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Local constancy for reductions of two-dimensional
crystalline representations

par Emiliano TORTI

Résumé. Nous prouvons l’existence du phénomène de constance locale pour
les réductions modulo pn (p impair) des représentations de Gal(Qp/Qp) de di-
mension 2 qui sont cristallines et irréductibles. Ces représentations dépendent
de deux paramètres : une trace ap et un poids k. Par exemple, elles appa-
raissent comme les représentations attachées aux formes modulaires classiques
dont le niveau n’est pas divisible par p. Nous trouvons un résultat de constance
locale (explicite) par rapport à ap, en utilisant la théorie des (ϕ,Γ)-modules
de Fontaine, son raffinement cristallin via les modules de Wach par Berger et
leurs propriétés de continuité. Le résultat de constance locale par rapport à
k (pour ap 6= 0) découlera d’une étude locale de l’espace analytique rigide de
Colmez qui paramétrise les représentations triangulines. Ce travail généralise
certains résultats de Berger obtenus dans le cas résiduellement semi-simple.

Abstract. We prove the existence of local constancy phenomena for reduc-
tions in a general (odd) prime power setting of two-dimensional irreducible
crystalline representations of Gal(Qp/Qp). These representations depend on
two parameters: a trace ap and a weight k. They appear for example in the
context of classical modular forms of tame level. We find an (explicit) local
constancy result with respect to ap using Fontaine’s theory of (ϕ,Γ)-modules,
its crystalline refinement due to Berger via Wach modules and their continu-
ity properties. The local constancy result with respect to k (for ap 6= 0) will
follow from a local study of Colmez’s rigid analytic space parametrizing tri-
anguline representations. This work extends some results of Berger obtained
in the residually semi-simple case.

1. Introduction

Crystalline representations play a central role in the study of p-adic rep-
resentations of the local absolute Galois group GQp := Gal(Qp/Qp) (see,
for example, some density results due to Berger (see [6, Thm. IV.2.1]),
Chenevier (see [18, Thm. A]), Colmez (see [21, §5.1]), and Kisin (see [30,
Thm. 0.3])). We are interested in studying irreducible crystalline represen-
tations of GQp of dimension two and in particular their reductions modulo
prime powers.
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Let p be an odd prime, let k ≥ 2 be an integer and ap ∈ mE where E
is a finite extension of Qp, mE denotes the maximal ideal of the ring of
integers OE with residue field kE and e will denote the ramification index
of E over Qp. Fix once and for all a choice of a uniformizer, say πE. Let
Dk,ap := Ee1 ⊕ Ee2 be the filtered ϕ-module whose structure is given by:

ϕ =
( 0 −1
pk−1 ap

)
and a filtration Fili(Dk,ap) =


Dk,ap if i ≤ 0
Ee1 if 1 ≤ i ≤ k − 1
0 if i ≥ k

By a theorem of Colmez and Fontaine (see [23, Thm. A]), there exists
a unique crystalline irreducible E-linear representation Vk,ap of dimension
two, with Hodge–Tate weights {0, k − 1} such that Dcris(V ∗k,ap

) = Dk,ap ,
where V ∗k,ap

denotes the E-linear dual representation of Vk,ap . By a result of
Breuil (see [16, Prop. 3.1.1]), up to twist, any irreducible two-dimensional
crystalline representation is isomorphic to Vk,ap for some k ≥ 2 and ap ∈ mE.

These results give rise to the natural questions of whether it is possible
to completely classify Vk,ap in terms of k and ap, and how Vk,ap varies when
the parameters k and ap vary p-adically.

In general, classifying the representations Vk,ap in characteristic zero
turns out to be an hard problem even though some progress have been made
in particular cases via the local Langlands correspondence. (e.g. see [31]).
Nevertheless, much progress has been made in describing the semi-simple
residual reductions of the representations Vk,ap using different approaches.
We will briefly recall the state of art in the residual case. Consider the E-
linear representation Vk,ap and let Tk,ap be a GQp-stable lattice inside Vk,ap ,
we have an isomorphism Tk,ap ⊗OE E ∼= Vk,ap of GQp-modules. Denote by
V k,ap the semi-simplification of Tk,ap ⊗OE kE; by the Brauer–Nesbitt’s the-
orem, the representation V k,ap does not depend on the chosen GQp-stable
lattice Tk,ap .

The problem of describing the representations V k,ap has been deeply
studied by many authors via the p-adic and mod p Langlands correspon-
dence (see for example [16] and [17]), via Fontaine’s theory of (ϕ,Γ)-modules
and its crystalline refinement via Wach modules (see for example [10]), via
Kisin modules (see [5]) or via deformation theory (see for example [32])).
However, the problem of classifying them is still open and only partial
results are known (see for example [10, 12, 13] and several preprints of
Arsowski such as [1] and [2]) although partial conjectures have been formu-
lated (see [16, Conj. 1.5] and [27, Conj. 1.1]).

In order to try to describe the reductions V k,ap , one different approach
consists in finding isomorphisms between different residual representations
of the form V k,ap when we let k and ap vary p-adically. This approach has
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been developed by Berger et al. with the so-called local constancy results
both in the trace and in the weight (see [8, Thm. A and Thm. B] and for
the case ap = 0 see [10, Thm. 1.1.1]).

The purpose of this article is to extend Berger’s result to a prime power
setting. The main difficulty lies in keeping track of the Galois stable lattices
involved in the congruences because no semi-simplification process is, a
priori, allowed (or defined) for general reductions modulo prime powers.
Hence, in proving the existence of such congruences, a dependency on a
choice of the Galois stable lattices is expected; but as we will see later, in
some cases, the result will be independent of such choice.

The first result of the article is the following local constancy result with
respect to the trace, i.e. we fix the weight and we let the trace of the
crystalline Frobenius vary p-adically:

Theorem 1.1 (Local constancy with respect to ap). Let ap, a′p ∈ mE and
k ≥ 2 be an integer. Let m ∈ 1

e (Z≥1) such that v(ap − a′p) ≥ 2 · v(ap) +
α(k−1)+m, then for every GQp-stable lattice Tk,ap inside Vk,ap there exists
a GQp-stable lattice Tk,a′p inside Vk,a′p such that

Tk,ap ⊗OE OE/(pm) ∼= Tk,a′p ⊗OE OE/(pm) as GQp-modules;

where α(k − 1) =
∑
n≥1b k−1

pn−1(p−1)c.

This result will be proven in two steps. First we will prove that if ap and
a′p are sufficiently p-adically close then it is possible to deform p-adically the
Wach module attached to the representation Tk,ap into a new Wach module
which will correspond to the representation Tk,a′p . Afterwards, we will prove
that if the two Wach modules involved are p-adically close (in some sense
that will be clarified later) then the corresponding representations Tk,ap

and Tk,a′p will be p-adically close as well. We will refer to this feature as
continuity property of the Wach modules.

The second result of the article is the following local constancy result
with respect to the weight, i.e. we fix the trace of the crystalline Frobenius
and we let the weight vary in a neighborhood of the weight space W:

Theorem 1.2 (Local constancy with respect to k). Let ap ∈ mE−{0} for
some finite extension E of Qp. Let k ≥ 2 and m ∈ 1

e (Z≥1) be fixed. Assume
that

k ≥ (3v(ap) +m) ·
(

1− p

(p− 1)2

)−1
+ 1.

There exists an integer r = r(k, ap) ≥ 1 such that if k′−k ∈ pr+m(p−1)Z≥0
then there exist GQp-stable lattices Tk,ap ⊂ Vk,ap and Tk′,ap ⊂ Vk′,ap such
that

Tk,ap ⊗OE OE/(pm) ∼= Tk′,ap ⊗OE OE/(pm) as GQp-modules.
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The idea is to prove that the representations Vk,ap and Vk′,ap are re-
spectively congruent modulo pm to two representations V

k,ap+ pk−1
ap

and

V
k′,ap+ pk′−1

ap

which fit into an analytic family of trianguline representations

in the sense of Berger and Colmez (see [9]); as a consequence, the claims
will follow from proving that if k and k′ are sufficiently close in the weight
spaceW then the representations V

k,ap+ pk−1
ap

and V
k′,ap+ pk′−1

ap

are p-adically

close as well (in a sense that will be clarified precisely later in the article).
The result constitutes a converse (in a particular crystalline case) to a non-
published theorem of Wintenberger, also proven by Berger and Colmez
(see [9, Thm. 7.1.1 and Cor. 7.1.2]), concerning the continuity property of
the Sen periods and the Hodge–Tate weights.

