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Moduli Spaces of Shtukas over the Projective Line

par María Inés DE FRUTOS-FERNÁNDEZ

Résumé. On donne des équations explicites pour des espaces de modules de
chtoucas de Drinfeld sur la droite projective avec structures de niveau Γ(N),
Γ1(N) et Γ0(N), où N désigne un diviseur effectif sur P1. Si le degré du
diviseur N est suffisamment grand, ces espaces de modules sont des surfaces
relatives. On étudie certains invariants de l’espace de modules de chtoucas
avec structures de niveau Γ0(N) pour plusieurs diviseurs de degré 4 sur P1.

Abstract. We provide explicit equations for moduli spaces of Drinfeld
shtukas over the projective line with Γ(N), Γ1(N) and Γ0(N) level structures,
where N is an effective divisor on P1. If the degree of N is high enough, these
moduli spaces are relative surfaces. We study some invariants of the moduli
space of shtukas with Γ0(N) level structure for several degree 4 divisors on P1.

1. Introduction

Shtukas were introduced by Drinfeld in the seventies, in his series of
papers containing the proof of the Langlands correspondence for GL2 over
function fields [4, 5], based on the study of the cohomology of moduli spaces
of rank 2 shtukas.

Let X be a smooth, projective, geometrically irreducible curve over Fq
with function field K. Denote X := X ×Fq Fq, where Fq is an algebraic
closure of Fq. Given any scheme S over Fq and any vector bundle E over
X×S, we denote by Eσ the pullback (IdX ×FrobS)∗E , where FrobS : S → S
is the Frobenius morphism which is the identity on points, and t 7→ tq on
functions.

Definition 1.1. Let S be a scheme over Fq. A (Drinfeld) shtuka of rank r
over S is a tuple Ẽ = (E , P,Q, E ↪→ E ′ ←↩ Eσ), consisting of

• a rank r vector bundle E over X × S,
• two morphisms P,Q : S → X, called the pole and the zero of the
shtuka Ẽ ,
• a modification consisting of two injections E ↪→ E ′ ←↩ Eσ, where
E ′ is a rank r vector bundle over X × S such that E ′/E and E ′/Eσ
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are supported on the graphs of P and Q, respectively, and they are
invertible on their support.

Two shtukas Ẽ = (E , P,Q, E ↪→ E ′ ←↩ Eσ) and F̃ = (F , P ′, Q′,F ↪→ F ′ ←↩
Fσ) of rank r are isomorphic when P = P ′, Q = Q′, and there exist
isomorphisms α : E → F and β : E ′ → F ′ such that the following diagram
commutes:

E E ′ Eσ

F F ′ Fσ.

α β ασ

Definition 1.2. The stack Shtr := ShtrX of shtukas of rank r associates to
a scheme S over Fq the groupoid Shtr(S) whose objects are shtukas of rank
r over S.

Drinfeld proved that the stack Shtr is an algebraic Deligne–Mumford
stack, and the map (P,Q) : Shtr → X × X sending a shtuka to its pole
and zero is smooth of relative dimension 2r − 2. Moreover, Shtr is locally
of finite type (see [5] or [19, Theorem 2.2]). We will denote by ShtrP,Q the
fiber over (P,Q).

Denote by Shtr,d the substack of Shtr consisting of shtukas for which the
vector bundle E has degree d. Then each Shtr,d is a connected component
of Shtr, and

Shtr =
⊔
d∈Z

Shtr,d .

Let S be an Fq-scheme. Let N be a finite subscheme of X and let Ẽ be a
shtuka of rank r over S such that the graphs of its pole P : S → X and zero
Q : S → X do not intersect N × S. Then the data of the shtuka provides
a restricted isomorphism ψ : E|N×S → E

σ
|N×S .

Definition 1.3. A level structure of Ẽ on N is an isomorphism α : OrN×S →
E|N×S such that the following diagram commutes:

OrN×S Or,σN×S

E|N×S Eσ|N×S

=

α ασ

ψ

We denote by Shtr(N) the stack of Drinfeld shtukas of rank r with level
structure on N , which associates to a scheme S over Fq the groupoid
Shtr(N)(S) whose objects are pairs (Ẽ , α), where Ẽ is a rank r shtuka
over S and α is a level structure of Ẽ on N , with the evident notion of
isomorphism.
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Drinfeld proved that the forgetful morphism Shtr(N) → Shtr ×X2

(X − N)2 is representable, finite, étale and Galois with Galois group
GLr(ON ) (see [6, Section 3]).

Now we restrict our attention to the case where the shtuka Ẽ has rank 2.
Then we often use the phrase “Γ(N) level structure of Ẽ” to refer to a level
structure on N , and use Sht2(Γ(N)) to denote Sht2(N). We introduce two
new notions of level structure:

(1) A Γ1(N) level structure of Ẽ is a section v ∈ H0(N × S, E|N×S )
which generates a locally free ON×S-module of rank 1 and such
that vσ = ψ(v).

(2) A Γ0(N) level structure of Ẽ is a rank 1 locally freeON×S-submodule
L ⊂ E|N×S such that Lσ = ψ(L).

We denote by Sht2(Γ1(N)) the stack of Drinfeld shtukas of rank 2 with
Γ1(N) level structure, which associates to a scheme S over Fq the groupoid
Sht2(Γ1(N))(S) whose objects are pairs (Ẽ , v), where Ẽ is a shtuka of rank r
over S and v is a Γ1(N) level structure. We define Sht2(Γ0(N)) analogously.

Remark 1.4. For some purposes, the study of the stacks Shtr or Shtr(Γ)
for some level structure Γ is not enough, and one must instead use the
compactified stacks Sht r or Sht r(Γ). To create these compactifications,
the notion of generalized shtuka is introduced. For Γ = Γ(N), the com-
pactification was studied by Drinfeld in the rank 2 case [7], and generalized
to arbitrary rank by Lafforgue [15]. It played a key role in the proof of the
Langlands correspondence for GLn over function fields.

The main goal of this paper is to derive explicit equations for moduli
spaces of shtukas of rank 2 over the base curve X = P1

Fq , with the kinds of
level structures mentioned above.

Let Sht2,tr be the substack of Sht2,0 whose S-points are shtukas with
disjoint pole and zero and such that Ex is trivial on all geometric points x
of S, and let Sht2,tr(Γ) be the corresponding substack of Sht2(Γ), where Γ
denotes Γ(N),Γ1(N) or Γ0(N).

Lemma 1.5. Let N be an effective divisor on P1. Let Γ denote Γ(N),Γ1(N)
or Γ0(N), and assume that the degree of N is at least 1, 2 or 3, respectively.
Then Sht2,tr(Γ) is a relative surface over (P1 \N)× (P1 \N).

Proof. Suppose first that Γ = Γ(N), and denote by Sht2,0,0(Γ(N)) the
substack of Sht2(Γ(N)) obtained by imposing the condition that for any
shtuka Ẽ over an Fq-scheme S and any s ∈ S, the restriction Es of E to
P1 × s has degree 0, and any invertible subsheaf of Es has degree at most
0. Note that since we are working over P1, this condition is equivalent to
asking Es to be trivial.
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Then in Propositions 3.2 and 3.3 of [6], Drinfeld shows that Sht2,0,0(Γ(N))
is representable by a smooth scheme of relative dimension 2 over (P1 \N)×
(P1\N). Since Sht2,tr(Γ(N)) is the open substack of Sht2,0,0(Γ(N)) obtained
by imposing the condition that the pole of a shtuka is different from its zero,
this implies that Sht2,tr(Γ(N)) is a relative surface over (P1 \N)× (P1 \N).

The remaining cases are analogous. �

By deriving explicit equations for the fibers of Sht2,tr(Γ), we conclude
the following results about the cases where N has low degree:

Theorem 1.6. Let N be an effective divisor on P1 supported on points of
degree 1, and let P,Q be disjoint points of P1 \ N . Then up to birational
equivalence, we have that:

(1) If degN = 1, then Sht2,tr
P,Q(Γ(N)) is a rational surface.

