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Restriction of Eisenstein series and
Stark—Heegner points

par MING-LUN HSIEH et SHUNSUKE YAMANA

RESUME. Dans un travail récent de Darmon, Pozzi et Vonk, les auteurs consi-
dérent une famille p-adique de séries d’Eisenstein-Hilbert Fj (1, ¢) associées
a un caractere impair ¢ du groupe de classes d’idéaux au sens restreint d’un
corps quadratique réel F'. Ils calculent la dérivée premiere d’une certaine série
L p-adique a une variable d’un produit triple tordu attachée a Eg(1,¢) et a
une forme elliptique nouvelle f de poids 2 sur T'y(p). Dans cet article, nous
généralisons leur construction afin de prendre en compte la variable cycloto-
mique, et obtenons ainsi une série L p-adique a deux variables du produit
triple tordu. De plus, quand f est associée & une courbe elliptique F sur Q,
nous prouvons que la dérivée premiere de cette série L p-adique par rapport
au poids est le produit du logarithme p-adique d’un point de Stark—Heegner
de E sur F' introduit par Darmon et de la fonction L p-adique cyclotomique
de F.

ABSTRACT. In a recent work of Darmon, Pozzi and Vonk, the authors consider
a particular p-adic family of Hilbert—Eisenstein series Ej (1, ¢) associated with
an odd character ¢ of the narrow ideal class group of a real quadratic field
F and compute the first derivative of a certain one-variable twisted triple
product p-adic L-series attached to Ei(1l,¢) and an elliptic newform f of
weight 2 on I'g(p). In this paper, we generalize their construction to include
the cyclotomic variable and thus obtain a two-variable twisted triple product
p-adic L-series. Moreover, when f is associated with an elliptic curve E over
Q, we prove that the first derivative of this p-adic L-series along the weight
direction is a product of the p-adic logarithm of a Stark—Heegner point of F
over F' introduced by Darmon and the cyclotomic p-adic L-function for E.
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1. Introduction

In the work [8], to each odd character ¢ of the narrow ideal class group of
a real quadratic field F', the authors associate a one-variable p-adic family

E,(cp ) (1, ¢) of Hilbert—Eisenstein series on I'g(p) over a real quadratic field F'
and investigate the connection between the spectral decomposition of the
ordinary projection of the diagonal restriction G(¢) of E,gp )(1, ¢) around
k = 1 and the p-adic logarithms of Gross—Stark units and Stark—Heegner
points. In particular, if p is inert in F and let G} (¢)ora denote the elliptic
modular form of weight two obtained by the taking ordinary projection
of the first derivative C{i—l,gGk(qb)hg:l, then it is proved in [8, Theorem C(2)]
that the coefficient )\’f of each normalized Hecke eigenform f of weight
two on I'g(p) in the spectral decomposition of G| (¢)ora can be expressed in
terms of the product of special values of the L-function for f and the p-adic
logarithms of Stark—Heegner points or Gross—Stark units over F' introduced
in [6] and [7].

The purpose of this paper is to provide some partial generalizations of
this work to the two-variable setting by introducing the cyclotomic variable.
To begin with, we let F' be a real quadratic field with different 0 over Q.
Let x +— T denote the non-trivial automorphism of F' and let N : F' —
Q. N(z) = 27 be the norm map. Let Ar be the discriminant of F//Q. Let
CI™(OF) be the narrow ideal class group of F. Let ¢ : CIT(Or) — Q* be
an odd narrow ideal class character, i.e. ¢((0)) = —1 for any 6 € O with
d = —d. Let L(s, ) be the Hecke L-function attached to ¢. Fix an odd
rational prime p unramified in F'. For z € Z;, let w(x) be the Teichmiiller
lift of x (mod p) and let (z) := 2w (x) € 1 + pZ,. Let 2" := {x € C, |
2|, < 1} be the p-adic closed unit disk and let A(2") be the ring of rigid
analytic functions on 2. Fix an embedding ¢, : Q < C, throughout. For
each ideal m <t O coprime to p, define oy(m) € A(Z x Z7) by

ks s—2
aom)(k,s) = > (a)(N(@) 7 (N(ma!))
a<dOp,ajm
Let 27 := {k € Z2? | k = 2 (mod 2(p— 1))} be the set of classical
points in 2. Let h = #CIT(OF). Fix a set {b\})\:l,...,h of representatives
of the narrow ideal class group C1"(Or) with (ty,pOr) = 1. For each
classical point k € 2°°, the classical Hilbert-Eisenstein series F, /2(1,0)

on SLy(Op) of parallel weight g is determined by the normalized Fourier
coefficients

c(m, Ex(1,0)) = og(m)(k,2), x(0,Ex(1,¢)) =47'L(1—k/2,9).

Let Ir be the set of integral ideals of F'. Assume that n € Ir and p are
coprime. Let M(n) be the space of two-variable p-adic families of Hilbert
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modular forms of tame level n, which consists of functions
Ip — A (X xZ), m— c(m,f),
C1+(0F) —>JZ{(% X %), Cli—)Co(Cl,f)

such that the specialization f(k, s) = {c(m, f)(k, s)} is the set of normalized
Fourier coefficients of a p-adic Hilbert modular form of parallel weight &
on I'g(pn) for (k,s) in a p-adically dense subset U C Z, x Z, (cf. [28,

p. 535-536]). Define Eip} :Ip — A(Z x Z) by the data
c(m, E;g)p}> = o4(m) if (m,pOp) = 1,
c(m, Ei)p}> = 0 otherwise,
co (a, E;p}) =0.

By definition, for (k,s) € 2° x 2 with k > 2s, we have

s—2 5—

EP (k,s) = (Ap)T -0 B, ,.(1,9),
2

where E,gp}(l,(;ﬁ) is the p-depletion of Ej(1,¢) and 6 is Serre’s differen-
tial operator 6(3 g agq®) = PP NF/Q(ﬂ)agqﬁ. Therefore, Eép}(k,s) is a
p-adic Hilbert modular form of parallel weight & for all (k,s) € ZZ, and
Ei)p} € M(OF). For each prime ideal ¢, define Ug: M(n) — M(nq) by
c(m, Uy f) :=c(mgq, f). Let N be a positive integer such that p{ N and
(Splt) NOp =90, (M,N) =1.

