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Oscillations in the Goldbach conjecture

par Michael J. MOSSINGHOFF et Timothy S. TRUDGIAN

Résumé. Soit R(n) =
∑
a+b=n Λ(a)Λ(b), où Λ( · ) est la fonction de von Man-

goldt. La fonction R(n) est souvent étudiée en relation avec la conjecture de
Goldbach. Sous l’hypothèse de Riemann (RH), on sait que

∑
n≤xR(n) =

x2/2−4x3/2G(x) +O(x1+ε), où G(x) = <
∑
γ>0

xiγ

( 1
2 +iγ)( 3

2 +iγ) et la somme est
prise sur les ordonnées des zéros non triviaux de la fonction zêta de Riemann
dans le demi-plan supérieur. Nous prouvons (sous l’hypothèse de Riemann)
que chacune des inégalités G(x) < −0.02297 et G(x) > 0.02103 est vérifiée in-
finiment souvent, et établissons une amélioration de cette dernière borne sous
une hypothèse d’indépendance linéaire pour les zéros de la fonction zêta. Nous
montrons également que les bornes obtenues sont très proches de l’optimal.

Abstract. Let R(n) =
∑
a+b=n Λ(a)Λ(b), where Λ( · ) is the von Mangoldt

function. The function R(n) is often studied in connection with Goldbach’s
conjecture. On the Riemann hypothesis (RH) it is known that

∑
n≤xR(n) =

x2/2 − 4x3/2G(x) + O(x1+ε), where G(x) = <
∑
γ>0

xiγ

( 1
2 +iγ)( 3

2 +iγ) and the
sum is over the ordinates of the nontrivial zeros of the Riemann zeta func-
tion in the upper half-plane. We prove (on RH) that each of the inequalities
G(x) < −0.02297 and G(x) > 0.02103 holds infinitely often, and establish an
improvement on the latter bound under an assumption of linearly indepen-
dence for zeros of the zeta function. We also show that the bounds we obtain
are very close to optimal.

1. Introduction

Let Λ(n) denote the von Mangoldt function, and define R(n) by

(1.1) R(n) =
∑

a+b=n
Λ(a)Λ(b),

where the sum is over positive integers a and b that sum to n. This func-
tion arises naturally in the study of Goldbach’s problem: clearly R(n) > 0
precisely when n is the sum of two positive prime powers. The use of the
von Mangoldt function makes the problem more amenable to analysis, and
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Goldbach’s conjecture would follow if it could be shown that R(n) were
sufficiently large at even integers n > 2. It is natural then to study the
average value of R(n). It is known that

(1.2)
∑
n≤x

R(n) = 1
2x

2 +O
(
x2 exp

(
−C(log x)3/5(log log x)−1/5)) ,

unconditionally, for some positive constant C. In a series of articles in 1991,
Fujii obtained improvements on the error term in (1.2) that are condi-
tional on RH. (In fact, Fujii [5, p. 173] cited the weaker unconditional error
term O(x2(log x)−A), for any positive constant A, which follows from the
Prime Number Theorem; (1.2) follows by the same reasoning but using the
Vinogradov–Korobov zero-free region for the zeta function.) In the first of
this series, he established [5] that∑

n≤x
R(n) = 1

2x
2 +O(x3/2),

and in the second paper [6] he refined the error term, proving that1

(1.3)
∑
n≤x

R(n) = 1
2x

2 − 4x3/2<
∑
γ>0

xiγ

(1
2 + iγ)(3

2 + iγ)
+O

(
(x log x)4/3

)
.

Similar statements, with a slightly larger power on the log x term, were
noted by Goldston [8] and by Granville [10, 11] (where a main result [10,
Theorem 1A] states that RH is equivalent to an estimate regarding the
average number of solutions in the Goldbach problem). Reductions in the
error term in (1.3) were made by Bhowmik and Schlage-Puchta [3] and
then by Languasco and Zaccagnini [15], who established O(x log3 x). See
also Goldston and Yang [9] for a proof of this result. This is fairly close
to optimal, since Bhowmik and Schlage-Puchta also proved that the error
term here is Ω(x log log x). Analogous results for forms of (1.1), where n is
written as the sum of k prime powers, have been proved by Languasco and
Zaccagnini [15] and by Bhowmik, Ramaré, and Schlage-Puchta [2]. For a
recent survey of results in this area, see [1].