(2) If degN = 2, then Sht2,tr
P,Q(Γ1(N)) is a rational surface.

(3) If degN = 3, then Sht2,tr
P,Q(Γ0(N)) is a rational surface.

(4) If degN = 4, then Sht2,tr
P,Q(Γ0(N)) is an elliptic surface.

The contents of this paper are as follows. In Section 2 we review some
basic background on algebraic surfaces. In Section 3 we study moduli spaces
of shtukas of rank 2 over the projective line; we describe the stack of shtukas
with no level structure and with Γ(N), Γ1(N), and Γ0(N) level structures,
giving explicit equations for these spaces. Section 4 is dedicated to the study
of some arithmetic invariants of Sht2,tr(Γ0(N)) for N a degree 4 effective
divisor on P1. Finally, in Section 5 we describe some future and related
work in this topic, including a modularity conjecture for elliptic curves
over funcion fields involving the moduli stack of shtukas with Γ0(N) level
structure.

2. Background on Surfaces

We review some definitions and results about surfaces which will be
used in Sections 3 and 4, mainly following [17]. In this section X denotes a
smooth projective curve over a field k.

Definition 2.1. A rational surface is a surface which is birational to the
projective plane. An elliptic surface S over X is a smooth projective surface
S with an elliptic fibration over X, that is, with a surjective morphism
f : S → X whose base change to the algebraic closure is such that almost
all fibers are smooth curves of genus 1 and no fiber contains a smooth
rational curve of self–intersection −1.

A section of an elliptic surface f : S → X is a morphism π : X → S such
that f ◦ π = IdX . If S has a section, then we can regard its generic fiber
E as an elliptic curve over the field k(X), which allows us to work with a
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Weierstrass model. In this paper we only consider elliptic surfaces S which
admit a section and have at least one singular fiber.

The classification of singular fibers of elliptic surfaces was carried out
by Kodaira [12, 13, 14] in the case where k is the complex numbers, and
generalized to other fields by Néron [16]. The imperfect residue field case
was studied by Szydlo [18].

The Néron–Severi group NS(S) of a surface S is the quotient of its divisor
group under algebraic equivalence. The rank of the Néron–Severi group is
called the Picard number of S, denoted ρ(S).

If S is an elliptic surface over X, this group is closely related to the
Mordell–Weil group E(K) of its generic fiber E, where K := k(X). Denote
by T the trivial lattice of S, that is, the subgroup of the Néron–Severi group
of S generated by the zero section and the fiber components. Then E(K)
is isomorphic to NS(S)/T [17, Theorem 6.3]. In particular,

ρ(S) = rank(T ) + rankMW(E).

The Mordell–Weil rank of E is in general hard to compute, but the rank
of the trivial lattice can be computed from local information: denote by mv

the number of irreducible components of each fiber Fv of S. Then

rank(T ) = 2 +
∑
v∈X

(mv − 1).

Definition 2.2. The arithmetic genus of a projective surface S over k is
defined as

pa(S) :=
2∑
i=0

(−1)i dimkH
i(S,OS).

If S is a complete intersection inside a product of projective spaces such
that S is smooth or has at most rational double points1, then its arithmetic
genus depends only on the degrees of the polynomials describing it. In
particular:

Lemma 2.3. Let S ⊂ P := P1×P1×P1 be a hypersurface given by a multi–
homogeneous polynomial of multi–degree d1, d2, d3, with di ≥ 2. Assume
that S is smooth or has at most rational double points. Then the arithmetic
genus of S is (d1 − 1)(d2 − 1)(d3 − 1) + 1.

Proof. Consider the cohomology long exact sequence of the closed sub-
scheme exact sequence

0→ OP(−S) = OP(−d1,−d2,−d3)→ OP → ι∗OS → 0

1An isolated singularity of S is called a rational double point or du Val singularity if there
exists a resolution of singularities ψ : S′ → S such that KS′ = ψ∗KS , where KS denotes the
canonical divisor of S.
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corresponding to the inclusion ι : S → P. From Künneth’s formula,
Hn(P,OP) =

⊕
i+j+k=n

H i(P1,OP1)⊗Hj(P1,OP1)⊗Hk(P1,OP1),

so that

hn(P,OP) := dimHn(P,OP) =
{

1, if n = 0,
0, if n ≥ 1.

Analogously,
Hn(P,OP(−d1,−d2,−d3))

=
⊕

i+j+k=n
H i(P1,OP1(−d1))⊗Hj(P1,OP1(−d2))⊗Hk(P1,OP1(−d3)).

Hence Hn(P,OP(−d1,−d2,−d3)) = 0 for n = 0, 1, 2, since at least one of
i, j, k must be zero in each summand of the formula. However,
H3(P,OP(−d1,−d2,−d3))

= H1(P1,OP1(−d1))⊗H1(P1,OP1(−d2))⊗H1(P1,OP1(−d3)) =
= H0(P1,OP1(d1 − 2))⊗H0(P1,OP1(d2 − 2))⊗H0(P1,OP1(d3 − 2)),

where the second equality is obtained by Serre duality. Since each di is at
least 2, it follows that

h3(P,OP(−d1,−d2,−d3)) = (d1 − 1)(d2 − 1)(d3 − 1).
Finally, we use the cohomology exact sequence to obtain hi(S,OS) for i =
0, 1, 2, and conclude that the arithmetic genus of S is

pa(S) = h2(S,OS)− h1(S,OS) + h0(S,OS)
= (d1 − 1)(d2 − 1)(d3 − 1)− 0 + 1. �

Definition 2.4. Let S be a projective surface over a field k, and let ` be a
prime different from the characteristic of k. The Euler number e(S) of S is

e(S) :=
2∑
i=0

(−1)i dimkH
i
ét(S,Q`).

If S is an elliptic surface, then its Euler number, arithmetic genus, and
second Betti number b2 are related by the formulas

e(S) = 12pa(S) > 0
and

b2(S) = e(S)− 2(1− b1(X)).
In particular, ifX is the projective line, then b2(S) = e(S)−2 = 12pa(S)−2.

We conclude this review by making a few remarks about rational and K3
elliptic surfaces. Rational elliptic surfaces are always fibered over the projec-
tive line, and they are characterized by having arithmetic genus pa(S) = 1.
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Definition 2.5. A smooth surface S is called K3 if its canonical bundle is
trivial and h1(S,OS) = 0.

If S is an elliptic surface over the projective line, then it is K3 if and
only if pa(S) = 2. K3 elliptic surfaces are the only kind that can admit two
distinct elliptic fibrations with section which are not of product type.

Example 2.6. Let E,E′ be two elliptic curves over a field k. The Kummer
surface S := Km(E × E′) associated to E × E′ is a K3 elliptic surface,
and the projections onto E and E′ are two elliptic fibrations. The Picard
number of S is ρ(S) := 18 + rank Hom(E,E′). If k = Fp, then the Tate
conjecture, known for K3 elliptic surfaces, implies that the Picard number
is even. Since b2(S) = 22, it follows that the possible values for ρ(S) are
18, 20, or 22.

3. Moduli Spaces of Shtukas of Rank 2 over P1

3.1. The Moduli Stack of Shtukas of Rank 2 over P1. Recall that
we can describe Sht2 := Sht2

P1 as a disjoint union

Sht2 =
⊔
d∈Z

Sht2,d,

where Sht2,d is the substack consisting of shtukas for which the vector
bundle E has degree d. We will describe the semistable locus of Sht2,0. Note
that the only semistable vector bundle of rank 2 and degree 0 over P1 is
locally on S isomorphic to the trivial one, O ⊕ O. This substack of Sht2,0

is isomorphic to the corresponding substack of Sht2,d for any even d ∈ Z.
Let Sht2,tr be the substack of Sht2,0 whose S-points are shtukas with

disjoint pole and zero and such that Ex is trivial on all geometric points x of
S, and let GSht2,tr be the stack classifying pairs {(Ẽ , φẼ : OX×S⊕OX×S

'−→
E)} where Ẽ is a shtuka with E ' OX×S⊕OX×S . Then Sht2,tr is the stacky
quotient of GSht2,tr, which we will now show is represented by a scheme,
under the natural action of GL2.

