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Perfectoid Drinfeld Modular Forms

par Marc-Hubert NICOLE et Giovanni ROSSO

Résumé. Dans la première partie, nous revenons sur les courbes modulaires
de Drinfeld associée à GL(2) en adoptant le point de vue perfectoïde, et nous
montrons comment récupérer une portion (perfectisée) de la théorie des formes
modulaires de Drinfeld π-adiques surconvergentes. Dans la seconde partie,
nous présentons quelques problèmes ouverts portant sur les familles de formes
modulaires de Drinfeld pour GL(n).

Abstract. In the first part, we revisit Drinfeld modular curves associated
to GL(2) from the perfectoid point of view, and we show how to recover
(a perfectized) part of the theory of overconvergent π-adic Drinfeld modular
forms. In the second part, we review open problems for families of Drinfeld
modular forms for GL(n).

1. Introduction
Let C be a projective smooth geometrically irreducible curve over Fq,

F = Fq(C) its function field, ∞ an Fq-rational point and A the ring of
regular functions outside ∞. Fix an A-ideal N that we can assume to be
principal and a prime ideal p of norm qd, coprime with N. Let π be a
generator of p in Ap.

In our previous paper [28], we explained how to adapt the eigenvari-
ety machinery to the non-noetherian context of Drinfeld modular varieties
associated to GL(n) for n ∈ N, including Hida theory in the form of an ana-
logue of the Vertical Control Theorem, a continuous analogue of Coleman’s
finite slope families and a classicality theorem of overconvergent Drinfeld
modular forms. This led to a variety of open questions, some intrinsic to
the set-up of Drinfeld modular forms.

In the first part of this paper, we illustrate in detail that the perfectoid
approach to Shimura varieties pioneered by Scholze [33] also works well for
Drinfeld modular curves associated to GL(2) (where there are no technical
difficulties at the boundary, exactly as for classical modular curves). This
is groundwork towards an alternative treatment of overconvergent Drinfeld
modular forms following Chojecki–Hansen–Johansson [10] and its general-
isation to the Hilbert setting [6]. At this point, we are only able to recover
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their defining sheaves over the perfection. Further, treating higher dimen-
sions presents a non-trivial technical challenge due to a more complicated
boundary and the absence of Tate traces.

After reviewing the theory of Drinfeld modules and the Hodge–Tate–
Taguchi map, we first show that there exists an infinite level Drinfeld mod-
ular curve which is a perfectoid space; we follow closely the construction
of Scholze, first constructing an anti-canonical tower of a strict neighbour-
hood of the ordinary locus and then using the Hodge–Tate–Taguchi map
to extend it to the whole Drinfeld modular curve, thus proving

Theorem (Theorem 2.18). Let X (πm) be the Drinfeld modular curve of
full level pm. There exists a preperfectoid space

X∞ ∼ lim←−
m

X (πm).

This space is equipped with a GL2(Fp)-equivariant Hodge–Tate–Taguchi
map of adic spaces

ΠHTT : X∞ → P1.

Here we use the definition of preperfectoid of [24, Definition 3.7.1(a)]
meaning that the inverse limit in the theorem becomes perfectoid after
extension of scalars to Ap[[π1/p∞ ]][1/π].

Then, given an analytic weight s ∈ Zp we would like, following [10],
to define overconvergent Drinfeld modular forms in a concrete fashion as
functions on a subset of X∞ which satisfy the transformation formula

(1.1) γ∗f = (bz + d)−sf,

for all γ ∈ Γ0(p) ⊂ GL2(Ap) and where z is a so-called fake Hasse invariant
i.e., it is the pullback via the Hodge–Tate–Taguchi map of the coordinate z
on P1. More precisely, let X0(π)(v) be a strict neighbourhood of the ordinary
locus of Drinfeld modules for which the Hasse invariant is bounded by v.
We construct a line bundle ωs on the counterimage of X0(π)(v) in X∞,
consisting of functions satisfying the above formula (1.1) and we can only
show that this sheaf is the pullback from X0(π)(v) of the perfection of the
sheaf of overconvergent Drinfeld modular forms of weight s defined in [28].
In the second part of this note, we treat a variety of open problems of
widely varying level of difficulty in some detail. In brief: a conjectural r = t
theorem; asking for a better definition of the Fredholm determinant in the
non-noetherian context; asking about families of generalized modular forms
for Anderson motives; the study of slopes à la Gouvêa–Mazur in higher
rank; classicity in infinite slope (an example of a problem arising only for
Drinfeld modular forms).
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2. Perfectoid Drinfeld modular curves
Let X = X (N) be the compactified Drinfeld modular curve of full level

N seen as an adic space over Spa(Fp, Ap).
The main theorem of the section is the following:

Theorem 2.1. There exists a preperfectoid space
X∞ ∼ lim←−

n

X (πm)

equipped with a natural map GL2(Fp)-equivariant Hodge–Tate–Taguchi pe-
riod map to P1.

As in [10] we shall use this map to define overconvergent π-adic modular
forms of p-adic weight s as functions on P1 satisfying the usual transforma-
tion property

f |sγ(z) = j(γ, z)sf(z),
for a π-adic cocycle j( · , z). The proof of the theorem follows the lines
of [33]: we first construct a perfectoid anti-canonical tower over a strict
neighbourhood of the ordinary locus using the fact that we have a map

X (q−dmv) −→ X0(πm).
On points, the map sends a rank two Drinfeld module ϕ to (ϕ/Cm,
ϕ[πm]/Cm), for Cm the canonical subgroup of level m. The remarkable
feature of this map is that the Hasse invariant of ϕ/Cm is the Hasse invari-
ant of ϕ multiplied by qd. Hence, the overconvergence radius on the image
is constant independent of m.

This allows us to construct an intermediate perfectoid object X0,∞(v)
over X (v). Then we use the purity theorem to go from level Γ0 to full level
without much ado, as we are working over Drinfeld modular curves. The
map from level Γ1 to level Γ0 is generally not étale on the boundary in
higher dimension. We follow Scholze’s strategy for modular curves.

