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Bad places for the approximation property for
finite groups

par Felipe RIVERA-MESAS

Résumé. Pour un corps de nombres k et un k-groupe fini G, le problème
d’approximation modérée pour G est le suivant : est-ce que la restriction
H1(k,G) →

∏
v∈ΣH

1(kv, G) est surjective pour tout ensemble fini de places
Σ ⊆ Ωk disjoint de BadG, où BadG est l’ensemble de places de k qui divisent
l’ordre de G ou se ramifient dans la plus petite extension de k qui trivialise
G ? Dans cet article, nous démontrons que l’ensemble BadG est « optimal ».
Pour ce faire, nous démontrons l’existence de k-groupes finis abéliens A tels
que la restriction H1(k,A) →

∏
v∈Σ0

H1(kv, A) n’est pas surjective pour un
ensemble Σ0 ⊆ BadA avec des propriétés particulières, à savoir Σ0 est l’en-
semble de places qui ne divisent pas l’ordre de A et se ramifient dans la plus
petite extension de k qui trivialise A.

Abstract. Given a number field k and a finite k-group G, the Tame Ap-
proximation Problem for G asks whether the restriction map H1(k,G) →∏

v∈ΣH
1(kv, G) is surjective for every finite set of places Σ ⊆ Ωk disjoint

from BadG, where BadG is the finite set of places that either divides the or-
der of G or ramifies in the minimal extension splitting G. In this paper we
prove that the set BadG is “sharp”. To achieve this we prove that there are
finite abelian k-groups A where the map H1(k,A)→

∏
v∈Σ0

H1(kv, A) is not
surjective in a set Σ0 ⊆ BadA with particular properties, namely Σ0 is the
set of places that do not divide the order of A and ramify in the minimal
extension splitting A.

1. Introduction

Let k be a number field and G be a finite k-group i.e. a finite group
with a continuous action of the profinite group Gal(k) := Gal(k/k) which
is compatible with the group structure of G. A finite k-group G has ap-
proximation in a finite set of places Σ ⊆ Ωk if the restriction map

(1.1) H1(k,G) −→
∏
v∈Σ

H1(kv, G),
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is surjective (cf. Definition 3.1). Under this definition, we say that a finite
k-group has the approximation property if it has approximation in every
finite set of places of k. This property is in general too strong and it is not
satisfied, even for abelian groups.

To illustrate the fact that studying the approximation property for a
finite k-group G is a hard problem, consider what happens when G is con-
stant (i.e. Gal(k) acts on G trivially). In this case the problem of determin-
ing whether G has approximation in Σ becomes the Grunwald Problem in
Σ, i.e. determining whether the restriction map

Hom(Gal(k), G) −→
∏
v∈Σ

Hom(Gal(kv), G)/ ∼,

is surjective, where ∼ is the equivalence relation defined by conjugation and
Hom denotes the set of continuous homomorphism. Affirmative answers to
the Grunwald Problem for every finite set of places Σ are known in many
cases. For example: abelian groups of odd order over every number field,
by the Grunwald–Wang Theorem (cf. [4] and [13]); and solvable groups of
order prime to the number of roots of unity in k, by Neukirch’s Theorem
(cf. [9]). Note that an affirmative answer to the Grunwald problem for every
Σ implies an affirmative answer to the inverse Galois problem. In fact, an
affirmative answer to the Grunwald Problem for infinitely many Σ’s already
implies this.

A weaker property than the previously defined is the following. A fi-
nite k-group has approximation away from a set of places T ⊆ Ωk if it
has approximation in every finite set of places disjoint from T . A finite
k-group that satisfies this for a certain finite T is said to have weak weak
approximation. So, if a constant k-group G has approximation away from a
finite set of places of k, then it is a Galois group over k. The hypothesis of
this implication can be relaxed to an even weaker notion (cf. [5, Section 4,
Proposition 1]).