Specializing the above theorems to the case m = 1/e, we get a slightly
stronger result than the known local constancy results in the semi-simple
residual case (see [8, Thm. A and Thm. B]); indeed our conclusions do not
involve any semi-simplification process, so for example, being residually
decomposable (i.e. direct sum of two characters modulo p) for some choice
of lattice is also a locally constant phenomenon.

The motivation behind the study of local constancy phenomena modulo
prime powers is two-fold. From a purely representation theoretical point
of view, the interest in understanding reductions modulo prime powers of
crystalline representations lies in the result of Berger on limits of crystalline
representations (see [6]). To be more precise, Berger’s result implies that
if V is any p-adic representation of GQp with Hodge–Tate weights in a
bounded interval I and if {Vi}i∈I is a countable family of crystalline rep-
resentations with HT weights in I such that T ≡ Ti mod pi, where T is a
fixed GQp-stable lattice in V and Ti is a GQp-stable lattice in Vi, then V is
also crystalline.

Moreover, we observe that a good source of examples for the crystalline
representations of the form Vk,ap comes from restriction at GQp of Galois
representations attached to classical modular forms of tame level. To be
precise, let f be a classical normalized cuspidal eigenform in Sk(Γ0(N))
where N is a positive integer prime with p and denote by ρf its attached
p-adic Galois representation constructed by Deligne and Shimura. We de-
fine by Vp(f) := ρf

∣∣
GQp

the restriction of ρf at the decomposition group at
p. It is well-known (see [33]), that under the mild hypothesis a2

p 6= 4pk−1

(see [20]), the GQp-representation Vp(f) is crystalline and moreover we have
that Dcris(Vp(f)∗) = Dk,ap and so Vp(f) ∼= Vk,ap where ap is the p-th coeffi-
cient of the q-expansion of f . A straightforward application of the results in
this article consists in using the explicit local constancy results in the trace
(see Theorem 1.1 and Corollary 4.6) to find upper and lower bounds for
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the number of non-isomorphic classes of reductions modulo prime powers of
modular crystalline representations of GQp coming from classical modular
forms of tame level.

The paper is organized as follows. In Section 2, we will recall the notions
of (ϕ,Γ)-module of Fontaine and of Wach module and their main properties
which will be used later in the article. In Section 3, we will recall the
continuity property of Wach modules which will play a key role in proving
the local constancy result in the trace. In Section 4, we will show how to
p-adically deform Wach modules and we will state and prove the explicit
local constancy result when the weight k is fixed and we let the trace of the
crystalline Frobenius ap vary. Finally, in Section 5, we are going to state
and prove the local constancy result when we fix the trace of the crystalline
Frobenius ap and we let the weight k vary.
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Luxembourg. I would like to thank my advisor G. Wiese for the help during
the writing of this article. Special thanks go to L. Berger for allowing me
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I would also like to thank A. Conti, L. Dembélé, A. Maksoud, S. Rozen-
sztajn and A. Vanhaecke for many interesting remarks. A final thank goes
to the very careful reviewer.

2. Wach modules and crystalline representations

Let p be an odd prime and let E ⊆ Qp be a finite extension of Qp. We
denote by OE the ring of integers of E, by πE a uniformizer, by kE the
residue field and denote by e the ramification index of E over Qp. Let Γ be
a group isomorphic to Z×p via a map χ : Γ → Z×p . Fix once and for all a
topological generator of Γ (which is procyclic as p 6= 2), say γ. For the sake
of completeness, we will briefly recall the construction of some of the rings
of Fontaine necessary for introducing the (ϕ,Γ)-modules and the theorem
characterizing their relation with certain Galois representations of GQp .

Let {ε(n)}n≥1 ⊂ Q̄p be a system of roots of unity such that:
(1) ε(1) 6= 1,
(2) ε(n) ∈ µpn ⊂ Qp,

(3) (ε(n+1))p = ε(n).

One can think of ε := (ε(1), ε(2), . . . ) as an element of Fontaine’s ring E =
lim←−Cp (with projective limit maps given by the Frobenius maps z 7→ zp)
where Cp is the p-adic completion of Qp. It is well known that E is an
algebraically closed field of characteristic p. Now, consider the fields Q(n)

p :=
Qp(ε(n)) and define Q(∞)

p = ∪n≥1Q
(n)
p . Denote by HQp the Galois group

Gal(Qp/Q
(∞)
p ).
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The p-adic cyclotomic character ω gives the exact sequence:

1 −→ HQp −→ GQp

ω−→ Γ ∼= Z×p −→ 1.

Consider the field F = Fp((ε−1)) inside E . Let AQp be the p-adic completion
of Zp[[x]][ 1

x ]; it is a complete discrete valuation ring whose residue field can
be identified with F (one can identify x with a suitable Teichmuller lift of
ε−1). Let A be the p-adic completion of the strict henselization Ash

Qp
of AQp

inside Ã := W (E). Note that Ash
Qp

can be identified with the ring of integers
of the maximal unramified extension of the field AQp [1

p ] inside Ã[1
p ].

The Galois group GQp acts on E by acting on Cp and by functoriality
on the projective limit. By functoriality of the Witt vectors, the group GQp

also acts on Ã = W (E) and we have that A is GQp-stable. It is also true
that AHQp = AQp .

Now, we defineAE asAQp⊗ZpOE, by a result of Dee (see [25, Prop. 2.2.2])
we have that AE is isomorphic to the πE-adic completion of OE[[x]][ 1

x ]. One
can think of AE inside the ring A(OE) := A⊗Zp OE. The ring AE inherits a
GQp-action via the natural action of GQp on A and trivial action on OE. It
follows that (A(OE))HQp = AE and so AE has a structure of Γ-module.

Hence, the ring AE has a natural OE-linear action of Γ and a OE-linear
Frobenius endomorphism ϕ given by the following expressions:

ϕ(f(x)) = f((1 + x)p − 1) for all f(x) ∈ AE,

η(f(x)) = f((1 + x)χ(η) − 1) for all f(x) ∈ AE, for all η ∈ Γ.

Finally, we can recall the following:

Definition 2.1. An étale (ϕ,Γ)-module D over OE is an AE-module of
finite type endowed with a semilinear Froebenius map ϕ such that ϕ(D)
generates D as AE-module (this is the étale property) and a semilinear
continuous action of Γ which commutes with ϕ. The category of étale (ϕ,Γ)-
module over OE will be denoted by Modét

(ϕ,Γ)(OE).

Denote by RepOE(GQp) the category ofOE-linear representations ofGQp ,
i.e. the category of OE-modules of finite type with a continuous OE-linear
action of GQp .

By a theorem of Fontaine (see [26, A.3.4]) and its generalization by Dee
(see [25, 2.2]) we have the following:

Theorem 2.2. There exists a natural isomorphism

D : RepOE(GQp)→Modét
(ϕ,Γ)(OE)

given by D(T ) = (A(OE) ⊗OE T )HQp , where A(OE) := A⊗Zp OE.
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A quasi-inverse functor, which is a natural isomorphism as well, is given
by:

T : Modét
(ϕ,Γ)(OE)→ RepOE(GQp)

given by T(D) = (A(OE) ⊗AE D)ϕ=1.

Remark 2.3. Note that the equivalence of categories given by the
above theorem preserves the objects killed by a fixed power of a chosen
uniformizer. This essentially follows from the exactness of the functor D
(see [25, Prop. 2.1.9]) and so (πnE) · D(T ) = D((πnE) · T ) in the cate-
gory Modét

(ϕ,Γ)(OE). Same goes for the quasi-inverse functor T (see [25,
Prop. 2.1.24]).

Remark 2.4. Let Modét,tors
(ϕ,Γ) (OE) and Modét,free

(ϕ,Γ) (OE) be respectively the
categories of torsion and free (as AE-modules) étale (ϕ,Γ)-modules. There
is a notion of Tate dual for such étale (ϕ,Γ)-modules. Let BE be AE[1

p ] and
define the Tate dual as follows (see [22, §I.2]):

if D ∈Modét,tors
(ϕ,Γ) (OE) then D∗ := HomAE

(
D,BE/AE

dx
1 + x

)
if D ∈Modét,free

(ϕ,Γ) (OE) then D∗ := HomAE

(
D,AE

dx
1 + x

)
where BE/AE

dx
1+x is the inductive limit of p−nAE/AE

dx
1+x in the category

Modét,tors
(ϕ,Γ) (OE) and the structure of (ϕ,Γ)-module is given by:

γ
( dx

1 + x

)
= χ(γ) dx

1 + x
and ϕ

( dx
1 + x

)
= dx

1 + x
.