Define E4 € M(N) by

B = TI(1 - ol (N3 U,) - BD
a9

and the diagonal restriction Gy € A(Z x Z)[q] of E4 by

Gy = Z ( Z c(ﬁb,E@)q”,

n>0 \ ged ! Tr(B)=n

where Djrl is the additive semigroup of totally positive elements in 9.
By definition G4(k, s) is the g-expansion of a p-adic elliptic modular form

on I'o(pN) of weight k obtained from the diagonal restriction of Eép } (k,s)
for (k,s) € 27 x 27 with k > 2s. Let % be an appropriate neighborhood
around 2 € 2. Let S"4(N) be the space of ordinary A(%)-adic elliptic
cusp forms on I'g(Np), consisting of g-expansion f = >, qc(n, f)¢" €
A(Z )[q] whose weight k specialization f; is a p-ordinary cusp form of
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weight k on To(pN) for k € 2°°\. By Hida theory S"4(N) is a free A(%)-
module of finite rank. It can be shown that the image eGy under Hida’s
ordinary projector e actually belongs to S°™¢(N) @A(@) AU x Z), where
A(% ) is regarded as a subring of A(%Z x Z) via the pull-back of the first
projection % x 2 — % . We can thus decompose

eGy = ZﬁEa»f - f + (old forms), Lg, € AU x X)),
f

where f runs over the set of primitive Hida families of tame conductor
N. We shall call Lg, s € A(% x Z') the twisted triple product p-adic L-
function attached to the p-adic Hilbert-Eisenstein series E 4 and a primitive
Hida family f.

The arithmetic significance of this p-adic L-function stems from its con-
nection with the Stark—Heegner points of elliptic curves. Let E be an elliptic
curve over Q of conductor pN. Assume that p is inert in F'. In [6], Darmon
introduced Stark—Heegner points of elliptic curves over real quadratic fields.
These are local points in E(F}) but conjectured to be rational over ray class
fields of F'. The rationality of Stark—Heegner points has been one of the ma-
jor open problems in algebraic number theory. Now let f € A(%)[q] be a
primitive Hida family of tame level N such that the weight two specializa-
tion f := f4 is the elliptic newform associated with E. In the special case
N =1, [8, Theorem C(2)] implies that Lg, f(2,1) = 0 and the first deriva-
tive of Lg, y(k,1) at k = 2 is essentially a product of the p-adic logarithm
log; Py of the twisted Stark-Heegner point Py, € E(F},) ® Q(¢) introduced
in [6, (182)] and the central value L(E,1) of the Hasse-Weil L-function
of E. As pointed out in [8, Remark 3|, this connection has potential of
providing a geometric approach to Stark—Heegner points via the K-theory
of Hilbert modular surfaces. The main result of this paper (Theorem 7.4)
is to offer the following generalization of [8, Theorem C(2)] to include the
cyclotomic variable and the case N > 1.

Theorem A. Suppose that p is inert in F and the conductor N satis-
fies (Splt). Then Lk, f(2,s) =0 and

oL 1 2 90
Bod (2,5 +1) = =(1+ (M) wy) logy Py - Ly(E, s) 2=
ok 2 cy

where

(E) s—1

<AF> 2,

o wy € {£1} is the sign of the Fricke involution at N acting on f,

o L,(E,s) is the Mazur—Tate—Teitelbaum p-adic L-function for E,

®cy € Z>0 is the congruence number for f, mp € QX is the Manin
constant for E and

2¢E) — [H,(E(C),Z) : H(E(C),Z)* @ Hy(E(C),Z)7].
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Our main motivation for this two-variable generalization is that we have
the non-vanishing of the p-adic L-function L,(FE,s) thanks to Rohrlich’s
theorem [22], so we can still compute logy Py from the twisted triple prod-
uct p-adic L-function even when the central value L(F, 1) vanishes.

Remark 1.1.

e Note that the definition of Stark-Heegner points P, for odd ¢ in [6]
depends on a choice of the purely imaginary period 2. In the above
theorem, we require (v/—1)7!1Q% to be positive.

e The Eisenstein contribution in the spectral decomposition in
Part (2) of [8, Theorem C] is connected with the p-adic logarithms
of Gross—Stark units over F', while in our two-variable setting, eG4
is a p-adic family of cusp forms, so we do not get any information
for Gross—Stark units.

e Theorem A only applies to real quadratic fields F' possessing a to-
tally positive fundamental unit due to the existence of odd charac-
ters of the narrow ideal class group of F.

We briefly outline the proof. Let £,(f/F, ¢, k) be the (odd) square-root
p-adic L-function associated with the primitive Hida family f and the char-
acter ¢ constructed in [1, Definition 3.4] with we = —1 and let L,(f, k, s)
be the Mazur-Kitagawa two-variable p-adic L-function so that L,(f,2, s)
is the cyclotomic p-adic L-function for f5. The main point of the proof is
to prove the following factorization formula of L, f:

s—k+1

(1) C*(k)- L, s(k,s+1) = 4(Ap) 2

ﬁp(f/F7¢7k) ‘Lp(f,k,3)7

where C*(k) is a meromorphic function on 2~ holomorphic at all clas-
sical points k € 2°° with C*(2) = 1. By construction, the square root
p-adic L-function £,(f/F, ¢, k) interpolates the toric period integrals B?k.
Thus we get Lp, f(2,s) = Lp(f/F,¢,2) = 0 by a classical theorem of
Saito and Tunnell. Moreover, from the formula [1, Corollary 2.6], it is not
difficult to deduce that the first derivative of L,(f/F,¢,k) at k = 2 is
(1 4+ wno(M) 1) logy Py, and hence we obtain Theorem A from (1.1).
The factorization formula (1.1), proved in Theorem 7.3, is established
by the inspection of the explicit interpolation formulae on both sides. In
particular, the interpolation formula of Lg, f(k, s) (Proposition 5.8) is the
most technical part of this paper. Roughly speaking, for (k,s) € 27 x 2
with k > 2s, Hida’s p-adic Rankin-Selberg method shows that Lg, ¢(k, s)
is interpolated by the inner product between the diagonal restriction of a
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nearly holomorphic Hilbert-Eisenstein series Ey(k, s) and f;. Therefore, a
result of Keaton and Pitale [20, Proposition 2.3] tells us that Lg, ¢(k, s) is
a product of

i) the toric period integral B% of f, over F twisted by ¢ (see (4.2)),
T k

(ii) the special value L(f},s) of the L-function for f;
(iii) local zeta integrals Zp(s, By, ) for every place of Q in (4.4).

