see
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Remark 1.3). The main theoretical contributions of this paper are that we
extend a result of Kobayashi’s to deal with the wild ramification at p and
also give an approach to treat the reduction at 2 where one cannot use the
theory of cluster pictures of hyperelliptic curves to determine the Galois
representation.

We will not list the various properties of root numbers that we use here,
but instead refer the reader to [2, §2] for an overview or [11, §3] for more
details.

For a prime p, we write vp for the p-adic valuation,
(∗
p

)
for the Legendre

symbol and (−,−)Qp for the Hilbert symbol at p.
Theorem 1.1. Fix 0 6= a ∈ Z and an odd prime p. Let Ca/Q be the
hyperelliptic curve y2 = xp + a and let Ja be its Jacobian. Assume that a is
not a p-th power in Qp and let a′ = 2−v2(a)a.

(1) Let W2 =


(2
p

)
if v2(a) is even, p - v2(4a), and a′ ≡ 1 mod 4,(−1

p

)
if a′ ≡ 3 mod 4,

1 else.
(2) Assume there exists a model of Ca of the form y2 = g(x), where

p - vp(g(0)). Let a0 = g(0) and let ∆g be the discriminant of g.
Define

Wp = −
(−2
p

)
(a0(p− 1)vp(a0),∆g)Qp

(−1
p

) 1+vp(∆g)
2

.

Write
S1 =

{
primes ` | a : ` 6∈ {2, p}, v`(a) odd

}
,

S2 =
{
primes ` | a : ` 6∈ {2, p}, p - v`(a), v`(a) even

}
.

Then the global root number of Ja is

W (Ja/Q) = W2Wp

(−1
p

) ∏
`∈S1

(−1
`

) p−1
2 ∏

`∈S2

(
`

p

)
.

Remark 1.2. As in the elliptic curve setting, a suitable model for Ca
always exists; see [7, Proposition 5.1b] for the genus two case or [8, Propo-
sition III.1.2] for the case under consideration here. In practice, it appears
that taking g(x) = f(x + r) for some r ≡ −a mod p suffices to obtain a
suitable model.
Remark 1.3. The assumption that a is not a p-th power in Qp is only used
to compute the local root number Wp = W (Ja/Qp). If a is a p-th power in
Qp then one can still compute that the inertia representation at p is tamely
ramified and isomorphic to γ ⊗ C[Cp−1], where γ is a faithful character of
C2(p−1), and then deduce the root number by [1, §11, §13]. We choose to
omit the result here in the interest of brevity.
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Proof. Note that the discriminant of Ca is (−1)
p−1

2 22(p−1)ppap−1 and hence

W (Ja/Q) = W (Ja/R)W (Ja/Q2)W (Ja/Qp)
∏

`|a, ` 6=2,p
W (Ja/Q`).

Moreover, one has that W (Ja/R) =
(−1
p

)
(see for example [9, Lemma 2.1]).

Now suppose that ` 6= p is an odd prime. We will use the theory of clusters
to compute the corresponding inertia representation and refer the reader
to the user’s guide [1] for the relevant definitions and theorem statements.
The set of roots is R = {ζjp p

√
−a | 0 ≤ j ≤ p − 1}, for ζp a primitive

p-th root of unity; this is the only proper cluster of Ca and has depth v`(a)
p .

Moreover, inertia acts on R through a Cp-quotient and the action is trivial
if and only if p | v`(a).

If p - v`(a), then H1
ét(Ja/Q`,Q2) decomposes as an inertia representation

into p − 1 characters of order either 2p if v`(a) is odd and order p other-
wise. The corresponding local root number is then either

(−1
`

) p−1
2 or

(
`
p

)
respectively by [1, Theorem 13.4]. On the other hand, if p | v`(a), then
H1
ét(Ja/Q`,Q2) decomposes into p − 1 characters of order either 2 if v`(a)

is odd and order 1 otherwise; in this case the local root number is then(−1
`

) p−1
2 or 1 respectively.