Remark 2.2. The same construction should work for general rank r − 1,
but studying the boundary becomes trickier. The Hodge–Tate–Taguchi map
will take values in the flag variety parameterizing flags with blocks of size
r−1 and 1, which is isomorphic to Pr−1. One can then define overconvergent
Drinfeld modular forms as functions on preimages of neighbourhoods of
Pr−1(Fp) inside Pr−1 satisfying suitable transformation properties, exactly
as in the analytic case [4].
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2.1. Reminder on canonical subgroups and the Hodge–Tate–
Taguchi decomposition. Fix a lift Ha of the Hasse invariant as in [28,
Section 4] and let Ha be the truncated valuation of the Hasse invariant.
For v ∈ Q ∩ [0, 1] let X (v) be a strict neighbourhood of the ordinary lo-
cus of Drinfeld modules for which Ha ≤ v. Fix a formal model X(v) for
X (v) obtained as an open of in admissible blow-up of the formal model
X of X . Given a (formal) Drinfeld module ϕ, we can take its Taguchi
dual ϕD := Hom(ϕ,CH), where CH denotes the Carlitz–Hayes module, the
unique (formal) Drinfeld module of rank 1 and good reduction at p.

There is a Hodge–Tate–Taguchi map

HTTD
ϕ,m : ϕD[pn](K)→ ωϕ/π

nOK̄
sending a torsion point xm ∈ Hom(ϕ,CH) to x∗mdz, for dz the canonical
differential on CH. We have a so-called dual version of it (without using a
base of ωCH):

HTTϕ : Tp(ϕ)→ Lie(ϕD)∨.
Indeed, by definition of the Tate module, any x ∈ Tp(ϕ) can be seen as a
map Fp/Ap → ϕ. There is a dual map xD : ϕD → CH, which defines a map

HTTϕ(x) = Lie(xD) ∈ Lie(ϕD)∨.
We recall the following theorem [28, Théorème 4.4].

Theorem 2.3. Let m ≥ 1 be a positive integer. Let v ∈ Q∩ [0, 1] such that
v < 1

2qd(m−1) .
(i) The pm-torsion of the universal family of generalised Drinfeld mod-

ule (E , ϕ) over X(v) (see [29, Theorem 4.2]) has a canonical sub-
group CĒ,m of 1, dimension 1 and level m;

(ii) For all formal open Spf(R) of X(v), the linearisation of the Hodge–
Tate–Taguchi map

HTT : CDĒ,m(R)⊗R/πmR→ ωCĒ,m ⊗R/π
mR

has cokernel killed by πϑ, for all ϑ ∈ Q>0 such that ϑ ≥ v
qd−1 . Here

R is the integral closure of R in an algebraic closure of its fraction
field.

We now prove a useful lemma:

Lemma 2.4. Let x = (Ex, ϕx) be a Drinfeld module and suppose that
ha(x) = v ≤ 1

qd+1 . Then ha((Ex/CĒ,1, ϕx/CĒ,1)) = qdv.

Proof. As 1
qd+1 ≤

1
2 we have a canonical subgroup and the proof is, exactly

as in the case of elliptic curves, a study of the Newton polygon, see [23,
Theorem 3.10.7]. �
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Let (E , ϕ) be a Drinfeld module over an algebraically closed and complete
fieldK/Fp. We will define the Hodge–Tate–Taguchi decomposition of Tp(ϕ).

Theorem 2.5. Let ϕ be a Drinfeld module over K of rank two, and let ϕD
its Taguchi dual. We have a surjective map

Tp(ϕD)⊗Ap K → Lie(ϕ)∨ ⊗K K

which induces a line Lie(ϕK̄) inside Tp(ϕ)⊗Ap K.

Proof. Recall that X admits a proper model X over Spa(Ap, Ap) equipped
with the universal family of generalised Drinfeld modules [28,Théorème 2.6].
Given that ϕ corresponds to a K-point of X , by properness we can lift this
to an OK-point of X and it will correspond to a generalised Drinfeld module
ϕ̃ over OK whose generic fiber is ϕ.

If ϕ̃ corresponds to a point in X(v), then let x be a lift to Tp(ϕD) of
a generator of its canonical subgroup CDϕ̃,m(K). By Theorem 2.3 we know
that, up to πwn, HTTD

ϕ̃ (x) generates ωCϕ̃,m , and hence over K the Hodge–
Tate–Taguchi map is surjective. Note that Tp(ϕD) is the dual represen-
tation: given y ∈ Tp(ϕD) = Hom(Fp/Ap,Hom(ϕ,CH)) and x ∈ Tp(ϕ) =
Hom(Fp/Ap, ϕ), we get 〈x, y〉 ∈ Hom(Fp/Ap,CH) defined by

〈x, y〉(z) := y(z)(x(z)).

By duality, we get a line in Tp(ϕ) ⊗Ap K. Note that this line is the kernel
of HTTϕ⊗ id.

If the point corresponding to ϕ̃ is not in X(v) then it is not on the
boundary as Tate–Drinfeld modules are ordinary, see e.g., [18, Lemma 4.1].
We apply [28, Lemme 5.2 and Proposition 5.4] to show that quotienting ϕ̃
by a suitable subgroup of the pm-torsion will move the point into X(v); this
is enough as the Tate modules of two isogenous Drinfeld modules are simply
different lattices in Tp(ϕ)⊗Ap Fp. Note that if v′ is the truncated valuation
of the Hasse invariant of ϕ̃, then one can use the explicit description of
the canonical subgroup given in the proof of [28, Théorème 4.4] to see that
its degree à la Fargues is 1 − v′. Then Proposition 5.4 of loc. cit. tells us
that iterations of the correspondence Uπ pushes ϕ̃ to points of Fargues
degree 1 − v′′, with 1 − v′ < 1 − v′′ < 1 and v′′ chosen as close to 0 as we
want. Hence, the Hasse invariant of ϕ̃ quotiented by suitable subgroups of
the pm-torsion will have Hasse invariant v′′, and choosing v′′ < v allows us
to conclude. �

Remark 2.6. If r > 2, we can only show that the Hodge–Tate–Taguchi
map is surjective over the locus of good reduction. Indeed, if the reduction
of the Drinfeld modules ϕ is not good, the corresponding point in X (OC)
will fall in the boundary which for r > 2 is not necessarily ordinary.
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Definition 2.7 (Hodge–Tate–Taguchi period map). Given a trivialization
η : Tp(ϕ) ∼= A2

p, we can define an element ΠHTT(ϕ, η) ∈ P1(K) by picking
the line in K2 given by Lie(ϕK̄).