In this article, we study the oscillations in the sum on the right side
of (1.3). To this end, define G(x) by

(1.4) G(x) = <
∑
γ>0

xiγ

(1
2 + iγ)(3

2 + iγ)
,

where the sum is over the ordinates of the zeros of the Riemann zeta func-
tion in the upper half-plane. We assume RH, so each such zero has real
part 1/2. Any multiple zeros that may occur appear with the appropriate

1We note that the sum over zeros, written in the form 2
∑

ρ
xρ+1

ρ(ρ+1) , appears here even without
assuming RH.
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Figure 1.1. G(x) using 1000 zeros of ζ(s) (lower curve),
and the empirical estimate (x2

2 −
∑
n≤xR(n))/4x3/2.

multiplicity in (1.4) and similar such sums throughout this article. A plot
of G(x) using the first 1000 zeros of the zeta function on the critical line
appears in Figure 1.1 (courtesy of T. Oliveira e Silva), along with an esti-
mate for this function obtained by computing the sum of R(n) for n ≤ x,
then subtracting off the main term x2/2 and scaling by −1/4x3/2.

In his third paper of 1991 on this topic [7], Fujii proved that if the
ordinates of the first 70 zeros of the Riemann zeta function on the critical
line are linearly independent over the rationals, then each of the inequalities

(1.5) G(x) < −0.012, G(x) > 0.012

would hold for an unbounded sequence of positive real numbers x. He noted
that this conclusion could also be established without the linear indepen-
dence hypothesis, if one instead employed a method of Odlyzko and te Riele
to solve certain inhomogeneous simultaneous approximation problems in-
volving these 70 real numbers. In 1985 Odlyzko and te Riele [20] famously
employed this method to disprove the Mertens conjecture regarding the size
of oscillations in the function M(x) =

∑
n≤x µ(n), where µ( · ) represents

the Möbius function. Recently, Hurst [13] used the same method, along
with additional techniques, to obtain the presently best known result in
this problem.

Odlyzko and te Riele established large oscillations in the positive direc-
tion by determining a real number y and integers m1, . . . ,m70 with the
property that ∣∣∣γkjy − ψkj − 2mjπ

∣∣∣ < ε,
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for 1 ≤ j ≤ 70, for a small positive number ε. Here −ψkj represents the
argument of the residue of 1/ζ(s) at s = 1/2 + iγkj , and 1 ≤ k1 < k2 <
· · · < k70 ≤ 400 denotes a particular sequence of positive integers corre-
sponding to the zeros which produced the most beneficial contributions in
the method employed there. Likewise, to establish large oscillations in the
negative direction, they determined z, n1, . . . , n70 so that∣∣∣γkjz − ψkj − (2nj + 1)π

∣∣∣ < ε′,

for 1 ≤ j ≤ 70, for a small positive number ε′. In [7], Fujii required analo-
gous results for the same problems, but with each ψkj eliminated, kj = j
for each j, and ε = ε′ = 0.1. (The first case is then a simpler homogeneous
approximation problem.) It is not clear however if the required computa-
tions were in fact performed in [7]: it is stated that the argument there
implies the bounds (1.5) “in principle”.

In this article, we analyze the oscillations in G(x), and prove two main
results. First, we use the method of Odlyzko and te Riele to establish a
lower bound on the oscillations exhibited by this function, improving (1.5).
We also establish an improved bound under an assumption of linear inde-
pendence for the zeros of the zeta function. Second, we establish an upper
bound on these oscillations, which shows that our results are close to opti-
mal. We prove the following theorem.

Theorem 1.1. With G(x) as in (1.4), on the Riemann hypothesis each of
the following inequalities holds for an unbounded sequence of positive real
numbers x:

G(x) < −0.022978, G(x) > 0.021030.(1.6)
Moreover, for all x > 0,

(1.7) |G(x)|<
∑

ζ(1/2+iγ)=0
γ>0

1√
(γ2 + 1/4)(γ2 + 9/4)

< 0.023059.