Note the important fact that these two notions of dual are compatible in
the following sense: if D ∈Modét,free

(ϕ,Γ) (OE) then for all n ∈ 1
e (Z≥1) we have

that D∗/pnD∗ ∼= (D/pnD)∗ (see [22, Prop. I.2.5]).

The étale (ϕ,Γ)-modules corresponding to crystalline representations can
be described more explicitly via the theory of Wach modules developed by
Berger and Wach. We will briefly recall the definition of Wach modules and
their main properties. First, we define A+

E = OE[[x]] inside AE. It inherits
naturally the actions of ϕ and Γ by restriction from AE. Note also that AE
is obtained by taking πE-adic completion of the localization OE[[x]][1/x] of
A+

E = OE[[x]] at the multiplicative set {1, x, x2, . . .}. Moreover, since AE is
Noetherian, we have that AE is flat as A+

E -module since localization and
completion preserve such property. Following Berger (see [8]), we have the
following

Definition 2.5. A Wach module of height h ≥ 1 is a free A+
E -module of

finite rank endowed with commutative A+
E -semilinear actions of a Frobenius
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map ϕ and of the group Γ such that:
(1) D(N) := AE ⊗A+

E
N ∈ Modét

(ϕ,Γ)(OE),
(2) Γ acts trivially on N/xN,
(3) N/ϕ∗(N) is killed by Qh,

where ϕ∗(N) denotes the A+
E -module generated by ϕ(N), and Q =

(1+x)p−1
x ∈ A+

E .

We recall that the Wach modules are the right linear algebra objects to
specialize Fontaine’s equivalence to crystalline representations. Indeed, we
have the following (see [8, Prop. 1.1]):

Proposition 2.6. Let N be a Wach module of height h. The E-linear rep-
resentation E ⊗OE T(AE ⊗A+

E
N) of GQp is crystalline with Hodge–Tate

weights in the interval [−h; 0]; and

Dcris(E⊗OE T(AE ⊗A+
E
N)) ∼= E⊗OE N/xN as ϕ-modules.

Moreover, all crystalline representations with Hodge–Tate weights in [−h; 0]
arise in this way.

3. Continuity of the Wach modules

Berger proved (see [6, §III.4 or Thm. 2]) that the there exists an equiva-
lence of categories between rational Wach modules (over E⊗OEA

+
E ) andGQp

crystalline representations. As a consequence, Berger proved that if we fix
a E-linear representation V of GQp and denote by D its corresponding étale
(ϕ,Γ)-module via Fontaine’s functor there is an inclusion preserving bijec-
tion between lattices inside V and Wach modules (over A+

E ) contained in D
and which are A+

E -lattices. Denote by N such bijective map that associates
to each GQp-stable lattice of a crystalline representation its corresponding
Wach module.

In this section, we will prove that in some natural sense p-adically close
Wach modules will correspond (via N) to p-adically close OE-linear repre-
sentations sitting in crystalline representation and viceversa. We will start
by clarifying what we mean by p-adically close Wach modules. Given two
Wach modules N1 and N2 we say that N1 and N2 are congruent modulo
some prime power, i.e. N1 ≡ N2 mod πmE for somem ∈ Z≥1, if there exists a
A+

E -module isomorphism between N1⊗A+
E
A+

E /(πmE ) and N2⊗A+
E
A+

E /(πmE )
which is (ϕ,Γ)-equivariant.

Note that, essentially by definition, we have that N1 ≡ N2 mod πmE if and
only if there exist basis of N1 and N2 as A+

E -modules such that, after defin-
ing P1 = Mat(ϕ|N1), P2 = Mat(ϕ|N2), G1 = Mat(γ|N1), G2 = Mat(γ|N2)
(note that P1, P2, G1, G2 ∈ Md×d(A+

E ) where d = rankA+
E

(Ni) for i = 1, 2)
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it follows that: {
P1 ≡ P2 mod πmE ,
G1 ≡ G2 mod πmE .

We recall that we have defined the arithmetic function α as α(r − 1) =∑
n≥1b r−1

pn−1(p−1)c for any positive integer r. We have the following continuity
result (this is [6, Thm. IV.1.1]):

Proposition 3.1. Let T1 and T2 be two Galois stable lattices inside re-
spectively two crystalline E-linear representation V1 and V2 of Hodge–Tate
weights inside [−r; 0], and assume there is an n ∈ 1

e (Z≥1) with n ≥ α(r)
such that T1⊗OEOE/(pn) ∼= T2⊗OEOE/(pn) as GQp-modules, then N(T1) ≡
N(T2) mod pn−α(r).

Now, if N is a Wach module denote by T(N) := T(D(N)) the OE-
linear representation of GQp attached to N . We recall that T(N)⊗OE E is
a crystalline representation.

We are interested in the following result:

Proposition 3.2. Let N1 and N2 be two Wach modules (over OE) with
the same rank as A+

E -modules. Assume that N1 ≡ N2 mod πnE for some
n ∈ Z≥1. Then T(N1)⊗OEOE/(πnE) ∼= T(N2)⊗OEOE/(πnE) as GQp-modules.

Proof. Consider the étale (ϕ,Γ)-modules D(Ni) = Ni ⊗A+
E
AE for i = 1, 2.

Since AE is flat as A+
E -module (module structure given by inclusion) we

have the following chain of isomorphisms of torsion étale (ϕ,Γ)-modules:

D(N1)/πnED(N1) ∼= N1/π
n
EN1 ⊗A+

E
AE ∼= N2/π

n
EN2 ⊗A+

E
AE

∼= D(N2)/πnED(N2).
Now, the claim follows just by applying Fontaine’s functor T, which is exact
(see Theorem 2.2 and see Remark 2.3). �

4. Local constancy with respect to the trace

In this section we are going to prove an explicit local constancy result
with respect to the trace (i.e. the weight k will be fixed) for reductions
modulo prime powers of representations of the type Vk,ap .

4.1. Some linear algebra of Wach modules. As explained in the pre-
vious section, a congruence between Wach modules (modulo some prime
power) can be translated into a congruence (modulo the same prime power)
between systems of matrices representing the (ϕ,Γ) actions on the Wach
modules involved. In this section, we will see how to p-adically deform a
Wach module into another one via linear algebra means for the systems of
matrices associated to the (ϕ,Γ)-module structure.
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As long as it will be possible, we will keep the same notation as Berger
(see [8]). We recall that p is an odd prime and E is a finite extension of
Qp with ramification index e. Let v be the normalized p-adic valuation (i.e.
v(p) = 1). Let r ≥ 1 be a integer and define α(r) :=

∑r
j=1 v(1 − χ(γ)j)

where we recall that γ is a fixed topological generator of the pro-cyclic
group Γ. The constant α(r) has also an explicit description given by α(r) =∑
n≥1b r

pn−1(p−1)c for a proper choice of γ (see [8]).
We start by recalling two useful results in linear algebra (see [8, Lem. 2.1]):

Lemma 4.1. If P0 ∈ M2(OE) is a matrix with eigenvalues λ 6= µ, and if
δ = λ− µ, then there exists Y ∈M2(OE) such that Y −1 ∈ δ−1M2(OE) and
Y −1P0Y =

(
λ 0
0 µ

)
.

and the following corollary (see [8, Cor. 2.2]):

Corollary 4.2. If α ∈ 1
eZ≥0 and ε ∈ OE are such that v(ε) ≥ 2v(δ)+α, then

there exists H0 ∈ pαM2(OE) such that det(Id +H0) = 1 and Tr(H0P0) = ε.

The corollary above represents the starting point to deform a Wach mod-
ule into another one. Given the matrix P0, it gives a p-adically small matrix
H0 such that the productH0P0 will have a prescribed p-adically small trace.
In practice, this will be applied when P0 is obtained by the action of ϕ on
Dcris(Vk,ap) for some k ≥ 2 and ap ∈ mE.

The idea behind the next results is to show how H0 gives rise to a de-
formation of a whole system of matrices (attached to a Wach module) to a
p-adically close one preserving the characterizing linear algebra properties
of the action on ϕ and Γ on the Wach module.

We have the following result (it is a little generalization of [8, Prop. 2.3]):

Proposition 4.3. Let m ∈ 1
eZ≥0 and d ∈ Z≥2. If G ∈ Id +xMd(OE[[x]])

and k ≥ 2 and H0 ∈ pα(k−1)+mMd(OE), then there exists H∈ pmMd(OE[[x]])
such that H(0) = H0 and HG ≡ Gγ(H) mod xk.