Studying these approximation properties for finite k-groups is equiva-
lent to studying certain approximation properties for certain homogeneous
spaces (cf. [3, Proposition 2.4]). Now we will briefly recall some implications
of this equivalence.

Let X be a (smooth and geometrically integral) k-variety such that
X(k) 6= ∅. We say that X has weak approximation away from T ⊆ Ωk

if the image of X(k) by the diagonal embedding in
∏

v∈S X(kv) is dense for
every finite set S ⊆ Ωk disjoint from T .

Now we briefly recall the Brauer–Manin obstruction to weak approxi-
mation for k-varieties (cf. [12, Chapter 5]). Let BrnrX be the unramified
Brauer group of X (cf. [12, p. 97, Brauer groups]). For each place v ∈ Ωk

we denote by
invv : Br kv −→ Q/Z,



Bad places for the approximation property for finite groups 239

the Hasse invariant (cf. [6, Proposition 8.4]). We denote the product∏
v∈Ωk

X(kv) byX(kΩ). We defineX(kΩ)Brnr as the set of points (Pv)v∈Ωk
∈

X(kΩ) such that∑
v∈Ωk

invv(α(Pv)) = 0, for every α ∈ BrnrX,

where α(Pv) ∈ Br kv denotes the evaluation of α at the point Pv and the
sum, which a priori is infinite, is in fact finite for elements α ∈ BrnrX
(cf. [12, Section 5.2]). Then we have the following inclusions:

X(k) ⊆ X(kΩ)Brnr ⊆ X(kΩ),

where X(k) is the topological closure of the image in X(kΩ) of X(k) via the
diagonal embedding. If X(kΩ)Brnr 6= X(kΩ) we say that there is a Brauer–
Manin obstruction to weak approximation.

A conjecture by Colliot-Thélène (cf. [1, Introduction]) says that the
Brauer–Manin obstruction to weak approximation should be the only ob-
struction for homogeneous spaces X under a connected linear group, that is
X(k) = X(kΩ)Brnr . Now, given a finite k-group we can regard it as a finite
algebraic k-group which can be embedded into SLn for some n ∈ N. Then,
if we consider the quotient space X := SLn /G, we get a homogeneous space
under the connected group SLn. Furthermore, since BrnrX/Br k is finite
(cf. [2, Section 13.1] and [2, Theorem 4.4.2]), the equalityX(k) = X(kΩ)Brnr

for the k-variety SLn /G implies that the finite k-group G has weak weak
approximation. In other words, Colliot-Thélène’s conjecture would imply
that, for every finite k-group G, there is a finite set of places T (G, k) where
G has approximation away from it. This conjecture has been proved in
many cases, e.g. for iterated semidirect products of finite abelian groups
by Harari (cf. [5, Théorème 1]) and hypersolvable groups by Harpaz and
Wittenberg (cf. [7, Théorème 6.6]).

Thus for a k-group G as above we have that there is a finite set of
places T ⊂ Ωk such that G has approximation away from T (cf. Defini-
tion 3.1). Unfortunately, this proof of weak weak approximation, which
use the Brauer–Manin obstruction, does not allow us to obtain an explicit
description of the set T .

In [3] Demarche, Lucchini Arteche and Neftin defined, for every finite
k-group G, the finite set of places BadG ⊆ Ωk as the union of the set Badd

G

of places of k that divide the order of G and the set Badr
G of places of k that

ramify in the minimal extension splitting G (cf. [3, Definition 2.1]). Follow-
ing the result by Harari, they proved that if G is an iterated semidirect
product of finite abelian k-groups, then G has approximation away from
BadG (cf. [3, Theorem 1.1]). Moreover, they asked whether every finite k-
group has approximation away from BadG. They called this question the
Tame Approximation Problem (cf. [3, Section 1.2]). Note that this result
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cannot be considered as an improvement of the result given by Harari, but
rather as a complement of it. Indeed, despite the fact that [3, Theorem 1.1]
describes explicitly a finite set of places where G has approximation away
from it, it does not explain the behavior of the map (1.1) in subsets of
BadG.