Let S = Spec(A) be an affine scheme over Fq, and let (Ẽ = (E , P,Q, E ↪→
E ′ ←↩ Eσ), φẼ) be an S-point of GSht2,tr. Note that P and Q are two distinct
points in P1(A). Denote XA := X ×Fq Spec(A).

The modification E ↪→ E ′ ←↩ Eσ gives a rational morphism f : E 99K Eσ
with a simple pole at Q and well–defined everywhere else, which induces a
morphism f : E → Eσ⊗O(Q). Moreover, since the determinant of a shtuka
Ẽ is a shtuka det Ẽ of rank 1 with the same pole and zero, we must have
that div(det f) = P −Q.

Assume that both P and Q lie in the affine patch of P1 away from
the point at infinity. Then a basis for H0(OXA(Q)) is given by

{
1, T−PT−Q

}
(if

P =∞, then T−P
T−Q gets replaced by 1

T−Q , and ifQ =∞, by T−P ). Therefore
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the morphism f : OXA ⊕OXA ' E → OXA(Q)⊕OXA(Q) ' Eσ ⊗OXA(Q)
induced by the shtuka Ẽ can be expressed in the given choice of basis by a
matrix of the form

M(T ) :=

a0 + a1
T−P
T−Q b0 + b1

T−P
T−Q

c0 + c1
T−P
T−Q d0 + d1

T−P
T−Q


with a0, a1 . . . , d0, d1 in A and whose determinant is a unit constant multiple
of T−PT−Q .

We can identify the subset GSht2,tr
P,Q(Spec(A)) of GSht2,tr(Spec(A)) con-

sisting of pairs in which the shtuka has pole P and zero Q with the set of
matricesMA,P,Q defined as
M(T ) :=

a0 + a1
T−P
T−Q b0 + b1

T−P
T−Q

c0 + c1
T−P
T−Q d0 + d1

T−P
T−Q


∣∣∣∣∣∣∣∣∣∣∣

ai, bi, ci, di ∈ A,
detM(T ) = uT−PT−Q ,

with u ∈ A∗


=


a0 + a1

T−P
T−Q b0 + b1

T−P
T−Q

c0 + c1
T−P
T−Q d0 + d1

T−P
T−Q


∣∣∣∣∣∣∣∣

ai, bi, ci, di ∈ A,
a0d0 − b0c0 = 0,

a0d1 + a1d0 − b0c1 − b1c0 ∈ A∗,
a1d1 − b1c1 = 0.

 .
Hence GSht2,tr is represented by the subvariety V of ((P1×P1)\∆)×A8

described by the equations
a0d0 − b0c0 = 0,
a0d1 + a1d0 − b0c1 − b1c0 ∈ A∗,
a1d1 − b1c1 = 0.

Definition 3.1. We say that two matrices M,N in M2×2(A(T )) are σ-
conjugate if there exists a matrix Z ∈ GL2(A) such that

N = ZσMZ−1.

GL2 acts on V by σ-conjugation, and Sht2,tr is the stacky quotient of V
under this action.

3.2. Shtukas with Γ(N) Level Structure. Let S = Spec(A) be an
affine scheme over Fq, and let N be an effective divisor on P1. Let Ẽ be a
rank 2 shtuka over S whose pole P and zero Q do not belong to the support
of N × S. Recall that in this situation the data of the shtuka Ẽ induces an
isomorphism ψ : E|N×S → E

σ
|N×S , and that a Γ(N) level structure on Ẽ is an

isomorphism α : O2
N×S → E|N×S such that ασ = ψ ◦ α.
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From Section 3.1, we know that after fixing a basis, Ẽ is represented by
a matrix inMA,P,Q. Equivalently, if we multiply this matrix by T − Q to
cancel the pole at Q, we get that Ẽ is represented by a matrix of the form

M(T ) :=
[
a0 + a1T b0 + b1T
c0 + c1T d0 + d1T

]
with detM(T ) = n(T − P )(T −Q) for some unit n ∈ A∗.

Under the fixed choice of basis, the level structure can be described by a
matrix α ∈ GL2(ON×S) such that ασ = M(N)α, where M(N) denotes the
matrix of the restricted isomorphism ψ. In particular, if N is supported on
points of degree one, we can make this condition very explicit: at each point
R appearing in N with multiplicity mR, we denote by π the uniformizer
T −R at R and impose the condition

ασR = M(π +R)αR mod πmR ,

where αR denotes the restriction of α to O2
(mRR)×S ' (Fq[π]/(πmR)⊗A)2.

The system of equations thus obtained describes the Γ(N) level structure.

Theorem 3.2. Let R be a degree 1 point of P1 and consider the divisor
N = (R). Let P,Q be points of P1 disjoint from each other and from R.
Then Sht2,tr

P,Q(Γ(N)) is a rational surface.

Proof. Let R be a degree 1 point of P1 and let N = (R). Possibly after a
change of variables, we can assume that N = (0). Let S = Spec(A) be an
affine scheme over Fq and choose two distinct nonzero points P,Q ∈ P1(A).
An A-point of Sht2,tr

P,Q(Γ((0))) is given locally on S by a pair (M(T ), α),
where M(T ) is a matrix of the form

M(T ) :=
[
a0 + a1T b0 + b1T
c0 + c1T d0 + d1T

]
with determinant detM(T ) = n(T − P )(T − Q) for some n ∈ A∗, α is
in GL2(A), and ασ = M(0)α. This pair is considered up to the action
of GL2(A), which sends (M(T ), α) to (ZσM(T )Z−1, Zα). In particular, by
choosing Z = α−1, we see that the element of Sht2,tr(Γ((R))) represented by
(M(T ), α) has a well–defined representative of the form (M ′(T ), α′ = I2×2),
for which M ′(0) = I2×2.

That is, an A-point of Sht2,tr
P,Q(Γ((0))) can be represented by a well–

defined matrix of the form

M(T ) :=
[
1 + aT bT
cT 1 + dT

]
,

with detM(T ) = 1 + (a+ d)T + (ad− bc)T 2 = n(T − P )(T −Q), n ∈ A∗.
This is equivalent to the three conditions

{1 = nPQ, a+ d = −n(P +Q), ad− bc = n},
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which are in turn equivalent to{
n = 1

PQ
, a = −d− P +Q

PQ
,

(
−d− P +Q

PQ

)
d− bc = 1

PQ

}
.

Hence Sht2,tr
P,Q(Γ((0))) is the surface inside A3

b,c,d cut out by the equation

(3.1) d2 + P +Q

PQ
d+ bc+ 1

PQ
= 0.

Denote by Y its projective closure in P3
b,c,d,z, described by

d2 + P +Q

PQ
dz + bc+ 1

PQ
z2 = 0.

Using the Jacobian criterion, we check that Y is nonsingular. Note that
we can use equation (3.1) to solve for b in terms of the two variables {c, d},
so that Sht2,tr

P,Q(Γ((0))) is a rational surface. �

3.3. Shtukas with Γ1(N) Level Structure. Let S = Spec(A) be an
affine scheme over Fq, let N be an effective divisor on P1, and let Ẽ be a
rank 2 shtuka over S whose pole P and zero Q do not belong to the support
of N × S. Ẽ can be represented by a matrix of the form M(T ) as in the
previous section.

A Γ1(N) level structure on Ẽ is a vector v ∈ O2
N×S which generates a

locally free ON×S-module of rank 1 and such that vσ = M(N)v. Again,
if N is supported on points of degree one, we can verify this condition
locally: at each point R appearing in N with multiplicity mR, we choose
the uniformizer π = T −R at R and require

vσR = M(π +R)vR mod πmR .

Theorem 3.3. Let N be an effective divisor of degree 2 on P1 supported
on degree 1 points, and let P and Q be disjoint points of P1 \ N . Then
Sht2,tr

P,Q(Γ1(N)) is a rational surface.

