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The Fibonacci sequence and an elliptic curve

par Sungkon CHANG

Résumé. Les séries infinies impliquant les inverses des nombres de Fibonacci
sont en général algébriquement indépendantes sur le corps des nombres ra-
tionnels. Dans la présente note, nous introduisons une identité qui révèle une
relation de dépendance algébrique entre deux telles séries. L’identité a été dé-
couverte à partir d’une description spéciale d’une certaine fonction elliptique.
Cette observation est généralisée pour produire des identités analogues pour
une grande classe de suites définies par des récurrences linéaires portant sur
trois termes consécutifs.

Abstract. Infinite series involving the reciprocal Fibonacci numbers may ad-
mit no algebraic dependence between each other over the rational numbers.
In this note, we introduce an identity which reveals an algebraic dependence
relation between two infinite series involving the reciprocal Fibonacci num-
bers. The identity was discovered from a peculiar description of an elliptic
function, and this observation is generalized to produce similar identities on
a large class of sequences defined by linear recurrences on three consecutive
terms.

1. Introduction

In this note, we introduce an identity on infinite series that involves the
reciprocal Fibonacci numbers. The identity was discovered from an elliptic
curve, and the description of the elliptic curve is introduced in this paper
as well. This observation is generalized to a large class of sequences defined
by linear recurrences in three consecutive terms.

Let Fn be the Fibonacci sequence, which is defined by the linear re-
currence Fn+2 = Fn+1 + Fn for all indices n ≥ 0, and (F0, F1) = (0, 1).
We may extend the definition for the negative indices as well, so that
F−n = (−1)n+1Fn for all integers n, and Fn+2 = Fn+1 + Fn for all in-
tegers n. For example, (F−4, F−3, F−2, F−1) = (−3, 2,−1, 1). By Binet’s
formula, Fn = (φn − φ̄n)/

√
5 for all integers n where φ := (1 +

√
5)/2 is

the golden ratio and φ̄ := (1 −
√

5)/2. Let us use the notation
∑
n6=0 an

for
∑∞
n=1 a−n +

∑∞
n=1 an when the infinite series are absolutely convergent.
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Stated below is the identity obtained from the description of a function on
an elliptic curve.
Theorem 1.1.

(1.1)

∑
n6=0

(−φ)n/3

Fn

2

=
∑
n6=0

(−φ)2n/3

F 2
n

.

We do not know if the value of (1.1) can be expressed in closed form, but
the computer calculation suggests that it is approximately equal to 6.1469.
If we use the identity φn = Fn−1 +Fnφ, and break the series into two parts,
we obtain the following equivalent version: ∞∑

n=1
(−1)n

3
√
Fn−1 + Fnφ− 3

√
Fn−1 + Fnφ̄

Fn

2

=
∞∑
n=1

3
√
F2n−1 + F2nφ+ 3

√
F2n−1 + F2nφ̄

F 2
n

where 3
√
x for x ∈ R denotes the real root. The values of the reciprocal

Fibonacci series such as S` :=
∑∞
n=1 1/F `n have been studied; see [1, 2, 4,

6, 11, 14]. The irrationality of S1 ≈ 3.3598 is proved in [1], but in general,
no closed formulas are known for S`. For certain series of the reciprocal
Fibonacci numbers such as S2 :=

∑∞
n=1 1/F 2

n , the values can be formulated
in terms of the values of theta functions. Studied in [11] are approximate
values of S1 and S2 to arbitrary precision, and various similar results are
found in the literature; see [14]. For example, if n ≥ 1 is odd, proved in [11] is

1
1 + Fn−1Fn

<
∞∑
k=n

1
F 2
k

≤ 1
Fn−1Fn

.

The transcendence and algebraic independence of various reciprocal
Fibonacci series have been studied in the literature; see [4, 6]. Using
Nesterenko’s theorem on certain Ramanujan functions [10], the authors
of [4] prove that S2 is transcendental over Q, and the authors of [5] prove
that {S2, S4, S6} are algebraically independent over Q. In terms of alge-
braic independence, the two series in Theorem 1.1 can be viewed as an
algebraic dependence relation, i.e., if T` :=

∑
n6=0(−φ)`n/3/F `n for ` = 1, 2,

then T 2
1 − T2 = 0.