Recently, in [8] Lucchini Arteche gave a link between the results above.
Given a finite k-group G, and under the assumption of Colliot-Thélène’s
conjecture on the Brauer–Manin obstruction, we have an affirmative answer
to the Tame Approximation Problem for G (cf. [8, Corollary 6.3]). This re-
sult is obtained by describing explicitly the group BrnrX with X = SLn /G.
In this way, we get, for every finite k-group, an explicit and general descrip-
tion of the set of places of k where the weak weak approximation property
is satisfied.

Therefore, studying the set BadG is interesting itself. In particular, it is
interesting to know how much the subsets Badr

G and Badd
G affect approxi-

mation. By [3, Theorem 5.1], there are examples of finite k-groups which do
not have approximation in Σ ⊆ Badd

G (cf. Definition 3.1). These examples
satisfy Badr

G = ∅ and are necessarily non abelian. Even more, here below,
we will note that such examples cannot be obtained among abelian finite
k-groups. Now what happens with Badr

G? We will prove that there are fi-
nite k-groups that do not have approximation in Σ ⊆ Badr

G rBadd
G. These

examples will be abelian so, by standard arguments in group cohomology,
we will concentrate on `-primary torsion abelian k-groups, with ` a prime.

More precisely, we will exhibit explicit examples of finite abelian k-groups
A and sets Σ ⊆ Badr

A rBadd
A such that A does not have approximation in

Σ but it does in Σr{v} for every v ∈ Σ. These examples are quite general.
Indeed, firstly, for every ` there is such an example where A is an `-group
(cf. Theorem 5.1); and secondly, for every number field k and every place
p ∈ Ωk not dividing 2, there is such an example where p ∈ Σ and A has
approximation in Σ r {p} (cf. Theorem 5.5). Thus, these examples prove
that the set BadG is “sharp” in the following sense: if f assigns to each finite
k-group G a finite set of places f(G) ⊆ Ωk such that G has approximation
away from f(G), then f(G) cannot have less elements than BadG for every
finite k-group G. That is, the subsets Badr

G and Badd
G cannot be ignored

in general.
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2. Conventions and notations

All throughout this text k denotes a number field and Ωk the set of places
of k. For each v ∈ Ωk we denote by kv the completion of k at v and, if v is
a non archimedean place, κ(v) denotes the residue field at v. Besides, for
every field K, we denote by Gal(K) its absolute Galois group. If L/k is a
Galois extension with group G, for each v ∈ Ωk we define its decomposition
subgroup Gv in L/k as the decomposition subgroup G(w/v) in L/k of some
place w ∈ ΩL above v. In this case Gal(Lw/kv) = Gv. Note that this notion
depends on w but this is not a issue in the first cohomology since if w
and w′ are places over v then G(w/v) = g−1G(w′/v)g for some g ∈ G
and therefore the cohomology sets H1(G(w/v), A) and H1(G(w′/v), A) are
canonically isomorphic for every G-group A.

We say that A is a finite k-group if A is a group with a continuous
action of Gal(k) compatible with its group structure. When A is abelian
we say A is an abelian k-group. Moreover, for each finite abelian k-group
A we denote by Â its Cartier dual, i.e. the k-group Hom(A, k∗) with the
continuous action σ ·f(x) = σ ·f(σ−1 ·x). An algebraic extension L/k is said
to split A if Gal(L) acts trivially on A. Likewise A is said to be constant
if Gal(k) acts on A trivially. We note that for every finite k-group A there
exists a unique minimal finite Galois extension L/k splitting A. Indeed,
this extension corresponds to the kernel of the morphism Gal(k)→ Aut(A)
induced by the action of Gal(k) on A.

3. Preliminaries

In this section, we recall some definitions related to the approximation
property for k-groups and some known results in this topic.

