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A note on finite embedding problems with
nilpotent kernel

par Arno FEHM et François LEGRAND

Résumé. Le premier objectif de cet article est de combler une lacune de la
littérature en montrant que, siK est un corps global et si S est un ensemble fini
de places de K, alors tout problème de plongement fini scindé G→ Gal(L/K)
sur K à noyau nilpotent admet une solution Gal(F/K)→ G telle que toutes
les places dans S soient totalement décomposées dans F/L. Nous appliquons
ensuite cela à la théorie inverse de Galois sur les corps non nécessairement
commutatifs. Tout d’abord, étant donné un corps de nombres K de niveau au
moins 4, nous montrons que tout groupe fini résoluble est groupe de Galois
sur le corps des quaternions HK à coefficients dans K. Ensuite, étant donné
un problème de plongement fini scindé à noyau nilpotent sur un corps fini
K, nous décrivons complètement les automorphismes σ de K pour lesquels le
problème de plongement admet une solution sur le corps de fractions K(T, σ)
de l’anneau de polynômes K[T, σ].

Abstract. The first aim of this note is to fill a gap in the literature by prov-
ing that, given a global field K and a finite set S of primes of K, every finite
split embedding problem G→ Gal(L/K) over K with nilpotent kernel has a
solution Gal(F/K) → G such that all primes in S are totally split in F/L.
We then apply this to inverse Galois theory over division rings. Firstly, given
a number field K of level at least 4, we show that every finite solvable group
occurs as a Galois group over the division ring HK of quaternions with coef-
ficients in K. Secondly, given a finite split embedding problem with nilpotent
kernel over a finite field K, we fully describe for which automorphisms σ of
K the embedding problem acquires a solution over the skew field of fractions
K(T, σ) of the twisted polynomial ring K[T, σ].

1. Introduction

The inverse Galois problem over a field K, a question which goes back
to Hilbert and Noether, asks whether every finite group G occurs as the
Galois group of a Galois field extension L/K. By Shafarevich’s theorem
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(see [19, Theorem 9.6.1]), the answer to the latter question is affirmative if
K is a global field and G is solvable. A refinement of the theorem, which is
well-known to experts, is given by the following:

Theorem 1.1. Let K be a global field, S a finite set of primes of K, and G
a finite solvable group. There exists a Galois field extension L/K of Galois
group G in which every prime in S is totally split.

Theorem 1.1 is stated as (part of) an exercise on the last page of [19,
Chapter IX], with the hint that the totally split condition can be guaranteed
by going through the proof of Shafarevich’s theorem. However, no detailed
solution is provided in [19]. We point out that special cases of Theorem 1.1
were published in the literature after the first edition of [19] appeared.
For example, Klüners and Malle (see [15, Theorem 6.1]) assume K is a
number field and obtain the weaker conclusion that every prime in S is
unramified in L/K. This was later improved by Checcoli and the first author
(see [4, Theorem 2.2 and Appendix A]), who prove Theorem 1.1 if K is a
number field. To our knowledge, no proof of Theorem 1.1 is available in
the literature. Our first aim is to explain how Theorem 1.1 can be deduced
from the literature (see Section 3.1).

To that end, we will prove the following theorem (see Section 4) about
finite split embedding problems with nilpotent kernels over global fields.
Given a field K, recall (see, e.g., [8, §16.4]) that a finite embedding problem
over K is an epimorphism α : G → Gal(L/K), where G is a finite group
and L/K a Galois field extension, and that α splits if there is an embedding
α′ : Gal(L/K) → G such that α ◦ α′ = idGal(L/K). A solution to α is an
isomorphism β : Gal(F/K)→ G, where F is a Galois field extension of K
containing L, such that α◦β is the restriction map Gal(F/K)→ Gal(L/K).

Theorem 1.2. Let K be a global field, S a finite set of primes of K, and
α : G → Gal(L/K) a finite embedding problem over K. Assume ker(α) is
nilpotent and α splits. Then there is a solution Gal(F/K) → G to α such
that every prime P ∈ S is totally split in F/L (that is, every prime Q of
L extending P is totally split in F/L).