Next we compute the local root number at 2, for which we can no longer
apply the cluster machinery. First suppose that v2(a) = 2k is even and
a′ = a2−2k ≡ 1 mod 4. Using the substitution (x, y) 7→ (x, y+2k), we change
our model for Ca/Q2 to y2 +2k+1y = xp+4k(a′−1). Let π be a fixed choice
of p
√

2 in some algebraic closure of Q2 and let L = Q2(π2(k+1)). Consider the
base change CL of Ca to L with the substitution x = π2(k+1)X, y = 2k+1Y ;
this gives us a model for CL as Y 2+Y = Xp+ a′−1

4 which has good reduction
over L. Now L = Q2 if and only if p | (k + 1); in this case the root number
is 1. If p - (k + 1), then L = Q2(π) and using the lift-act-reduce procedure
of [5, Thereom 1.5] (this example is analogous to Example 1.9 of loc. cit.)
one can moreover see that the inertia representation is C[Cp]	1 and hence
the local root number is W (Ja/Q2) =

(2
p

)
.

The remaining cases at 2 are quadratic twists of the one above so we will
make use of the well-known formula

W (A/Q`)W (AD/Q`) = W (A/Q`(
√
D))χD(−1)dimA,

where A/Q` is an abelian variety, AD its quadratic twist by D, and χD is
the quadratic character of Gal(Q`(

√
D)/Q`).

Note that if ã ≡ 1 mod 4, then Ca is a quadratic twist of a curve of the
form C22kã for some D ∈ {−1, 2,−2}; if a′ = 2−v2(a)a, then the required
quadratic twist is given by the squarefree part of (−1)

a′−1
2 2v2(a).
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Since C22kã obtains good reduction over L which has ramification degree
dividing p and Q2(

√
D)/Q2 is ramified of degree coprime to p, one has

that W (J22kã/Q2) = W (J22kã/Q2(
√
D)) (note it does not matter whether

L = Q2 here). Hence W (Jac(CD22kã
)/Q2) = χD(−1)

p−1
2 . One can compute

via class field theory that χ−1(−1) = χ−2(−1) = −1 and χ2(−1) = 1, and
hence the local root number W2 = W (Ja/Q2) follows.

Now let ` = p and consider the model change to y2 = g(x). Note that the
two torsion field of Ja is independent of the choice of model and equal to the
splitting fields of f and g. Since a is not a p-th power in Qp, g satisfies the
hypotheses of Theorem 2.1 and the computation of the local root number
Wp = W (Ja/Qp) follows. �

Remark 1.4. When ` = 2, one could also obtain the inertia representation
in the tame case via [4, §1.3].

2. Local case at p

We now compute the local root number at p. Our method closely fol-
lows that of [6], adapting for higher genus. We first collate the bulk of the
notation that we will use throughout this section for ease of reading.

Notation. For a finite extension F/Qp, we denote

OF the valuation ring of F ,
vF the normalised valuation of F so that vF (F×) = Z,
FF the residue field of F ,
qF = |FF | the cardinality of the residue field of F ,
F un the maximal unramified extension of F ,

W(F ′/F ) the Weil group of an extension F ′/F ,
TrF ′/F the trace map for a finite extension F ′/F .

For an irreducible squarefree polynomial f ∈ K[x] of degree p, we also
define:

Cf the hyperelliptic curve y2 = f(x),
ρJ the `-adic representation of Jac(Cf ) for ` 6= p,
α a root of f ,

∆f the discriminant of f ,
M the splitting field of f ,
σ a fixed element of order p in the Galois group Gal(M/K),
N = M(

√
α− σα).

For nonzero complex numbers a, b, we write a ≈ b if ab−1 ∈ C is in
the multiplicative group generated by the positive real numbers and the
p-power roots of unity. We are now in a position to state our theorem.
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Theorem 2.1. Let p be an odd prime, K/Qp a finite extension and let
f ∈ K[x] be a squarefree polynomial of degree p. Suppose that:

(1) f is irreducible;
(2) the valuation of the discriminant of f , vK(∆f ), is coprime to p−1;
(3) the splitting field M of f has degree p(p− 1);
(4) p - vK(a0) where a0 = f(0).