We recall the notion of approximation in k-groups that was mentioned
in the introduction.

Definition 3.1. Let G be a k-group. We say G has approximation in a set
Σ ⊆ Ωk if the restriction map

H1(k,G) −→
∏
v∈Σ

H1(kv, G),

is surjective. Likewise, we say G has approximation away from Σ, if G has
approximation for every finite set of places of k that is disjoint from Σ. For
convenience, we assume that G has approximation in Σ = ∅.

An important object to study the approximation property for k-groups
is the following.
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Definition 3.2. Let A be a k-group and Σ be a set of places of k. We
denote by X1

Σ(k,A) the kernel of the restriction map

H1(k,A) −→
∏
v /∈Σ

H1(kv, A).

We write X1(k,A) := X1
∅(k,A) and we define X1

ω(k,A) as the union
of the groups X1

Σ(k,A) for every finite Σ. For a Galois extension L/k
splitting A with Galois group G, we denote by X1

Σ(L/k,A) the kernel of
the restriction map

H1(G,A) −→
∏
v /∈Σ

H1(Gv, A),

and X1(L/k,A) := X1
∅(L/k,A).

The following proposition, which corresponds to [3, Proposition 2.5],
gives us a link between the previously defined concepts.

Proposition 3.3. Let A be a abelian k-group and Σ ⊆ Ωk be a finite set
of places. Then there is a pairing∏

v∈Σ
H1(kv, A)×X1

Σ(k, Â) −→ Q/Z,

such that its right kernel is X1(k,A) and its left kernel is the image of the
restriction map

H1(k,A) −→
∏
v∈Σ

H1(kv, A).

In particular, A has approximation in Σ if and only if X1
Σ(k,Â)=X1(k,Â).

Let A be a finite abelian k-group and L/k be an extension splitting A.
By [11, Lemme 1.1(iii)] and Proposition 3.3, we note that if Σ is a finite
set of places of k where A does not have approximation, then that set must
contain at least one place whose decomposition group in L/k is not cyclic.
Even more, one can assume that Σ only contains places whose decompo-
sition group in L/k is not cyclic. In particular, these places must ramify
in L/k. Therefore, by Proposition 3.3, we get that A has approximation in
every set Σ ⊆ Ωk r Badr

A, in particular for Σ ⊆ Badd
A rBadr

A. Therefore,
unlike [3, Theorem 5.1], we cannot find a finite k-group A and a finite set
of places Σ ⊆ Badd

A rBadr
A where A does not have approximation and A

is abelian.
In addition, by Proposition 3.3, we note that archimedean places play

no role in the lack of surjectivity of (1.1) for finite abelian k-groups. In-
deed, these places have cyclic decomposition groups, henceX1

ΣrΩ∞(k,A) =
X1

Σ(k,A) for every finite set of places Σ, where Ω∞ is the set of archimedean
places of k. Therefore, throughout this text we will assume that every finite
set of places Σ ⊆ Ωk only has non archimedean places.



Bad places for the approximation property for finite groups 243

Now, we give a definition that will allow us to study the approximation
property of an abelian k-group from a purely algebraic point of view.

Definition 3.4. Let G be a finite group. For a G-module A we define
X1

cyc(G,A) as the kernel of the restriction map

H1(G,A) −→
∏
g∈G

H1(〈g〉, A).

By [11, Lemme 1.2] we get the equalities
(3.1) X1

cyc(L/k,A) = X1
ω(k,A) = X1

Σ0(k,A)(k,A),
for every finite abelian k-group A, where L/k is the minimal extension
splitting A and the set Σ0(k,A) is defined as follows.

Definition 3.5. Let A be a finite abelian k-group. We define Σ0(k,A) as
the set of places of k whose decomposition group in the minimal extension
splitting A is not cyclic.