Theorem 1.2 refines [19, Theorem 9.6.6], the main tool to prove Sha-
farevich’s theorem, which asserts that every finite split embedding problem
with nilpotent kernel over any given global field has a solution. Some spe-
cial cases of Theorem 1.2 are contained in the already mentioned works [15]
and [4], other special cases can be deduced from [13, Theorem 14.3] and [14,
Theorem B].

Our second aim is to contribute to inverse Galois theory over division
rings. See [1, 2, 3, 6, 7, 18] for some very recent results in this area. To state
our results, we recall some definitions (see Section 2.1 for more details).
Firstly, for an automorphism σ of a field K, we let K[T, σ] be the ring of



A note on finite embedding problems with nilpotent kernel 551

polynomials a0 + a1T + · · ·+ anT
n with n ≥ 0 and a0, . . . , an ∈ K, whose

addition is defined componentwise and multiplication fulfills Ta = σ(a)T
for a ∈ K. By K(T, σ), we mean the unique division ring which contains
K[T, σ] and every element of which can be written as ab−1 with a ∈ K[T, σ]
and b ∈ K[T, σ] \ {0}. If σ = idK , we retrieve the usual commutative
polynomial ring K[T ] and the rational function field K(T ), respectively.
Secondly, recall that an extension M/H of division rings is Galois (after
Artin) if every element of M which is fixed under every automorphism of
M fixing H pointwise is in H. If M/H is Galois, the automorphism group
of M/H is the Galois group Gal(M/H) of M/H.

Firstly, we combine Theorem 1.1 and the main result from [7] to get the
following analogue of Shafarevich’s theorem over division rings of quater-
nions. Recall that the level of a field K is either the smallest positive integer
n such that there exist x1, . . . , xn ∈ K with −1 = x2

1 + · · ·+ x2
n (if −1 can

be written as the sum of finitely many squares in K), or ∞ (otherwise).
See, e.g., [16, Chapter XI, §2] for more details.

Theorem 1.3. Let K be a number field of level at least 4 and G a finite
solvable group. Then G occurs as the Galois group of a Galois extension of
the division ring HK = K ⊕Ki ⊕Kj ⊕Kk (i2 = j2 = k2 = ijk = −1) of
quaternions with coefficients in K.

Secondly, we combine Theorem 1.2 and results from [3], which extends
the notion of finite embedding problems over fields to the situation of
division rings of finite dimension over their centers. To state our result,
note that every finite split embedding problem α : G → Gal(L/K) with
nilpotent kernel over a finite field K acquires a solution over the global
field K(T ). That is, we compose α and the inverse of the restriction map
Gal(L(T )/K(T ))→ Gal(L/K), which is an isomorphism, to get a finite em-
bedding problem G→ Gal(L(T )/K(T )) over K(T ). The latter embedding
problem splits and has nilpotent kernel, and so has a solution. The next
theorem fully describes the automorphisms σ of K for which α acquires a
solution over the division ring K(T, σ).

Theorem 1.4. Let α : G→ Gal(L/K) be a finite split embedding problem
with nilpotent kernel over a finite field K and σ an automorphism of K.
Then α acquires a solution over K(T, σ) if and only if the order of σ is
coprime to [L : K].

For a precise formulation of this, see Theorem 3.1, which is more general
and relaxes the split assumption. The relevant definitions on finite embed-
ding problems over division rings will be introduced in Section 2.2.
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2. Preliminaries

We collect the material about division rings, finite embedding problems,
and primes of global fields that will be used in the sequel.

2.1. Division rings. In the following, a division ring is a non-zero (unital)
ring in which all non-zero elements are invertible. Commutative division
rings are nothing but fields.

Let L/H be an extension (i.e., H ⊆ L) of division rings. The group of au-
tomorphisms of L fixing H pointwise is the automorphism group Aut(L/H)
of L/H. Following Artin, we say that L/H is Galois if every element of L
which is fixed under every element of Aut(L/H) is in H. If L/H is Galois,
Aut(L/H) is the Galois group Gal(L/H) of L/H.

A ring R 6= {0} with no zero divisor is a right Ore domain if, for all
x, y ∈ R \ {0}, there are r, s ∈ R with xr = ys 6= 0. If R is a right Ore
domain, there is a division ring H which contains R and every element of
which can be written as ab−1 with a ∈ R and b ∈ R\{0} (see [10, Theorem
6.8]). Moreover, such a division ring H is unique up to isomorphism (see [5,
Proposition 1.3.4]).