Before constructing the perfectoid tower, we prove an important property
of the Hodge–Tate–Taguchi period map:

Lemma 2.8. Let (E , ϕ) be a rank 2 Drinfeld module over an algebraically
closed field K, then ΠHTT(ϕ, η) ∈ P1(Fp) if and only if (E , ϕ) is p-ordinary.

Remark 2.9. This is the exact analogue of what happens for classical
(perfectoid) modular curves mapping the supersingular locus to the Drin-
feld upper-half plane via the Hodge–Tate map.

Proof. If (E , ϕ) is ordinary, then we can identify Lie(ϕ) with the Lie alge-
bra of the canonical subgroup (which is identified with the Carlitz–Hayes
module), and then its π-torsion is an Ap-line in Tp(ϕ). Conversely, let (E , ϕ)
be a Drinfeld module over K and suppose that there is a trivialization η
such that ΠHTT(ϕ, η) ∈ P1(Fp). Using matrices in GL2(Fp), we can suppose
that the rational line lies in Tp(ϕ). We proceed as in [33, Remark III.3.7]
and we first show that the kernel of

HTTϕ : Tp(ϕ)→ Lie(ϕD)∨

is given by Tp(ϕCH), where ϕCH is the sub-module of ϕ isomorphic to a
power of CH (so either 0 or CH, by dimension count). This means that we
have to show that if ϕCH = 0, then HTT is injective. Suppose that ϕCH = 0,
then ϕD is a formal group, as the étale π-divisible group Fp/Ap is CHD.
Given x ∈ Tp(ϕ), denote again xD : ϕD → CH, and

HTTϕ(x) = Lie(xD) ∈ Lie(ϕD).
As ϕD is a formal Drinfeld module, if Lie(xD) = 0, then xD = 0, hence
x = 0. So if Lie(ϕ) ⊂ Tp(ϕ) then Lie(ϕ) is in the kernel of HTTϕ and hence
ϕCH 6= 0, proving that ϕ is ordinary. �

Remark 2.10. As in the classical Hodge–Tate decomposition of an abelian
variety, the decomposition of Tp(ϕ) ⊗Ap K is not the one induced by the
Hodge decomposition of H1

dR(ϕ) (see [14, (3.11)] or [20, Lemma 2.21]) and
the comparison isomorphism of [16, Theorem 4.12].

2.2. The perfectoid tower. For each adic space h : Y → X we define
Y(v) := h−1(X (v)). We follow the definition of perfection of [33, Defini-
tion III.2.18]. Given an Ap-algebra R which is uniform, we define Rperf

as the π-adic completion of lim−→R, where the transition morphisms are
given by the relative Frobenius. For an adic space Y = Spa(R[1/π], R),
we denote by Yperf the adic space associated with Spa(Rperf [1/π], Rperf).
From now on until the end of section, we base change all adic spaces to
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Spa(Ap[[π1/p∞ ]][1/π], Ap[[π1/p∞ ]]) but, by a slight abuse of notation, we shall
denote all these base-changed adic spaces by the same symbol as before the
base change. Our first goal is to prove the following theorem:

Theorem 2.11. Let v ≤ 1
qd+1 . Then there is a perfectoid space

X∞(v) ∼ lim←−
m

X (πn)(v),

where ∼ means that we have an isomorphism of topological spaces
|X∞(v)| ∼= lim←−

m

|X (πn)(v)|,

and further that the direct limit of functions on the right hand side are
dense in the left hand side, notation as in [34].

The first step to its proof is as follows:

Theorem 2.12. Let v ≤ 1
qd+1 . There is an affinoid perfectoid space

X0,∞(v)a ∼ lim←−
m

X0(πm)(v)a,

where X0(πm)(v)a denotes the anticanonical neighbourhood in X0(πm).

Proof. We choose as before a formal model X(q−dmv) for X (q−dmv) as
before; we choose a formal model X0(πm) via the normalisation of the
formal model of X. Let

h : X (q−dmv)→ X0(πm).
be the map that, on points, sends a Drinfeld module ϕ to (ϕ/Cϕ,m,
ϕ[πm]/Cϕ,m), where Cϕ,m is the canonical subgroup of level m. By Lem-
ma 2.4 the image of h is contained in X0(πm)(v). We denote the image
of h by X0(πm)(v)a where “a” stands for anticanonical (as it parametrises
Drinfeld modules with a subgroup of the πm-torsion that does not intersect
the canonical subgroup). We show that h is an open immersion, using the
same proof as [33, Theorem III.2.15]. First note that composing h with
the map

X0(πm)→ X
sending (ϕ,H) to ϕ/H is the open immersion of X (q−dmv) in X . (This is
the Fricke involution composed with the forgetful projection.) On the open
part of X the second map is étale hence the first map is étale on the open
part. At the cusps, this second map is étale when restricted to the image of
h as the cusps of X (q−dmv) are sent to the ramified cusps, but the Fricke
involution swaps the ramified and unramified cusps.

We take as an integral model of X0(πm)(v)a the integral model X(q−dmv)
of X (q−dmv). As the canonical subgroup is a lift of the kernel of the Frobe-
nius modulo π (see the first formula in the proof of [28, Théorème 4.4(i)])
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and as the image of Cϕ,m+1 in ϕ/Cϕ,m is the canonical subgroup, the pro-
jection

X0(πm+1)(v)a → X0(πm)(v)a
coincides with the relative Frobenius map relative to Ap/π, relative Frobe-
nius that we denote by Fr. This is a map of degree qd, purely inseparable
modulo π. Let X(v) = Spf(R) and X(q−dmv) = Spf(Rm). If Spf(A) is an
open of X(0) and if v = b/a then we can write locally on X(0) after trivial-
izing the sheaf to which the Hasse invariant belongs,

Rm = A〈tm〉/(Haaqm tm − πb),
where by a small abuse of notation we consider Ha as function and not as
a section of the sheaf. We have a diagram

R = R0 //

��

R1 //

��

· · · // R∞ = lim−→m
Rm

��
R/π // R1/π // · · · // (R/π)perf

Let fm : Rm → Rm+1.
Given the explicit formula for the canonical subgroup in the proof of [28,

Théorème 4.4(ii)], we see that, if we further extend scalars to include πv,
then as expected the canonical subgroup is the kernel of the relative Frobe-
nius modulo π1−v, and so fm ≡ Fr mod π1−v.