Proof. Let N be a degree 2 effective divisor on P1 that is supported on
degree 1 points. Possibly after a change of variables, we can assume that
N = (0) + (∞) or N = 2(0).

Fix a ring A over Fq, S := Spec(A), and two nonzero points P,Q ∈ P1(A),
disjoint from 0 and ∞ as necessary. An A-point of Sht2,tr(Γ1(N)) is given
locally on S by a pair (M(T ), v), where M(T ) is a matrix of the form
M(T ) :=

[
a0+a1T b0+b1T
c0+c1T d0+d1T

]
with determinant detM(T ) = n(T −P )(T −Q),

n ∈ A∗, and v is a nonzero vector in O2
N×S satisfying vσ = M(N)v. This

pair is considered up to the action of GL2(A), which sends (M(T ), v) to
(ZσM(T )Z−1, Zv).
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Suppose first that N = (0)+(∞). Restrict to the dense open substack SN
of Sht2,tr

P,Q(Γ1(N)) whose A-points are given locally on S by pairs (M(T ), v)
such that the restrictions of v to 0 and ∞ are linearly independent. Note
that there is a unique Z ∈ GL2(A) which takes v to the vector that is [ 0

1 ]
at 0 and [ 1

0 ] at ∞. Hence an element of SN is represented by a unique
matrix M(T ) as above that satisfies the equalities M(0) [ 0

1 ] = [ 0
1 ] and

M(∞) [ 1
0 ] = [ 1

0 ]. That is, it can be represented by a well–defined matrix of
the formM(T ) :=

[
a+T bT
c 1+dT

]
, with detM(T ) = a+(1+ad−bc)T+dT 2 =

n(T − P )(T −Q), n ∈ A∗, which is equivalent to

{d = n, a = nPQ, 1 + ad− bc = −n(P +Q)}.

Hence Sht2,tr
P,Q(Γ1((0) + (∞))) contains as a dense open substack the surface

inside A3
b,c,d cut out by

d2PQ+ d(P +Q) + 1− bc = 0.

Its projective closure is nonsingular by the Jacobian criterion, and we con-
clude as in the proof of Theorem 3.2 that it is a rational surface.

Now let N = 2(0), and let π = T be a uniformizer at 0. Restrict to
the dense open substack SN of Sht2,tr

P,Q(Γ1(N)) whose A-points are given
locally on S by pairs (M(T ), v = v0 + v1π) such that v0 and v1 are linearly
independent. There is a unique Z ∈ GL2(A) sending v ∈ O2

N×S to [ π1 ];
therefore, an element of SN (A) is described by a well–defined matrixM(T )
as above such that M(π) [ π1 ] = [ π1 ] mod π2. Comparing the coefficients of
1 and π, this is equivalent to the system

{b0 = 0, d0 = 1, a0 + b1 = 1, c0 + d1 = 0},

so after renaming a1, b1, c1, d1 as a, b, c, d, we have

M(T ) =
[
1− b+ aT bT
−d+ cT 1 + dT

]
.

Imposing detM(T ) = n(T 2 − (P +Q)T + PQ) yields the equations

{ad− bc = n, a+ d = −n(P +Q), 1− b = nPQ},

and after eliminating the variables {a, b}, we obtain that this open substack
of Sht2,tr

P,Q(Γ1(2(0))) is the surface inside A3
c,d,n cut out by the equation

d2 + dn(P +Q) + n+ c− cnPQ = 0.

Again, its projective closure is a nonsingular rational surface. �
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3.4. Shtukas with Γ0(N) Level Structure. Let S = Spec(A) be an
affine scheme over Fq, let N be an effective divisor on P1, and let P and Q
be distinct points in (P1 \N)(A).

An A-point of Sht2,tr
P,Q(Γ0(N)) is represented by a pair (M(T ), v), where

M(T ) is as in Section 3.2, and v is a projective vector in P1(ON×S) satis-
fying vσ = M(N)v, where M(N) acts on v as a linear fractional transfor-
mation. This pair is considered up to the action of GL2(A), which sends
(M(T ), v) to (ZσM(T )Z−1, Zv). As in the previous section, if N is sup-
ported on degree one points, the level structure condition can be checked
using a uniformizer at each point in its support.

The next lemma will be used in the proof of Theorem 3.5.
Lemma 3.4. Let A be a ring over Fq. Fix a place v of P1

Fq , let π be a
uniformizer at v, and denote Rn := Fq[π]/(πn) for n ≥ 1.

(1) Given any x+ yπ ∈ P1(A⊗R2), z ∈ P1(A) such that x− z, y ∈ A∗,
there is a matrix Z ∈ GL2(A), unique up to scalar multiples, such
that Z(x+ yπ) = π mod π2 and Zz =∞.

(2) Given any x+yπ+zπ2 ∈ P1(A⊗R3) with y ∈ A∗, there is a matrix
Z ∈ GL2(A), unique up to scalar multiples, such that Z(x + yπ +
zπ2) = π + π2 mod π3.

Proof. (1). Fix x + yπ, z as above and let Z :=
[
a b
c d

]
∈ GL2(A). Then

Z(x + yπ) = π mod π2 is equivalent to {ax + b = 0, ay = cx + d}, and
Zz = ∞ is equivalent to cz + d = 0. Therefore both conditions can only
hold simultaneously when Z := a

[ 1 −x
y
x−z

−yz
x−z

]
, for a ∈ A∗.

(2). Given x+ yπ + zπ2 as above and Z :=
[
a b
c d

]
∈ GL2(A), the equation

Z(x + yπ + zπ2) = π + π2 mod π3 is equivalent to {ax + b = 0, ay =
cx+d, az = cy+cx+d}. This means that Z is of the form a

[
1 −x
z−y
y

y2−xz+xy
y

]
,

for a ∈ A∗. �

Theorem 3.5. Let N be an effective divisor on P1 supported on degree one
points, and let P,Q ∈ P1 \N be disjoint points. Then

(1) If degN = 3, then Sht2,tr
P,Q(Γ0(N)) is a rational surface.

(2) If degN = 4, then Sht2,tr
P,Q(Γ0(N)) is birational to an elliptic surface.

Proof. We start by proving claim (1), so suppose that N is an effective
divisor of degree 3 supported on degree 1 points. Then, after a change of
variables, we may assume that N = (0) + (1) + (∞), N = 2(0) + (1), or
N = 3(0). Throughout the proof, A will denote a ring over Fq, S = Spec(A),
and P,Q ∈ P1(A) \ Supp(N) will be two distinct points.

Case 1. Let N = (0) + (1) + (∞). An A-point of Sht2,tr
P,Q(Γ0(N)) is given by

a pair (M(T ), v) as above, up to the action of GL2(A).
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Restrict to the dense open substack SN of Sht2,tr
P,Q(Γ0(N)) whose A-points

(M(T ), v) are such that the restrictions of v to 0, 1 and ∞ are distinct.
Note that up to multiplication by a scalar matrix, there is only one matrix
Z ∈ GL2(A) sending v to the element of P1(ON×S) which is 0 at 0, 1 at 1
and ∞ at infinity.

Imposing M(0)0 = 0, M(1)1 = 1 and M(∞)∞ =∞ yields

{b0 = 0, c1 = 0, a0 + a1 + b1 = c0 + d0 + d1},

so the element (M(T ), v) can be represented by a matrix

M(T ) :=
[
a0 + a1T b1T

c0 d0 + d1T

]
satisfying a0+a1+b1 = c0+d0+d1 and detM(T ) = n(T−P )(T−Q), n ∈ A∗,
and this representative is unique up to scalars. The determinant condition
is equivalent to imposing

{a0d0 − PQa1d1 = 0, a0d1 + a1d0 − b1c0 + (P +Q)a1d1 = 0}.

Therefore SN is the surface inside P5
a0,a1,b1,c0,d0,d1

described by the equations

{a0 + a1 + b1 = c0 + d0 + d1, a0d0 − PQa1d1 = 0,
a0d1 + a1d0 − b1c0 + (P +Q)a1d1 = 0}.