Let H be a division ring and σ an automorphism of H. The twisted
polynomial ring H[T, σ] is the ring of polynomials a0 + a1T + · · · + anT

n

with n ≥ 0 and a0, . . . , an ∈ H, whose addition is defined componentwise
and multiplication is given by(

n∑
i=0

aiT
i

)
·
(

m∑
j=0

bjT
j

)
=

n+m∑
k=0

k∑
`=0

a`σ
`(bk−`)T k.

Note that H[T, σ] is commutative if and only if H is a field and σ = idH . In
the sense of Ore (see [20]), H[T, σ] is the twisted polynomial ring H[T, σ, δ]
in the variable T , where the σ-derivation δ is 0. The ringH[T, σ] has no zero
divisor, as the degree is additive on products, and is a right Ore domain
(see [10, Theorem 2.6 and Corollary 6.7]). The unique division ring which
contains H[T, σ] and each element of which can be written as ab−1 with
a ∈ H[T, σ] and b ∈ H[T, σ]\{0} is then denoted by H(T, σ). If σ = idH , we
write H[T ] and H(T ) instead of H[T, idH ] and H(T, idH), respectively. If H
is a field,H(T ) is nothing but the usual field of fractions of the commutative
polynomial ring H[T ].

2.2. Finite embedding problems. First, let L/H and F/M be two Ga-
lois extensions of division rings with finite Galois groups, and such that
L ⊆ F and H ⊆M . We write

resF/ML/H
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for the restriction map Gal(F/M) → Gal(L/H) (that is, resF/ML/H (σ)(x) =
σ(x) for every σ ∈ Gal(F/M) and every x ∈ L), if it is well-defined.

Unlike the commutative case, resF/ML/H is not always well-defined. The next
result (see the special case III) of [3, §3.1]) gives a practical situation where
it is well-defined:

Proposition 2.1. Let H be a division ring of finite dimension over its
center. Let L/H and F/H be two Galois extensions of division rings with
finite Galois groups and such that L ⊆ F . Then the restriction map resF/HL/H

is well-defined.

Now, let H be a division ring of finite dimension over its center. A finite
embedding problem over H is an epimorphism α : G → Gal(L/H), where
G and L/H are a finite group and a Galois extension of division rings,
respectively. We say that α splits if there is an embedding α′ : Gal(L/H)→
G with α ◦ α′ = idGal(L/H). A weak solution to α is a monomorphism
β : Gal(F/H)→ G, where F/H is a Galois extension of division rings with
L ⊆ F , such that α ◦ β is the restriction map resF/HL/H (which is well-defined
by Proposition 2.1). If β is an isomorphism, we say solution instead of weak
solution.

Remark 2.2. Let L/H be a Galois extension of division rings such that
Gal(L/H) is finite. Then H is a field if and only if L is (see [3, lemme 2.1
and théorème 2.2]). Hence, the above terminology generalizes that of the
commutative case (see Section 1).

Finally, let H be a division ring of finite dimension over its center and σ
an automorphism of H of finite order. Let α : G → Gal(L/H) be a finite
embedding problem over H and τ an automorphism of L of finite order
extending σ. Assume this condition holds:

(2.1)
L(T, τ)/H(T, σ) is Galois with finite Galois group, and the restric-
tion map resL(T,τ)/H(T,σ)

L/H exists and is an isomorphism.

Then

(2.2) ασ,τ = (resL(T,τ)/H(T,σ)
L/H )−1 ◦ α : G→ Gal(L(T, τ)/H(T, σ))

is a finite embedding problem over H(T, σ), which is of finite dimension
over its center (see [3, lemme 2.3]). A (σ, τ)-geometric solution to α is a
solution to ασ,τ . If τ = idL (and so σ = idH), we say geometric solution
for simplicity. By Remark 2.2, if H is a field and Gal(E/H(T )) → G a
geometric solution to α, then E is a field.
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2.3. Primes of global fields. Recall that a field K is global if K is either
a number field or a finitely generated field extension of a finite field with
transcendence degree 1. If K is a global field of characteristic p > 0, there
is a transcendental T such that K is a finite separable extension of Fp(T ).