In addition, if the ordinates of the first 106 zeros of the Riemann zeta
function in the upper half-plane are linearly independent over Q, then the
inequality
(1.8) G(x) > 0.022978
holds for an unbounded sequence of positive real numbers x.

Thus, by (1.6) the oscillations in G(x) are close to best possible, since
they cannot exceed the bound given in (1.7). Moreover, the limit in (1.7) is
itself presumably close to best possible, owing to (1.8). It may be possible
to weaken the hypotheses leading to (1.8), for example, by assuming that
the first 106 zeros of ζ(s) contain no nontrivial linear relations in which



Oscillations in the Goldbach conjecture 299

all coefficients are integers bounded, say by 10100. Such an adaptation is
possible, following the authors’ work on weak independence (see, e.g., [19]
and the references therein) but we have not pursued this here.

This paper is organized in the following way. Section 2 establishes the
upper bound (1.7) of Theorem 1.1. Section 3 obtains lower bounds for pos-
itive values of G(x), conditioned on the existence of solutions to particular
simultaneous approximation problems involving a number of zeros of the
Riemann zeta function, and establishes (1.8). It also establishes the first
inequality in (1.6). Last, Section 4 describes the calculations required to es-
tablish the second bound in (1.6) on the positive oscillations in this function
without assuming any linear independence conditions, in order to complete
the proof of Theorem 1.1.

We remark that Hardy and Littlewood [12] conjectured that R(n) ∼
nS(n) for even integers n, where

S(n) =
∏
p|n

(
1 + 1

p− 1

)∏
p-n

(
1− 1

(p− 1)2

)
,

and that several authors encountered G(x) when estimating the average
value of R(n)−nS(n). For example, Fujii [6] in fact established (1.3) in the
form ∑

n≤x

(
R(n)− nS(n)

)
= −4x3/2G(x) +O

(
(x log x)4/3

)
.

It is readily seen that the two forms are equivalent, since from Montgomery
and Vaughan [18, Lemma 1] we have that∑

n≤x
nS(n) = 1

2x
2 +O(x log x).

Additional estimates involving S(n) and related functions and their appli-
cation in problems in additive number theory can be found in [18].

2. An upper bound for |G(x)|

Taking the real part of the sum in (1.4) produces

G(x) = −
∑
γ>0

cos(γ log x)
γ2 + 1

4
+
∑
γ>0

3 cos(γ log x) + 2γ sin(γ log x)
(γ2 + 1

4)(γ2 + 9
4)

(2.1)

=
∑
γ>0

(3
4 − γ

2) cos(γ log x) + 2γ sin(γ log x)
(γ2 + 1

4)(γ2 + 9
4)

.(2.2)

With a little calculus one can show that the maximal value of the numerator
in (2.2) is

√
(γ2 + 1/4)(γ2 + 9/4), occurring when

tan(γ log x) = 2γ
3
4 − γ2 ,
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and that the minimal value is −
√

(γ2 + 1/4)(γ2 + 9/4), so

(2.3) |G(x)| ≤
∑
γ>0

h(γ), h(γ) := 1√
(γ2 + 1/4)(γ2 + 9/4)

.

A simple expansion shows that

h(γ) = 1
γ2 + 1

4
− 1
γ4 + 2

γ6 −
61

16γ8 +O
(
γ−10

)
,

and from Davenport [4, Chapter 12] we have that

(2.4)
∑
γ>0

1
γ2 + 1

4
=
∑
ρ

<
(
ρ−1

)
= 1 + γ0

2 −
log 4π

2 = 0.02309 . . . ,

where ρ = 1/2 + iγ and γ0 = 0.577 . . . represents the Euler–Mascheroni
constant. We can now show easily that

(2.5) h(γ) < 1
γ2 + 1

4
− 1
γ4 + 2

γ6 .