It is not clear from this description that SN is a rational surface. To
prove this claim, we start by noticing that imposing the condition that the
determinant of M(T ) is a unit multiple of (T − P )(T −Q) is equivalent to
requiring that the matrix M(T ) has rank 1 exactly at T = P and T = Q.
That is, there must exist a pair of points (u, v) = ([u0 : u1], [v0 : v1]) in
P1 × P1 such that

M(P )
[
u0
u1

]
=
[
0
0

]
and M(Q)

[
v0
v1

]
=
[
0
0

]
,

where the operation is matrix multiplication.
After introducing these new variables, the equations for SN become

a0 + a1 + b1 = c0 + d0 + d1,

(a0 + a1P )u0 + b1Pu1 = 0,
c0u0 + (d0 + d1P )u1 = 0,
(a0 + a1Q)v0 + b1Qv1 = 0,
c0v0 + (d0 + d1Q)v1 = 0.

The key fact is that we can solve for the variables a0, a1, b1, c0, d0, d1 in
terms of u0, u1, v0, v1. Collecting coefficients we obtain the matrix
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a0 a1 b1 c0 d0 d1

u0 u0P u1P 0 0 0
0 0 0 u0 u1 u1P

v0 v0Q v1Q 0 0 0
0 0 0 v0 v1 v1Q

1 1 1 −1 −1 −1.

Taking minors of this matrix we find out that

(3.2)



a0 = PQ(u1v0 − u0v1)((P −Q)u1v1 + (Q− 1)u0v1 − (P − 1)u1v0),
a1 = (u1v0P − u0v1Q)((P −Q)u1v1 + (Q− 1)u0v1 − (P − 1)u1v0),
b1 = (P −Q)u0v0((P −Q)u1v1 + (Q− 1)u0v1 − (P − 1)u1v0),
c0 = (P −Q)u1v1((Q− P )u0v0 + P (1−Q)u1v0 +Q(P − 1)u0v1),
d0 = (u1v0P − u0v1Q)((Q− P )u0v0 + P (1−Q)u1v0 +Q(P − 1)u0v1),
d1 = (u1v0 − u0v1)((Q− P )u0v0 + P (1−Q)u1v0 +Q(P − 1)u0v1).

This shows that SN is a rational surface. Note that each of the a0, . . . , d1
is a (2, 2)-form in the variables (u, v).

Case 2. Let N = 2(0) + (∞), and let (M(T ), v) represent an A-point of
Sht2,tr

P,Q(Γ0(N)). Let π = T be a uniformizer at 0.
By Lemma 3.4, generically there is a unique matrix Z ∈ GL2(A) up to

scalar multiplication sending v to the element of P1(ON×S) which is π at
2(0) and∞ at infinity. Let SN be the dense open substack of Sht2,tr

P,Q(Γ0(N))
consisting of elements for which such a matrix Z exists. Imposing the condi-
tionsM(π)π = π mod π2,M(∞) =∞ and detM(T ) = n(T−P )(T−Q) for
some n ∈ A∗, we find that SN is the surface inside P5

a0,a1,b1,c0,d0,d1
described

by the equations

{a0 + b1 = d0, a0d0 −PQa1d1 = 0, a0d1 + a1d0 − b1c0 + (P +Q)a1d1 = 0}.

As in Case 1, we can solve for a0, . . . , d1 in terms of the variables (u, v), so
SN is again a rational surface.

Case 3. Let N = 3(0), let (M(T ), v) represent an A-point of the shtuka
space Sht2,tr

P,Q(Γ0(N)), and let π = T be a uniformizer at 0.
Lemma 3.4 shows that, generically, there is a unique matrix Z ∈ GL2(A)

up to scalars sending v to the element of P1(ON×S) which is π+π2 at 3(0),
and we let SN be the dense open substack of Sht2,tr

P,Q(Γ0(N)) consisting of
elements for which such a matrix Z exists.

Imposing the conditionsM(π)(π+π2) = π+π2 mod π3 and detM(T ) =
n(T − P )(T − Q) for some n ∈ A∗, we find that SN is the surface inside
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P6
a0,a1,b1,c0,c1,d0,d1

described by the equations

{a0 + b1 = d0, a0 + a1 = c0 + d0 + d1, a0d0 − PQ(a1d1 − b1c1) = 0,
a0d1 + a1d0 − b1c0 + (P +Q)(a1d1 − b1c1) = 0}.

We conclude as in the previous cases that SN is a rational surface.

Now we will prove claim (2). After performing an appropriate change of
variables, there are five cases to consider: N = (0) + (1) + (∞) + (R) for
R ∈ P1\{0, 1,∞}, N = 2(0)+(1)+(∞), N = 2(0)+2(∞), N = 3(0)+(∞),
and N = 4(0).

Case 1. Let N = (0)+(1)+(∞)+(R). To get the equations for SN , we start
from those of SN0 with N0 = (0) + (1) + (∞) and add the condition that
M(R)w = wq for some projective vector w. That is, SN is the hypersurface
of P1

u × P1
v × P1

w given by

c0w
q+1 + (d0 + d1R)wq − (a0 + a1R)w − b1R = 0,

where the variables a0, . . . , d1 are defined in terms of u and v as in (3.2).
Therefore SN is a (2, 2, q + 1)-surface inside P1

u × P1
v × P1

w. Recall that a
smooth (2, 2)-curve in P1

u×P1
v is an elliptic curve; hence the projection onto

the w line shows that SN is an elliptic surface.

Case 2. Let N = 2(0) + (1) + (∞). We start from the equations for
S(0)+(1)+(∞) and add the condition M(π)wπ = wqπ mod π2, where π is a
uniformizer at 0; this shows that SN is the surface inside P5

a0,a1,b1,c0,d0,d1
×P1

w

described by the equations

{d0w
q − a0w − b1 = 0, a0 + a1 + b1 = c0 + d0 + d1,

a0d0 − PQa1d1 = 0, a0d1 + a1d0 − b1c0 + (P +Q)a1d1 = 0}.

Again, we can write everything in terms of the variables u, v, w to show
that SN is an elliptic surface.

Case 3. Let N = 2(0) + 2(∞). We impose the conditions M(π0)π0 =
π0 mod π2

0 and M(π∞ +R)(1 +wπ∞) = 1 +wqπ∞ mod π2
∞, where π0 = T

and π∞ = 1
T are uniformizers at 0 and ∞, respectively. Then SN is the

surface inside P6
a0,a1,b1,c0,c1d0,d1

× P1
w described by

{(c1 + d1)wq + (c1 − a1)w + c0 + d0 − a0 = 0, a0 + b1 = d0,

a1 + b1 = c1 + d1, a0d0 − PQ(a1d1 − b1c1) = 0,
a0d1 + a1d0 − b1c0 + (P +Q)(a1d1 − b1c1) = 0}.

We rewrite a0, . . . , d1 in terms of the variables u, v to show that SN is an
elliptic surface.
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Case 4. Let N = 3(0) + (∞). Then after adding the new condition at ∞,
we get that SN is the elliptic surface inside P6

a0,a1,b1,c0,c1,d0,d1
×P1

w described
by the equations

{c1w
q+1 + d1w

q − a1w − b1 = 0, a0 + b1 = d0,

a0 + a1 = c0 + d0 + d1, a0d0 − PQ(a1d1 − b1c1) = 0,
a0d1 + a1d0 − b1c0 + (P +Q)(a1d1 − b1c1) = 0}.

Case 5. Finally, let N = 4(0). Then to describe SN we must impose the
condition M(π0)(π0 + π2

0 + wπ3
0) = (π0 + π2

0 + wπ3
0) mod π4

0. This yields
that SN is the elliptic surface inside P6

a0,a1,b1,c0,c1,d0,d1
×P1

w described by the
equations

{d0w
q − a0w − a1 + 2c0 + c1 + d1 = 0, a0 + b1 = d0,

a0 + a1 = c0 + d0 + d1, a0d0 − PQ(a1d1 − b1c1) = 0,
a0d1 + a1d0 − b1c0 + (P +Q)(a1d1 − b1c1) = 0}. �

4. Sht2,tr(Γ0(N)) for N of Degree Four

In this section we study Sht2,tr(Γ0(N)) for N an effective divisor on
X := P1

Fq of degree 4 such that every point in the support of N has degree 1.
In this case, Sht2,tr(Γ0(N)) is an elliptic surface over F := Fq(P,Q), whose
compactification Sht2,tr(Γ0(N)) can be described as a hypersurface in P1×
P1×P1, possibly with singularities. Hence Lemma 2.3 gives an upper bound
on the arithmetic genus of Sht2,tr(Γ0(N)).