LetK be a global field. A prime ofK is an equivalence class of non-trivial
absolute values on K. If K is a number field, non-archimedean primes of
K are in 1-to-1 correspondence with maximal ideals of the ring of integers
of K, and archimedean primes of K are equivalence classes of non-trivial
absolute values on K whose restriction to Q is equivalent to the “usual”
absolute value. Now, if K is global of characteristic p > 0, every prime of
K is non-archimedean. If T is a transcendental as above, the set of primes
of K is in bijection with the set S1 ∪S2, where S1 is the set of maximal
ideals of the integral closure of Fp[T ] in K, and S2 is the set of maximal
ideals of the integral closure of Fp[1/T ] in K containing 1/T .

For a prime P of a global field K, we let KP denote the completion of
K at P. If L/K is a Galois extension of global fields, we say that a prime
P of K is totally split in L/K if KP equals the completion LP′ of L at any
prime P′ of L extending P. If P is non-archimedean, then P is totally split
in L/K if and only if both the ramification index and the residue degree of
L/K at (the maximal ideal corresponding to) P equal 1.

If K ⊆ L ⊆ F are global fields such that F/K and L/K are Galois, and
if P is a prime of K, we say that P is totally split in F/L if any prime Q of
L extending P is totally split in F/L. We also say that the completion of L
at Q is the completion of L at P. If P is non-archimedean, the ramification
index of F/L at Q and the residue field of L at Q are the ramification index
of F/L at P and the residue field of L at P, respectively.

3. Proofs of Theorems 1.1, 1.3, and 1.4 under Theorem 1.2

3.1. Proof of Theorem 1.1. We proceed, as in the proof of Shafare-
vich’s theorem given right after [19, Proposition 9.6.9], by induction on
|G|. Suppose Theorem 1.1 holds for any finite solvable group of order
less than |G|. By [19, Propositions 9.6.8 and 9.6.9], there is a surjection
ϕ : N oG′ → G, where N is the (nilpotent) Fitting subgroup of G and G′
is a proper subgroup of G. By the induction hypothesis, there is a Galois
field extension L/K of group G′ in which all primes in S are totally split.
Let γ : G′ → Gal(L/K) be an isomorphism and pr : N oG′ → G′ the pro-
jection on the second coordinate. Consider the finite embedding problem
γ ◦ pr : N o G′ → Gal(L/K) over K; it splits and has nilpotent kernel
N ×{1}. We may then apply Theorem 1.2 to get the existence of a solution
Gal(F/K)→ N oG′ to γ ◦ pr such that all primes in S are totally split in
F/L. As the same holds in L/K, all primes in S are totally split in F/K.
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Then F ker(ϕ)/K is a Galois field extension of group G, in which all primes
in S are totally split.

3.2. Proof of Theorem 1.3. As the number field K has level at least 4,
we may apply the Hasse–Minkowski theorem (see, e.g., [16, p. 170]) to get
the existence of a prime P of K such that the completion KP of K at P
has level at least 4. By Theorem 1.1, there exists a Galois field extension
L/K of group G such that L ⊆ KP. In particular, L has level at least 4.
It then remains to apply [7, théorème 7] to conclude that the division ring
HL of quaternions with coefficients in L is a Galois extension of HK with
Galois group G.

3.3. Proof of Theorem 1.4. It is well-known that if α is a finite em-
bedding problem with nilpotent kernel over a finite field K, then α has
a geometric solution. Indeed, by the projectivity of the absolute Galois
group of the finite field K (see, e.g., [8, Proposition 11.6.6] and [9, Propo-
sition 6.1.3]), α has a weak solution. The existence of the latter and the
weak→split reduction (see [21, §1B)2)]) then provide a finite split embed-
ding problem α′ over K which fulfills the following two properties:

(i) ker(α′) ∼= ker(α),
(ii) if α′ has a geometric solution, then α has a geometric solution.

By (i) and the assumption that ker(α) is nilpotent, ker(α′) is nilpotent.
Hence, by [19, Theorem 9.6.6], the finite split embedding problem α′ over
the finite field K has a geometric solution. It then remains to use (ii) to
get that α has a geometric solution, as claimed.