Consider now the isomorphism

R∞/π
(1−v)/qd = lim−→

m

Rm/π
(1−v)/qd ∼= lim−→

m

Rm/π
(1−v) = R∞/π

(1−v)

which is induced by the absolute Frobenius of Ap, which raises to the qd
power.

This means that the completion of R∞ is an perfectoid algebra over
Ap[[π1/p∞ ]]a (in the sense of almost mathematics, see [30, Definition 5.1(ii)]).
By Theorem 5.2 of loc. cit. this implies that R∞[1/π] is a perfectoid algebra
over Ap[[π1/p∞ ]][1/π], which is what we wanted. �

Remark 2.13. Consider the diagram
R0 −→ R1 −→ · · · −→ R∞.

As perfection commutes with direct limits, we get

Rperf
0 −→ Rperf

1 −→ · · · −→ Rperf
∞ .

It follows that we also have
X0,∞(v)a ∼ lim←−

m

X0(πm)(v)perf
a .

Note the limit of underlying topological spaces is the same.
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Lemma 2.14. The map
X (πm)a −→ X0(πm)a

is étale.

Proof. We just have to check this at the cusps, as the result is known on
the open part. From level Γ0(πn) to Γ1(πn) it is a direct calculation on the
Tate–Drinfeld module of rank 2 [22, Lemma 6.5], that we denote by TD.
This is a rank two Drinfeld module over Ap[[x]] which reduces modulo x
to the Carlitz–Hayes Drinfeld module. Anyway, we have that TD[π]/CH[π]
is generated by an element of positive x-adic valuation and it is étale as
π-divisible module (cf. the explicit calculation of [22, Lemma 6.5] or [18,
Lemma 4.4]). Hence the passage from Γ0(πn) to Γ1(πn) is done choosing a
generator of this étale group, which is unramified. To pass to level Γ(πn)
we proceed as in [33, Lemma III.2.35]. �

Note that Lemma 2.14 holds also after perfection as the Frobenius is a
universal homeomorphism.

Remark 2.15. For higher rank r, the transition maps from level Γ1 to Γ0
will not necessarily be étale on the boundary, and Scholze uses Tate traces
in [33, III.2.4] to deal with this issue. Note that normalized Tate traces are
not available in positive characteristic, so it is far from clear to us how to
adapt Scholze’s strategy for higher ranks.

Using this lemma, [5, Lemma 3.4(xi)], and Scholze’s almost purity re-
sult [30, Theorem 7.9(iii)], we obtain

Theorem 2.16. Let v ≤ 1
qd+1 . Then there is an affinoid perfectoid space

X∞(v)a ∼ lim←−
m

X (πm)(v)a.

We now use the Hodge–Tate–Taguchi map to extend the construction to
the whole Drinfeld modular curve. We consider the topological space

|X∞| := lim←−
m

|X (πm)|.

For any complete extension K̃ of Ap[[π1/p∞ ]][1/π] with valuation ring K̃+,
we can define

X∞(K̃, K̃+) := lim←−
m

X (πm)((K̃, K̃+))

and clearly we have a map
X∞(K̃, K̃+) −→ |X∞|.

We can describe then
|X∞| = lim−→̃

K

X∞(K̃, K̃+),
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where the transition maps in the direct limit are field extensions K̃ → K̃ ′.
Given that X (πm) has a moduli interpretation as (Tate–)Drinfeld mod-

ules with a full trivialization of the πm-torsion, the points of |X∞| are in
bijection with isomorphism classes of (Tate–)Drinfeld modules ϕ equipped
with an isomorphism A2

p → Tp(ϕ). There is a natural action of GL2(Ap)
by pre-composition but thanks to the inverse limit we can even extend this
action to an action of GL2(Fp): given a matrix γ ∈ GL2(Fp) with determi-
nant in Ap and a Drinfeld module ϕ with a trivialization η, we can define
a submodule L := η ◦ γ(A2

p) ⊂ Tp(ϕ), and this corresponds to a subgroup
Lcoker of ϕ[pm], then L is the Tate module of ϕ/Lcoker and η ◦ γ defines
an isomorphism of L with A2

p. We proceed similarly if the determinant has
negative valuation. Note that the action of GL2(Fp) is continuous as, at all
finite levels, it can be interpreted via the moduli problem defining X (πm),
so it comes from maps of adic spaces.

Let [x : y] be a point in P1, we let GL2(Fp) act on P1 via(
a b
c d

)
.[x : y] = [dx− by : −cx+ ay].(2.1)

This is simply det(γ)γ−1 applied to the vector
(x
y

)
. If z = − y

x we have
the neat formula

γ(z) = az + c

bz + d
.

Lemma 2.17. We have a continuous and GL2(Fp)-equivariant map

|ΠHTT| : |X∞| → |P1|

that is induced by a map of adic spaces

ΠHTT : X∞(v)a → P1.

Proof. Pointwise the map is defined using the Hodge–Tate–Taguchi period
map of Definition 2.7. As GL2(Fp) acts on the trivialization of Tp(ϕ) in the
same way as it acts on P1 and the map is equivariant by the very definition
of the action on P1. To prove continuity we first show that it comes from a
map of adic spaces

ΠHTT : X∞(v)a → P1.