Proof. As G ∈ Id +xMd(OE[[x]]), we can write G = Id +xG1 + x2G2 + . . .
where Gi ∈ Md(OE) for all i ∈ Z≥1. We prove that for any positive integer
r, there exists an Hr ∈ pα(k−1)−α(r)+mMd(OE) such that if we define H =
H0 + xH1 + x2H2 + · · ·+ xk−1Hk−1 we have that HG ≡ Gγ(H) mod xk.

We start from r = 1, then since γ(H) = H0 + γ(x)H1 + γ(x2)H2 + · · ·+
γ(xk−1)Hk−1 and for all w ∈ Z≥1 we have γ(xw) = ((1 + x)χ(γ) − 1)w, we
deduce that we can define H1 such that (1−χ(γ))H1 = G1H0−H0G1. Since
by hypothesis H0 ≡ 0 mod pα(k−1)+m and by definition α(1) = vp(1−χ(γ)),
we deduce that H1 ∈ pα(k−1)−α(1)+mMd(OE).

Using now the same argument, one can actually see how Hr is uniquely
determined byH0, H1, . . . ,Hr−1 and moreover we have that (1−χ(γ)r)Hr ∈
pα(k−1)−α(r−1)+mMd(OE), note that α(r) = α(k−1)−α(r−1). To be precise,



Local constancy for reductions of two-dimensional crystalline representations 355

we prove this by induction on r ≤ k − 1. The first case r = 1 is proven
above, now assume the case r−1, we are going to prove the statement for r.

It is straightforward to prove that, expanding the expression HG ≡
Gγ(H) mod xk, the following identity holds:

(1− χ(γ)r)Hr =
r−1∑
h=0

Gr−h

(
h∑

n=0
γ(xn)hHn

)
−
r−1∑
i=0

HiGr−i, for r ≤ k − 1

where γ(xn)h is the h-th coefficient (i.e. coefficient of xh) of the polynomial
γ(xn). Note now that the map α(n) is non-decreasing as n grows. Hence, by
inductive hypothesis, we deduce that for any i such that 0 ≤ i ≤ r − 1 we
have Hi ≡ 0 mod (pα(k−1)−α(r−1)+m). Since v(1−χ(γ)r) +α(r− 1) = α(r),
we deduce that Hr ≡ 0 mod (pα(k)−α(r)+m). This concludes the proof. �

The following result completes the linear algebra deformation process of
a system of matrices that will represent a (ϕ,Γ)-action on Wach modules:
Proposition 4.4. Let m ∈ 1

eZ≥0 and d ∈ Z≥2. Let G ∈ Id +xMd(OE[[x]])
and P ∈ Md(OE[[x]]) satisfy Pϕ(G) = Gγ(P ) and det(P ) = Qk−1 where
Q = (1+x)p−1

x .
If H0 ∈ pα(k−1)+mMd(OE), then there exist G′ ∈ Id +xMd(OE[[x]]) and

H ∈ pmMd(OE[[x]]) such that:
(1) H(0) = H0;
(2) P ′ϕ(G′) = G′γ(P ′), where P ′ = (Id +H)P ;
(3) P ≡ P ′ mod pm;
(4) G ≡ G′ mod pm.

Proof. After applying the previous proposition for the existence of the ma-
trix H which satisfies H(0) = H0, the existence of G′ follows directly
from [8, Prop. 2.4]. Hence the claims (1) and (2) hold.

The claim (3) is clear since H ∈ pmMd(OE[[x]]) implies that P ≡ P ′ mod
pm. What it is left to prove is (4), i.e. G ≡ G′ mod pm. In order to prove
this, we need to look at how the matrix G′ is defined.

The matrix G′ is constructed as an x-adic limit inside Id +xMd(OE[[x]])
(note that we are dealing with non-commutative rings). Define G′k := G

and observe that it satisfies by construction G′k −P ′ϕ(G′k)γ(P ′)−1 = xkRk
for some Rk ∈ Md(OE[[x]]). Then define G′ as the x-adic limit of G′j , for
j ≥ k, which satisfies G′j+1 = G′j + xjSj for some Sj ∈ Md(OE), and
G′j − P ′ϕ(G′j)γ(P ′)−1 = xjRj where Rj ∈Md(OE[[x]]).

We will prove by induction that:
(i) Rj ≡ 0 mod pm,
(ii) G′j ≡ G mod pm.

First the case j = k: since H ≡ 0 mod pm then P ≡ P ′ mod pm which
implies that Rk ≡ 0 mod pm, and by construction G′k = G so the first case
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of induction is done. Now assume j ≥ k and that the above claims hold for
j, we will prove them for j + 1.

We have that there exists Sj ∈Md(OE) such that:

G′j+1 − P ′ϕ(G′j+1)γ(P ′)−1

= G′j + xjSj − P ′ϕ(G′j)γ(P ′)−1 − P ′xjQjSjγ(P ′)−1

= xj(Rj + Sj −Qj−k+1P ′SjQ
k−1)γ(P ′)−1) ∈ xj+1Md(OE[[x]]).

Note that we used that ϕ acts trivially on Md(OE) and that ϕ(xj) = xjQj

for all j ∈ Z≥1. We want to prove that there exists Sj ∈ pmMd(OE) such
that:

Rj + Sj −Qj−k+1P ′SjQ
k−1γ(P ′)−1 ∈ xMd(OE).

Evaluating the above expression at x = 0, the claim is equivalent to prove
that there exists Sj ∈ pmMd(OE) such that:

Sj − pj−k+1P ′(0)Sjpk−1(γ(P ′)−1)(0) = −Rj(0).
Now, since Rj ≡ 0 mod pm, we have that Rj(0) ≡ 0 mod pm. It is clear
that the map S 7→ S − pj−k+1P ′(0)Spk−1(γ(P ′)−1)(0) gives a bijection of
Md(OE). Moreover, it is also clear that it is a bijection on pmMd(OE). As
Rj(0) ≡ 0 mod pm, we have the existence of Sj ≡ 0 mod pm such that the
above relations are satisfied. By inductive hypothesis Rj ≡ 0 mod pm, so
Rj+1 ≡ 0 mod pm. Since Sj ≡ 0 mod pm implies that G′j+1 = G′j + xjSj ≡
G mod pm. This concludes the proof. �

4.2. Local constancy modulo prime powers with respect to ap. Let
k ≥ 2 be a positive integer and let ap ∈ mE. In this section, we will apply
the continuity properties of the Wach modules to prove local constancy
results modulo prime powers when we fix the weight k and we let the trace
of the crystalline Frobenius ap vary p-adically.

The main result of this section is the following (this is a generalization
of [8, Thm. A]):

Theorem 4.5. Let ap, a′p ∈ mE and k ≥ 2 be an integer. Let m ∈ 1
e (Z≥1)

such that v(ap − a′p) ≥ 2 · v(ap) + α(k − 1) +m, then for every GQp-stable
lattice Tk,ap inside Vk,ap there exists a GQp-stable lattice Tk,a′p inside Vk,a′p
such that

Tk,ap ⊗OE OE/(pm) ∼= Tk,a′p ⊗OE OE/(pm) as GQp-modules.

Proof. Consider the GQp-representation V ∗k,ap
= HomE(Vk,ap ,E); it is crys-

talline and it has Hodge–Tate weights 0 and −(k − 1).
Let T ∗k,ap

:= HomOE(Tk,ap ,OE) be the GQp-stable lattice in V ∗k,ap
, dual of

Tk,ap . By a result of Berger (see [6, Prop. III.4.2 and III.4.4]), it is possible to
attach to T ∗k,ap

a Wach module Nk,ap of height k−1. Fixing a basis of Nk,ap
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as A+
E -module (we recall that in our notation A+

E = OE[[x]]), the actions
of ϕ and γ on Nk,ap can be respectively represented by the matrices P ∈
Mat2(A+

E ) and G ∈ Id +xMat2(A+
E ). Note that since the actions of ϕ and Γ

commute (in a semi-linear sense) we have that Pϕ(G) = Gγ(P ). We recall
also that the matrix P (0) has characteristic polynomial T 2 − apT + pk−1.
Now, let a′p ∈ OE be as in the hypothesis, i.e. it satisfies v(ap − a′p) ≥
2 · v(ap) + α(k − 1) + m for some m ∈ 1

e (Z≥1). Applying in sequence the
results in Section 4.1, we deduce the existence of two matrices P ′ and
G′ which give rise to a Wach module N ′ and such that P ≡ P ′ mod pm
and G ≡ G′ mod pm. Since by construction P ′ = (Id +H)P , we have that
evaluating at x = 0 we deduce that the characteristic polynomial of P ′(0) is
T 2−a′pT+pk−1 (note that Trace(H(0)P (0)) = a′p−ap and det(Id +H(0)) =
1). By a result of Berger (see [8, Prop. 1.2]), we can deduce that N ′ = Nk,a′p ,
or equivalently Vk,a′p = T(N ′)⊗OE E and Dcris(V ∗k,a′p) = N ′/xN ′ ⊗OE E.