Proposition 3.3 tells us then the following: if the finite abelian k-group A
does not have approximation in the finite set Σ ⊆ Ωk then Σ∩Σ0(k, Â) 6= ∅.
In other words, when A is a finite abelian k-group the set of “bad places”
of A is Σ0(k, Â). This is consistent with the following result.

Proposition 3.6. The set Σ0(k, Â) is contained in BadA

Proof. If A is a finite abelian k-group and L/k is the minimal extension
splitting A, then the minimal extension splitting Â is contained in L(ζe)/k,
where e is the exponent of A. Therefore, if a place v ∈ Ωk ramifies in
L(ζe)/k, then it ramifies either in L/k or in L(ζe)/L, which necessarily
implies that either v ramifies in L/k or divides e (hence divides the order
of A). �

4. Construction of non trivial quotients X1
Σ(k, A)/X1(k, A)

By Proposition 3.3 and the equality (3.1), if a finite abelian k-group A
does not have approximation in Σ ⊆ Ωk, then X1

Σ(k, Â) 6= 0, so that
X1

cyc(k, Â) 6= 0. Therefore, we will be interested in constructing finite
abelian k-groups A for which X1

cyc(G,A) is non trivial, where G is the
Galois group of the minimal extension splitting A.

In order to construct these k-groups, we use the following lemma.

Lemma 4.1. Let G be a finite group of order n and exponent e. Let I be the
augmentation ideal of Z/nZ[G]. Then X1

cyc(G, I) ∼= Z/fZ where f = n/e.

Proof. We have the exact sequence 0 → I → Z/nZ[G] → Z/nZ → 0,
where Z/nZ[G] is cohomologically trivial (cf. [6, Proposition 1.23]). Then
for all H ≤ G we get isomorphisms H1(H, I) ∼= Ĥ0(H,Z/nZ), where Ĥ0
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denotes the Tate cohomology group. We have Ĥ0(H,Z/nZ) ∼= Z/|H|Z for
all H ≤ G. Hence

X1
cyc(G, I) ∼= ker

Z/nZ −→ ∏
g∈G

Z/|g|Z

 ∼= Z/fZ,

where f = n/e. �

To complement the previous result we note that, in order to ensure that
an abelian k-group A does not have approximation in Σ, it is sufficient to
satisfy the following conditions

(1) X1
Σ(k, Â) 6= 0;

(2) X1(k, Â) = 0.
So, we will be interested in knowing when the second condition is satisfied
since we already know how to construct examples where the first condition
is satisfied. The following lemma will help us in this direction.

Lemma 4.2. Let L/k be the minimal extension splitting the finite abelian
k-group A. Suppose that there is a place v ∈ Ωk such that Gv = Gal(L/k).
Then X1

Σ(k,A) = 0 for every finite set of places Σ ⊂ Ωk which does not
contain v.

Proof. Let v be a place of k such that Gv = G. Then the restriction map
Resv : H1(G,A) −→ H1(Gv, A)

is the identity. Let Σ ⊂ Ωk be a finite set of places which does not contain
v. So, if α ∈X1

Σ(L/k,A) then Resv(α) = α = 0. Thus, X1
Σ(L/k,A) = 0.

Now, by [11, Lemme 1.1(ii)] we have X1
Σ(k,A) = X1

Σ(L/k,A). Hence,
X1

Σ(k,A) = 0. �

The following results are obtained immediately from the previous lemma
and give us a sufficiency condition to get X1(k,A) = 0.

Corollary 4.3. Let L/k be the minimal extension splitting the finite abelian
k-group A. Assume that A does not have approximation in Σ. Then Σ con-
tains all places whose decomposition group in L/k is Gal(L/k). In partic-
ular, if v ∈ Ωk is a place whose decomposition group in L/k is Gal(L/k),
then A has approximation in Σ0(k, Â) r {v}.

Corollary 4.4. Let L/k be the minimal extension splitting the finite abelian
k-group A. If there exists a place v ∈ Ωk whose decomposition group in L/k
is G := Gal(L/k), then X1(k,A) = 0.