It is known that items (i) and (ii) are basically interpolated by L, (f/K, ¢, k)
and Ly(f,k,s), so our main task is to evaluate explicitly these local zeta
integrals in item (iii). These calculations occupy the main body of Sec-
tion 4. From the explicit interpolation formulae of these p-adic L-functions,
we can deduce that the ratio C* between L,(f/F,¢,k) - L,(f,k,s) and
LEg,, #(k,s + 1) is independent of s, and hence C* is a meromorphic func-
tion in k only. Finally, by a standard argument using Rohrlich’s result on
the non-vanishing of the cyclotomic p-adic L-functions for elliptic modular
forms, we can conclude that C*(k) is holomorphic at all k € 2! and C*(2)
is essentially the congruence number.

This paper is organized as follows. After preparing the basic notation
for modular forms and automorphic forms in Section 2, we give the con-
struction of Hilbert—Eisenstein series and compute the Fourier coefficients
in Section 3. In Section 4, we compute the inner product between the diago-
nal restriction of Hilbert—Fisenstein series and a p-stabilized newform. The
main local calculations are carried out in Proposition 4.4 for the split case,
Proposition 4.5 for the non-split, and Proposition 4.6 for the p-adic case. In
Section 5, we use p-adic Rankin—Selberg method to construct the p-adic L-
function Lg, s and obtain the interpolation formula in Proposition 5.8 by
combining the local calculations in Section 4. In order to make the compar-
ison between p-adic L-functions easier, the interpolation formulae shall be
presented in terms of automorphic L-functions in this paper. In Section 6,
we review the theory of A-adic modular symbols in [21] and the construc-
tion of the square root p-adic L-function L,(f/F, ¢, k). Our treatment for
modular symbols is semi-adelic, which allows simple descriptions of Hecke
actions and are amenable to the calculations from the automorphic side.
The connection with Greenberg—Stevens’ approach [9] is explained in Sec-
tion 6.4. In Proposition 6.8, we give the complete interpolation formula for
L,(f/F, ¢, k), including the evaluation at finite order characters of p-power
conductors. Finally, we deduce the factorization formula and the derivative
formula for Lg of I Section 7.

Acknowledgements. We thank the referees for careful reading and help-
ful suggestions on the improvement of the earlier version of the paper. This
paper was written during the first author’s visit to Osaka City University
and RIMS in January 2020. He is grateful for their hospitality.
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2. Classical modular forms and automorphic forms

In this section, we recall basic definitions and standard facts about clas-
sical elliptic modular forms and automorphic forms on GL3(A), following
the notation in [16, Section 2] which we reproduce here for the reader’s
convenience. The main purpose of this section is to set up the notation and
introduce some Hecke operators on the space of automorphic forms which
will be frequently used in the construction of p-adic L-functions.

2.1. Notation. We denote by Z, Q, R, C, A, R, the ring of rational
integers, the field of rational, real, complex numbers, the ring of adeles of
Q and the group of strictly positive real numbers. Let pu,(F) denote the
group of nth roots of unity in a field F'. For a rational prime ¢ we denote
by Zy, Q¢ and ordy : Qy — Z the ring of ¢-adic integers, the field of f-adic
numbers and the additive valuation normalized so that ordy(¢) = 1. Put
7 = [1; Z;. Define the idele wy = (wy,,) € A* by wyy = £ and wy, =1 if
v#E L.

Let F' be a number field. We denote its integer ring by Op. We write
Tr/q and Np/q for the trace and norm from F' to Q. For each place v of F
we denote by F,, the completion of F' with respect to v. Let Ap = A®qF be
the adele ring of F. Given t € A}, we write t, € F, for its v-component. We
shall regard F), (resp. F,)) as a subgroup of Ap (resp. A}) in a natural way.
Let ap, = |- |r, be the normalized absolute value on F,. If v = q is finite,
then || Fy =g I where @y is a generator of the prime ideal of the integral
ring Oq4 of Fy and gq denotes the cardinality of the residue field of O,.
Define the complete Dedekind zeta function by (r(s) = [1, ¢r,(s), where
(r(s) =7*/2T(§), and if v = q is finite, then (g, (s) = (1 — ¢; *)~'. When
F = Q, we will write o, = |- |, and (,(s) = (q,(s). Let ¢ : A/Q — C* be
the additive character whose archimedean component is 1 () = 2Vl
and whose local component at ¢ is denoted by v, : Q; — C*. We define
the additive character ¥ p = [[, %, : Ap/F' — C* by setting ¥p :=
P oTrpq. Let S(AR) = ®,S(F,") denote the space of Schwartz functions
on A'%.

For any set X we denote by Ix the characteristic function of X. If R is a
commutative ring and G = GLy(R), we define homomorphisms t : R* — G
and n: R — G by

W= ()

The identity matrix in G is denoted by 12. Denote by p the right translation
of G on the space of C-valued functions on G, i.e., p(g9)f(¢') = f(4'g), and
by 1 : G — C the constant function 1(g) = 1. For a function f : G — C
and a character w : R* — C*, let f ® w : G — C denote the function
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f®w(g) = f(g)w(detg). The subgroup B(R) (resp. N(R)) of GLa(R)
consists of upper triangular (resp. upper triangular unipotent) matrices.

2.2. Characters. If F is a number field and x : F*\Aj; — Q" isa
Hecke character of Ay, we denote by x, : F, — C* the local component
of x at a place v of F. When w is a Hecke character of A*, we denote by
wri=woNp/q: F*\A} — C* the base change of w.

If v is non-archimedean and A : F, — C* is a character, let ¢(\) be the
exponent of the conductor of A.
2.3. Automorphic forms on GL2(A). Fix a positive integer N. Define

~

open compact subgroups of GLy(Z) by

*

) = {g € GLa(@) |9 = (1) (mod N2}

Ui(N) = {g € Up(N) ‘gz (; T) (mod NZ)}

Let w : Q*\A* — C* be a finite order Hecke character of level N. We
extend w to a character of Up(N) defined by w ((2])) = IIynwe(dy) for

(2%) € Up(N). For any integer k the space Ap(N,w) of automorphic forms
on GLa(A) of weight k, level N and character w consists of automorphic
forms ¢ : GL2(A) — C such that

— cosf sinf
p(y9rgur) = w(x)p(g)eY Mw(ur), kg = (—sin9 cose)

for z € A%, v € GL3(Q), 6 € R and us € Uy(N). Let A)(N,w) be the
space of cusp forms in Ag(N,w).