Since P ≡ P ′ mod pm and G ≡ G′ mod pm, we have that Nk,ap ≡
Nk,a′p mod pm. As a consequence of Remark 2.3, we have that D(Nk, ap) ≡
D(Nk,a′p) mod pm, i.e.

D(Nk, ap)⊗OE OE/(pm) ∼= D(Nk,a′p)⊗OE OE/(pm) inside Modét
(ϕ,Γ)(OE).

Hence, we define Tk,a′p := T(D(Nk,a′p)∗) which is a GQp-stable lattice in
Vk,a′p that satisfies (since Fontaine’s functor T is compatible with duals):

Tk,ap ⊗OE OE/(pm) ∼= Tk,a′p ⊗OE OE/(pm) as GQp-modules.
Indeed, since D(Nk,ap) ≡ D(Nk,a′p) mod pm, by exactness of Fontaine’s
functor T we can deduce that T ∗k,ap

≡ T(D(Nk,a′p)) mod pm. This completes
the proof of the theorem. �

4.3. Converse of local constancy with respect to the trace. Via
the continuity properties of the Wach modules, it is also possible to find an
explicit necessary condition for the existence of local constancy phenomena
modulo prime powers. In precise terms, let k ≥ 2 be an integer and let
ap, a

′
p ∈ mE; then we have the following:

Proposition 4.6. Let m ∈ 1
e (Z≥1) and assume m ≥ α(k − 1). If Vk,ap ≡

Vk,a′p mod pm, then v(ap − a′p) ≥ m− α(k − 1).
Proof. This is a straightforward application of Berger’s Proposition 3.1.
Indeed, we have that Dcris(V ∗k,ap

) = Nk,ap/xNk,ap ⊗ E and Dcris(V ∗k,a′p) =
Nk,a′p/xNk,a′p ⊗ E for some Wach modules Nk,ap and Nk,a′p corresponding
respectively to the GQp-stable lattices in Vk,ap and Vk,a′p that are congruent
modulo pm. By Proposition 3.1, we have that Nk,ap ≡ Nk,a′p mod pm−α(k−1)

and looking at the characteristic polynomials of ϕ acting on Nk,ap/xNk,ap

and Nk,a′p/xNk,ap the claim follows. �
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5. Local constancy with respect to the weight

In this section, we are going to prove a local constancy result for reduc-
tions modulo prime powers once we fix the trace of the crystalline Frobenius
ap and we let the weight k vary.

In order to simplify the notation, we will say that two E-linear represen-
tations V and V ′ of GQp := Gal(Qp/Qp) are congruent modulo some prime
power (i.e. V ≡ V ′ mod πnE for some n ∈ Z≥1) if there exist GQp-stable
lattices T ⊂ V and T ′ ⊂ V ′ such that we have an isomorphism

T ⊗OE OE/(πn) ∼= T ′ ⊗OE OE/(πn) of GQp-modules.

Note that the above definition requires a bit of attention when used as it
clearly doesn’t define an equivalence relation (in general, it is not transi-
tive).

The main result of this section is the following:

Theorem 5.1. Let p be an odd prime. Let ap ∈ mE − {0} for some finite
extension E/Qp. Let k ≥ 2 be an integer and m ∈ 1

e (Z≥1) be fixed. Assume
that

(∗) k ≥ (3v(ap) +m) ·
(

1− p

(p− 1)2

)−1
+ 1.

There exists an integer r = r(k, ap) ≥ 1 such that if k′−k ∈ pr+m(p−1)Z≥0
then Vk,ap ≡ Vk′,ap mod pm

Remark 5.2. As it will be clear from the proof below, the condition in
the hypothesis is not optimal in the sense that it can be replaced by the
weaker condition given by the system:{

k ≥ 3v(ap) + α(k − 1) + 1 +m,

k′ ≥ 3v(ap) + α(k′ − 1) + 1 +m.

as in Berger’s result (see [8, Thm. B]) when m = 1/e. For the sake of
simplicity, we just assume the stronger condition (∗) which has the advan-
tage that it is explicit in the weight, doesn’t depend on the function α and
automatically holds for k′ if it holds for k assuming k′ ≥ k.

The condition (∗) in the theorem can be deduced directly from the above
conditions in the system by noticing that α(k − 1) =

∑
n≥1

⌊
k−1

pn−1(p−1)
⌋

satisfies the inequality α(k − 1) ≤ (k−1)p
(p−1)2 .

Remark 5.3. Note that Theorem 5.1 and Theorem 4.5 can be applied in
sequence (i.e. one can first deform the weight and then deform the trace) in
order to have a local constancy result in which both the trace and the weight
vary. This is possible because Theorem 4.5 is independent of the starting
chosen lattice inside Vk,ap . Note that the order in which the theorems can
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be applied in sequence cannot be switched, as it is always necessary to keep
track of the lattices involved in the congruences.

Remark 5.4. It could be interesting to consider the question of finding
explicitly a radius for the local constancy in the weight. Partial results
have been obtained by Bhattacharya (see [11]). As already pointed out
in the introduction, the above theorem can be seen as a converse (in a
special crystalline case) of a non-published theorem of Winterberger, proven
by Berger and Colmez as a consequence of a continuity property of the
Sen periods (see [9]). Such result provides a connection between the local
constancy radius of our theorem and the constant c(2,Qp) of Berger and
Colmez. To be precise, combining Theorem 5.1 above and [9, Cor. 7.1.2]
we get the upper bound on the radius for the local constancy in weight
p−(r+m) ≤ p−(bm

2 c−c(2,Qp)).

In order to prove the theorem, the idea is to make use of Kedlaya’s theory
of (ϕ,Γ)-modules of slope zero over the Robba ring (see [29]) and to realize
the representations Vk,ap (for k suff. big) as trianguline representations in
the sense of Colmez (see [21]). A theorem of Colmez will then ensure us
that locally such representations vary in a continuous way, in the sense that
they come in analytic families. We will make this precise in the next section.
We refer the reader to [7] for a nice summary on the theory of trianguline
representations and its applications in arithmetic geometry.

LetRE be the Robba ring with coefficients in E and for any multiplicative
character δ : Q×p → E×, denote by RE(δ) := REeδ the (ϕ,Γ)-module (in
the sense of Kedlaya, see [29]) of rank one obtained by defining the actions
ϕ(eδ) = δ(p)eδ and γ(eδ) = δ(χ(γ))eδ for all γ ∈ Γ, where χ denotes the
chosen fixed isomorphism between Γ and Z×p .

Colmez (see [21, Thm. 0.2]) proved that all (ϕ,Γ)-modules of rank one
arise as RE(δ) for a unique multiplicative character δ; moreover, if δ1, δ2 :
Q×p → E× are multiplicative characters then Ext1(RE(δ1),RE(δ2)) is an E-
vector space of dimension 1 unless δ1δ

−1
2 is of the form x−i for some integer

i ≥ 0, or |x|xi for some integer i ≥ 1; in both cases, the dimension over
E is two and the attached projective space is isomorphic to P1(E); here x
denotes the identity character of Q×p .

Hence, where the extension is not unique (up to isomorphism), one will
need to specify the corresponding parameter in P1(E) usually called L-
invariant and denoted as L. The corresponding Galois representation will
be denoted by V (δ1, δ2,L). For an extensive discussion about L-invariant,
we refer the reader to the original article of Colmez (see [21, §4.5]).

Each trianguline representation V (δ1, δ2) corresponds (up to considering
blow-up in case δ1δ

−1
2 = x−i or |x|xi; see [21]) to the point (δ1, δ2) ∈ X×X

where X is isomorphic (non-canonically, as there are choices involved) to
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the Qp-rigid analytic space µ(Qp) × Grig
m × B1(1, 1)−Qp

, which parametrizes
multiplicative characters Q×p with values in the multiplicative group of some
finite extension of Qp.

From now on, we denote by B1(a, r)+
Qp

the closed affinoid rigid Qp-ball
centered in a and with radius r. The expression B1(a, r)−Qp

will instead
denote the open rigid Qp-ball as a Qp-rigid analytic space. If we are working
with an algebraic closure Qp, then the expression B1(a, r)+ will simply
denote the standard p-adic ball centered in a with radius r.

5.1. Proof of Theorem 5.1. Let k′ be an integer satisfying k′ − k ∈
(p− 1)Z≥0. The claim is to prove that if k′ and k are sufficiently p-adically
close then the corresponding representations are isomorphic modulo a pre-
scribed prime power.