We consider a smaller perfectoid subspace S = Spa(A,A+) of X∞(v)a,
which is the pullback of the generic fibre of Spf(R) as in Theorem 2.3, so
that the argument of Theorem 2.5 works over the whole S and we get a
map

Tp(ED)→ Lie(E)∨ ∼= OS ,
where E is the generalised Drinfeld module over X∞(v)a. After trivializing
the π∞-torsion of the universal Drinfeld module γ : O2

S
∼= Tp(E) and of its
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dual γD : O2
S
∼= Tp(ED), we get a map

O2
S
∼= Tp(ED)→ Lie(E)∨ ∼= OS

which gives the desired adic map to P1. This shows that the map is contin-
uous on |X∞(v)a|. We now show that we can move every point of |X∞| to
|X∞(v)a| with the GL2(Fp)-action. Indeed, if the underlying (Tate-)Drinfeld
module ϕ lies in X (v), we can change the level structure using a matrix in
GL2(Ap) that will move the first coordinate of the trivialization Tp(ϕ) ∼= A2

p

to something not intersecting the canonical subgroup at any level. If ϕ is not
in X (v), as in Theorem 2.5, we can use isogenies (hence the importance of
the full GL2(Fp)-action!) to move the point to X (v). The pointwise-defined
Hodge–Tate–Taguchi map is indeed the extension of |ΠHTT| on the whole
|X∞|, requiring the equivariance of the action of GL2(Fp). Given that the
action of GL2(Fp) is continuous on both spaces, continuity follows.

We conclude the lemma giving the explicitly description of what happens
at a point (ϕ, γ) ∈ S. We let Em be the universal Drinfeld module over
X (q−dmv), and we have E = Em/CĒ,m. At the level of Tate modules we have

Tp(Em) ∼= (πmOSe1 ⊕OSe2)→ OSe1 ⊕OSe2 ∼= Tp(E)

(after possibly choosing another basis e1 and e2.) From the moduli inter-
pretation of the transition maps X0(πm)(v)a, we know that γD(Ap⊕0) will
project non-trivially on the e2-line (as the first point which determines the
Γ1(πm)-structure is a generator of Em[πm]/CĒ,m). This is telling us that
the image of X∞(0)a will be a point [x : y] ∈ P1(Fp) with |x| ≤ |y| 6= 0.

Moreover the image of the canonical locus over the ordinary locus will
be the point [1 : 0]. �

We have the following theorem:

Theorem 2.18. There is a perfectoid space

X∞ ∼ lim←−
m

X (πm).

There is a GL2(Fp)-equivariant map of adic spaces

ΠHTT : X∞ → P1.

Proof. In the proof of Lemma 2.17 we have shown that every point x can
be moved to |X∞(v)a| via the GL2(Fp)-action; as the action is continuous,
for every x in |X∞| we can find a small open around x that is moved inside
X∞(v)a and this gives the structure of perfectoid space to the small open.
Using again the action of GL2(Fp) we can extend the map of adic spaces
ΠHTT on X∞(v)a of Lemma 2.17 to the desired map on X∞ that we label
by the same name. �
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As in [33], one can show that the whole construction is compatible with
changing the tame level, and hence all objects at infinite level admit an
action of the prime-to-p Hecke operators, which act trivially on the flag
variety.

We obtain the following corollary:

Corollary 2.19. The space X∞ can be described also as

X∞ ∼ lim←−
m

X (πm)perf .

2.3. Overconvergent Drinfeld modular forms. In this section we give
a definition of (perfectoid) overconvergent Drinfeld modular forms of weight
s ∈ Zp à la Chojecki–Hansen–Johansson [10]. In order to proceed, we need
the following lemma:

Lemma 2.20. Let ω = Lie(E)∨ be the sheaf of weight one Drinfeld modular
forms on X and ω∞ the pullback to X∞. Over X∞(v), we have

ω∞ = Π∗HTTO(1).

Proof. As in the proof of Lemma 2.17, the map ΠHTT is defined via the
rank one quotient of O2

S → Lie(E)∨. If one interprets a map to P1 as a
giving a rank one quotient of a locally free rank two sheaf, then the pull-
back of O(1) on P1 by the map is exactly the rank one quotient sheaf. In
our setting, this says Lie(E)∨ = Π∗HTTO(1). �

For w an integer we define P1
w =

{
z ∈ P1∣∣ ∃ z0 ∈ πAp s.t. |z − z0| ≤

q−dw < 1
}
. This set is stable for the action of

Γ0(p) :=
{
γ ∈ GL2(Ap)

∣∣∣∣γ ≡ (∗ ∗0 ∗

)
mod p

}
.

We also define U∞,w to be Π−1
HTT(P1

w).

Lemma 2.21. Let q∞ : X∞ → X0(π) be the natural projection and qperf
∞ :

X∞ → X perf
0 (π). Then the Xw := q∞(U∞,w), with w tending to 0, are a

set of strict affinoid neighbourhoods of the ordinary multiplicative locus in
X0(π), and similarly for X perf

w := qperf
∞ (U∞,w).

Proof. First note that P1
w is a rational subset of the standard affinoid of

P1 defined by |y| ≤ |x| (denoted by P1
1 in [33, Section III.3]). (Recall that

z = − y
x , for [x : y] the standard coordinates on P1.) The same argument

of [33, Theorem III.3.18(i)] tells us that the inverse image by ΠHTT of the
standard affinoid is a rational subset of X∞, and by [32, Proposition 2.2]
we see that U∞,w are affinoid too, as preimages of rational subsets.

Reasoning as in the proof of that proposition we also see that rational
subsets in X∞ always come from a finite level i.e., there exists X (πm)w ⊂
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X (πm) such that U∞,w = q−1
∞,m(X (πm)w) with

q∞,m : X∞ → X (πm)
the natural projection. One takes invariants with [10, Corollary 6.26] and
obtain that Xw are affinoid and open.

We have to show that a point (ϕ, η) ∈ U∞,w defines a Drinfeld module
in X (v) for some 0 ≤ v < 1, and that η restricted to the first coordinate
trivializes the canonical subgroup of ϕ. By Lemma 2.8 we know that the
image of the ordinary locus is contained in P1(Fp). Excluding the case of
the Tate–Drinfeld module (which is ordinary), we can suppose that ϕ has
good reduction and hence ϕ belongs to X0(π)(v)mult, the counterimage in
X0(π) of X (v), for a suitable v. The triangular inequality tells us that if
|z| ≤ q−d then clearly |y| ≤ q−d|x|, so we can assume that the point [x : y]
has x = 1 and y is an element divisible by π, which means that, by the same
reasoning in the proof of Lemma 2.17, η restricted to the first coordinate
e1 (same notation as that proof, we suppose that e1 corresponds to the
canonical subgroup on the ordinary locus) is not-zero modulo π, while the
second coordinate is. This means that the projection to level Γ0(p) lies in
the multiplicative neighbourhood of the ordinary locus.