Let G be a finite group of order n and L/k be a Galois extension with
group G. The augmentation ideal of Z/nZ[G] has a natural structure of
abelian k-group. Indeed, Gal(L/k) acts (continuously) on I via the natural
action of G on I. Extending this action to Gal(k) we have a structure of
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abelian k-group for I. Note that when n ≥ 3, the extension L/k is the
minimal extension splitting I since Gal(L/k) acts faithfully on {g − 1 |
g ∈ G}. In this way, we can ask:
Is there a Galois extension L/k with group G of order n where the abelian
k-group I and the set of places Σ0(k, I) satisfy the conditions (1) and (2)?

At this point is important to note the following: if Σ0(k, I) does not
contain any place dividing n then Σ0(k, Â) ⊆ Badr

A rBadd
A for A = Î.

The following lemma answers the question above concretely and will
guide our constructions.

Lemma 4.5. Let L/k be a Galois extension with Galois group G of order n
and exponent e such that n/e 6= 1 (for example, if G is a non cyclic abelian
group). Let I be the finite abelian k-group defined as the augmentation ideal
of Z/nZ[G]. Then, if there exists a place v ∈ Ωk such that Gv = G, we have
X1

Σ0(k,I)(k, I)/X1(k, I) 6= 0.

Proof. By Lemma 4.1 we have X1
Σ0(k,I)(k, I) = X1

cyc(G, I) 6= 0 since
n/e 6= 1. Now let us suppose that there is a place v ∈ Ωk such that
Gv = G, then by Corollary 4.4 we have X1(k, I) = 0. Hence, the quo-
tient X1

Σ0(k,I)(k, I)/X1(k, I) is non trivial. �

5. Failure of approximation on abelian k-groups

Throughout this section we will use latin letters (e.g. p) to denote primes
in Q and gothic letters (e.g. p,P) to denote places in number fields distinct
from Q.

5.1. Failure of approximation on `-groups. The aim of this subsection
is to find a family of counterexamples to the approximation on `-groups
when ` is a given prime. This is summarized in the following theorem.

Theorem 5.1. For every positive integer n and for every pair of primes `
and p with p ≡ 1 (mod `n), there exist a number field k, a finite set of places
Σ ⊆ Ωk and an abelian k-group A of order `a, with a = (n+ 1)(`n+1 − 1),
such that

• Σ ⊆ Badr
A rBadd

A and it contains every place over p;
• A does not have approximation in Σ;
• A has approximation in Σ r {p} for every place p over p.

Let n be a positive integer, ` be a prime number and k = Q(ζ`n). The
following result allows us to find an explicit Galois extension of k where the
decomposition group of a place of k is its whole Galois group and where
places of k dividing the order of this extension have cyclic decomposition
groups.
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Lemma 5.2. Let p be a prime congruent to 1 modulo `n. Then there exists
an odd prime q such that

• Gal(kp( `n√p, √̀q)/kp) = Gal(k( `n√p, √̀q)/k) ∼= Z/`nZ × Z/`Z, for
every place p ∈ Ωk over p;
• Gal(kl( `n√p, √̀q)/kl) ↪→ Z/`nZ, for every place l ∈ Ωk over `.

Proof. By Dirichlet’s Theorem there is an odd prime q which is not an `-th
power modulo p and such that

• q ≡ 1 (mod 8) if ` = 2;
• q ≡ 1 (mod `2) if ` 6= 2.