The assumption (∗) on the weight k allow us, applying Theorem 4.5, to
deduce that:

V
k,ap+ pk−1

ap

≡ Vk,ap mod pm,

V
k′,ap+ pk′−1

ap

≡ Vk′,ap mod pm.

Indeed, note that assumption (∗) implies that k − 1 > 2v(ap) and hence
in this specific case, the Theorem 4.5 can be applied both starting from
Vk,ap or starting from V

k,ap+ pk−1
ap

(same goes for k′) and hence this gives

us a strong control over the lattices involved in the congruences. There-
fore, this first step reduces the claim to prove that if k′ and k are suffi-
ciently p-adically close (in the weight space) then we have the congruence
V
k,ap+ pk−1

ap

≡ V
k′,ap+ pk′−1

ap

mod pm.

The following proposition of Colmez (see [8, Prop. 3.1] or see [21, §4.5])
allow us to realize the above representations as trianguline representations:

Proposition 5.5. If z ∈ mE is a root of z2 − apz + pk−1 which satisfies
v(z) < k − 1, then we have that V (µz, µ 1

z
χ1−k,∞) = V ∗k,ap

.
Here µz : Q×p → E× is the character which satisfies µz(p) = z and

µz(Z×p ) = 1 and χ : Q×p → E× is the character which satisfies χ(p) = 1 and
χ(y) = y for all y ∈ Z×p .

Hence, if k′ − 1 ≥ k − 1 > v(ap), we have that the crystalline represen-
tations V

k,ap+ pk−1
ap

and V
k′,ap+ pk′−1

ap

coincide respectively with the triangu-

line representations V (µap , δk,ap ,∞) and V (µap , δk′,ap ,∞), where δk,ap :=
µ 1

ap

χ1−k and δk′,ap = µ 1
ap

χ1−k′ . Since the L-invariant is going to be ∞
for all the trianguline representations involved, we will drop the notation
V ( · , · ,∞) writing simply V ( · , · ).
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The trianguline representations V (µap , δk,ap) and V (µap , δk′,ap) define
two E-points, respectively uk,ap = (µap , δk,ap) and uk′,ap = (µap , δk′,ap), on
the rigid analytic space X×X (see [21]) parametrizing couples of multiplica-
tive characters of Q×p with values in L× where L is some finite extension of
Qp.

The following basic lemma represents the first step for constructing
an explicit 1-parameter family of trianguline representations inside X2 =
(µ(Qp) × Grig

m × B1(1, 1)−Qp
)2 interpolating V (µap , δk,ap) and V (µap , δk′,ap)

when k and k′ will be sufficiently p-adically close (in the weight space):

Lemma 5.6. Let α ∈ 1 + pZp, then we have that

ψα : B1(0, 1)+
Qp
−→ B1(1, |α− 1|)+

Qp

[s] 7−→ [expp(s · logp(α))]

is an isomorphism in the category of Qp-rigid analytic spaces. Here [s]
denotes the maximal ideal of Qp〈T 〉 corresponding to the element s ∈ Zp
and the analogue for ψα([s]).

Proof. First, we will clarify that ψα is a well defined map for every α ∈
1 + pZp. For all s ∈ Zp, we have that ψα converges when evaluated in s
since |s · logp(α)| ≤ |α − 1| ≤ p−1. Moreover since ψα(s) ∈ Qp(s), we have
that the map ψα is Galois equivariant, i.e. ψα(σ(s)) = σ(ψα(s)) for every
σ ∈ GQp . Note also that we can find the explicit expression ψα(s) = αs =
(1 + (α − 1))s =

∑
n≥0

(s
n

)
(α − 1)n which converges for every s ∈ Zp. This

allow us to define ψα on the set of GQp-orbits of Zp which can be identified
set-theoretically with B1(0, 1)+

Qp
. Proving that ψα is a morphism of Qp-rigid

analytic spaces (affinoid spaces in this case) boils down to show that the
induced map on the corresponding affinoid algebras is a morphism. Let
O0,1 and O1,|α−1| denote respectively the Qp-affinoid algebras attached to
the Qp-affinoid spaces B1(0, 1)+

Qp
and B1(1, |α − 1|)+

Qp
. We have that the

associated map ψ∗α : O1,|α−1| → O0,1 is given by ψ∗α(f) = f ◦ ψα for all
f ∈ O1,|α−1| ∼= Qp〈T−1

α−1 〉.
In order to show that ψ∗α is a morphism of affinoid algebras, since it is

given by the pull-back, it is sufficient to show that it is a well-defined map,
in the sense that ψ∗α(f) belongs to O0,1 ∼= Qp〈T 〉; or in other words, it is
a converging series. Indeed, the problem is that, in general, composition of
p-adic analytic functions is not analytic. The convergence property will be
deduced by the following convergence criterion (see [28, Thm. 4.3.3]):

Theorem 5.7. Let f(X) =
∑
anX

n and g(X) =
∑
bnX

n be formal power
series in Qp[[X]] with g(0) = 0, and let h(X) = f(g(X)) be their formal
composition.
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Suppose that:
(i) g(x) converges,
(ii) f(g(x)) converges (i.e. plugging the number to which g(x) converges

into f(X) gives a convergent series),
(iii) for every n ∈ Z≥0, we have |bnxn| ≤ |g(x)| (i.e. no term of the

series converging to g(x) is bigger than the sum).
Then h(x) also converges, and f(g(x)) = h(x).

Indeed, in our case, it is enough to prove that for all n ∈ Z≥0 we have

|cnsn| ≤ |ψα(s)|

with ψα(s) = expp(s · logp(α)) =
∑
n≥0 cns

n and cn := (logp(α))n

n! . We
have that |ψα(s)| = | expp(s · logp(α))| = 1 for all s ∈ B1(0, 1)+, hence since
|s| ≤ 1, it is sufficient to prove that |cn| ≤ 1.

Since α ∈ 1 + pZp and since the p-adic logarithm is an isometry we
have that | logp(α)|n = |α− 1|n ≤ p−n. We also recall from classical p-adic
analysis that vp(n!) < n

p−1 or in other words |n!| > p
− n

p−1 . It follows at once
that

|cn| =
| logp(α)|n

|n!| <
p−n

p
− n

p−1
< 1.

Note that the inverse ψ−1
α : B1(1, |α − 1|)+

Qp
−→ B1(0, 1)+

Qp
sends [t] to[ logp(t)

logp(α)

]
and it is, via the same argument, a well-defined morphism of Qp-

affinoid spaces. This concludes the proof. �

We will make use of the map ψα just defined to construct a family of
points (i.e. trianguline representations) on X2 which will pass through u1−k
(i.e. the representation V (µap , µ 1

ap

χ1−k)).

For each s ∈ Zp, we define a multiplicative character of Q×p as follows:

δ
(s)
k,ap

: Q×p −→ E(s)×

x 7−→ δ
(s)
k,ap

(x) := µ 1
ap

(x) · ω(x)1−k · ψ〈x〉(s),

where E(s) is the finite extension obtained from E by adding s; and where
x = pvp(x)ω(x)〈x〉 is the unique decomposition given by a fixed isomorphism
Q×p ∼= pZ × µ(Qp)× 1 + pZp.

Note that ψ〈x〉(s) is an element in Qp(s) since
(s
n

)
(〈x〉 − 1)n ∈ Qp(s) for

any n ∈ Z≥1.
Finally, we are ready to apply this in the context of rigid analytic spaces,

indeed we will define a 1-dimensional p-adic family of points in X2 through
which we will control the “p-adic” distance between u1−k and u1−k′ .
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We define Z to be the Qp-affinoid spaces given by {µap} × {1/ap} ×
{ζk−1
p }×B1(0, 1)+

Qp
; here {µap} denotes the singleton corresponding to the

character µap on X, the singleton {1/ap} corresponds to the E-point 1/ap
in Grig

m and the singleton {ζk−1
p } corresponds to the point ζk−1

p−1 in µ(Qp).
By a little abuse of notation, we will still denote a point in Z by s for

the corresponding point s ∈ B1(0, 1)+
Qp

. Now, we define the injective map:

Φ : Z −→ X2

s 7−→ Φ(s) := (µap , δ
(s)
k,ap

)

and note that if k′ ∈ Z≥2 satisfies k′−k ∈ (p−1)Z≥0 we have, by construc-
tion, that Φ(1 − k) = uk,ap and Φ(1 − k′) = uk′,ap since δ(1−k)

k,ap
= µ 1

ap

χ1−k

and δ(1−k′)
k,ap

= µ 1
ap

χ1−k′ .