We now provide the same conclusion over more division rings of the form
K(T, σ), where σ is an automorphism of K. The next theorem generalizes
Theorem 1.4.

Theorem 3.1. Let α : G→ Gal(L/K) be a finite embedding problem with
nilpotent kernel over a finite field K, let σ ∈ Aut(K), and let d be the order
of σ. Consider these three conditions:

(a) α has a weak solution γ : Gal(L′/K)→ G such that d and [L′ : K]
are coprime,

(b) there exists τ ∈ Aut(L) extending σ such that α has a (σ, τ)-
geometric solution,

(c) d and [L : K] are coprime.
Then we have the following four conclusions:

(1) (a)⇒ (b)⇒ (c),
(2) if α splits, then (a)⇔ (b)⇔ (c),
(3) if (a) holds, then an automorphism τ of L as in (b) is unique,
(4) if (c) fails, then (2.1) fails for every τ ∈ Aut(L) extending σ.
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Note that the existence of some weak solution to α is automatic from
the projectivity of the absolute Galois group of the finite field K.

As defined in Section 2.2, a (σ, τ)-geometric solution to a finite embed-
ding problem α over a division ring H of finite dimension over its center is a
solution to the finite embedding problem ασ,τ over H(T, σ), which is intro-
duced in (2.2). To make sure that ασ,τ is well-defined, we assumed (2.1). In
the next lemma, of which Condition (1) is nothing but (2.1), we make (2.1)
explicit, if H is a finite field.

Lemma 3.2. Let L/K be an extension of finite fields, σ ∈ Aut(K), and
τ ∈ Aut(L) extending σ. Let d denote the order of σ. The following three
conditions are equivalent:

(i) L(T, τ)/K(T, σ) is Galois with finite Galois group, and the restric-
tion map resL(T,τ)/K(T,σ)

L/K exists and is an isomorphism,
(ii) τ has order d, and d and [L : K] are coprime,
(iii) τ has order d, and the subgroup 〈τ,Gal(L/K)〉 of Aut(L) equals

〈τ〉 ×Gal(L/K).

Proof. The equivalence (i) ⇔ (iii) is a special case of [3, corollaire 3.4 and
proposition 3.8]. It then suffices to show that (ii) and (iii) are equivalent.
To that end, note that 〈τ〉 and Gal(L/K) are subgroups of the cyclic group
Aut(L). Hence, 〈τ,Gal(L/K)〉 = 〈τ〉×Gal(L/K) if and only if the order of
τ and [L : K] are coprime, thus showing (ii)⇔ (iii). �

Proof of Theorem 3.1. We first prove (1) and (3) simultaneously. Since
(b)⇒ (c) follows from (i)⇒ (ii) in Lemma 3.2, it suffices to prove (a)⇒ (b)
and the uniqueness of τ under (a). To that end, let γ : Gal(L′/K)→ G be
a weak solution to α such that d and [L′ : K] are coprime. In particular,
gcd(d, [L : K]) = 1 and, consequently, there is τ ∈ Aut(L) of order d extend-
ing σ, and τ is necessarily unique. From (ii) ⇔ (iii) in Lemma 3.2, we get
〈τ,Gal(L/K)〉 = 〈τ〉 ×Gal(L/K). Similarly, there is a unique τ ′ ∈ Aut(L′)
of order d extending σ, which actually extends τ , and, from (ii) ⇔ (iii)
in Lemma 3.2, we get 〈τ ′,Gal(L′/K)〉 = 〈τ ′〉 × Gal(L′/K). We may then
apply the weak→split reduction for finite embedding problems over divi-
sion rings [3, proposition 5.3] to get the existence of a finite split embedding
problem α′ : G′ → Gal(L′/K) over K fulfilling the following two properties:
(P1) ker(α′) ∼= ker(α),
(P2) if α′ has a (σ, τ ′)-geometric solution, then α has a (σ, τ)-geometric

solution.
Now, let K〈σ〉 (resp., L′〈τ ′〉) be the fixed field of 〈σ〉 (resp., of 〈τ ′〉) in

K (resp., in L′). As 〈τ ′,Gal(L′/K)〉 = 〈τ ′〉 × Gal(L′/K) (see the previous
paragraph), we may apply [3, lemme 3.5] to get that L′〈τ ′〉/K〈σ〉 is Galois.
Moreover, as the orders of σ and τ ′ are equal, we may apply [3, lemme 2.4] to
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get that L′〈τ ′〉 and K are linearly disjoint over K〈σ〉, and that L′ = L′〈τ
′〉K.