To conclude, we show that Xw and X (v) are cofinal. First note that⋂
w P1

w ⊂ P1(Ap) and that Π−1
HTT(P 1(Fp)) = X∞(0) so

⋂
w Xw ⊂ X0(π)(0)

(we already know that it is contained in the multiplicative part).
We cover Xw with Xw ∩ X0(π)(v)mult and by quasi-compactness we find

a single largest v that works. Conversely, if ϕ is in X (v) we can find, using
the canonical subgroup of order m which being a subgroup of ϕ[pm] has
rational coordinates modulo πm−ϑ (we need to divide by πϑ to go from the
image of HHT to a basis of ωϕ), a trivialization whose z is z0 + z1 with
z0 ∈ Ap and z1 divisible by πm−ϑ, so z ∈ P1

m−ϑ. To conclude note that
m− ϑ diverges as v tends to 0, see Theorem 2.5. �

Let z be the pullback via the Hodge–Tate–Taguchi map of the coordinate
z on P1. In [33] this is called a fake Hasse invariant, as it commutes with
prime-to-p Hecke operators. Note that ω∞|P1

w

= OU∞,w ; indeed we can define
an element s which trivializes O(1) as in [10, Section 2.4]. Identify O(1)
with the contracted product (GL2×A1)/B where B is the Borel subgroup
of lower triangular matrices and γ in B acts on a ∈ A1 via multiplication
by d−1 and on GL2 by right multiplication. A global section is hence a map
f : GL2 → A1 such that f(gh) = dhf(γ), for g in GL2, h in B and dh
is the right lower entry of h. The function s sending g to −bg i.e., minus
the upper right entry of g, satisfies this condition. Moreover s = 0 if and
only if g is in B. Hence s is a non-vanishing section of O(1) on P1\ {∞}.
We want to see how γ in GL2(Fp) acts on s; recall the action on P1 given
in (2.1). If g corresponds to [x : y], then γ.[x : y] is the image of det(γ)γ−1g
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in (GL2 /B)(Fp). Let g =
( 0 −1

1 z

)
, then

γ∗s(g) = s(det(γ)γ−1g) = (bz + d)s(g).
Then, let s be the pullback via the HTT map of s, which trivializes ω∞|P1

w

.
We then have a cocycle

j(γ, z) = γ∗s

s
= (bz + d).

Definition 2.22. Let v ≤ 1
qd+1 . The space of perfectoid overconvergent

Drinfeld modular forms of weight s and radius of overconvergence v is

Ms(w) :=
{
f : U∞,w → C

∣∣∣ γ∗f = (bz + d)−sf,∀ γ ∈ Γ0(p)
}
.

We want to compare this definition to that in [28, Définition 4.11]. We
define a sheaf ωsw on qperf

∞ (U∞,w) as

ωsw(U) =
{
f : qperf

∞
−1(U)→ C

∣∣∣ f(γz) = (bz + d)−sf(z),∀ γ ∈ Γ0(p)
}
.

We shall show that this sheaf is a line bundle on qperf
∞ (U∞,w). This amounts

to finding locally a generator for it.
As in [31, Definition 4.1] we give the following definition:

Definition 2.23. Let X perf be the perfection a rigid analytic variety over
Fp. We let X perf

proet be the pro-étale site of [34, Definition 8.2.6].

Lemma 2.24. For every level Γ ⊂ GL2(Ap) we define X (Γ) the corre-
sponding rigid space. Let

qperf
∞,Γ : X∞ → X (Γ)perf

be the projection induced by Corollary 2.19. Then we have
OΓ
X∞ = OX (Γ)perf ,

which means OX∞(q−1
∞ (U))Γ = OX (Γ)perf (U) for every admissible open U in

X (Γ)perf .

Proof. We can check it locally. First suppose that U does not intersect
the boundary. In this case qperf,−1

∞,Γ (U) belongs to the pro-étale site of U .
Applying [10, Lemma 2.24] to O+

X∞/π
m(perf,−1
∞,Γ (U)) we get(

O+
X∞/π

m(qperf,−1
∞,Γ (U))

)Γ
= O+

X (Γ)perf/π
m(U).

As by definition we have O+
Xperf = lim←−O

+
Xperf/π

n we get that

O+
X∞(qperf,−1

∞,Γ (U))Γ = O+
X (Γ)(U),

and to conclude we just have to invert π.
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If U intersects the boundary, any section f of OX∞(qperf,−1
∞,Γ (U))Γ defines a

bounded section of OX∞(qperf,−1
∞,Γ (U)\{cusps})Γ and hence, by the previous

case, a bounded element of the sheaf OX (Γ)perf (U \{cusps}). Write f as the
π-adic limit lim−→ fn, where every fn comes from pullback from a finite level
in the limit X (Γ)perf = lim←−X (Γ). Each fn can be extended uniquely to
an element f̃n of OX (Γ)(U) by [26, Theorem 1.6I)]. We want to show that
f̃ = lim−→ f̃n is well-defined. It is enough to check that they form a Cauchy
sequence for the π-adic topology. If f̃n and f̃m are defined on the same
X (Γ) and sup|fn − fm|π < ε on U \ {cusps}, the extension f̃n − f̃m has
sup-norm ≤ ε by the maximum modulus principle, hence f̃ is a well-defined
element of OX (Γ)perf (U). �

Let U be an admissible open of qperf
∞ (U∞,w) such that ωperf is trivialized

by a basis ξU and let s = tUq
perf
∞
−1(ξU ), for tU a unit in OX∞(qperf

∞
−1(U)).

We want to make sense of tsU for s ∈ Zp. As in [10, Proposition 2.27] we
have:

Lemma 2.25. We can write
tU = t′Us

′
U ,

with t′U ∈ 1+πOX∞((qperf
∞
−1(U))) and s′U ∈ OX0(π)perf (U). Moreover γ∗tU =

(bz + d)tU .