The remainder of the paper is organized as follows. In Section 2, a com-
plex analytic description of an elliptic curve is introduced, and in Section 3,
peculiar descriptions of constant functions on the complex manifold are in-
troduced along with our proof of Theorem 1.1. In Section 4, generalizations
of this observation are introduced, and in Section 5, complex analytic iso-
morphisms to the classical description of elliptic curves are introduced.
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2. The Fibonacci elliptic curve

An elliptic curve is often defined as a compact Riemann surface of genus 1;
see [9]. For the complex analytic structure, we may use quotients of the
multiplicative group C∗ := {z ∈ C : z 6= 0}. Let q ∈ C∗ be a complex
number such that |q| 6= 1, and let qZ denote the subgroup {qn ∈ C∗ : n ∈ Z}.
Then, the quotient C∗/qZ is an elliptic curve; see [7, 13]. We find that the
figures of fundamental domains of C∗/qZ are less popular, and sketch a
sample in Figure A below.

1

q

Figure A Figure B

Let Cn for n ∈ Z denote the circle in the complex plane passing through
qn and centered at 0. Then, the circle Cn is mapped to Cn+1 when multiplied
by q, preserving the counterclockwise orientation. For example, if q = 1

2 i,
then the two circles C0 and C1 are sketched in thicker lines in Figure A. The
region in between C0 and C1 forms the interior of a fundamental domain
for C∗/qZ, and the two circles are identified with each other in C∗/qZ.

One of the key tools for studying Riemann surfaces has been meromor-
phic functions and their poles, and the Riemann–Roch Theorem is at the
center of the subject; see [8, 9, 12]. For the remainder of this work, we hope
that we will convince you that the values of meromorphic functions on the
elliptic curves we consider in this work are inherently connected to identities
that involve the infinite series similar to the one described in (1.1).

The subgroup qZ may be considered as an orbit of 1 under the action of
the multiplication-by-q on C∗, i.e., qZ = qZ 1 := {qn · 1 ∈ C : n ∈ Z}. This
can be further generalized as the action of linear fractional transformations
on the Riemann sphere Ĉ := C∪{∞}. Given a matrix γ =

[
a b
c d

]
∈ GL2(C),

the action of γ on a complex number z in the Riemann sphere is defined to
be az+b

cz+d , which is denoted by γz, and the cyclic subgroup {γn ∈ GL2(C) :
n ∈ Z} shall be denoted by γZ. For example, if γ =

[
q 0
0 1

]
, then γz = qz,

and C∗/qZ is equal to the set of orbits γZ\C∗ := {γZz : z ∈ C∗}. Also notice
that γn1→ 0 as n→ +∞ and γn1→∞ as n→ −∞ if |q| < 1, and 0 and
∞ are the fixed points of the action γ on the Riemann sphere.
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Let us use γ =
[ 0 1

1 −1
]
to demonstrate the construction of the Riemann

surface. The action on the Riemann sphere is given by γz = 1/(z − 1)
where z ∈ Ĉ. Its fixed points are determined by the equation γz = z,
i.e., z2 − z − 1 = 0, and hence, they are the golden ratio φ and its Galois
conjugate φ̄. As expected, circles converge toward a fixed point as n→∞.
Illustrated in Figure B are circles γnC for n = 0, 1, 2, 3 where C is a circle
centered at φ, and they are converging toward the other fixed point φ̄
as n → ∞. In Section 4, we shall prove that γZ\Ĉ◦ is an elliptic curve
where Ĉ◦ := Ĉ − {φ, φ̄}. We call it the Fibonacci elliptic curve, and the
shaded region in Figure B is a fundamental domain for the elliptic curve.
All elliptic curves come with a group law that can be defined in terms of
complex analytic maps, and let us introduce a group law on the Fibonacci
elliptic curve. Let γZz1 and γZz2 be two orbits in γZ\Ĉ◦, and define

γZz1 ⊕ γZz2 := γZ
z1z2 + 2(z1 + z2)− 1
2z1z2 − z1 − z2 + 3 .(2.1)

Since γZ∞ = γZ0, we may use γZ0 to make sense out of the ⊕ operation
that involves γZ∞, and the fact that the numerator and the denominator
of (2.1) are not both zeros for any z1, z2 ∈ Ĉ◦ makes the operation well-
defined. Notice that the group law on qZ\C∗ is given by the multiplication
of the complex numbers. In Section 4, we shall establish the isomorphism
between the manifolds γZ\Ĉ◦ and qZ\C∗, and this isomorphism induces
the operation (2.1). The identity element of the group law is γZ(1/2), so
that γZz ⊕ γZ(1/2) = γZz, and the inverse of γZz is given by γZ(1 − z).
The subgroup of the two-torsion points of an elliptic curve is isomorphic
to the Klein 4-group Z/2Z×Z/2Z, and the two elements γZ(i) and γZ(−i)
generate the subgroup.