Therefore, resL
′/K

L′〈τ ′〉/K〈σ〉
is an isomorphism. Hence,

α′σ,τ ′ = resL
′/K

L′〈τ ′〉/K〈σ〉
◦ α′ : G′ → Gal(L′〈τ ′〉/K〈σ〉)

is a finite embedding problem over K〈σ〉, which splits and has nilpotent
kernel (by (P1) and the assumption on ker(α)). Theorem 1.2 then yields
that α′σ,τ ′ has a geometric solution Gal(F ′/K〈σ〉(T ))→ G′ such that F ′ ⊆
L′〈τ

′〉((T )). Hence, by [3, lemme 4.2], α′ has a (σ, τ ′)-geometric solution. It
then remains to apply (P2) to conclude.

Now, we prove (2). To that end, assume α splits. By (1), it suffices to
prove (c) ⇒ (a). As α splits, there is an embedding α′ : Gal(L/K) → G
such that α ◦ α′ = idGal(L/K). Then α′ is a weak solution to α and, if (c)
holds, then (a) holds with γ = α′.

Finally, we prove (4). If (c) fails, then Condition (ii) from Lemma 3.2 fails
too. Then, from (i)⇔ (ii) in Lemma 3.2, we get that (2.1) also fails. �

4. Proof of Theorem 1.2

Finally, we proceed to the proof of Theorem 1.2. For the convenience of
the reader, we restate the theorem here:

Theorem 4.1. Let K be a global field, S a finite set of primes of K, and
α : G → Gal(L/K) a finite embedding problem over K. Assume ker(α) is
nilpotent and α splits. Then there exists a solution Gal(F/K) → G to α
such that every prime P ∈ S is totally split in F/L.

The structure of the proof is similar to that of [19, Theorem 9.6.6].
Namely, we first reduce Theorem 4.1 to the case of finite split embed-
ding problems whose kernels are certain p-groups (see Section 4.1). The
latter case is then proved in two steps, depending on whether p equals the
characteristic of K (see Sections 4.2 and 4.3).

4.1. General reduction. For a prime number p and an integer n ≥ 1,
let Fp(n) be the free pro-p-Gal(L/K) operator group of rank n as defined
before [19, Proposition 9.6.3]. For ν = (i, j) with i ≥ j ≥ 1, we let Fp(n)(ν)

denote the filtration of Fp(n) refining the descending p-central series as
in [19, Definition 3.8.7]. Since every finite nilpotent group is a direct prod-
uct of its Sylow subgroups, and each finite Gal(L/K)-operator p-group is
a quotient of Fp(n)/Fp(n)(ν) for some n and ν (see right after [19, Theo-
rem 9.6.6]), Theorem 1.2 reduces to proving the following statement, which
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partially refines [19, Theorem 9.6.7], for every prime number p:

(4.1)

For each integer n ≥ 1 and each ν = (i, j), the finite split embed-
ding problem

pr : Fp(n)/Fp(n)(ν) o Gal(L/K)→ Gal(L/K)
over the field K, given by the projection on the second coordinate,
has a solution

γ : Gal(F/K)→ Fp(n)/Fp(n)(ν) o Gal(L/K)
such that every prime P ∈ S is totally split in F/L.

We break the proof into two parts. Let p0 ≥ 0 be the characteristic of K.

4.2. The case p 6= p0. First, assume p 6= p0. If all non-archimedean
primes in S ramify in L/K, then (4.1) follows from [19, Theorem 9.6.7(i)].
To reduce to this case, we replace L by the compositum LL′ of L and some
finite Galois field extension L′ of K which is linearly disjoint from L over
K, and which has specified local behaviour at primes P ∈ S.