Next we introduce important local Hecke operators on automorphic
forms. At the archimedean place, let Vi : Ax(N,w) — Agio(N,w) be
the normalized weight raising/lowering operator in [19, p. 165] given by

1 1 0 01 .
Define the operator Uy acting on ¢ € Ag(N,w) by
wy T
a?EZg/fZg

and the level-raising operator V; : Ax(N,w) — Ai(N¢,w) at a finite prime
£ by

Vip(g) = plt(w; 1))
Note that U;Vyp = lp and that if £ | N, then U, € EndcAg(N,w). For
each prime ¢ t N, let Ty € EndcAx(N,w) be the usual Hecke operator
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defined by

Ty = U+ we(O)Vy.
Define the GLa(A)-equivariant pairing (-, ) : A%, (N,w) ® Ag(N,w™ 1) —
C by

(p,¢') = / ©(9)¢'(9)d7g,
AX GL2(Q)\ GL2(A)

where d7g is the Tamagawa measure of PGLg(A). Note that (Typ,¢’) =
(p, To') for £1 N.

2.4. Classical modular forms. We recall a semi-adelic description of
classical modular forms. Let C°($)) be the space of C-valued smooth func-
tions on the half complex plane ) := {z € C | Im(z) > 0}. The group
GLy(R)" := {g € GLa(R) | detg > 0} acts on $ and the automorphy
factor is given by

(2) = az+b
K ez +d’

for v = (¢ g) € GLy(R)' and 2z € H.
Let k be any integer. The Maass—Shimura differential operators d; and
g on C°($)) are defined by

J(v,2) =cz+d

5 1 ( o, k ) L0
E =

P on/—1\ 0z 2v/—1y C2my/— Y oz
(cf. [14, (1a,1b) p. 310]), where y = Im(z) is the imaginary part of z.
Let x be a Dirichlet character of level N. For a non-negative integer m
let N,Em} (N, x) denote the space of nearly holomorphic modular forms of
weight k, level N and character y. In other words NILm](N , X) consists of
smooth slowly increasing functions f : $ x GL2(Q) — C such that

o f(vz,vgru) = (dety) "' J(y,2)" f(2, 96)x ' (u) for any v € GLo(Q)

and u € Up(N);

i €m+1f(zagf) =0
(cf. 14, p. 314]). Let Ni(N,x) = UZ_o NI™(N, x) (cf. [14, (1a), p. 310]).
By definition /\/’,LO}(N ,X) coincides with the space My (N, x) of classical
holomorphic modular forms of weight &, level NV and character x. Denote by
Si(N, x) the space of cusp forms in My (N, x). Let 67" = Spq2m—2 - - Op420k-
If f e Ng(N,x), then 6" f € Nigom(NV, x) ([14, p. 312]). Given a positive
integer d, we define

Vaf(z, gt) = f(dz, gr); Uaf(z, gr) Zf(z 9t (g {>>

The classical Hecke operators Ty for primes ¢4 N are given by
Tof = Uef + xe(t )2V, f.
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We say that f € Np(N,x) is a Hecke eigenform if f is an eigenfunction of
all the Hecke operators Ty for £1 N and the operators Uy for £ | N.

2.5. To every nearly holomorphic modular form f € N (N, x) we asso-
ciate a unique automorphic form @(f) € Ag(N,x ') defined by the formula

k
L]

21 2(f)(9) = f(goo(V=1), 91) T (goo, V=1)*(det goo) [det g 3

~

for ¢ = googr € GL2(R) GL2(Q) (cf. [4, Section 3]). Conversely, we can
recover the form f from &(f) by

@2) o+ VTyg) =00 ((§ 7) o) devarls *.

We call @(f) the adelic lift of f.

The weight raising/lowering operators are the adelic avatar of the dif-
ferential operators ;" and € on the space of automorphic forms. A direct
computation shows that the map @ from the space of modular forms to the
space of automorphic forms is equivariant for the Hecke action in the sense
that

(2.3) b0 f) = Vi @(f), b(ef) = V_o(f),
and for a finite prime /¢

(T f) = *21T,0(f), P(Uyf) = 271U, 9(f).

In particular, f is holomorphic if and only if V_@(f) = 0.
2.6. Preliminaries on irreducible representations of GL2(Qy).

2.6.1. Measures. We shall normalize the Haar measures on F,, and F, as
follows. Let dx, be the self-dual Haar measures of F;, with respect to ¥y, .

Put d*z, = (g, (1) &, If F = Q, then das, denote the usual Lebesgue

Zo|F,
measure on R aund| dllg be the Haar measure on Q; with vol(Z,,day) =
1. The Tamagawa measure of Ap is dz = [[, dx, while the Tamagawa
measure of A% is defined by d*z = cz'[[,dz), where cp denotes the
residue of (r(s) at s = 1. Define the compact subgroup K = [], K, of
GL2(A) by Koo = SO(2,R) and K; = GL2(Z;). Let du, be the Haar
measure on K, so that vol(K,,du,) = 1. Let dg, be the Haar measure
on PGLy(Qy) given by d"g, = \ay\f dz,d*a,duy, for g, = (4 %) uy with
a, € QX, z, € Q, and u, € K,. The Tamagawa measure on PGLy(A) is

given by d"g = (q(2) "' [, d" g
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2.6.2. Representations of GL2(Q,). Denote by o H v the irreducible

principal series representation of GL2(Q,) attached to two characters p, v :

QX — C* such that pv~! # o', If v = 00 is the archimedean place and

k > 1 is an integer, denote by Dy(k) the discrete series of lowest weight k

if & > 2 or the limit of discrete series if £ = 1 with central character sgn®
€T

(the k-th power of the sign character sgn(x) = —7— of R*).

E

2.6.3. Whittaker models and the normalized Whittaker newforms.
Every irreducible admissible infinite dimensional representation m of
GL2(Q,) admits a Whittaker model W(mw) = W(m, 4,,) with respect to v,,.
Recall that W(mr) is a subspace of smooth functions W : GL2(Q,) — C
such that

o W(n(x)g) =¢,(x)W(g) for all x € Q,,
e if v = 0o is archimedean, then there exists an integer M such that

W (t(a)) = O(lal) as |a]s — .

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(r) via
the right translation p. We introduce the (normalized) local Whittaker new-
form Wr in W(n) in the following way: if v = co and © = Dy(k), then
W, € W(r) is defined by

e2my

(2.4) W, (Z (g T) ,{9) ~ In, () yk/? sen(z)Fap_ (z)eV Tk

for y,z € R* and z,0 € R. Here one should not confuse the representation
7 in the left hand side of the equation and the real number 7 in the right
hand side. If v is finite, then W is the unique function in W(m)"" such
that Wy (12) = 1. The explicit formula for W (t(a)) is well-known (See [25,
p. 21] or [23, Section 2.2] for example).