Set L = k( `n√p, √̀q). Note that k/Q is unramified at p. Then, the poly-
nomial x`n − p is an Eisenstein polynomial at p. So k( `n√p)/k is a Ga-
lois extension with group isomorphic to Z/`nZ which is totally ramified
at p and kp( `n√p)/kp has Galois group isomorphic to Z/`nZ. On the other
hand, k(√̀q)/k is unramified at p (since x` − q is separable in κ(p)) so,
Gal(kp(

√̀
q)/kp) ∼= Z/`Z if and only if [κ(P) : κ(p)] = `, where P is a place

of k(√̀q) over p. We note that p splits completely in k since p ≡ 1 (mod `n),
so κ(p) = Fp and

[κ(P) : κ(p)] = [Fp(
√̀
q) : Fp] = `,

since q is not an `-th power modulo p. Therefore, kp(
√̀
q)/kp is a cyclic

extension of order `. Hence, Lp := kp(`n√p, √̀q) is a ramified extension with
Gal(Lp/kp) ∼= Z/`nZ× Z/`Z ∼= Gal(L/k).

Finally, by the properties satisfied by q above we have q is an `-power in
Q`, hence

Gal(kl(`n√
p,
√̀
q)/kl) ↪→ Z/`nZ,

for every place l ∈ Ωk over `. �

The following result is immediately obtained from previous lemma.

Lemma 5.3. Let p be a prime congruent to 1 modulo `n. Then there exists
a Galois extension L/k with group G = Z/`nZ × Z/`Z such that Gp = G
for every place p ∈ Ωk over p and Gl is cyclic for every place l ∈ Ωk over `.

Thanks to this result we can prove the Theorem 5.1.

Proof of Theorem 5.1. Let L/k be the extensión given by Lemma 5.3 and
G := Gal(L/k). Let I be the augmentation ideal of Z/`n+1Z[G] equipped
with the structure of k-group defined by L/k. Then, the set Σ0(k, I) con-
tains every place over p, it does not contain any place over ` and, by
Lemma 4.5, the quotient X1

Σ0(k,I)(k, I)/X1(k, I) is non trivial. Hence, set-
ting A := Î we have, by Proposition 3.6,

Σ0(k, Â) = Σ0(k, I) ⊆ Badr
A rBadd

A,
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A does not have approximation in Σ0(k, Â) and it has approximation in
Σ0(k, Â) r {p} for every place p over p (cf. Corollary 4.3). �

Remark 5.4. When n = 1, the set Σ0(k, Â) is the set of places whose de-
composition group is Gal(L/k). Thus we have that Σ0(k, Â) is the smallest
subset of Ωk where A does not have approximation.

In particular, if n = 1 and ` = 2 we have k = Q and Σ0(Q, I) =
{p, q}: indeed, the only primes of Q whose decomposition group in L =
Q(√p,√q)/Q is not cyclic are p and possibly q (cf. Lemma 5.2). Then
Σ0(Q, I) ⊂ {p, q}. Now, by hypothesis q is congruent to 1 modulo 4 and it
is not a square modulo p. Then by the law of quadratic reciprocity we have
that p is not a square modulo q either. Therefore, the decomposition group
of q in L/Q is Gal(L/Q). Hence, Σ0(Q, I) = {p, q} = Badr

A rBadd
A.

5.2. Failure of approximation at almost every place of a number
field. The aim of this subsection is to find a family of counterexamples
to the approximation in every number field k and in every place of k not
dividing 2. This is summarized in the following result.
Theorem 5.5. For every number field k and for every place p ∈ Ωk which
does not divide 2, there exists a finite set of places Σ ⊆ Ωk and a finite
abelian k-group A such that

• p ∈ Σ ⊆ Badr
A rBadd

A;
• A does not have approximation in Σ;
• A has approximation in Σ r {p}.

Let k be a number field and p be a place of k over a prime p ∈ Q.
Lemma 5.6. Suppose that p is distinct from 2. Then, there exists algebraic
integers a, b ∈ Ok such that

• Gal(kp(
√
a,
√
b)/kp) = Gal(k(

√
a,
√
b)/k) ∼= Z/2Z× Z/2Z;

• Gal(kv(
√
a,
√
b)/kv) ↪→ Z/2Z, for every place v ∈ Ωk over 2.