Lemma 4.2. There is a finite Galois field extension L′ of K which is
linearly disjoint from L over K, and which satisfies the following for every
prime P ∈ S:

(1) if P is non-archimedean and unramified in L/K, then the comple-
tion at P of L′/K ramifies and its degree is not divisible by p,

(2) if P is either archimedean or non-archimedean and ramified in
L/K, then P is totally split in L′/K.

Proof. First, write S = {P1, . . . ,Pr}. For i = 1, . . . , r, we let Fi denote the
following Galois field extension of KPi :

(a) Fi = KPi if Pi is either archimedean or non-archimedean and ram-
ified in L/K,

(b) Fi is a ramified quadratic field extension of KPi , if p 6= 2 and Pi is
non-archimedean and unramified in L/K,

(c) Fi is a ramified finite Galois field extension of KPi of odd degree,
if p = 2 and Pi is non-archimedean and unramified in L/K.

We briefly explain why an extension Fi as in (c) exists: If q is the cardinality
of the residue field of K at Pi, then as q3 − 1 = (q − 1)(q2 + q + 1), there
is some odd prime number p′ with q3 ≡ 1 mod p′. The latter congruence
is a sufficient condition for the existence of a Galois extension Fi of KPi

with ramification index p′ and residue degree 3, see [11, pp. 253-254]. In
particular, Fi/KPi ramifies and [Fi : KPi ] = 3p′ is odd.

We also let Pr+1 be a prime of K not in {P1, . . . ,Pr} that is non-
archimedean and unramified in L/K, and choose a ramified quadratic
field extension Fr+1 of KPr+1 . Moreover, let n be an integer with n ≥



A note on finite embedding problems with nilpotent kernel 559

[Fi : KPi ] for i = 1, . . . , r + 1. Let Pr+2,Pr+3,Pr+4 be distinct non-
archimedean primes of K not in {P1, . . . ,Pr+1}. For i = r+ 2, r+ 3, r+ 4,
let Fi be the unramified Galois field extension of KPi of degree ni, where
(nr+2, nr+3, nr+4) = (n, n− 1, 2).

Now, for i = 1, . . . , r+4, let Pi(X) ∈ KPi [X] be the minimal polynomial
of a primitive element of Fi over KPi , and let Qi(X) ∈ KPi [X] be a monic
separable polynomial of degree n which is the product of Pi(X) and n −
[Fi : KPi ] monic degree 1 polynomials with coefficients in KPi . By the
weak approximation theorem (see, e.g., [17, Chapter XII, Theorem 1.2])
and Krasner’s lemma (e.g., in the form of [12, Proposition 12.3]), there
exists a monic separable polynomial Q(X) ∈ K[X] of degree n which fulfills
this property:

(4.2)
For i = 1, . . . , r + 4, if x1, . . . , xn are the roots of Q(X), then
the roots of Qi(X) can be enumerated as yi,1, . . . , yi,n such that
KPi(xj) = KPi(yi,j) for j = 1, . . . , n.

In particular, the splitting field L′ of Q(X) over K satisfies L′KPi = Fi for
i = 1, . . . , r+4. From the definition of Fi for i = 1, . . . , r, we get that L′/K
fulfills (1) and (2) in the statement of the lemma.

Finally, we show the remaining claim that L and L′ are linearly disjoint
over K. For i = r + 2, r + 3, r + 4, the definition of Qi(X) and (4.2) yield
that the Galois group Gi of Q(X) over KPi acts on x1, . . . , xn as an ni-
cycle. Since (nr+2, nr+3, nr+4) = (n, n − 1, 2) and Gr+2, Gr+3, Gr+4 are
subgroups of the Galois group G of Q(X) over K, we get that G contains
an n-cycle, an (n− 1)-cycle, and a transposition. Hence, G = Sn (see, e.g.,
[22, Lemma 4.4.3]). Moreover, we get similarly that the Galois group of
Q(X) over KPr+1 acts on x1, . . . , xn as a transposition, in particular as an
odd permutation. Since Fr+1/KPr+1 ramifies, we obtain that Pr+1 ramifies
already in the quadratic subfield L′′ = L′An of L′ and, as Pr+1 is unramified
in L/K, this implies that L∩L′′ = K. As every proper normal subgroup of
Sn is contained in An, we eventually get that L ∩ L′ = K, as needed. �

Remark 4.3. In the case p 6= 2, the proof shows that L′/K may be chosen
to be quadratic.
Proof of (4.1) in the case p 6= p0. Let n ≥ 1 be an integer and ν = (i, j).
Consider the finite split embedding problem

pr : Fp(n)/Fp(n)(ν) o Gal(L/K)→ Gal(L/K)
over K, given by the projection on the second coordinate. Let L′/K be as
in Lemma 4.2.