Proposition 5.8. The map Φ : Z → X2 is a rigid analytic closed immer-
sion.

Proof. In order to see that Φ is a morphism of Qp-rigid analytic spaces it is
sufficient to observe that, decomposing X2 as X×µ(Qp)×Grig

m ×B1(1, 1)−Qp
,

the map Φ is a product of constant morphisms and ψ1+p:

Φ : Z−−−−−−−→ X2 = X× µ(Qp)×Grig
m × B1(1, 1)−Qp

s 7−→ (µap , δ
(s)
k,ap

) = (µap , δ
(s)
k,ap

(ζp−1), δ(s)
k,ap

(p), δ(s)
k,ap

(1 + p))

= (µap , [ζ1−k
p−1 ], [a−1

p ], ψ1+p(s)).

The universal property of fiber products (in the category of rigid analytic
spaces) allows us to reduce the claim to prove that the composition of Φ
with the projection on the last factor of X2, which is exactly ψ1+p, belongs
to Mor(Z,B1(1, 1)−Qp

). This follows at once from Lemma 5.6. Moreover, the
image is an affinoid subdomain of X2 making Φ a closed immersion. �

Now, the heart of the proof is that the representations attached to points
of X2 vary locally in a continuous way. In precise terms, this is the follow-
ing result of Colmez and Chenevier (see [21, Prop. 5.2] and its generaliza-
tion [18, Prop. 3.9], see also [8, Prop. 3.2]):

Theorem 5.9. Let δ1, δ2 : Q×p → E× be two characters such that δ1δ
−1
2 6=

x−i for some i ≥ 0, where x denotes the identity character of Q×p . Let
u = (δ1, δ2) be the corresponding point in X2. Then there exists a open
neighborhood U of u and a finite, free OU-module V of rank 2 with an action
of GQp := Gal(Q̄p,Qp) such that V(ũ) = V (δ1(ũ), δ2(ũ)) for every ũ ∈ U.
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As we are interested in points inside U ⊂ X2 which is an open neighbor-
hood of u1−k, we will first prove that if k′ is sufficiently p-adically close to
k (close as points in the weight space) then also Φ(1 − k′) = u1−k′ will lie
in U.

Without loss of generality, as U is an admissible open we can assume
(up to restriction) that (U,OU) is an affinoid space. Since Φ is a morphism
of rigid analytic spaces, it is in particular continuous for the G-topology,
hence Φ−1(U) is an admissible open of the affinoid space Z.

In particular, we can deduce that there exists a minimal r ∈ 1
e (Z≥1)

such that the affinoid subdomain Zr := {µap} × {[a−1
p ]} × {[ζk−1

p ]} ×
B1(1 − k, p−r)+

Qp
of Z is contained in Φ−1(U). As usual, we identify the

algebra of functions OZr of the Qp-affinoid space Zr with E⊗Qp〈T−(1−k)
pr 〉.

By restricting the morphism Φ to Zr, we get the morphism of Qp-affinoid
spaces:

Φ : Zr → U

and as usual, we denote its associated morphism of Qp-affinoid algebras by
Φ∗ : OU → OZr .

Now, observe that if we fix a ū ∈ U with field of definition Lū, it induces
a Qp-Banach spaces morphism given by the evaluation evū : OU → Lū.
Consider now the finite, free OU-module V of rank 2 considered by Colmez.
The ring homomorphism evū induces on Lū a structure ofOU-module, hence
we define V(ū) := V ⊗OU

Lū. By Chenevier’s and Colmez’s Theorem 5.9,
we have that V(ū) = V (δ1(ū), δ2(ū)) where ū := (δ1(ū), δ2(ū)) ∈ X2. In
particular, we note that when ū = u1−k, then Lu1−k

= E and V(u1−k) =
V (µap , δk,ap). Clearly the analogue statement holds for k′ ∈ Zr such that
k′ − k ∈ (p− 1)Z≥0.

The idea is now to pull back the analytic family of representations given
by Colmez in order to create a new analytic family parametrized by points
in Zr which has the advantage that will depend only on one parameter.
The notion of analytic family of representations parametrized by an affinoid
space is used in the sense of Berger and Colmez (see [9]) but one could also
have approached the problem from the point of view of analytic family of
(ϕ,Γ)-modules over variations of the Robba rings in the sense of Bellaïche
(see [3]) considering the existence of a fully faithful functor which connects
the two categories (see [3, §3]).

Coming back to the closed immersion Φ : Zr → U of Qp-affinoid spaces,
we have that the induced map Φ∗ : OU → OZr is given by the pull-back,
i.e. Φ∗(f) = f ◦Φ for all f ∈ OU. The ring homomorphism Φ∗ gives to OZr

the structure of OU-module and so we can define VZr := V ⊗OU
OZr , it is

a finite, free OZr -module of rank 2 with a continuous GQp-action (given by
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the action of the Galois group on V). In particular, for all s ∈ Zr we have
by definition that VZr (s) ∼= V(Φ(s)).

Now, in order to deal with reductions we first need to identify an integral
analytic family of lattices. First, we recall that there is a notion of integral
model for affinoid algebras. By integral model, or simply model, of a Qp-
affinoid algebra A we mean a Zp-subalgebra Ã topologically of finite type
(i.e. it is a quotient of Zp〈x1, . . . , xn〉 for some integer n ≥ 1 where each
xi is a power bounded element of A) and such that Ã[1

p ] = A. We denote
by A◦ the subalgebra of power bounded elements. It is a model of A. We
recall that under the assumption that the affinoid algebra A is reduced, the
model A◦ is the biggest one and it contains any other model. In our case,
we have O◦U = {g ∈ OU : |g|sup ≤ 1}. It is an integral model for OU.

The local existence of an integral analytic family of representations in-
side V follows from the following lemma (which is a small variation of [19,
Lem. 3.18]):

Lemma 5.10. Let G be a profinite group, let A be a Qp-affinoid algebra and
denote by X = Spm(A) its attached affinoid Qp-rigid analytic space. Let V
be a finite, free A-module of rank 2 endowed with an A-linear, continuous
action of G. For every x ∈ X, there exists an affinoid open neighborhood
Ux = Spm(AUx) ⊂ X, a model AUx of the affinoid algebra AUx and a finite,
free AUx-module TUx with an action of G such that the natural map given
by the extension of scalars induces an isomorphism:

TUx ⊗AUx
AUx

∼= VUx := V⊗A AUx

of AUx [G]-modules.

Proof. Let A be an integral model of A. Let W be a finite and free A-
module such that W⊗A A = V. Since A is open inside A, and since V is a
topological finite direct sum of copies of A we have that W is open inside V.
The action of G can be represented by a continuous map G×W→ V. Since
W is open inside V, then the subgroup HW ⊂ G stabilizing W is an open
subgroup of G. Since G is profinite, we have that HW is of finite index. Let
{hi}i be a finite set of representatives for the left HW-cosets in G. Hence,
defining S as

∑
i hiW we have that S is a G-stable, finite A-module such

that S⊗A A = V.
In general, it is not true that S is free as a A-module, so in order to find a

free module satisfying all the required properties we will work locally using
Raynaud’s theory of formal models.

Let Vx be an affinoid open neighborhood of x ∈ X. Denote by AVx

its corresponding affinoid algebra (it is a quotient of A) and define VVx :=
V⊗AAVx . As every affinoid algebra morphism is in particular a contraction,
denote by ÃVx the model for the affinoid algebra AVx defined by the natural
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projection from A to AVx . Denote by VVx = Spf(ÃVx) the integral formal
scheme (of rigid generic fiber Vx) attached to the model ÃVx via Raynaud’s
theory. We can now restrict our integral subfamilies of G-modules to the
affinoid open Vx by defining SVx := S⊗A ÃVx . We have that SVx is a finite
ÃVx-module with a continuous ÃVx-linear action of G and such that the
natural scalar extension map SVx ⊗ÃVx

AVx
∼= VVx is an isomorphism of

AVx [G]-modules.
Now that we have set the problem locally, we can make full use of Ray-

naud’s theory of formal integral models. Indeed, let I be the Fitting ideal
(of ÃVx) of the ÃVx-module SVx . The ideal I defines a blow-up morphism
of formal schemes (see [24, §3.3] for the construction):

BlI : ZVx → VVx

A priori, the formal scheme ZVx is not affine but up to considering an
affine open covering of ZVx and without loss of generality, we can substitute
the admissible open Vx with a sufficiently small affine open neighborhood
of x, say Ux, such that the blow-up morphism constructed is actually a
morphism between affine formal schemes. Since we are repeating all the
above constructions, all the subscripts Vx will now be substituted without
loss of generality with Ux affinoid open neighborhood of x contained in Vx.
This implies that the formal integral scheme ZUx is the formal spectrum
of a model AUx (a priori, different from ÃUx) of the Qp-affinoid algebra A.
Indeed, we recall that the blow-up morphism induces an isomorphism on
the generic fiber which in this case is the Qp-rigid analytic affinoid space
Ux = Spm(AUx).