For, first rearrange the right side of (2.5) to observe that it is nonnegative,
and then square both sides of (2.5). Therefore, to obtain an upper bound
on |G(x)|, we require an upper bound on

∑
γ>0 γ

−6. (We also need a lower
bound on the sum over γ−4 from (2.5), but clearly any finite sum will work.)
For this, we employ the result of Lehman [16, Lemma 3] stating that

(2.6)
∑
γ>T

γ−n <
log T
Tn−1

provided T ≥ 2πe = 17.079 . . . and n ≥ 2. Using (2.3), (2.4), (2.5),
and (2.6), we therefore conclude that

|G(x)| < 1 + γ0
2 −

log 4π
2 −

∑
0<γ≤T1

1
γ4 + 2

∑
0<γ≤T2

1
γ6 + log T2

T 5
2

,

where we may choose any values for T1 > 0 and T2 ≥ 2πe. Choosing the
first 1000 zeros for each sum, that is, taking T1 = T2 = 1420.41, we find
that |G(x)| < 0.023058681, which establishes (1.7).

3. Lower bounds on oscillations

We may determine a lower bound on positive values attained by G(x),
conditioned on the existence of solutions to certain simultaneous approx-
imation problems involving a number of nontrivial zeros of the Riemann
zeta function. A similar procedure produces an unconditional bound on
negative values achieved by G(x).
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Consider first the question of large oscillations in the positive direction.
Given a positive integer N and a positive real number ε, suppose there
exists a real number y and integers m1, . . . , mN so that
(3.1) |γky − (2mk + 1)π| ≤ ε
for 1 ≤ k ≤ N . Then certainly

(3.2) cos(γky) < −1 + ε2

2
for each k. Let T > 2πe be a real number selected so that the number
of nontrivial zeros of the Riemann zeta function with ordinate γ < T is
exactly N . From (2.1), we have

G(x) = −
∑
γ≤T

cos(γ log x)
γ2 + 1

4
+
∑
γ≤T

3 cos(γ log x) + 2γ sin(γ log x)
(γ2 + 1

4)(γ2 + 9
4)

+
∑
γ>T

(3
4 − γ

2) cos(γ log x) + 2γ sin(γ log x)
(γ2 + 1

4)(γ2 + 9
4)

=: G1(x, T ) +G2(x, T ) +G3(x, T ).

(3.3)

From (2.3), we have

|G3(x, T )| ≤
∑
γ>T

1√
(γ2 + 1/4)(γ2 + 9/4)

<
∑
γ>T

1
γ2 ,

and from [16, Lemma 1] we obtain

(3.4)
∑
γ>T

1
γ2 = 1

2π

∫ ∞
T

log(t/2π)
t2

dt+ ϑ

( 4
T 2 log T + 2

∫ ∞
T

dt
t3

)
,

where ϑ is a complex number satisfying |ϑ| ≤ 1. This provides a better
estimate than that in (2.6), which we shall need in what follows. While
the constants in the error in (3.4) could be improved by the results in [21,
23], the range of T that we are considering here makes any potential gain
negligible. Consequently,

(3.5) |G3(x, T )| < B3(T ) := 1
2πT

(
log T + 1− log 2π + 2π

T
(1 + 4 log T )

)
for all x > 0. For G1, we use (3.2) to find

G1(ey, T ) >
(

1− ε2

2

) ∑
γ≤T

1
γ2 + 1

4
.

For G2, we observe that 3 cos t+ 2γ sin t is decreasing near t = π, so

G2(ey, T ) ≥ −
∑
γ≤T

3 cos ε+ 2γ sin ε
(γ2 + 1

4)(γ2 + 9
4)
.
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Therefore,

(3.6) G(ey) >
(

1− ε2

2

) ∑
γ≤T

1
γ2 + 1

4
−
∑
γ≤T

3 cos ε+ 2γ sin ε
(γ2 + 1

4)(γ2 + 9
4)
−B3(T ).

In Table 3.1 we list a few values for the bound (3.6) for a number of
choices of N . In each case we assume ε = 0.01, and take T = T ∗(N), where

(3.7) T ∗(N) = γN+1 −
γN+1 − γN

100 .

Table 3.1. Conditional lower bounds for large positive val-
ues of G(x) from (3.6), assuming the simultaneous approxi-
mation problem (3.1) has a solution with ε = 0.01.