Since L and L′ are linearly disjoint over K, the map

res :
{

Gal(LL′/K) → Gal(L/K)×Gal(L′/K)
σ 7→ (resLL

′/K
L/K (σ), resLL

′/K
L′/K (σ))
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is an isomorphism. Then consider the finite embedding problem α = res−1◦
(pr× idGal(L′/K)) over K, i.e.,

α :
{

(Fp(n)/Fp(n)(ν) o Gal(L/K))×Gal(L′/K) → Gal(LL′/K)
((x, y), z) 7→ res−1(y, z) ;

it splits and has nilpotent kernel. As all non-archimedean primes in S are
ramified in LL′/K and p 6= p0, [19, Theorem 9.6.7(i)] gives a solution

β : Gal(F/K)→ (Fp(n)/Fp(n)(ν) o Gal(L/K))×Gal(L′/K)

to α such that every prime P ∈ S is totally split in F/LL′. Set

M = F β
−1(({1}×{1})×Gal(L′/K)).

Then L ⊆ M and β induces a solution Gal(M/K) → Fp(n)/Fp(n)(ν) o
Gal(L/K) to pr.

It remains to show that every prime P ∈ S is totally split inM/L. First,
assume P is non-archimedean and ramified in L/K. Then P is unramified
in L′/K. Hence, the ramification index at P of LL′/L is 1. As P is totally
split in F/LL′, we get that the ramification index at P of F/L is 1, and so
the same holds for M/L. Moreover, denoting residue fields at P by •, we
have F = LL′ = L · L′ (see [8, Lemma 2.4.8] for the last equality). Since
L′ = K, we get that F = L, and so M = L.

Now, assume P is non-archimedean and unramified in L/K. Then p does
not divide the ramification index at P of L′/K, and so does not divide that
of LL′/L either. As P is totally split in F/LL′, we get that the ramification
index at P of F/L is not divisible by p. Since [M : L] is a power of p, the
ramification index at P of M/L is then 1. The argument is similar for
residue fields. Namely, with the notation from above, [L′ : K] and p are
coprime, and hence the same holds for [LL′ : L] and p. As P is totally split
in F/LL′, this implies that p does not divide [F : L], and so p does not
divide [M : L] either. As [M : L] is a power of p, we get M = L.

Finally, assume P ∈ S is archimedean and LP = R. By the definition of
L′, we have (L′)P = KP = R, hence (LL′)P = R. Since P is totally split in
F/LL′, we get that FP = R. In particular, MP = R. �

4.3. The case p = p0. Now, assume p = p0. Given n and ν, consider the
embedding

α′ :
{

Gal(L/K) → Fp(n)/Fp(n)(ν) o Gal(L/K)
σ 7→ (1, σ) .

For a prime P of K, let

ψP : Gal((KP)sep/KP)→ Fp(n)/Fp(n)(ν) o Gal(L/K)
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be the composed map α′ ◦ resK
sep/K

L/K ◦ res(KP)sep/KP

Ksep/K . As pr ◦α′ = idGal(L/K),

we have pr ◦ψP = resK
sep/K

L/K ◦ res(KP)sep/KP

Ksep/K . Moreover, Fp(n)/Fp(n)(ν) is
a p0-group. Hence, we may apply [14, Theorem B] to get that pr has a
solution

Gal(F/K)→ Fp(n)/Fp(n)(ν) o Gal(L/K)
such that, for every prime P ∈ S, the completion of F at P is the fixed
field in (KP)sep of ker(ψP). As the latter is the completion of L at P (for
every prime P of K), this shows that (4.1) also holds in the case p = p0,
thus ending the proof of Theorem 1.2.
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