4.1. N = 4(0). Let N be a degree 4 divisor on P1
Fq supported on a de-

gree 1 point; after a change of variables, we may assume that N = 4(0).
Then the proof of Theorem 3.5 shows that we can find a description of
Sht2,tr(Γ0(4(0))) as a hypersurface of P1×P1×P1 given by a polynomial of
multidegree (2, 2, q). This surface is singular, with a one dimensional singu-
lar subscheme. By Lemma 2.3, we can conclude that the arithmetic genus
of Sht2,tr(Γ0(4(0))) is less than or equal to q. However, experimental data
suggests that this upper limit is never reached.

We used Magma to compute several invariants of Sht2,tr(Γ0(4(0))) for
small values of q, which we present in Table 4.1. Here b2 denotes the second
Betti number of the surface, rank(T ) denotes the rank of its trivial lattice,
#BF the number of singular fibers, and “Types” the Kodaira types of
the singular fibers, using the notation (K, n) to represent a place of bad
reduction of degree n whose corresponding fiber is of Kodaira type K. The
last two rows collect our conjectured values for these invariants, based on
the presented data.
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q b2 rank(T) #BF Types
2 10 8 2 (III , 1), (I6, 1)
4 22 18 2 (III ∗, 1), (I10, 1)
8 34 26 2 (III ∗, 1), (I18, 1)
16 58 42 2 (III ∗, 1), (I34, 1)
3 22 17 8 (I ∗4 , 1), (I8, 1), (I1, 3), (I1, 3)
5 34 25 12 (I ∗8 , 1), (I12, 1), (I1, 5), (I1, 5)
7 46 33 16 (I ∗12, 1), (I16, 1), (I1, 7), (I1, 7)
9 58 41 20 (I ∗161), (I20, 1), (I1, 9), (I1, 9)
11 70 49 24 (I ∗20, 1), (I24, 1), (I1, 11), (I1, 11)

even q > 2 3q+10 2q+10 2 (III ∗, 1), (I2q+2, 1)
odd q 6q + 4 4q + 5 2q + 2 (I ∗2q−2, 1), (I2q+2, 1), (I1, q), (I1, q)

Table 4.1. Invariants of Sht2,tr(Γ0(4(0)))

In particular, by checking the Betti numbers we conclude that the moduli
space Sht2,tr(Γ0(4(0))) is a rational elliptic surface when q = 2 and a K3
elliptic surface when q = 3 or q = 4.

Conjecture 4.1. Let q be a prime power and let Sq := Sht2,tr(Γ0(4(0)))
over F := Fq(P,Q).

If q is even, then
(1) pa(Sq) =

[ q
4
]

+ 1 and b2(Sq) = 12
[ q

4
]

+ 10.
(2) The trivial lattice of Sq has rank 8 when q = 2 and rank 2q+ 10 for

q > 2.
(3) Sq has two singular fibers, one of type I2q+2 at 1, and one of type III ∗

at ∞ (except when q = 2, for which the fiber at ∞ is of type III ).
If q is odd, then

(1) pa(Sq) = q+1
2 and b2(Sq) = 6q + 4.

(2) The trivial lattice of Sq has rank 4q + 5.
(3) Sq has 2q+ 2 singular fibers over F : one of type I ∗2q−2 at ∞, one of

type I2q+2 at 1, and the rest coming from two bad fibers of type I1,
of degree q over F .

4.2. N = 2(0) + 2(∞). Let N = 2(A) + 2(B) be a degree 4 divisor on
P1
Fq , where A and B are degree 1 points. Without loss of generality, we

may assume N = 2(0) + 2(∞). We know that Sht2,tr(Γ0(2(0) + 2(∞))) is
birational to a hypersurface of P1 × P1 × P1 of multidegree (2, 2, q). This
surface has a one dimensional singular subscheme, except when q = 2, when
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it is smooth. Hence by Lemma 2.3 its arithmetic genus is at most q, and it
is exactly 2 for q = 2. The experimental data collected in Table 4.2 suggests
that the actual arithmetic genus is generally smaller.

q b2 rank(T) #BF Types
2 22 18 3 (I ∗2 , 1), (I6, 1), (I6, 1)
4 34 26 3 (I ∗2 , 1), (I10, 1), (I10, 1)
8 58 42 3 (I ∗2 , 1), (I18, 1), (I18, 1)
3 22 17 9 (I2, 1), (I8, 1), (I8, 1), (I1, 2), (I1, 4)
5 34 25 13 (I2, 1), (I12, 1), (I12, 1), (I1, 4), (I1, 6)
7 46 33 17 (I2, 1), (I16, 1), (I16, 1), (I1, 6), (I1, 8)
9 58 41 21 (I2, 1), (I20, 1), (I20, 1), (I1, 8), (I1, 10)
11 70 49 25 (I2, 1), (I24, 1), (I24, 1)(I1, 10), (I1, 12)

even q 6q+10 4q+10 3 (I ∗2 , 1), (I2q+2, 1), (I2q+2, 1)
odd q 6q + 4 4q + 5 2q+3 (I2, 1), (I2q+2, 1), (I2q+2, 1),

(I1, q − 1), (I1, q + 1)

Table 4.2. Invariants of Sht2,tr(Γ0(2(0) + 2(∞)))

Note that Sht2,tr(Γ0(2(0) + 2(∞)) is a K3 surface when q = 2 or q = 3.

Conjecture 4.2. Let q be a prime power and let Sq be Sht2,tr(Γ0(2(0) +
2(∞))) over F := Fq(P,Q).

If q is even, then
(1) pa(Sq) = q+2

2 and b2(Sq) = 6q + 10.
(2) The trivial lattice of Sq has rank 4q + 10.
(3) Sq has two singular fibers of type I2q+2 at 0 and 1, and one of type I ∗2

at ∞.
If q is odd, then

(1) pa(Sq) = q+1
2 and b2(Sq) = 6q + 4.

(2) The trivial lattice of Sq has rank 4q + 5.
(3) Sq has 2q+ 3 singular fibers over F : two of type I2q+2 at 0 and −1,

one of type I2 at ∞, and the rest corresponding to two bad fibers of
type I1 over F , of degrees q − 1 and q + 1, respectively.

4.3. N = 3(0) + (∞). Let N = 3(A) + (B) be a divisor on P1
Fq , where A

and B are degree 1 points; we may assume N = 3(0)+(∞). Up to birational
equivalence, we can describe Sht2,tr(Γ0(3(0) + (∞))) as a hypersurface cut
out by a polynomial of multi–degree (2, 2, q+ 1) inside P1×P1×P1, whose
singular subscheme has dimension zero. Therefore the arithmetic genus of
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Sht2,tr(Γ0(3(0) + (∞))) is at most q + 1, and based on the experimental
data, we expect it to equal q.

We need to make a remark about the way we collected our data. When an
elliptic surface is defined over a function field k(X) where k is not perfect
and has characteristic 2 or 3, Szydlo showed that new types of Kodaira
fibers can appear [18]; these new fibers are not supported on Magma, which
uses the classical Tate algorithm. Therefore when we try to compute local
information of the generic fiber of Sht2,tr(Γ0(N)), we may get an error due
to the fact that we are working over the imperfect residue field Fq(P,Q),
if Sht2,tr(Γ0(N)) has a singular fiber which is not in Kodaira’s original list.
Another reason why it might not be possible to work over Fq(P,Q)(T ) is
that some of the computations are too slow.