2.6.4. L-factors and e-factors. Given a € Q), we define an additive

character v on Q, by ¥;(z) = 9, (ax) for z € Q,. We associate to a
character g : QF — C* the L-factor L(s,p) and the e-factor (s, o, ¥%)
(cf. [25, Section 1.1]). The gamma factor

L(1—s,07Y)

L(s, 0)
is obtained as the proportionality constant of the functional equation
(2.5) 7(37 0, Tﬁ) /QX @(a)g(a)\aﬁdxa — /Q>< @(Q)Q(a)ilya‘%fs d*%a
for ¢ € S(Qy), where

Bly) = /Q () (y0) A

v

v(s, 0,95) = (s, 0,93)
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is the Fourier transform with respect to ¥,. When a = 1, we write

e(s,0) = (s, 0,9,), v(s,0) = (s, 0,9,).
When v = £ is a finite prime, we denote the exponent of the conductor of
o0 by ¢(o). Recall that
(2.6) e(s, 0,%5) = ola)lal, "e(0, )¢ (0.

Let 7 be an irreducible admissible representation of GL2(Q,) with central
character w. Denote by L(s,n) and (s, ) = (s, m,v,) its L-factor and
e-factor relative to 1), defined in [19, Theorem 2.18]. We write 7" for the
contragredient representation of w. The gamma factor

L(1—s,7Y)
L(s,m)

is obtained as the proportionality constant of the functional equation
1
Y (s s, Tr) [ Wt@g) lalsd*a = [ W(ta)J; 'gwla) ol d%a
Q Q

for every W € W().

v(s,m) =¢e(s,m)

2.7. p-stabilized newforms. Let m be an irreducible cuspidal automor-
phic representation of GLy(A). The Whittaker function of ¢ € = with
respect to the additive character 1 is given by

Wolo) = [ eln@gps(—e) s

for g € GL2(A), where dx is the Haar measure with vol(A/Q,dz) = 1. We
have the Fourier expansion:

plg) = D We(t(B)g)
BeQ*
(cf. [3, Theorem 3.5.5]). Let f =3, a(n, f)¢" € Sk(N, x) be a normalized
Hecke eigenform whose adelic lift &(f) generates 7 = ®/m, of GLa(A),
having central character y~!. If f is a newform, then the conductor of =
is N, the adelic lift @(f) is the normalized new vector in 7 and the Mellin
transform

Lo, PO 4y =1 (s 5.r)

is the automorphic L-function of 7. Here |y|, = I1, |v,|, and d*y is the
product measure [[, d*y,.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ¢, : C ~ Qp. We say that a normalized Hecke eigenform f =

sia(n, f)g" € Sp(Np,x) is an ordinary p-stabilized newform with re-
spect to ¢, if f is new outside p and the eigenvalue of U, i.e. the p-th
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Fourier coefficient vy(a(p, f)), is a p-adic unit. The prime-to-p part of the
conductor of f is called the tame conductor of f.

The Whittaker function of @(f) is a product of local Whittaker functions
in W(my,,) by the multiplicity one for new and ordinary vectors. To be
precise, we have

War)(9) = W (gp) T[] W, (90)
v#p

for g = (gv) € GL2(A). Here W, is the normalized Whittaker newform of
m, and W,?;d is the ordinary Whittaker function characterized by

Ward(t(a) = ef(a) al? -1z, (a) for a € Q,

where oy : Q; — C* is the unramified character with of(p) = a(p, f) -
p=k)/2 (See [16, Corollary 2.3, Remark 2.5)).

3. The construction of Hilbert—Eisenstein series

3.1. Eisenstein series. We recall the construction of Eisenstein series
described in [18, Section 19]. Let F' be a real quadratic field with integer
ring Op. We denote the set of real places of F' by ¥gr = {01,032}, the
different of F' by 0, the discriminant of F' by A and the unique non-trivial
automorphism of F' by x — Z. For each finite prime q of I’ we write O for
the integer ring of Fj.

Let (u1,v) be a pair of unitary Hecke characters of A . For each place v
we write B(uy, vy, ) for the space of smooth functions f, : GLa(F,) — C

which satisfy
(6 0)9) = ml@m()

for a,d € FY and b € F,. Recall that S(F?) denotes the space of
Schwartz functions on F2. We associate to ®, € S(F?2) the Godement

section fu, v, .@,.s € Bftw, Vo, s) by

fm,w,%,s(%)
= 1p(det g, ) |det g, fwf% /F Dy ((0,t0)g0) (1o ) (to) [tulp - d*ty.
Let ® = ®, ®, € S(A%). Define a function f,,,¢,s : GL2(Ar) — C by
Suw,2,5(9) =1Ly frov0,0,,5(90)- The series
EA(9, fuves) = > fuwa,s(79)

YEB(F)\ GL2(F)
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converges absolutely for Re(s) > 0 and has meromorphic continuation to
s € C. It admits the Fourier expansion

(31) EA(Q, fu,u,@,s) = fu,u,@,s(g) + fu,u,g,—s(g) + Z W(t(ﬁ)g, fu,u,d),s)a
BEFX

where ® := ®,®, is the symplectic Fourier transform defined by
D, (z,y) = // Oy (2, u)Yp, (2y — ux) dzdu.
F7

We tentatively write fy, s = fu, 1, ®,,s- There exists an open compact sub-
group U of F, such that for any open compact subgroup U’ containing U

/fv,s(Jln(xv)gv)"/JFu(_‘TU) dxv:/ fv,s(Jln(l‘v)gv)'lprv(_va) dl‘va
u u’

where J; = ({ '). We define the regularized integral by

st
W(gvvfuq,,yv,d)v,s) = /F fv,s(Jln(xv)gv)"/’Fv(_xv) dxv

= / fv,s(Jln(mv)gv)"va (_$v) dx,,.
u

Then W(97 fu,u,@,s) = Hv W(gva fv,s) for g = (gv) S GL2(AF)~

3.2. The Eisenstein series Ei(pu,v). Let N and C be positive integers
such that NAr and C are coprime. We assume that

(Spl) every prime factor of NC splits in F.
Then there are ideals 9T and ¢ of O such that
(3.2) NOp =90, N,N) =1 COp =ct, (c,0)=1.