Proof. Let Σ2 ⊂ Ωk be the set of places over 2. Set ap ∈ O∗p r O∗2p such
that ap is not a square in κ(p). Since O∗2v is open in O∗v for every v ∈ Σ2,
we have that, by the Approximation Theorem on number fields (cf. [10,
Chapter II, Theorem 3.4]), there exists an a ∈ Ok such that a − ap ∈ pOp

and a ∈ O∗2v for each v ∈ Σ2. In particular, a is not a square modulo
p. Therefore, kv(

√
a)/kv is trivial for every v ∈ Σ2 and kp(

√
a)/kp is a

quadratic extension since p does not divide 2 and
2 = [κ(p)(

√
a) : κ(p)] ≤ [kp(

√
a) : kp] ≤ 2.

On the other hand, there exists b ∈ k∗ such that vp(b) = 1. So, the extension
kp(
√
b)/kp is a totally ramified quadratic extension. Hence,

Gal(kp(
√
a,
√
b)/kp) = Gal(k(

√
a,
√
b)/k) ∼= Z/2Z× Z/2Z,
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and
Gal(kv(

√
a,
√
b)/kv) = Gal(kv(√p)/kv) ↪→ Z/2Z,

for every v ∈ Σ2. �

Remark 5.7. If p does not divide the discriminant of k/Q, then we can
take b = p.

The following result is immediately obtained from the previous lemma.

Lemma 5.8. Suppose that p is distinct from 2. Then there is a biquadratic
extension L/k such that Gp = Gal(L/k) and Gv is cyclic for every place
v ∈ Ωk over 2.

Thanks to this result we can prove Theorem 5.5.

Proof of Theorem 5.5. Let L/k be the extension given by Lemma 5.8 and
G := Gal(L/k). Let I be the augmentation ideal of Z/4Z[G] equipped with
the structure of abelian k-group defined by L/k. The proof continues in the
same way as Theorem 5.1 replacing ` by 2. �

Remark 5.9. If we would like to prove the Theorem 5.5 when p = 2 using
the Lemma 4.5, then G cannot be asumed abelian in general. Indeed, if
κ(p) = F2 (e.g. when k/Q is totally ramified at p), then k∗p

∼= Z × O∗p
where O∗p is a pro-2-group (cf. [6, Théorème 7.18]). On the other hand,
the reciprocity map in kp gives a correspondence between finite abelian
extensions of kp and finite quotients of k∗p (cf. [6, Théorème 9.13]). Hence,
there is no non cyclic finite abelian extension of kp of degree prime to 2.

Remark 5.10. In Theorems 5.1 and 5.5 we give counterexamples to the
approximation for:

• abelian k-groups of order an `-th power for every prime ` (Theo-
rem 5.1);
• and at every place not dividing 2 of an arbitrary number field (The-
orem 5.5).

This brings up the following question, would it be possible to use the same
constructions in order to find a counterexample to the approximation with
a completely arbitrary choice of `, p and k? More precisely, given a prime
`, a number field k and a place p ∈ Ωk over a prime p distinct from `,
does there exist a non-cyclic Galois extension L/k of degree an `-th power
such that the set Σ0(k, I) ⊆ Badr

I rBadd
I contains p and Gp = Gal(L/k)?

The answer is no. Indeed, let P be a place of L over p. If we suppose that
Gp = Gal(L/k) then LP/kp is tamely ramified. Let T/kp be the maximal
unramified subextension of LP/kp, then the extension LP/T is generated
by radicals of order divisible by ` (cf. [10, Chapter II, Proposition 7.7]).
This implies that µ` ⊆ T and thus ` divides |κT | − 1, where κT is the
residue field of T . Hence, we cannot expect to improve the results obtained
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in theorems 5.1 and 5.5. That is, using the same constructions we cannot
find examples with completely arbitrary choice of `, p and k since we will
inevitably have the restriction ` divides |κT | − 1.
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