While these issues did not affect our computations in Sections 4.1 and 4.2,
they do now; we are only able to compute data about the generic fiber
when we work in characteristic greater than 3. In characteristics 2 and 3,
we instead choose concrete values for the pole and zero of the shtuka and
compute the local information associated to the corresponding closed fiber
of Sht2,tr(Γ0(3(0) + (∞))). This is the same strategy that we will follow in
Sections 4.4 and 4.5, for all characteristics.

The data we collected on Sht2,tr(Γ0(3(0) + (∞))) is split between Ta-
bles 4.3 and 4.4. Table 4.4 is formatted as Table 4.1, but on Table 4.3 there
are two differences. First, we introduce two new columns P and Q for the
specific values of pole and zero that were used in the computations; there
αr denotes a generator of F∗r . Note that while b2 stays the same if the values
of P and Q are modified, this needs not be true for the other invariants.
Secondly, in the “Types” column the notation K×n represents n fibers of
Kodaira type K over the algebraic closure, and we omit n when it equals
one. The tables in the next two sections will be formatted as Table 4.3.

q P Q b2 rank(T) #BF Types
2 1 α4 22 16 4 II × 2, I6, I10

4 1 α4 46 32 6 II × 4, I10, I22

8 1 α8 94 64 10 II × 8, I18, I46

3 1 2 34 24 14 I8, I16, I1 × 12
9 1 2 106 72 38 I20, I52, I1 × 36

even q 12q − 2 8q q + 2 II × q, I2q+2, I6q−2

odd q 12q − 2 8q 4q + 2 I2q+2, I6q−2, I1 × 4q

Table 4.3. Invariants of Sht2,tr(Γ0(3(0) + (∞))), part 1
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q b2 rank(T) #BF Types
5 58 40 22 (I12, 1), (I28, 1), (I1, 10), (I1, 10)
7 82 56 30 (I16, 1), (I40, 1), (I1, 14), (I1, 14)
11 130 88 46 (I24, 1), (I64, 1)(I1, 22), (I1, 22)
q 12q − 2 8q 4q + 2 (I2q+2, 1), (I6q−2, 1)(I1, 2q), (I1, 2q)

Table 4.4. Invariants of Sht2,tr(Γ0(3(0) + (∞))), part 2

In particular Sht2,tr(Γ0(3(0) + (∞))) is a K3 surface when q = 2.

Conjecture 4.3. Let q be a prime power and let Sq := Sht2,tr(Γ0(3(0) +
(∞))) over F := Fq(P,Q). Then

(1) pa(Sq) = q and b2(Sq) = 12q − 2.
(2) The trivial lattice of Sq has rank 8q.
(3) If q is even, then Sq has q+2 singular fibers over F : one of type I2q+2

at 1, one of type I6q−2 at 0, and q of type II .
(4) If q is odd, then Sq has 4q+2 singular fibers over F : one of type I2q+2

at −1, one of type I6q−2 at 0, and 4q of type I1.

4.4. N = 2(0) + (1) + (∞).

Proposition 4.4. Let q be a prime power and let Sq := Sht2,tr(Γ0(2(0) +
(1) + (∞))) over F := Fq(P,Q). Then pa(Sq) = q and b2(Sq) = 12q − 2.

Proof. The proof of Theorem 3.5 shows that Sq is birational to a hypersur-
face of the product P1

u0,u1 × P1
v0,v1 × P1

w0,w1 described by a polynomial of
multidegree (2, 2, q). This surface has exactly eight rational double points:

{(0, 1, 0, 1, 0, 1), (P, 1, P, 1, 1, 1), (Q, 1, Q, 1, 1, 1),
(P, 1, Q, 1, 1, 1), (0, 1, 0, 1, 1, 0), (P, 1, Q, 1, 1, 0),
(Q− P,Q− 1, 0, 1, 0, 1), (0, 1, P −Q,P − 1, 0, 1)},

and no other singularities. Hence Lemma 2.3 implies that pa(Sq) = q and
b2(Sq) = 12q − 2. �

We record in Table 4.5 experimental data which allows us to predict the
structure of the singular fibers of Sq.
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q P Q b2 rank(T) #BF Types
2 α8 α3

8 22 15 5 II × 2, I6 × 2, I4

4 α16 α2
16 46 31 7 II × 4, I10 × 2, I12

8 α8 α3
8 94 63 11 II × 8, I18 × 2, I28

3 2 α9 34 23 15 I8 × 2, I8, I1 × 12
5 2 3 58 39 23 I12 × 2, I16, I1 × 20
7 2 3 82 55 31 I16 × 2, I24, I1 × 28
9 2 α9 106 71 39 I20 × 2, I32, I1 × 36
11 2 3 130 87 47 I24 × 2, I40, I1 × 44

even q 12q − 2 8q − 1 q + 3 II × q, I2q+2 × 2, I4q−4

odd q 12q − 2 8q − 1 4q + 3 I2q+2 × 2, I4q−4, I1 × 4q

Table 4.5. Invariants of Sht2,tr(Γ0(2(0) + (1) + (∞)))

Notice that Sht2,tr(Γ0(2(0) + (1) + (∞))) is a K3 surface when q = 2.

Conjecture 4.5. Let q be a prime power and let Sq := Sht2,tr(Γ0(2(0) +
(1) + (∞))) over F := Fq(P,Q). Then

(1) The trivial lattice of Sq has rank 8q − 1.
(2) If q is even, then Sq has q+3 singular fibers over F : two of type I2q+2

at 0 and 1, one of type I4q−4 at ∞, and q of type II .
(3) If q is odd, then Sq has 4q+3 singular fibers over F : two of type I2q+2

at 0 and 1, one of type I4q−4 at ∞, and 4q of type I1.

4.5. Multiplicity one. In this section we treat the remaining case, in
which N is a divisor on P1 consisting of four distinct degree 1 points ap-
pearing with multiplicity one. If q is odd we take N = (0)+(1)+(−1)+(∞),
and if q > 2 is even we take N = (0)+(1)+(αq)+(∞), where αq generates
F∗q . We found a birational model for Sht2,tr(Γ0(N)) which is a hypersurface
of P1 × P1 × P1 cut down by a polynomial of multi–degree (2, 2, q + 1); the
only singularities on this model are rational double points. We present the
invariants of Sht2,tr(Γ0(N)) for small values of q in Table 4.6.
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q P Q b2 rank(T) #BF Types
4 α16 α2

16 58 38 9 II × 5, I10 × 4
8 α2

8 α3
8 106 70 14 III , II × 8, I2, I16, I18 × 3

3 α9 α2
9 46 30 20 I8 × 4, I1 × 16

5 2 α25 70 46 28 I12 × 4, I1 × 24
7 2 4 94 62 36 I16 × 4, I1 × 32
9 α9 α2

9 118 78 44 I20 × 4, I1 × 40
11 2 4 142 94 52 I24 × 4, I1 × 48
even 12q + 10 8q + 6
q > 2
odd q 12q + 10 8q + 6 4q + 8 I2q+2 × 4, I1 × (4q + 4)

Table 4.6. Invariants of Sht2,tr(Γ0(N)), for N a squarefree divisor

Note that Sht2,tr(Γ0(N)) is never a rational or K3 surface in this case.

Proposition 4.6. Let q be a prime power and let Sq := Sht2,tr(Γ0(N))
over the field F := Fq(P,Q), where N = (0) + (1) + (−1) + (∞) if q is odd
and N = (0) + (1) + (αq) + (∞) if q > 2 is even. Then pa(Sq) = q + 1 and
b2(Sq) = 12q + 10.