Fix a positive integer k. Assume that vy, s, = sgn® for i = 1,2. We recall
a construction of a certain classical Eisenstein series Fj(u,v) of parallel
weight k, level T'1(NC) and central character pv, following [18]. We impose
the following hypotheses for (u,v):
Hypothesis 3.1.

e 4 is unramified outside p,

e the prime-to-p part of the conductor of v has a decomposition c¢’

with ¢ C ¢.
Definition 3.2. Let & > 2 be an integer. The quintuple
D := (u,v,k,N,c)

is called an Eisenstein datum of weight k. The Fourier transform of ¢ €
S(F,) is defined by

(@) = /F (v, (yr) dy,
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where the Haar measure dy is so chosen that ¢(z) = ¢(—z). When q is a

finite prime, we associate to a character y : Fq>< — C a function ¢, € S(Fy)

by ¢y (z) = L= (x)x(z). We associate to D the Bruhat-Schwartz function
q

®p = (X) Pp,w € S(AT)

defined as follows:
Op y(z,y) = —k(x+ ry)k —m(@?+y?) if o € YR,
Opy(2,y) = ¢,-1(2)d,-1 (y) if v | p,
‘I)D,v(l’ y) = H‘ﬁcO (x )¢Vv( ) if v | M,
)
)

p(2,y) = o, (@)d,1(y) if v |

o ©pu(2.y) = To10, (@) 10,(y)  |AFIF if v f pote.
These particular choices of Bruhat—Schwartz functions are inspired by [5,
Definition 4.1] used in the construction of primitive p-adic Rankin—Selberg
L-functions. We define the associated Godement section by fp s = fu..dp.s

and fD,s,v = fuv,uv,@pyv,s'

Remark 3.3. If v € ¥R, then fp, is the unique function in B(u, vy, 5)
such that

fD,s,v(Kﬁ) = erkG 2- (F)k —(s +%)I’ <S + k—2|_1>

(see the proof of Lemma 3.6). If v = q is a finite place, then for any integer
M, let Uy (M) be the open-compact subgroup of GL2(Oy) given by

— Oq Oq
U (M) = GL2(Oq) N (MOq 14 Moq> :

and fpsq € B(pq, Vg, s) is invariant by Uy (p" NC') under the right transla-
tion for some sufficiently large r.

Definition 3.4. Define the classical Eisenstein series E,:cIE (,v) : H¥® — C
by

Ef (pv)(z+yV/-1) =y 2EA(<O 1) st>

Then E,;t(u, v) is a Hilbert modular form of parallel weight k, level p" NC'
and character u~'v~!. By definition

P(Ej; (1,)|9)(9) = Ea((9:9), fp.5)| et
for g € GLa(A), where @ is the adelic lift defined in (2.2).

. (xeR? yeRY).
s:i%

Proposition 3.5. For every non-negative integer t, we have
@((%E]zt(,u, v)) = EA(th,s)|s:i%>
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where Dy = (p, v, k + 2t, M, ¢) is an Fisenstein datum of weight k + 2t.

Proof. Recall the differential operator V defined in Section 2.3. Propo-
sition 3.5 follows from (2.3) in view of the relation VI fpsoe = fD,,s00
(see [19, Lemma 5.6 (iii)]). O

3.3. Fourier coefficients of Eisenstein series.

Lemma 3.6. For a € R*, we have

k

W (t(0), fornce)l,_s = W(B@), Fpnoe)l, s = aBe ™™ Ty, (a).
Proof. By definition, W (t(a), fps.c0) equals
2% et (a) A [R H(at v/ Ta) e ) s (1)1 2 () At
= MOéSJr%(a) S(—=2v/=1)7F. F(s + k;l)w_(”k;rl)
X /R(a? + \/—71a)*(5+%)(x — \/—71a)*(5*k2;1)1poo(—x) dz.

By Cauchy’s integral formula we find that

X 6727r\/j1x
W (t(a), fp,s.00)| o1 = pex®(a) - (—2mv/=1)7F. F(k’)/R mdx

= p(a) - ae 2™ In, (a),

and that

W(t(a)’ fD,s,oo)‘S:%

e e

d
R z++v—1la v

= u(a) LqBe M. Ir, (a).
Since p is a quadratic character, the lemma follows. 0

Let qq = |wq]*1 = #(OF/q) denote the cardinality of the residue field.

Lemma 3.7. Let v =q be a prime ideal of Op. Let a € F. Put

Xq = Mq_ll/m Yo = Xa(@q), ¢q = ‘wq|_1 =$(Or/q), m = ordy(a).
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Then W (t(a), fp,s,q) equals

1m—}—ordq(b) A
(q 1 pNe) pa(a)lal™z > (1443,
§=0
) m—ordg(N) ‘ m—ordg(N) ‘
(q M) uq(a)la\s+2< > (e —at Y (qu55)3>,
j=0 j=-1
1
(q¢) pq(a)lal®tz - £(=2s,xq) " - To, (),
_ oL
(a]¢) 1iq(a)]al** 210, (a),
(@=plp) Ioy ().

Proof. Fix a local uniformizer w, € Oy of the prime ideal q. Note that if
P=0, 0Py S(FC?), then

53 soea(( D) (5 9)

= ra(@lal% [ @1(ta)afta) (ugrg HOI at
q
and hence
1 ~
W(t(0). fo0a) = i@)lol"*F [ ®1(a)@a(—t) gy O a.
q
If g pOe, then @p g = Lh-10, ® [i-10,, and hence
1 - —2s
W(t(), fpa) = ra(@lalF [ Torro, (£ a)lo, (<t)xa(tt] 2 4™t
q
) m+ordq (D) e
= ug(@)lal*™2 D> xq(w)ey™.
j=0
If q | Mc, then pq is unramified by assumption. It is easy to verify that
lo, () = g5 'i-10, (@) if q |91,

5(1,I/UI*I)VUI(afl)ﬂwq_c(uc,)ocIX (x) ifq]ec.

o~

vg\ L

One can readily prove the case q | 1. If ¢ is divisible by q, then

pal@)”al =W (t(a), fo.sa)
= [} Teou(at)d, (-7 DOl 01

_ c(v, —2sc(v,
=e(1,, 1)1/q(—1)uq(wq( q))qq ( “)Howq_c(uq)oq(a).
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Note that COq = wy C(”“)Oq for q | ¢ by our assumption on the conductor
of v and that

e(1, yqfl)yq(—l),uq (ws(yq))q‘;%c(y“) = v, (=1)e(1 + 23,)(;1) =e(—2s,xq) "
by (2.6). If q | ¢, then W(t(a), fp,sq) equals

s+ — — s s+ 1
pq(a)lal* "2 /F Lo (at)¢, -1 (t™") (qvg ) (B)[E** 4t = pq(a)lal** 210, (a).
q
Finally, if v = p|p, then we find that W (t(a), fpsp) equals
1 — — s
o (@1al" 3 [ 6, (0816, s YO 48 = T (0
P

by a similar calculation. O

For each non-zero element 8 € F'* we define the polynomials Pg 4 and
Qg in Z(g)[X, X1 by
S g Y X if q { pOe,
g {Z?Ldg”‘” g X0 = S g O g
Qua(X) = (0, xq) ™" - (ggX )X,
Let 5 € F. We write g > 0 if 0;(8) > 0 for i = 1, 2.