Then, for the hyperelliptic curve Cf : y2 = f(x), the local root number is

W (Jac(Cf )/K) = −
(−2
qK

)
(a0(p− 1)vK(a0),∆f )K

(−1
qK

) 1+vK (∆f )
2

.

We will implicitly assume these hypotheses from now on in order to prove
this theorem through a series of lemmas.
Proposition 2.2.

(1) Let σ be an element of order p of Gal(M/K) ∼= Cp o Cp−1 and let
N = M(

√
α− σα). Then ρJ is a faithful representation of the Weil

group W(Nun/K).
(2) Let H ⊂ M be such that [H : K] = p − 1. Then ρJ = IndH/K χ is

the induction of a character χ from W(Nun/H);
(3) The conductor exponent of χ, a(χ), is even.

Proof. (1)–(2) follow from Proposition 2.2 and §5.1 of [3].
Let’s now prove (3). Note that a(ρJ) = vK(∆K(α)/K), where ∆K(α)/K

is the relative discriminant of the valuation ring of K(α), by [3, §6]; we
claim this is odd. Since the discriminant of the lattice OK [α] is equal to
∆f and has square index inside the valuation ring, vK(∆K(α)/K) ≡ vK(∆f )
mod 2 from which the claim follows. By the conductor exponent of induced
representations formula [10, p. 101], a(χ) is even. �

We now fix an additive character ψ of K with conductor −1 such that
ψ(x) = χ(σ)−TrFK /Fp (x) whenever x ∈ OK , where TrFK/Fp

is the trace map
from FK to Fp and x is the image of x in FK . We further let ψH be the
composition of ψ with the trace map TrH/K , also of conductor −1. We also
choose an arithmetic Frobenius element Frob ofW(Nun/N) ⊂ W(Nun/K)
and extend σ to W(Nun/K) by imposing that it acts trivially on Kun and√
α− σα.

Lemma 2.3. Let signH/K be the nontrivial quadratic character of
Gal(H/K). Then

W (ρJ , ψ) =
(−2
qK

)
W (signH/K , ψH)W (χ, ψH).

Proof. For F ⊂ N , let 1F denote the trivial character of W(Nun/F ).
Since root numbers are inductive in degree 0, one has W (IndH/K χ, ψ) =
W (IndH/K 1H , ψ)W (χ, ψH).
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We now compute W (IndH/K 1H , ψ). Let µ be a faithful character of
W(Nun/K)/W(Nun/H) ∼= Gal(H/K) ∼= Cp−1. Then

IndH/K 1H = 1K ⊕ signH/K ⊕
⊕

16j< p−1
2

(µj ⊕ µ−j),

and hence

W (IndH/K 1, ψ) = W (1K , ψ)W (signH/K , ψ)
∏

16j< p−1
2

µj(−1).

Now W (1K , ψ) = 1 and µj(−1) = 1 ⇔ qK ≡ 1 mod 2 p−1
gcd(j,p−1) by [2,

Lemma 3.8]. If qK is an even power of p, then this is always satisfied since
2(p − 1) divides (qK − 1). On the other hand, if qK is an odd power of p,
then this congruence is satisfied if and only if j is even so it suffices to count
the number of odd integers in the range 1 6 j < p−1

2 ; the parity of this is
precisely given by the Legendre symbol

(−2
p

)
. �

Remark 2.4. One of our running assumptions is that the splitting field
of f has degree p(p − 1) over K; the preceding lemma is the only place
we made use of this fact since this implies that H/K is a cyclic Galois
extension.

We briefly generalise Propositions 5.7 and 5.13 of [6] now.