Proof. From the proof of Theorem 3.5, we have that Sq is birational to a
hypersurface of P1 × P1 × P1 cut down by a polynomial of multi–degree
(2, 2, q + 1). If q is odd, the only singularities of Sq are

{(0, 1, 0, 1, 0, 1), (0, 1, 0, 1,−1, 1), (1, 0, 1, 0, 1, 0), (1, 0, 1, 0,−1, 1),
(0, 1, P −Q,P − 1, 0, 1), (Q− P,Q− 1, 0, 1, 0, 1),

(P − PQ,P −Q, 1, 0, 1, 0), (1, 0, Q−QP,Q− P, 1, 0)}

and for even q ≥ 4 the singularities are

{(0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 1, 1), (P,Q, 1, 1, 1, 1), (1, 1, Q, P, 1, 1),
(Q,αq, Q, αq, 1, αq), (P, αq, Q, αq, 1, αq), (P, αq, P, αq, 1, αq),

(0, 1, P +Q,P + αq, 0, 1), (P +Q,Q+ αq, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0),
(αqP + PQ,αqP + αqQ, 1, 0, 1, 0), (1, 0, αqQ+QP,αqP + αqQ, 1, 0)}

Since all of them are rational double points, Lemma 2.3 allows us to
conclude that pa(Sq) = q + 1 and b2(Sq) = 12q + 10. �
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Conjecture 4.7. Let q be a prime power and let Sq := Sht2,tr(Γ0(N)) over
the field F := Fq(P,Q), where N = (0) + (1) + (−1) + (∞) if q is odd and
N = (0) + (1) + (αq) + (∞) if q > 2 is even. Then

(1) The trivial lattice of Sq has rank 8q + 6.
(2) If q is odd, then Sq has 4q + 8 singular fibers over F : four fibers of

type I2q+2 at 0, 1,−1 and ∞, and 4q + 4 fibers of type I1.

Finally, we conjecture that the generic fiber of Sq has Mordell–Weil rank
4, independently of q. This would be a consequence of the Tate conjecture,
which predicts a relation between the second Betti number and the Picard
number of a surface S over Fq. Fix a prime ` 6= p, and let H be the
subgroup of NS(S) generated by divisor classes defined over Fq. Then the
Tate conjecture predicts that the rank ofH equals the multiplicity of q as an
eigenvalue of the map induced by Frobq onH2(S,Q`). A consequence is that
ρ(S), the geometric Picard number of S, equals the number of eigenvalues
of Frob∗q on H2(S,Q`) of the form q times a root of unity. Recall that,
by the Weil conjectures, the characteristic polynomial of Frob∗q acting on
H2(S,Q`) has integer coefficients and factors over C as

∏b2
i=1(1 − αiT ),

with |αi| = q; hence q2/αi is an eigenvalue whenever αi is, and these two
values are different except when αi = ±q. Combining this fact with the
Tate conjecture, it would follow that the difference b2(S) − ρ(S) is always
even. If S is an elliptic surface then b2 is even, so this would imply that
ρ(S) is even as well. In particular, note that the Tate conjecture is known
to hold true for K3 elliptic surfaces with a section [1], so if S is such a
surface, then ρ(S) is known to be even.

If S = Sht2,0(Γ0(N)), then Drinfeld’s work implies that H2(S,Q`) de-
composes as a direct sum of a subspace coming from cusp forms, of dimen-
sion 4 times the number of cusp forms of level Γ0(N), and an Eisenstein
subspace on which Frob∗q acts with eigenvalues of the form q times a root
of unity. Combining this fact with the Tate conjecture, we conclude that,
conjecturally,

b2(S) = ρ(S) + 4#{cusp forms of level Γ0(N)}.

If moreover S is an elliptic surface with generic fiber E and trivial lattice
T , this would mean

b2(S) = rank(T ) + rankMW(E) + 4#{cusp forms of level Γ0(N)},

where E denotes the base change of the generic fiber E of Sq to the algebraic
closure. On the other hand, it follows from [3, Proposition 7.1] that there
are q cusp forms for GL2 over Fq(T ) with level Γ0(N). Hence, using our
formula for b2(Sq) and our conjectured formula for rank(T ), we can solve
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for the Mordell–Weil rank of the generic fiber of Sq, obtaining

rankMW(E) = (12q + 10)− (8q + 6)− 4q = 4.

5. Future Work

When the curve X is the projective line, experimental data strongly
suggests that the spaces Sht2,tr(Γ(N)), Sht2,tr(Γ1(N)), and Sht2,tr(Γ0(N))
are relative surfaces of general type whenever the degree of N is at least 2, 3,
and 5, respectively. It should be possible to prove this by finding models
for these spaces that have at most rational double points as singularities.

We would like to find explicit equations for Sht2,tr
P1 (Γ(N)), Sht2,tr

P1 (Γ1(N)),
and Sht2,tr

P1 (Γ0(N)) in the cases where the support of N contains a point of
degree higher than one, and to study how some invariants of these relative
surfaces, like the arithmetic genus, behave under finite extensions of the
constant field Fq.

Another goal is to provide proofs for the conjectures made in Section 4.
Lemma 2.3 would confirm the values of the arithmetic genus and the Betti
number b2, provided that we could find models for Sht2,tr(Γ0(N)) having at
most du Val singularities. Alternatively, we could study how other singu-
larities affect the arithmetic genus. The claims about the other invariants
seem harder to prove, since computing them requires to know the generic
fiber of the elliptic fibration of Sht2,tr(Γ0(N)).

We would also like to study the Tate conjecture for the moduli surfaces
Sht2,tr(Γ0(N)) in Section 4. For example, if N = (0) + (1) + (−1) + (∞)
and q is odd, we would prove the conjecture if we were able to find 4
generators of the free part of the Mordell–Weil group of the generic fiber
of Sht2,tr(Γ0(N)); since the expected rank does not depend on q, these
generators might be independent of q as well. To approach the conjecture
in the remaining cases we would first need a formula for the number of
cusp forms for GL2 over Fq of level Γ0(N), and then we would proceed
analogously.

Another future direction is to compute Sht2
X , as well as the stacks with

level structures, in cases where the base curve X is an elliptic curve over Fq.
A difficulty is that the theory of rank 2 vector bundles over an elliptic curve,
studied in [2], is much more involved than in the P1 case (in particular,
rank 2 vector bundles over an elliptic curve can be indecomposable, even
when the curve is defined over an algebraically closed field). There are two
possible ways to approach this problem: one is to study the spaces of global
sections of vector bundles over an elliptic curve; another is to exploit the fact
that if E is a vector bundle over an elliptic curve, then its projectivization
P(E) is an elliptic ruled surface, so one can use elementary transformations
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of P(E) to study the corresponding elementary modifications of E (see [11,
Section V.2] and [9, Chapters 2 and 5]).

One motivation to study moduli spaces of shtukas of rank 2 is that they
play a role in the following modularity conjecture for elliptic curves defined
over function fields:

Conjecture 5.1 (Modularity Conjecture). Let X be a smooth, projective,
geometrically irreducible curve with function field K. Let E be an elliptic
curve over K with conductor N and whose associated Galois representation
is irreducible. Then there exists a special kind of correspondence between
E × E and the compactified moduli space of shtukas Sht2(Γ0(N)).

This conjecture is derived from Drinfeld’s study of the cohomology of
moduli spaces of shtukas, the Künneth formula, and the Tate conjecture,
which is open in the relevant setting. See [10, Conjecture 6.1.1] for the
precise statement.

When q = 2, X = P1
F2

and E is an elliptic curve over F2(X), the conjec-
ture has been verified in two cases by explicitly constructing the predicted
correspondence: the case N = 2(0) + (1) + (∞) is due to Elkies and We-
instein [8], and the case N = 3(0) + (∞) is joint work of the author with
Elkies and Weinstein [10, Section 6.2]. We would like to find more evidence
to support this modularity conjecture, possibly by constructing explicit
correspondences in other cases.

We would also like to verify Conjecture 5.1 for examples in which the base
curve X is an elliptic curve, once we have developed explicit equations for
the corresponding moduli space of shtukas. Unlike in the P1 case, there may
exist nonconstant elliptic curves over X having good reduction everywhere
and irreducible associated Galois representation. While these curves cannot
admit a surjection from the Drinfeld modular curve X0(N), Conjecture 5.1
has no hypothesis about the reduction type of E at any place of K, so we
expect that these curves will be modular in this new sense. We would be
specially interested in verifying the conjecture for examples of this kind.
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