Let f in ωsw(U) and note that

γ∗(ft′U
s) = ft′U

s

(
s′U
γ∗s′U

)s
.

As s′U is invariant by Γ0(p), applying Lemma 2.24 to ft′U
s we can then

embed
ωsw(U)→ OX0(π)perf (U)

via f 7→ ft′U
s.

Theorem 2.26. The sheaf ωsw is coherent and locally free of rank one.

Proof. For s = 0 this is consequence of Lemma 2.24. Note that we can make
Γ0(p) acts on OX0(π)perf (U) via

γ.f =
(
γ∗s′U
s′U

)s
γ∗f.

Then ωsw(U) falls in the invariant part for this action.
Note that if U does not intersect the boundary, the cover is étale Galois

and by Galois descent the invariant part is locally free on U of rank one
(the rank of OX0(π)). So ωsw is a subsheaf of a rank one sheaf. It is indeed
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coherent: take a section f and suppose it is not vanishing (shrinking U
if necessary). Division by f induces an isomorphism between ωsw and ω0

w,
which is coherent. We can extend everything to the boundary reasoning as
in the last part of the proof of Lemma 2.24. �

We are nearly ready to compare this notion of overconvergent Drinfeld
modular forms with our previous notion. First, to give some context, we
recall the relationship between line bundles on X0(π)perf and X0(π). If X
is a scheme, it is known that

Pic(X)
[1
p

]
= Pic(Xperf),

i.e., every line bundle comes from finite level by pullback of line bundles on
the Frobenius twist X(pn) [5, Lemma 3.5]. The same holds for affinoid rigid
spaces, thanks to a result of Kedlaya and Liu:

Proposition 2.27. Let Y be a affinoid rigid analytic space over Fp and let
Yperf be its perfection. Then

Pic(Y)
[1
p

]
= Pic(Yperf).

Proof. Let us write Y = Spa(R,R+) and lim←−Yi = Yperf = Spa(R,R+)perf .
A line bundle L∞ over Yperf is nothing else but a free module of rank one
over Rperf ; by [25, Lemma 5.6.8] we know that every finite projective module
on the perfection comes via extension of scalars from a finite projective
module at finite level, hence from a line bundle on some Yi. �

We can now compare our two definitions of sheaves of Drinfeld modular
forms. Recall the rigid torsor F of [28, Définition 4.5]: it parametrises gen-
erators of the image of the Hodge–Tate–Taguchi map in ω. It is a torsor
for G := A×p (1 + πvOX (v)).

We pull it back to a sheaf Fperf on qperf
∞ (U)→ X0(π)perf and it is now a

torsor for Gperf = (A×p )1/p∞(1 + πvOX (v)perf ). Here (A×p )1/p∞ is the group of
all pn-roots of elements of A×p which is isomorphic to a finite product of in-
finitely many copies of Qp. Using the arguments of the proof of Lemma 2.21
on the fact that Xv is a neighbourhood of the ordinary locus we get:

Lemma 2.28. The section s′Uqperf
∞
−1(ξU ) of Lemma 2.25 is a generator of

Fperf .

By abuse of notation, we denote by the same symbol the corresponding
element of Gperf (which can be seen as an inverse limit of generators of the
images of the Hodge–Tate–Taguchi map in ω along the Frobenius tower).

We can go from the new sheaf ωsw to the perfection of the older sheaf
ωs,NR as follows. First note that there is no action of G on the sections of
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ωsw. So given f in ωs,NR(U) the function (s′Uqperf
∞
−1(ξU ))sf is an element

of ωsw(U) which transforms correctly for the action of Γ0(π) by the cocycle
relation and it is invariant by the action of G as f is homogenous of weight
−s. This map is bijective, hence:
Theorem 2.29. The sheaf ωsw is the pullback of ωs,NR on the perfection
X perf
w .

3. Some open problems on families of Drinfeld modular forms
3.1. Modularity theorem. Let f be a double cuspidal Drinfeld modular
form of level n and rank 2, and let χf be the reduction modulo p of the
associated Galois character defined by [7]. We know that χf factors through
the Galois extension corresponding, by class field theory, to (A/n′)×, for
n′ a squarefree ideal dividing the product of np and m, for m the set of
places of good supersingular reduction of the Drinfeld modular curve of
level pn [8, Theorem 12.22]. Let Λ∞ := Ap[[A×p ]]; we define a representation
χuniv : GF → r× ∼= Λ×∞ as the composition of the tautological character of
class field theory GF → (Ap[[(A/n′)× × (1 + πAp)]])× with the projection
to the χf -isotypic component.

Every character of GF with coefficients into a local Ap-algebra R factor-
ing through (A/n′)× × (1 + πAp) and congruent to χf , can be obtained by
composition of a unique morphism α : r → R with χuniv.

Suppose that f is ordinary and let t be the localisation at a maximal
ideal containing f of the ordinary Hecke algebra T of [28, Proposition 3.17].
One can construct a t-adic Galois representation interpolating the Galois
representations of classical forms in the family.

The first question is: is there a surjective r → t morphism? If so, is it an
isomorphism?

The answer to the first question is affirmative if F = Fq(T ) and n =
p = T ; this restriction on working only with level T is imposed by the
fact that the ramification of the Galois representation associated with a
Drinfeld modular forms is not known. More precisely, given a p-adic Galois
representation, we do not know if the ramification at a different prime q is
finite or not. If we could develop a theory of vanishing cycles for Böckle–
Pink τ -sheaves [8], it is likely that we could show that the ramification at q
is finite, and thus get the desired r → t morphism. Once one has this, can
one prove that r = t, as is the case for most elliptic modular forms?

We present a conjectural application which has been suggested to us
by C. Popescu. Let χ be an element of Pic0(A) and ϕχ the corresponding
Carlitz–Hayes module. It is known that the Galois representation ρϕχ is
unramified outside p and ∞ (see [36, Theorem 5] and [21, Theorem 3.2]).
An r = t theorem would show that ρϕχ is “modular” of type II [15, Defini-
tion 6], i.e., the Galois representation on the p-torsion of ϕχ arises from a
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π-adic Drinfeld modular form. This is only known for the Carlitz module
of Fq[T ] [15, Example 10] which is associated to the Drinfeld modular form
∆, which is not ordinary for any prime.