N Bound N Bound
70 0.014756 500 0.020630
100 0.016352 600 0.020902
150 0.017837 700 0.021109
200 0.018692 800 0.021272
250 0.019269 900 0.021404
300 0.019684 1000 0.021515
350 0.020001 2000 0.022079
400 0.020254 104 0.022699
450 0.020459 105 0.022925

If the ordinates of the first N nontrivial zeros of the zeta function are lin-
early independent, then by Kronecker’s theorem the corresponding bound
in Table 3.1 would necessarily hold infinitely often, as would any value com-
puted with an arbitrary choice of ε > 0. Selecting ε = 10−6 with N = 106

produces the value 0.02297864 . . . , which appears in (1.8) in Theorem 1.1.
For a bound on the negative values, given N and ε we require a real

number z and integersm1, . . . ,mN so that |γkz − 2mkπ| ≤ ε for 1 ≤ k ≤ N .
Certainly z = m1 = · · · = mk = 0 suffices with ε = 0, and we obtain an
expression similar to (3.6) as a simple lower bound on a negative value
achieved by G(x), valid for any positive T :

G(1) < −
∑
γ≤T

1
γ2 + 1

4
+
∑
γ≤T

3
(γ2 + 1

4)(γ2 + 9
4)

+B3(T ).

Using N = 106 and taking T = T ∗(N) produces
(3.8) G(1) < −0.02297865 . . . .
The statement that values this small occur infinitely often follows from
Dirichlet’s simultaneous approximation theorem, since for any δ > 0 there
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exist arbitrarily large q and integers m1, . . . , mN so that
(3.9) |qγi − 2πmi| < δ.

This establishes the first bound in (1.6).
To obtain a bound on the positive values of G(x) without linear indepen-

dence, in the next section we turn to the method of Odlyzko and te Riele
for constructing solutions to simultaneous approximation problems.

4. Computations

We complete the proof of Theorem 1.1 by solving the simultaneous ap-
proximation problem (3.1) for particular N and ε. For this we employ the
method of Odlyzko and te Riele [20], which we briefly describe here. Let
bxe denote the integer nearest the real number x, and let ek denote the
kth elementary unit column vector in the appropriate real vector space.
The construction requires values for four integer parameters: N , b, c, and
d. Here, b represents the number of bits of precision used in the computa-
tion; c and d are small positive integers whose meanings will be described
shortly.

Consider the inhomogeneous problem (3.1), where we require a real num-
ber y with the property that γky is near π, modulo integer multiples of 2π,
for 1 ≤ k ≤ N . We construct the (N+2)× (N+2) integer matrixM whose
column vectors are ⌊

2b+1π
⌉

ek, 1 ≤ k ≤ N,

eN+1 −
N∑
k=1

⌊
2b−cγk

⌉
ek,

2bNdeN+2 +
⌊
2bπ

⌉ N∑
k=1

ek.

That is,M consists of an (N+2)×N diagonal matrix with entries
⌊
2b+1π

⌉
on the diagonal, augmented with one column carrying rounded multiples
of the γk, and another largely filled with a rounded multiple of the inho-
mogeneous part, π. The penultimate vector carries the lone nonzero value
in row position N + 1, set to 1 so that we can recover a coefficient later
in the computation. The last vector has the only nonzero value in the last
position, chosen to be much larger than the other entries of the matrix.

We apply the LLL algorithm [17] to M to compute a reduced basis for
the lattice spanned by its column vectors. This reduced basis consists of
vectors that are relatively short, in fact within a factor (whose value is
bounded by an expression that is exponential in the dimension) of the
shortest independent vectors in the lattice. Since the last coordinate of
every vector in the lattice is an integer multiple of the large integer 2bNd,
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it is likely that there is only one vector in the reduced basis with a nonzero
value in this position, which is very likely to be ±2bNd. If this value is
negative we can negate the vector, so suppose it is (r1, . . . , rN , s, 2bNd)T .
We then have that there exist integers m1, . . . , mN such that

rk = mk

⌊
2b+1π

⌉
+
⌊
2bπ

⌉
− s

⌊
2b−cγk

⌉
for 1 ≤ k ≤ N , and that the rk are relatively small. If s < 0 then we can
negate this vector so that our inhomogeneous part is −π, which serves us
just as well, so we assume s ≥ 0 here. We might then expect

γks2−c ≈ 2πmk + π

so we take y = s/2c, and use this in (3.3) and (3.5) to compute the resulting
lower bound on positive values reached by G(x):
(4.1) G1(ey, T ∗(N)) +G2(ey, T ∗(N))−B3(T ∗(N)),
with T ∗(N) as in (3.7). For each k we also compute mk = b(γky − π)/2πe,
and then
(4.2) ε = max

1≤k≤N
{|γky − (2mk + 1)π|}.