Lemma 2.5. Let C/Fq : y2 = xp − x and let Frob be the Frobenius endo-
morphism of C given by (x, y) 7→ (xq, yq) and let ρ be the endomorphism
(x, y) 7→ (x + 1, y). By Albanese functoriality, these descend to endomor-
phisms of the Jacobian J of C which we again denote by Frob and ρ. Then
in the endomorphism ring of J , one has

Frob = −
∑
u∈F×q

(
u

q

)
ρTrFq/Fp (u).

Proof. By the Hasse–Davenport Theorem, it suffices to prove this when
q = p. Let ∞ denote the point at infinity of C and embed ι : C ↪→ J via
P 7→ [(P )− (∞)]. Let P = (x, y); it suffices to prove this equality for ι(P )
since J is generated by the image of ι. Using the hyperelliptic involution,
we haveFrob +

∑
u∈F×p

(
u

p

)
ρu

 (ι(P )) = (xp, yp) +
∑
u∈F×p

(x+ u,

(
u

p

)
y)− p(∞).

One can check that this is the divisor of Y − y(X − x)
p−1

2 and hence is
trivial on J , which proves the equality. �
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Proposition 2.6. As operators of H1
ét(Cf/K,Q`), we have an equality

Frob = −
∑
u∈F×K

(
u

qK

)
σ−TrFK /Fp (u).

Proof. Note that over N , the model of Cf determined by the substitution
(x, y) 7→ ((α − σα)x + α,

√
α− σαpy) reduces to y2 = xp − x (see [3,

Lemma 4.1]). Moreover, one can show via the lift-act-reduce method of [5,
Theorem 1.5], that Frob and σ−1 act on H1

ét(Cf/FK ,Q`) as (x, y) 7→
(xqK , yqK ) and (x, y) 7→ (x+1, y) respectively (equivalently use the function
field approach of [6, Proposition 5.12]). The Galois module isomorphism
of [5, Corollary 1.6] then transfers the operator equality of Lemma 2.5 to
H1
ét(Cf/K,Q`). �

Lemma 2.7. Let G be the Gauss sum
∑
u∈F×K

(
u
qK

)
χ(σ)−TrFK /Fp (u). Then

W (χ, ψH) ≈ (a0vM (α),∆f )K(−G)vK(∆f ).

Proof. First note that W (χ, ψH) ≈ χ
(−NormM/H(α−σα)

a0vM (α)p

)
by the proofs of

Propositions 4.2 and 5.6 of [6]. The remainder is largely [6, Proposition 5.8].
Note χ|K×= signH/K det ρJ . Since det ρJ is an integer power of the cy-

clotomic character and signH/K is the Hilbert symbol (−,∆f )K , we have
χ(a0vM (α)p) ≈ (a0vM (α)p,∆f )K = (a0vM (α),∆f )K .

Let β = −NormM/H(α−σα). We now claim that vH(β) = vK(∆f ). Since
Cf has potentially good reduction, vM (σiα−σjα) = vM (α−σα) whenever
σi 6= σj by [1, Theorem 5.3]. Hence vM (∆f ) = p(p − 1)vM (α − σα) =
p(p − 1)vH(NormM/H(α − σα)). The claim follows since M/K is totally
ramified of degree p(p− 1).

Observe that β = NormN/H(
√
α− σα) is a norm from N and so by

Proposition 2.6 with the proof of [6, Proposition 5.8], χ(β) = χ(FrobvH(β)) =
(−G)vK(∆f ). �

Finally, we can amalgamate these results to prove Theorem 2.1.

Proof of Theorem 2.1. By direct computation, W (signH/K , ψ) ≈ G. More-
over, W (ρJ , ψ) ≈ −

(−2
qK

)
(a0vM (α),∆f )K(−G)1+vK(∆f ) by Lemmas 2.3

and 2.7, and vM (α) = (p − 1)vK(a0). Since vK(∆f ) is odd and G2 is real
with sign

(−1
qK

)
we get the result up to ≈ a priori; the equality follows since

both sides are ±1. �
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