3. The Fibonacci elliptic functions

Let us introduce the standard elliptic functions on C∗. Let q be a complex
number such that |q| 6∈ {0, 1}. Let f : C∗ → Ĉ be a function given by

(3.1) f(z) = z
∑
n∈Z

qn

(1− qnz)2 := z

( ∞∑
n=0

qn

(1− qnz)2 +
∞∑
n=1

q−n

(1− q−nz)2

)
where the individual series indexed over n ≥ 1 and n ≥ 0 are absolutely
convergent for each z ∈ C∗ − qZ. The function f is meromorphic, and it
has poles at {qn : n ∈ Z}, each of which has order 2; they are often called
double poles. Moreover, it satisfies the following invariant property. For all
z ∈ C∗,

(3.2) f(qz) = qz
∑
n∈Z

qn

(1− qn(qz))2 = z
∑
n∈Z

qn+1

(1− qn+1z)2 = f(z).
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This invariant property allows us to define a function on the elliptic curve
C∗/qZ. Let f̄ : C∗/qZ → Ĉ be a function defined by f̄(γnz) := f(z). Then,
f̄ becomes a meromorphic function on the elliptic curve C∗/qZ; see [9] for
the definition of a meromorphic function on a Riemann surface. For this
reason, the meromorphic function f on C∗ is called an elliptic function. We
shall call it an elliptic function under the action of qZ.

Motivated from the classical elliptic function on C∗, we define a similar
version for the Fibonacci elliptic curve γZ\Ĉ◦. Let f : Ĉ◦ → Ĉ be a function
given by

(3.3) f(z) :=
∑
n∈Z

(φ− γnz)(φ̄− γnz).

The RHS is an absolutely convergent series, and it defines a meromorphic
function that has double poles only. This assertion follows immediately from
Lemma 3.2, and we begin with the following to prove the lemma.

Lemma 3.1. For n ∈ Z,

γn = (−1)n
[
Fn−1 −Fn
−Fn Fn+1

]
.

Proof. The characteristic polynomial of γ is t2 + t− 1, and by the Cayley–
Hamilton theorem, γ2 = −γ + I where I is the 2 × 2 identity matrix,
i.e., γn+2 = −γn+1 + γn for all n ∈ Z. Thus, the two matrices γ0 and γ1

completely determines γn for all n ∈ Z, and we leave to the reader the task
of checking if the formula satisfies the recursion on γn and matches the two
matrices. �

Then, the meromorphic function f(z) satisfies the invariant property
f(γz) = f(z) for all z ∈ Ĉ◦, and it shall be rightly called a Fibonacci
elliptic function. The expression of f(z) given in the following lemma is
rather prefered for that name.

Lemma 3.2. Let f : Ĉ◦ → Ĉ be the meromorphic function defined in (3.3).
Then,

(3.4) f(z) = (z2 − z − 1)
∑
n∈Z

(−1)n

(Fn+1 − Fnz)2 .

Proof. Recall the formula of γn from Lemma 3.1, and let Dn(z) := Fn+1 −
Fnz. Notice that (φ− γnz)(φ̄− γnz) vanishes at z = φ and z = φ̄, and that

(3.5) (φ− γnz)(φ̄− γnz)

= (φDn(z)− (Fn−1z − Fn))(φ̄Dn(z)− (Fn−1z − Fn))
Dn(z)2 .



488 Sungkon Chang

Since Dn(z) does not vanish at φ or φ̄, the numerator of the summand
must vanish at the two values. Since it is a quadratic polynomial in z,
it must be equal to a(z − φ)(z − φ̄) = a(z2 − z − 1) for some constant a.
The leading coefficient of the numerator is (−φFn−Fn−1)(−φ̄Fn−Fn−1) =
−F 2

n+FnFn−1+F 2
n−1. This is equal to det γn = Fn−1Fn+1−F 2

n = Fn−1(Fn+
Fn−1)−F 2

n . Since det(γn) = (det γ)n = (−1)n, it follows that (φ−γnz)(φ̄−
γnz) = (−1)n(z2 − z − 1)/Dn(z)2, which proves the assertion. �

We interpret the meaning of the convergence of f(z) at z = ∞ ∈ Ĉ
as the convergence of the analytic continuation of f(1/z) at z = 0. Let
h(z) = z2 − z − 1. Then, h(γz) = −h(z)D1(z)−2 for all z ∈ Ĉ◦, and we
leave to the readers the fun task of checking if f(γz) = f(z) holds for all
z ∈ Ĉ◦ according to the description given in (3.4). It became unexpect-
edly interesting when we looked for an elliptic function that is given in a
form similar to (3.1) or (3.4), but has poles of order < 2. Experts would
not be interested in such a quest because the genus of γZ\Ĉ◦ is 1, and the
Riemann–Roch Theorem [8, 9, 12] implies that there will not be a mero-
morphic function f : Ĉ◦ → Ĉ such that f(γz) = f(z) and the poles of f
are simple, i.e., of order 1. This can also be proven more directly using the
First and Second Liouville’s Theorem; see [7]. Let us state the result below.

Theorem 3.3. Let f : Ĉ◦ → Ĉ be an elliptic function under the cyclic
group γZ, i.e., f is meromorphic on Ĉ◦ and satisfies f(γz) = f(z) for all
z ∈ Ĉ◦. Then, either f is a constant function, or has poles of order ≥ 2.

The interesting turn of the event was that we found the description of
a meromorphic function that is invariant under γZ, but has no poles of
order ≥ 2. Let us use the notation

∑
P (v) for the summation over tuples

of integers v = (n1, n2, . . . , n`) that satisfy conditions P (v). For example∑
n6=m means the summation over all integer pairs (n,m) such that n 6= m.

Let f : Ĉ◦ → Ĉ be a meromorphic function given by

(3.6) f(z) = (z2 − z − 1)
∑
n6=m

in+m

(Fn+1 − Fnz)(Fm+1 − Fmz)
.

Then, it is an absolutely convergent series for all z ∈ Ĉ◦ not equal to
any Fn+1/Fn, and satisfies the invariant property f(γz) = f(z). Since the
denominator of the summand of (3.6) does not have a repeated linear factor,
this meromorphic function does not have poles of order ≥ 2, and hence,
by Theorem 3.3, it analytically continues to a constant elliptic function!
Notice that if we consider the summation in (3.6) over the indices (n,m)
such that n = m, it will be equal to the elliptic function (3.4). In fact, the
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function (3.6) was first found after we considered the meromorphic function

(z2 − z − 1)

∑
n∈Z

in

Fn+1 − Fnz

2

.

It is a Fibonacci elliptic function with poles of order 2, and if we expand
the squared part of the function, it is decomposed into the terms described
in (3.4) and the terms described in (3.6).

Applying this idea to the elliptic function defined in (3.1), the author
of this note had obtained a unique set of results [3] on divisor functions,
and for the work presented in this note, he pursued descriptions of constant
Fibonacci elliptic functions, hoping to find an interesting identity on the
Fibonacci sequence. In [3], the real surprise came when the triple product
summand was considered instead of the double product summand in (3.6).
Let f : Ĉ◦ → Ĉ be a meromorphic function given by

(3.7) f(z) := (z2 − z − 1)(z − φ)
∑
n,m,`
dist.

(−φ)(n+m+`)/3

Dn(z)Dm(z)D`(z)

where the summation runs over all triples of distinct integers. The factor
(z − φ) has the following property under the action of γ:

(γz − φ) = 1
z − 1(1− φ(z − 1)) = −φ

z − 1(z − φ).

Recalling the property of h(z) = z2−z−1 under the action of γ, we see that
f(z) becomes an elliptic function under the cyclic subgroup γZ. As in the
double product case, by Theorem 3.3, it analytically continues to a constant
elliptic function. The surprise was what happens to the expression (3.7) near
z = 0. For (3.6), there was not a surprise, i.e., the Laurent expansion was
1
z (a0 + a1z + a2z

2 + · · · ) and it was straightforward to show that a0 = 0
as the infinite sum description of a0 cancels itself out. However, for (3.7),
there is no apparent symmetry that forces the constant a0 to be zero, but
rather produced an identity, which was presented in (1.1). Let us use the
elliptic function (3.7) to prove Theorem 1.1. The triples (n,m, `) considered
in (3.7) for which n = −1 generate an infinite partial sum of (3.7), and due
to its symmetric construction, the infinite partial sums for m = −1 and
` = −1 generate the same value. Thus, D−1(z) = −z implies

f(z) = (z2 − z − 1)(z − φ)

×

3(−φ)−1/3

−z
∑

n,m 6=−1
dist.