3.2. Non noetherian eigenvarieties. In his eigenvariety paper, Buz-
zard points out that Lemma A1.6 of [11] is not complete: roughly speak-
ing, Coleman claims that given a completely continuous operator U on an
orthonormalisable moduleM over a Banach algebra A and a finitely gener-
ated submoduleM ′, a finite number of coordinates are enough to determine
if an element ofM ′ is 0 or not. In the noetherian case, this is handled by [9,
Lemma 2.3]. It would interesting to investigate the following:

Question 3.1. Given a completely continuous operator U on an orthonor-
malisable module M over a non-noetherian Banach algebra A, can one
define a Fredholm determinant FU(X)? If not, are there extra conditions
on A under which this holds true?

Once we have a good definition of the Fredholm determinant FU(X), the
next step is the construction of the spectral variety, which is defined as the
closed subset

Z := V (FU(X)) ⊂ A1
Spa(A,A◦).

A difficult point is the generalisation of [9, Lemma 4.1] which proves that
Z is flat, as for the moment we lack a flatness criterion for non-noetherian
rings. For example, we believe it would be enough to generalise [35, Lem-
ma 10.127.4], replacing “essentially of finite presentation” by “topologically
of finite type”.

3.3. Families of modular forms for t-motives. An obstacle to general-
ising Drinfeld modular forms in higher dimensions is our lack of understand-
ing of algebraic families of Anderson A-motives. Still, the local theory as
developed in [17] gives a nice description of the duality between local Ander-
son modules and local shtukas. The properties of the Hodge–Tate–Taguchi
map in higher dimension are not as tractable as in dimension one: indeed,
the proof of the almost surjectivity in Theorem 2.3, in our one-dimensional
case of arbitrary rank, was done by hand. For abelian varieties (or more
generally, p-divisible groups), the proof of almost surjectivity is done using
p-adic Hodge theory (see [13, Appendix C] or [33, Section III.2.1]), whose
analogue is lacking in our context.

3.4. The maximal slope. Given an elliptic modular form over Q of
weight k, we know that if p does not divide the level, the possible Up-
eigenvalues have slopes between 0 and k − 1. This is because the constant
term of the Hecke polynomial is, up to a root of unit, pk−1.

For Drinfeld modular forms, the Hecke polynomial has constant term 0,
which a priori allows any possible slope.
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Figure 3.1. q = 5

In level Γ0(T ), Bandini and Valentino conjecture that the maximal slope
is always (k − 2)/2, and this maximal slope arises exclusively from (suit-
ably defined) newforms. Recently, they proved a quadratic bound for the
maximal slope [3, Theorem 6.4].

In level Γ1(T ), explicit computations for A = Fq[T ] hint to the fact that
the maximal slope is at least always bounded by k − 1, if not better esti-
mates. The following Figures 1–4 are calculated using Hattori’s tables [19]
relying on the formulae of Bandini and Valentino [1, 2]. We use the x-axis
to indicate the weight and the y-axis to indicate the maximal slope ap-
pearing in that fixed weight. Note that the patterns of the maximal slope
distribution vary widely with q. At the time of writing, we have no clue
towards a conceptual explanation of this variation.

3.5. Infinite slope Drinfeld modular forms. Suppose that p is prin-
cipal and let f be an eigenform of Tπ of prime-to-π level and eigenvalue λ.
In rank two, the explicit formula for the π-stabilisation of f [2, Section 3.2]
(with m = 0 and a slightly different normalisation of Uπ, as ours is theirs
divided by π) tells us that

Uπ

(
f(z)− πk−1

λ
f(πz)

)
= λ

(
f(z)− πk−1

λ
f(πz)

)
, Uπf(πz) = 0.

This means that we have plenty of modular forms of level Γ0(π) and in-
finite slope, which is never the case for classical modular forms! In [28,
Corollaire 5.10], we show that if f is an overconvergent modular form of
weight k and slope smaller than k − 1, then it is classical of level Γ0(π). A
natural question is then the following:
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Figure 3.2. q = 125

Figure 3.3. q = 7

Question 3.2. Given an overconvergent Drinfeld modular form of weight
k and infinite slope, is there a criterion to decide whether f is classical?

Moreover, at least in the ordinary case, we know from [28, Théorème 3.14]
that if the weight is large enough, the form f is not only classical, but it
comes via π-stabilisation from a form of prime-to-π level. Hence, for a
Zariski dense set of points {fk} in an ordinary family, we can find a corre-
sponding classical Drinfeld modular form f̃k of infinite slope, whose prime-
to-π Hecke eigenvalues vary in a Iwasawa algebra. This leads naturally to
the following:

Question 3.3. Do continuous families of infinite slope Drinfeld modular
forms exist?
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Figure 3.4. q = 37

3.6. Horizontal control theorem. An alternative approach to classical
Hida theory does not vary the weight of the modular forms but varies in-
stead the level at p of the modular curve, and then shows that the ordinary
parts of the H1 of these curves glue to a finitely generated Λ-adic module.
This approach seems much harder to understand for function fields: for
example, there are only qd−1 finite order characters of (Ap/p

r)×, indepen-
dently of r.

As far as we know, the best known result towards a horizontal control
theorem à la Hida as alluded to above is Marigonda’s unpublished 2008
PhD thesis for Drinfeld modular curves [27, Theorem 11].

Theorem 3.4. Let Jn be the Jacobian of X1(πn) and Gr = (1 + πAp) /
(1 + πrAp). Then the ordinary part of the p-adic Tate module Tp(Jn) is
free over Z[Gr] of rank bounded by the rank of Tp(Jn).

As the rank of the latter is known to grow with the index of Γ1(πr), this is
not telling us much on the possibility of a horizontal Hida family. Moreover,
the alternative approach to Hida theory due to Emerton [12] does not seem
to apply here, as it relies on the fact that Z×p is topologically generated
by one element, while we are very much in a non-noetherian situation. We
expect the following question has a negative answer in general:

Question 3.5. Is the inverse limit lim←−n Tp(Jn)ord a finite free Λ-module?
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