A large value of ε (and consequently a small value in (4.1)) likely indicates
that insufficient precision was employed. In that case we repeat this process
with a larger value of b.

We remark that the other vectors in the reduced basis (those with zero
in the last component) in a similar way produce candidate values z in the
corresponding homogeneous problem, so γkz ≈ 2πmk for 1 ≤ k ≤ n, with
integers m1, . . . ,mn. These numbers produce bounds on negative values
achieved by G(x), though not as good as the bound established by (3.8).

Odlyzko and te Riele used c = 10 and d = 4 in their computations.
Both values worked sufficiently well in our application, too, so we did not
alter these in our principal runs. Those authors also reported selecting b
between 6.6N and 13.3N (that is, using between 2N and 4N decimal digits
of precision). The larger end of this range sufficed in our application only for
N up to about 200, where we produced ε = 0.0116. For larger dimensions
we needed to select b as large as 26.9N .

All computations were performed in SageMath [22], using resources at
NCI Australia and at the Center for Communications Research. High-
precision values for zeros of the Riemann zeta function were computed
using the mpmath Python library [14], available within SageMath.

Table 4.1 records the bounds we obtained on G(x) in this way, using
different values for N and b. The last line in this table records the pa-
rameters and results of the computation that establishes the second part
of (1.6) in Theorem 1.1. This calculation required 24.4 days of core time on
an Intel Xeon Platinum 8175M processor running at 2.5 GHz. Figure 4.1
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exhibits the value of 210y obtained for this case, using base 36 for economy
of space. The statement that G(x) achieves this bound infinitely often fol-
lows by applying Dirichlet’s theorem as in (3.9), using y+ q for a sequence
of qualifying values q.

Finally, the error incurred by the estimate (3.6) for G(x) decays like 1/N ,
and the LLL algorithm requires O(N6b3) bit operations (O(N5+εb2+ε) with
fast multiplication techniques). If we assume that b is linear in N , then
we conclude that a new computation designed to reduce the error in our
lower bound for G(x) in Theorem 1.1 by a factor of β would require O(β9)
(respectively O(β7+ε)) time. However, the LLL algorithm often performs
better in practice than its worst-case bound, and indeed our running times
in this work grow approximately as N6 using our choices for b. Thus, we
expect that a computation to halve the error in our lower bound for G(x)
by doubling N and adjusting b appropriately would require around four
years of core time on similar computers.

Table 4.1. Guaranteed oscillations in G(x), along with the
error ε from (4.2), obtained by solving the simultaneous ap-
proximation problem (3.1) using the first N zeros of the
Riemann zeta function, and using b bits of precision. The
displayed values for the bound are truncated at the last dis-
played digit; those for ε are rounded up at the last displayed
digit.

N b Bound ε
70 930 0.0147720 0.00089
100 1330 0.0163683 0.00125
150 2000 0.0178520 0.00394
200 2660 0.0187115 0.01160
250 3750 0.0192853 0.00932
300 4800 0.0197039 0.01097
350 6300 0.0200147 0.00792
400 7600 0.0202690 0.00990
450 9200 0.0204694 0.01577
500 11250 0.0206430 0.01239
600 15000 0.0209272 0.02106
650 17500 0.0210305 0.01396
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Figure 4.1. 210y (in base 36) for the last line in Table 4.1.
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7d585q79bxfcdzzy4tso1iedmkqw5k34elegyqv0ivqzrm28ufvz1dcs2oyt6zv1blfoxg619p17scashvn1f0vo3ubq7e
zhvt9kd41ufbrn58nqavn1i7v8tjwksy5y09q1006uc28vjoj601d9dzwr2oa2t2e5jvjdwk65wiycndh48ohkgzd9m1
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