(−φ)(n+m)/3

Dn(z)Dm(z) +
∑

n,m,` 6=−1
dist.

(−φ)(n+m+`)/3

Dn(z)Dm(z)D`(z)

.
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Notice that Dn(0) 6= 0 for all integers n 6= −1, and hence, both infinite
sums in the parentheses are analytic at z = 0. Let a0 + a1z+ a2z

2 + · · · be
the MaClaurin series of the first sum. Then,

(3.8) 3(−φ)−1/3

−z
∑

n,m 6=−1
dist.

(−φ)(n+m)/3

Dn(z)Dm(z) = 3(+φ)−1/3
(
a0
z

+ a1 + a2z + · · ·
)
.

Since f(z) is analytically continued to z = 0, and (z2 − z − 1)(z − φ) does
not vanish at z = 0, it follows that a0 = 0, i.e.,

0 = a0 =
∑

n,m 6=−1
dist.

(−φ)(n+m)/3

Dn(0)Dm(0) =
∑

n,m 6=−1
dist.

(−φ)(n+m)/3

Fn+1Fm+1
(3.9)

= 3
√
−φ −2 ∑

n,m 6=0
dist.

(−φ)(n+m)/3

FnFm

which implies
∑

n,m 6=0
dist.

(−φ)(n+m)/3

FnFm
= 0;(3.10)

⇒

∑
n6=0

(−φ)n/3

Fn

2

=
∑
n 6=0

(−φ)n/3

Fn

∑
m 6=0

(−φ)m/3

Fm

=
∑

n=m6=0

(−φ)n/3

Fn

(−φ)m/3

Fm
+

∑
n,m 6=0
dist.

(−φ)(n+m)/3

FnFm

=
∑
n 6=0

(−φ)2n/3

F 2
n

+ 0.

4. Linear recurrences and elliptic curves

Theorem 1.1 holds for a larger class of linear recurrences.

Theorem 4.1. Let γ =
[
a b
1 d
]
be a matrix in GL2(C) with eigenvalues ψ1

and ψ2 such that |ψ1/ψ2| 6= 1. Then, γZ\Ĉ◦ is an elliptic curve.
Let ρ be a fixed point of γ. If γn =

[
Pn Qn

Rn Sn

]
, then for all n ∈ Z,

Rn+2 = (a+ d)Rn+1 + (b− ad)Rn, (R0, R1) = (0, 1),
Sn+2 = (a+ d)Sn+1 + (b− ad)Sn, (S0, S1) = (1, d),

and

∑
n6=1

(
(a− ρ) det γ

)n/3
Sn − dRn

2

=
∑
n6=1

(
(a− ρ) det γ

) 2n/3

(Sn − dRn)2 .(4.1)
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For example, let γ =
[−2 −5

1 3
]
. Then, it has eigenvalues φ and φ̄, and φ−3

is a fixed point of γ. Then, Theorem 4.1 implies∑
n6=1

(−φ̄)n/3

Ln+1 − 3Fn

2

=
∑
n6=1

(−φ̄) 2n/3

(Ln+1 − 3Fn)2

where Ln = φn + φ̄n for n ∈ Z are Lucas numbers. The proof of (4.1) is
obtained by repeating calculations similar to the Fibonacci elliptic curve.
Below we only summarize the key results, and leave the proof to the reader.
However, we shall prove that γZ\Ĉ◦ is an elliptic curve in this section.

Let γ be the matrix described in Theorem 4.1, and let {ρ, ρ′} be the two
(distinct) fixed points of γ. Then, the following is a meromorphic function
on the elliptic curve γZ\Ĉ◦ with double poles at {γn(−d) : n ∈ Z}:

f(z) :=
∑
n∈Z

(ρ− γnz)(ρ′ − γnz) = (z2 + (d− a)z − b)
∑
n∈Z

det γn

(Sn +Rnz)2 ,

and the following analytically continues to a constant function:

(4.2) (z2 + (d− a)z − b)(z − ρ)
∑
n,m,`
dist.

(
(a− ρ) det γ

) (n+m+`)/3

(Sn +Rnz)(Sm +Rmz)(S` +R`z)
.