Now, consider the blow-up morphism
BlI : ZUx = Spm(AUx)→ VUx = Spm(ÃUx).

Identifying the finite AUx-module S as a coherent sheaf on the formal
scheme Vx, we can pull it back to a coherent sheaf of the affine formal
scheme ZUx = Spf(AUx) via the blow-up morphism BlI : ZUx → VUx , i.e.
formally we define TUx := Bl∗I(SUx). By construction of the blow-up via
the Fitting ideal I of the ÃUx-module S, the AUx-module TUx will be fi-
nite and free and inherits the AUx-linear action of G compatible with the
base change, i.e. we have an isomorphism TUx ⊗AUx

AUx
∼= VUx of AUx [G]-

modules. This concludes the proof. �

Remark 5.11. The above result has been generalized also to the context
of analytic families of Galois representations parametrized by a generic
quasi-separated and quasi-compact rigid analytic space (see the discussion
in [4, §2]).

Coming back to our case, up to decomposing U in irreducible components,
we can assume without loss of generality that U is irreducible or equivalently



Local constancy for reductions of two-dimensional crystalline representations 367

its associated affinoid algebra is reduced. Applying the above result (up to
restricting the affinoid open U) when G = Gal(Qp/Qp), A = OU, A◦ = O◦U
and V = V allow us to deduce that there exists T inside V finite, free
O◦U-module of rank 2, which is GQp-stable and such that T⊗O◦

U
OU
∼= V as

GQp-modules.
After defining VZr as VOU

⊗OU
OZr , consider the model O◦Zr

:= {g ∈
OZr : |g|sup ≤ 1} inside OU. Since every morphism of affinoid algebras is
in particular a contraction, we have that via the restriction of Φ to the
power bounded elements inside OU we obtain the Zp-algebra morphism
Φ : O◦U � O◦Zr

. This allows to define TZr := T⊗O◦
U
O◦Zr

.
The properties of TZr are summarized in the following:

Lemma 5.12. The O◦Zr
-module TZr is finite, free of rank 2 submodule of

VZr . It has a natural action of the Galois group GQp; in particular we have
that:

TZr ⊗O◦Zr
OZr

∼= VZr

is an isomorphism of GQp-modules.

Proof. The only claim that is not clear is the isomorphism of GQp-modules.
By definition we have an isomorphism T ⊗O0

U
OU
∼= V of GQp-modules,

hence tensorizing by OZr (considered as OU-module via Φ∗) we get the
isomorphism (T⊗O0

U
OU)⊗OU

OZr
∼= VZr of GQp-modules.

We have the following chain of isomorphism of GQp-modules:

(T⊗O◦
U
OU)⊗OU

OZr
∼= T⊗O◦

U
(OU ⊗OU

OZr ) ∼= T⊗O◦
U
OZr

∼= T⊗O◦
U

(O◦Zr
⊗O◦Zr

OZr ) ∼= (T⊗O◦
U
O◦Zr

)⊗O◦Zr
OZr

∼= TZr ⊗O◦Zr
OZr ,

where the isomorphisms are given by the associative property of tensor
product for general modules (see [15, Prop. 3.8, Chap. 3]). Hence, the claim
follows. �

In terms of Berger’s and Colmez’s notion of analytic families of p-adic
representations (see [9]), the two above results essentially grant that the
Galois properties of analytic integral subfamilies are preserved via pull-
back. Note that now for all s ∈ Zr, if we denote by Lus the field of definition
of the point Φ(s) := us then TZr (s)⊗Lus

∼= VZr (s) as GQp-modules. Hence,
we deduce that TZr (1− k) and TZr (1− k′) are two GQp-stable OE-lattices
inside respectively VZr (1− k) and VZr (1− k′).

Let ρ : GQp → GL(TZr ) ∼= GL2(O◦Zr
) the Galois representations attached

to TZr . For every s ∈ Zr, we denote by ρs : GQp → GL(TZr (s)) the spe-
cialization of ρ at s. This representation correspond to a GQp-stable lattice
inside the trianguline representation V (δ1(s), δ2(s)) ∼= VZr (s) ∼= V(Φ(s)).
In particular, we have that ρ1−k and ρ1−k′ correspond to GQp-stable lat-
tices inside respectively the representations V (µap , δk,ap) and V (µap , δk′,ap).
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Moreover, as we have already seen, the representations ρs can be obtained
from ρ via composition by the evaluation map at s, i.e. we have ρs = evs ◦ρ
where we keep evs as our notation for the induced map on GL2 from evs.

Now, for a fixed m ∈ Z≥1, we can consider the diagram:

GL(TZr )
ev1−k

vv

ev′1−k

((
GQp

ρ1−k //

ρ ..

GL(TZr (1− k))
Prm

((

GL(TZr (1− k′))
Prm

vv
GL2(OE/(pm)

where Prm denotes the induced homomorphism on GL2 from the natural
projection OE � OE/(pm).

It is clear that the above diamond in the diagram commutes if and only
if for all f ∈ OoZr

we have f(1− k)− f(1− k′) ∈ (pm) inside OE.
Hence, we reduced the claim of Theorem 5.1 to prove that there exists a

positive integer n = n(k, ap,m) ≥ 1 such that if k′− k ∈ pn(p− 1)Z≥0 then
| ev1−k′(f)− ev1−k(f)| = |f(1− k′)− f(1− k)| ≤ p−m.

This follows from the general following (this is just a slight variation
of [14, Prop. 7.2.1.1]):

Lemma 5.13. Let r ≥ 0 be an integer. For every g ∈ Qp〈 Tpr 〉 := {
∑
n anT

n :
anp

rn → 0 as n→∞} and for any x, y ∈ B1(0, p−r)+ we have

|g(x)− g(y)| ≤ pr|g|r|x− y|.

Here | · |r denotes the norm on Qp〈 Tpr 〉 given by |
∑
anT

n| := max |anprn|
and | · | denotes the usual norm on Qp〈T 〉.

Proof. Consider the map α : Qp〈 Tpr 〉 → Qp〈T 〉 sending T to prT ; it is an
isometric isomorphism with respect to the norms | · |r and | · | respectively.
Denote by α∗ the induced map on maximal spectra, i.e. α∗ : B1(0, 1)+ →
B1(0, p−r)+ sending z to prz; it is bijective. Let g ∈ Qp〈 Tpr 〉 such that
α(g) = f .

It is a classical result in the theory of Tate’s algebras (see [14,
Prop. 7.2.1.1]) that for any f ∈ Qp〈T 〉 and for any x̃, ỹ ∈ B1(0, 1)+:

|f(x̃)− f(ỹ)| ≤ |f ||x̃− ỹ|.



Local constancy for reductions of two-dimensional crystalline representations 369

Since α is an isometry and defining α∗(x̃) = x and α∗(ỹ) = y, this is
equivalent to say:

|α(g)(x̃)− α(g)(ỹ)| ≤ |f | · |x̃− ỹ|
⇐⇒ |g(α∗(x̃))− g(α∗(ỹ))| ≤ |α(g)| · |x̃− ỹ|

⇐⇒ |g(x)− g(y)| ≤ |g|r · |x̃− ỹ| = |g|r ·
∣∣∣ x
pr
− y

pr

∣∣∣ = pr|g|r|x− y|.

Note that we used the fact that α(g)(x̃) = g(α∗(x̃)) (and the same for y)
which is a standard property of affinoid maps (see [14, Lem. 7.1.4.2]). �

Finally, we can complete the proof of Theorem 5.1. Indeed, we have that
the model OoZr

is isomorphc to E〈 Tpr 〉◦ := {g ∈ E〈 Tpr 〉 : |g|sup = |g|r ≤ 1}.
Hence, for all g ∈ E〈 Tpr 〉◦ we have: |g(x)−g(y)| ≤ pr|x−y| for all x, y ∈ Zp
representing the corresponding maximal ideals in Zr. Note that we are
considering fixed an embedding of E in Qp.

For any fixed positive integer m such that the hypothesis of the theorem
holds, there exists a positive integer n, namely n = m + r, such that the
representations TZr (1−k) and TZr (1−k′) are congruent modulo pm. By the
definition of TZr we deduce that the same is true for T(u1−k) and T(u1−k′).
This completes the proof of Theorem 5.1.
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