Corollary 3.8. We have the following Fourier expansion around the infin-
ity cusp:
Bu)mm) = Y ok(unk) @ T imod)
0<ped—t, (p,B)=1

)

where
od (v k) = 11, (B) [T Parva - 4§) T1 Qu-1va(ad),
dep al(<.8)
o5 (v, k) = Npjg(B) - 1, (B) [T Poa(ra- 457" 11 Qu-rwalas™)-
afep )

Proof. Note that if ® = ¢ ® ¢o € S(F2), then ®(z,y) = do(—z)¢1(y).
Since ®p(0,y) = 0 and ®p,(0,y) = qbyp_l(O)quP_l(y) = 0 for a prime p
lying above the distinguished prime p, we see that

(3.5) fospl9) =1, (9) =0 for g € B(Fy).

PauF7¢D,|M_5

This in particular implies that

(5 1)) = (5 3)) =0
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In view of (3.1) and Lemma 3.6, we find that

ﬁ (M? V k H W fD757q)|8::‘:%.

q<oo

The assertion follows from Lemma 3.7 by noting that u;luq(wq) = uv=1(q)
if q is the prime induced by v. O

4. Restriction of Eisenstein series

In this section, we study a certain global zeta integral of Zp(s, ) intro-
duced in Section 4.2. This zeta integral naturally appears in the spectral
decomposition of the restriction of the Eisenstein series Ei (11, v), and the
main result (Theorem 4.8), which will be used in the explicit interpolation
formula of our twisted triple product p-adic L-functions, shows that this
integral is essentially a product of the toric period integral in (4.2) and an
automorphic L-function for GLs.

4.1. Optimal embeddings. Let F' be a real quadratic field whose dis-
criminant is denoted by Ag. Define § € F by 6 = D/% VAE where D' = Ap

or % according to whether Ap is odd or even. Then Op = Z + Z60, and
if ¢ is ramified in F', then 0 is a local uniformizer of O,. Denote by x — T
the unique non-trivial automorphism of Gal(£/Q). Put

5Z:§—9:\/AF.

We choose an embedding o1 : F < R such that ¢1(4) > 0. Define an
algebraic group T over Q by T'(R) = (F ® R)* for any commutative field
R of characteristic zero. We view T as a maximal torus of GLg via the
embedding ¥: F' — My(Q) defined by

- (_11 99> 51— <f f) ¢ GLo(F).

It is important to note that for t € I

(4.1) nen = () )

Let N and C be positive integers such that

Put

e C and NAp are coprime;
e Every prime factor of NC'is split in F'.

Fix decompositions NOp = M and COpr = ¢t once and for all. Fix a
prime ideal p of Of lying above p.
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Definition 4.1. We define special elements ¢, <@ and ¢(€P") in GL2(A)
as follows:

e At the archimedean place, put

o= (0 O e oram),

e For each rational prime ¢ we fix a prime ideal q of O above ¢ and
define ¢; € GL2(Qq) by

11

Gq = 1 otherwise.

e Put
c -1
géC) = (0 1 ) € GL2(Q(1)§

(m — (p(;‘ 711) € GLo(F,) if p=pp is split in F
’ (*?D” (1J> € GL2(Qp) if pisinert in F.

§q = (9 9) 6_1 c GL2(Fq) = GLQ(Qq) 1f q — qq iS Spht,

Finally, we define

¢ = ng O .= gngéc); (0 .= g(C)gI()n).
v q|C
Let Oc = Z + COp be the order of F' of conductor C. It is not difficult
to verify immediately that the inclusion map ¥ : F' < M (Q) is an optimal
embedding of O¢ into the Eichler order Ry := Ma(Q) Ns(OIMy(Z) ()1
of level N. In other words,

U HRy)NF = Oc.

4.2. A result of Keaton and Pitale. Let 7 ~ ®/m, be an irreducible
cuspidal automorphic representation of GLy(A) generated by a cusp form
®(f) € AY.(N,w). Let p and v be unitary Hecke characters of A% such
that p has p-power conductor and such that the restriction of uv to A* is
w. Define the Hecke character x : F*\Aj — C* by

x(z) := p(z)v(z).
Given ¢ € 7, we define the global zeta integral by
Zo(s.o) = || EA(g. fo.)¢(g)(detg) ™" .
AX GL2(Q)\ GL2(A)

where fp s is the section defined in Definition 3.2 associated with the datum
D = (u,v,k,M,c). This integral converges absolutely for all s away from
the poles of Fa(g, fp,s) and defines a meromorphic function in s.



Restriction of Hilbert—Eisenstein series 907

We define the Tamagawa measures d*z of Ay and d*a of A* as in
Section 2.6.1, and define the Tamagawa measure dt of T'(A) as the quotient
measure of d*z and d*a. Let dg denote the quotient measure of d”¢g and
dt. Given ¢ € 7, we define the toric period integral by

(12) Big)= [ e(u®gxw T a
AXFX\AX
Theorem 4.2 (Keaton and Pitale). Let ¢ € w. Then

Zp(s.9) = | B(9)dg.
T(A)\GL2(A)

Proof. This is nothing but Proposition 2.3 of [20]. O

4.3. Global setting. Now we let f = 3% a(n, f)q" € Sox(Np",w™!) be
a p-stabilized newform and ¢ = &(f) € A9, (N, w) be the automorphic form
associated with f in (2.1). For each prime factor ¢ of C' we choose a root
aq(f) of the Hecke polynomial X2 —a(q, f)X +w™1(¢)¢** 1. Let f be the
unique form in Sop (NCp”,w™1)[f] such that a(1, f) = 1 and Uqf = aq(f)f.
Let ¢ = &( f ) be the adelic lift of f. We impose the following assumptions:

1
e w has a square root wz;
e 1 and w are unramified outside p;
1

1
e COp is the conductor of ywp? (Wi = w3 o N).
Note that these assumptions imply that the COp is the prime-to-p part of

the conductor of v. Define the matrices J and t, for each integer n in
GL2(A) by

(43)  Je = (‘01 (1)) € GLy(R), t, = (%n pg") € GLa(Q,).