The identity (4.1) is obtained by setting aside the factor S1 +R1z = d+ z

of the denominator as done in (3.8). Let us prove that γZ\Ĉ◦ is an elliptic
curve. Let α = [ ρ1 ρ2

1 1 ] be a matrix consisting of eigenvectors of eigenvalues
ψ1 and ψ2, respectively, as column vectors. Since ψ1 6= ψ2 and ψ1ψ2 6= 0,
the matrix is invertible, and defines a linear fractional transformation α
from Ĉ∗ to Ĉ◦ where Ĉ∗ := Ĉ − {0,∞} and Ĉ◦ := Ĉ − {ρ1, ρ2}. Since
α(0) = ρ2 and α(∞) = ρ1, the linear fractional transformation α defines a
complex analytic isomorphism from Ĉ∗ → Ĉ◦. Notice that M :=

[
ψ1 0
0 ψ2

]
=

α−1γα, and the linear fractional transformation defined by M is equal to
the multiplication-by-q where q = ψ1/ψ2; we denote the transformation
simply by q, so q = α−1γα, i.e., α ◦ q = γα.

Let us prove that the linear fractional transformation α reduces to a
bijective function ᾱ from qZ\Ĉ∗ to γZ\Ĉ◦ given by ᾱ(qZz) = γZ(αz). First,
let us prove that ᾱ is well-defined. Notice that γZ(α ◦ q)z = γZ((γα)z) =
γZαz. If qz1 = z2, then

ᾱ(qZz2) = γZ(αz2) = γZ(α ◦ q) z1 = γZ(γαz1) = γZ(αz1) = ᾱ(qZz1).

The function from γZ\Ĉ◦ to qZ\Ĉ∗ given by γZz 7→ qZ(α−1z) defines an
inverse function of ᾱ, and we leave the proof to the reader. This concludes
the proof of the bijectivity of ᾱ. Moreover, the following is a commutative
diagram of functions between sets, and the projections π∗ and π◦ make it a
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commutative diagrams of continuous maps between topological spaces, two
of which are equipped with the quotient topology:

(4.3)

Ĉ∗ α−−−−→ Ĉ◦

π∗
y yπ◦

qZ\Ĉ∗ ᾱ−−−−→ γZ\Ĉ◦

.

It is well-known that qZ\Ĉ∗ is an elliptic curve [7, 13]. Let us prove below
that the projection π∗ serves as charts of the Riemann surface qZ\Ĉ∗.

Lemma 4.2. The projection π∗ is a unramified continuous map, i.e., for
each point z0 ∈ Ĉ∗, there are open neighborhoods V of z0 in Ĉ∗ and U of
w0 := π∗(z0) = qZz0 in qZ\Ĉ∗ such that π∗ restricts to a homeomorphism
from V to U .

Proof. Without loss of generality, let us assume that |q| < 1. Let z0 be a
complex number in Ĉ∗, and suppose that there is an integer n such that
|q|n+1 < |z0| < |q|n. Let V be an open annulus {z ∈ Ĉ∗ : |q|n+1 < |z| <
|q|n}. Then, V is an open neighborhood of z0, and for any m ∈ Z, the
subset qmV = {z ∈ Ĉ∗ : |q|m+n+1 < |z| < |q|m+n} is open. Let us show
that qmV for m ∈ Z form a disjoint union of open subsets. If m1 < m2

are two integers, then |q|m2−m1 ≤ |q| = |q|n+1

|q|n ⇒ |q|m2+n ≤ |q|m1+n+1. If
z1 ∈ qm1V and z2 ∈ qm2V , then |z2| < |q|m2+n ≤ |q|m1+n+1 < |z1|, and
hence, z2 6= z1. This proves that the two open subsets are disjoint. If z0 is
a complex number such that |z0| = |q|n for some integer n, then the open
subset V = {z ∈ Ĉ∗ : |q|n−

1
2 < |z| < |q|n+ 1

2 } will have the property that
qmV for m ∈ Z form a disjoint union of open subsets, and we leave the
proof to the reader.

