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Relative class numbers of subfields of the p-th

cyclotomic field

par TAkAsHI FUKUDA

RESUME. Dans cet article, nous généralisons le résultat récent d’Ichimura sur
les nombres de classes relatifs des sous-corps du p-iéme corps cyclotomique.

ABSTRACT. We generalize the recent result of Ichimura concerning relative
class numbers of subfields of the p-th cyclotomic field.

1. Introduction

For a natural number n, we denote by (, a primitive n-th root of unity
contained in the complex number field C. Let p be a prime number. It is
observed that the relative class number of the p-th cyclotomic field Q((p)
grows rapidly as p grows. How about the relative class numbers of subfields?
Let £ be an odd prime divisor of p—1 with the highest power ¢/ dividing p—1
and ¢ a divisor of p—1 prime to £. We fix ¢ and denote by K; (0 <t < f) the
unique subfield of Q((,) with degree g¢*. We are interested in the relative
class number h; of Kj.

Several authors observed that the ¢-part of by (0 <t < f) behaves like in
Iwasawa’s class number formula. Recently, Ichimura [3] gave a confirmation
of this phenomenon. Namely, he proved the following which is an analogue
to Corollary 3 in [1].

Let ¢t be ¢-part of h; and let ¢ denote the Euler function as usual.

Theorem 1.1 (Ichimura). Let p be a prime number with p = 3 (mod 4)
and q = 2. Let ¢1 be the highest power of an odd prime number ¢ dividing
p—1. Ifes —es_1 < p(€%) for some s with 1 < s < f, then es — es_1 =
er —er_1 for allt with s <t < f.

Ichimura also gave examples. For example, let (p, ¢, ¢) = (7860079, 2, 3).
Then eg =3,e1 =7,e2 =17, e3=25and e, =8+ 1 (2 <t <8).

In this paper, we generalize Ichimura’s result and provide an another
proof for Ichimura’s theorem.
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Theorem 1.2. Let p be a prime number, £ an odd prime divisor of p — 1
with the highest power ¢7 dividing p—1 and q a divisor of p—1 prime to £.
(1) If eo = 0, then e, = 0 for all t with 0 <t < f.
(2) If eg > 0, then e;—1 < e for allt with 1 <t < f.
(3) If es —es—1 < @(€?) for some s with 1 < s < f, then e; —es_1 =
er —ep1 for all t with s <t < f.

Let v9 denote the additive 2-adic valuation normalized by v9(2) = 1. If
v2(q) < va(p—1), then Ky (0 <t < f)isrealand h; =1 (0 <t < f). So
the theorem has a meaning only when v2(q) = va(p—1). For the proof of the
theorem, we recall a class number formula of an abelian number field. Let
F be an imaginary abelian number field of finite degree. Then the relative
class number h~ (F') of F is given by

W (F) = QF)wF) [] N@(gd)/@(—%Bl»X)’
KCF

where Q(F') is the unit index of F', w(F') is the number of roots of unity
contained in F' and K runs through all imaginary cyclic subfields of F'. For
each K, d = [K : Q] and x is an arbitrary injective character of G(K/Q) to
C* (cf. [4, p. 294]). We also denote by x the primitive Dirichlet character
induced by x. Then the Bernoulli number By, is given by

1 m
Bix= > ax(a),
a=1
where m is the conductor of K.

Let p; = (1 — (y¢) be the prime ideal of Q(({,) lying above ¢. For an
integer  in Q((y), let ordy, x denote the maximal integer n such that p}
divides (z). The following is a key lemma for our work.

Lemma 1.1. Let g(X) € Z[X].

(1) If g(1) # 0 (mod ¢), then ordy, g(¢,) = 0.
(2) If (1) =0 (mod ¥), then ordy, g(¢¢) > 0.
(3) If ordy, g(Cet) > 0 for somet > 1, then

ordp, ., g(Cpe+1) > 0.
(4) If ordy, g(Cer) < p(€') for some t > 1, then

ordy, g(Cpt) = ordy, ., , g(Cpr+1) -
Proof. We recall the well known fact ordy, £ = ¢(¢*) and write

9(X) = 3 as(X — 1)

with a; € Z. Then (1) is an immediate consequence of ag = g(1) # 0
(mod ¢). Also (2) and (3) are immediate consequences of ap = 0 (mod ¢).
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In order to prove (4), we assume r = ordy, g((st) < p(€"). If a; =0 (mod ¢)
for all 4 with 0 < i < r, then we have p, ™' | g((xt) which contradicts the
assumption. Hence there exists some ¢ < r such that a; # 0 (mod ¢). We
take i to be minimal. If 0 < ¢ < r, then we have ordy, () = ¢ which
also contradicts the assumption. Hence we have ¢ = r which immediately
implies the conclusion. O

2. Proof of Theorem 1.2

Let go be the highest power of 2 dividing p — 1. First we prove the
theorem when ¢ = qg. Let |- |, denote the multiplicative ¢-adic valuation
normalized by |¢|; = 1/¢. We show that es — es_1 < @(¢%) with 1 < s < f
implies es; — e;_1 = €541 — es. Let x be an arbitrary injective character of
G(Ks4+1/Q). Then, the conductor of y is p and

Bix=+ 3 ax(a).