Let U be the subset π∗(V ) of qZ\Ĉ∗. Then, (π∗)−1(U) is the disjoint
union of

⋃
m∈Z q

mV . Since qmV for m ∈ Z are open, the subset U is open
in qZ\Ĉ∗ by the definition of the quotient topology. Since qmV for m ∈
Z form mutually disjoint open subsets, the projection π∗ restricts to a
homeomorphism from V to U . �

Since the domain of π∗ is an open subset of Ĉ, the unramified projection
serves as complex charts of the Riemann surface qZ\Ĉ∗. Moreover, (4.3) is
a commutative diagram of continuous maps where α and ᾱ are homeomor-
phisms, and hence, the projection π◦ = ᾱ◦π∗◦α−1 serves as a complex chart
for γZ\Ĉ◦, making the topological space a compact Riemann surface. Also,
the homeomorphism α in (4.3) serves as complex analytic isomorphisms
between charts of the two Riemann surfaces, and hence, it reduces to a
complex analytic isomorphism between qZ\Ĉ∗ and γZ\Ĉ◦, making γZ\Ĉ◦
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an elliptic curve. We may use the isomorphism ᾱ to define a group law on
the elliptic curve γZ\Ĉ◦ as follows:

(4.4) γZz1 ⊕ γZz2 := γZα((α−1z1) · (α−1z2)).

Since the group law on qZ\Ĉ∗ is given by the usual multiplication of complex
numbers, the above shall define a group law on γZ\Ĉ◦. For the case of the
Fibonacci elliptic curve, the formula simplifies to the one given in (2.1).

5. Elliptic functions

Let γ and q be a matrix and a complex number, respectively, described in
Theorem 4.1. The C-vector space of meromorphic functions on the elliptic
curve γZ\Ĉ◦ arise from meromorphic functions on Ĉ◦ invariant under the
action of γ, which we called elliptic functions under the action of γ. LetM∗
be the C-vector space of elliptic functions under q, and M◦, the C-vector
space of elliptic functions under γ. Since (4.3) is a commutative diagram
of complex analytic maps, we have the pull-back on the elliptic functions
under q to the elliptic functions under γ, i.e., (α−1)∗ :M∗ →M◦ given by

(5.1) (α−1)∗(f) := f ◦ α−1.

It is an isomorphism between the vector spaces, and the description of the
constant elliptic function described in (4.2) can be obtained as a pull-back
of the description of a constant elliptic function f ∈M∗. Given below is the
description of a constant elliptic function under q, which is similar to (3.7):

f(z) = z
∑
n,m,`
dist.

q(n+m+`)/3

(1− qnz)(1− qmz)(1− q`z) .

If we set aside the factor of (1− z) from the denominator as done in (3.8),
we obtain the following result.

Theorem 5.1. Let q be a complex number such that |q| 6∈ {0, 1}. Then,

(5.2)

∑
n6=0

qn/3

1− qn

2

=
∑
n6=0

q2n/3

(1− qn)2 .

By specializing the identity (5.2) at q = ψ1/ψ2, we also obtain the iden-
tity (4.1) as well.

6. Concluding remarks

The identity (5.2) is simpler than (4.1), and we wonder whether this
identity can be proved rather directly. We would like to note, though, that
such an attempt naturally leads us to an identity on the Fourier expansion
of the Eisenstein series of weight 2, i.e., E2(q) = 1− 24

∑∞
n=1 σ(n)qn where
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σ(n) is the sum of divisors of n, and the identity seems to be new in the lit-
erature of the Eisenstein series as well. First, notice that the identity (5.2)
reduces to the one given below in (6.1), which is a general version of (3.10).
If we rearrange the summation over positive indices, we obtain the iden-
tity (6.2); see [3] for technical details. Using the derivative of the geometric
series formula, one can easily show that the left-hand side of (6.2) is equal
to (1 − E2(q))/12, and the identity seems to be new in the literature of
Eisenstein series: ∑

n,m 6=0
dist.

q(n+m)/3

(1− qn)(1− qm) = 0(6.1)

⇒ 2
∞∑
n=1

qn

(1− qn)2 =
∑

n,m≥1
dist.

qn/3 − q2n/3

1− qn
qm/3 − q2m/3

1− qm .(6.2)

Notice also that comparing the q-coefficients of the series in (6.2) yields
implications on the divisor functions, and they are discussed in [3].

Recall that the identity (1.1) can be interpreted as an algebraic depen-
dence on T` :=

∑
n 6=0(−φ)n/3/F `n, i.e., T 2

1 − T2 = 0. It is reasonable to
ask whether there are algebraic numbers ψ` for positive even integers `
such that the series

∑
n6=0 ψ

n
` /F

`
n for even positive integers ` admit more

algebraic dependence.
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