1<a<p

Since K; (0 <1i < s+ 1) are all the imaginary cyclic subfields of K11, we

have
-1

(e = \ No(¢a1)/Q © NQ(C 1) /QCs 1) (Bx) \e

and
€s+1 — €5 = Ordps-‘rl N@(ngerl)/Q(Cgerl) ( Z aX(a)) ’
1<a<p

If we fix {; and (ys+1, then there exist two functions p1, p2 : N - NU{0}
satisfying

X(a) = ¢ @2y
We define g(X) € Q(()[X] by

gx)= I (Z acq“(“)"X”(“))-

o€G(Q(¢)/Q) \1=a<p

Then g(X) € Z[X] because ¢g(X) is invariant under the action of G(Q(¢,)/Q).
Now we have

N@(ngs+l)/(@(<gs+l) ( Z aX(a)) :g(CZ‘S+1)
1<a<p
and hence

est1 — €s = ordp,, g(Cps+1) .
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Let n be an integer satisfying n = 1 (mod ¢) and n = £ (mod £5*1).
Then ¢ = x" is an injective character of G(K/Q) and

es — es—1 = ordp, No(¢,ps)/Q(Ces) ( > W(G))

1<a<p
= Ordps g(@“") *

Then Lemma 1.1(4) yields e; — es—1 = esy1 — es. Hence we can prove (3)
inductively. Next we consider (1) and (2). Let x be an arbitrary injective
character of G(K1/Q) and ¢ = x" with n satisfying n = 1 (mod ¢) and
n =0 (mod ¢). Then,

e1 — eo = ordy, No(c,,)/a(¢) ( > ax(a))

1<a<p
= Ordm g(@)

with g(X) € Z[X] defined similarly as above and
-1

9" = |Naw,n /a6 ( > W(a))

1<a<p ¢

-1

= N@(@)/@( > W(a))

1<a<p

L

1
= N@(Cq)/Q(BLw)’K = KGO

because Ky is the only imaginary cyclic subfield of Ky. Assume ey = 0.
Then we have e; —ep = 0 by Lemma 1.1(1) and e, —e;—1 =0 (1 <t < f)
by Theorem 1.2(3). We note that this is also an immediate consequence
of [6, Theorem 10.4(a)]. Assume ey > 0. Then we have e; — ey > 0 by
Lemma 1.1(2) and e¢; —e;—1 > 0 (1 <t < f) by Lemma 1.1(3).

Now we return to a general g with gy | ¢. In this case, ¢ is a product of
qo and q1, where ¢; is an odd divisor of p — 1 prime to ¢. If o(n) denotes
the number of divisors of an integer n, then K; has o(q1)(t 4+ 1) number of
imaginary cyclic subfields. These subfields are determined by the degree.
Namely, if we denote by Q(p, m), for a divisor m of p — 1, a unique subfield
of Q(¢p) with degree m, then all the imaginary cyclic subfields of K; are
Q(p, qodl?) (d | q1,0 < i < t). For each d and i, there exists an injective
character xq; of G(Q(p, god¢?)/Q). Then we have

€S+1 - es = ZOTdPerl N@(qudgs+l)/(@(<gs+l) ( Z axd,8+1(a))

dlq1 1<a<p
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and
es —es—1 =Y ordy, No(e, e)/0ce) | D axas(a)
d|q1 1<a<p
because we may assume Xqs = Xg,11 With n € N satisfying n = 1

(mod god) and n = £ (mod £**1). Now, e; — es_1 < ¢(£*) implies

OI‘dpS NQ(CquZS)/Q(CZS) ( Z aXd,s(Cl)) < gp(gs)

1<a<p

for each d. Hence we can follow the argument for ¢ = qg. O

3. Examples

We show some examples having large f. These were calculated by
PARI/GP [5]. All the examples behave like Theorem 1.2.

p, ¢, ¢, f)

( ep €1 ey €3 €4 €5 eg €7 es eg
(1194103, 26, 3, 8) 3 6 9 12 15 18 21 24 27
(1268623.2,3,4) | 1 3 9 16 23

(1924561, 80, 3,7) 4 8 12 16 20 24 28 32
(3123037,4,3 8) 2 6 14 22 30 38 46 54 62
(5826169, 8 3,9) 2 4 6 8 10 12 14 16 18 20
(7295833, 8, 3, 8) 4 8 12 16 20 24 28 32 36
(7715737,8,3,9) 4 10 16 22 28 34 40 46 52 58
(9723403, 2, 3,9) 1 3 5 7 9 11 13 15 17 19
(9723403, 26, 3,9) 4 9 14 19 24 29 34 39 44 49
(1637501,4,5,5) 2 5 8 11 14 17

(3797501,4,5,4) | 5 10 15 20 25

(8365001,8,5,4) | 6 10 14 18 22

(1190897,16,7,4) 8 12 16 20 24

(1336337,16,17,4) | 1 3 5 7 9

Finally, in connection with the Corollary in [2, p. 237], we would like
to make some comments about further investigations on h; . The condition
es—es—1 < ¢(£*) in Theorem 1.2 (3) can not be replaced by es—es—1 < ¢(¢%)
because the case p = 1268623 gives a counterexample. On the other hand,
there are many examples satisfying e; —es—1 = ¢(£°) and es—es_1 = €541 —
es, for example (p,¢,s) = (5826169,3,1), (7715737,3,2), (9723403,3,1),
(8365001, 5,1). It may be interesting to consider under which conditions,
es — es—1 = p(¢?) implies e; — es_1 = €541 — €s.
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