4.4. Local zeta integrals. For each place v of Q we set fps,(9y) =
[Ivjp fDs,v(9v) for go = (gv)vio € [Ty GL2(Fy). Assume that ¢ has the fac-
torizable Whittaker function W (g) = I1, Wu(gv) for g = (g») € GL2(A).
We associate to each Whittaker function W, € W(m,, %,) a Bessel function
B, : GL2(Qu) — C by

Bl = [ Wals, " Wlt)go)xo(t) 7 dt,
Qo \Fy

unless v = pisinert in F. Here dt, is the quotient measure of d*x,, and d*a,
(see Section 2.6.1). This integral is absolutely convergent (see the proof of
Proposition 4.4). If v = p is inert in F', then we will explicitly choose a
Whittaker function W € W(w;/ b, 1Y in the proof of Proposition 4.6 so

that p(t)W = Xp(t)_lw. Recall the standard GL2(Qp)-invariant pairing
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(+y0) : W(my,1,,) X W(Wg,lbgl) — C defined by
Wi Wa) = [ W) We(t(a)) d”ay.
Qp

Define the Bessel function By, : GL2(Q,) — C by By, (9) := {p(g9)Wp, 171//>
The integral

(414) Zp(s,Bw,) = | Po.salngo)wn(det g,) " Buv, (9. dg,
T(Qv)\ GLQ(QU)

makes sense by (4.1), where dg, is the quotient measure of d”g, and dt,.

4.5. Convergence. In this and next subsections we fix a place v of Q and
suppress the subscript v from the notation. Thus

FZF@QU; 1/):1/’1;: |’:"U7 H = [y, V = Vy,
T = Ty, ¢D:®V|9¢D,VES(F2)7””

Lemma 4.3. The integral defining Zp(s, Bw) is absolutely convergent for
Res > 0.

Proof. Put T, = T(Qg). For W € W(r) we have

Zp(s, Bw) = / fp,5.q(ng)w(det g) " B (9) dg
Tq\GLQ(Qq)
= / fp,sq(ng)w(det )~ / W (s, 'tg)x(t)~" dedh
Ty\ GL2(Qq) Q7 \T,
- [ Ipsatitg)o(det(te) (s, tg) dedg
T,\ GL2(Qq) / Qg \T;
by definition. We combine the iterated integral to obtain
Zp(s, Bw) = / fD.s.9(ng)w(det g) "' W(s, " g)dg.
PGL2(Qq)

First assume that v = ¢ = qq is split in F. Since ng, = 6~ and 75, =
§7H(94), we get

(4.5) ZD(S, Bw)

_ -1 _ 01 T
= i, Pora@tdeta) o ( (o) o)Wl g
. 10 .
=/ fp.sq(g)w(det g) 1Wa<( _1) 9>W(g)d 9,
N(Qq)\ PGL2(Qy) 0

where W5(g) := W (g, fp,s;3)- This is nothing but the local Rankin-Selberg
integral for GLy x GLg, which is absolutely convergent for Res > 0.
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Next assume that v = ¢ remains prime in F. It suffices to show that the
integral

40 [ S e mE@t @)y e W () 4o

converges absolutely in view of the Iwasawa decomposition. Since n =

o1 ( ! _99) the inner integral is

1
5—1 ’3""5
51 |
O a)

/q - (™) ‘t\2s+1<1>((0,t) (_11 —09) (g T)>¢($)dxtdx_

Put £ := v~ a28+1 Let ® = ®; ® ®3. We may assume that |®;(z)] <1
and Pg(xc) = ( ) for z € F and ¢ € OF. Since the integral
dx

/ / )P (—at)Do(t (7—$))‘dxtdx</ / (1) Do (t0 — )| d¥¢ H

converges for Res > 0, the double integral (4.6) is absolutely convergent
for Res > 0. g

4.6. Local calculations. We compute the local zeta integrals Zp(s, By, )
occurring in the factorization of the global integral Zp (s, p(Jootn)@y). Put
V4 :=v|qx. Recall the normalized Whittaker newform Wy € W(r, 9) (see

Section 2.6.3). For each prime factor v = g of C, if we write 7 = g, B v,
with 04(q) = aq(f)g = , then

W := Wa — vg(q) la2 m(t(g71)) W

Then Wy is characterized uniquely by the conditions: Wﬂ(lg) = 1 and

9 1 v
U, W = 04(q) |g|”2 Wy In the case v = p, we denote by W an ordinary
vector of eigenvalue a(p, f)p'~*. By our assumptions,

o L angi v4 are unramified outside p;

° wa:i is only ramified at primes dividing C.

Proposition 4.4. Let v # p be a place of Q which is split in F. We have
e Ifv = oo is the archimedean place, then B,z yw, (So0) # 0, and

Zp(8, Bo(gayw,) = 4(=4vV=1)"Fvo, (=1)Tc(25 + k) - By( gy, (So0)-
e I[fv=gq and NC are coprime, then

1
ZD(S7BW7T) = L(QS + 5,77 &® V+1)BW7T(§q).
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e Ifv=qis a prime factor of N, then By, (sq) # 0 and
Cq(2) INClq,
Cq(1)

o When v = q is a prime factor of C, then By, (gng ) # 0 and

((2) INClq, 1 ) e0.x5 ) ©)
Cq(l)L<23+2,7r®y+ >Cq(1q).BWW(§q<q )-

Proof. We first treat the archimedean case. Let W = p(Joo)Wr,, . By defi-
nition, By (seon(x)) equals

1
Zo(s, Bw,) = 125+ gm0 07 ) B ()

Zp(s,Bw,) =

/ )joo):uo'z( ) 1V01(a)71 d*a
RX

= (o) (-1) [ e gk g
0

= (Htay Vo) (=1)(2m) (1 + &v/=1) T (k)

by (2.4), where we have shifted the contour of integration. By the Iwasawa
decomposition GLe(R) = B(R)K and Remark 3.3, the local integral
Zp(s, By) equals

[ o @) (1) n6e)) B (i) do

= & k:(_ ) w
(2m/—1)k 25 +k+1
/u 4 22)~(s+1/2) (ﬂf—ﬁy dz
" Vit ) (x— 1)
) (QWﬁ)) - 2(2m) " HIT s 4+ k) - A(4) (1),

Let v = ¢ = qq be a finite split prime. Then
1 -1 1 -1, -1
(4.7) By, (sq) =L §,w®xq =L §,W®uq vy -
If ¢ and Nc are coprime, then
Zo(s, Bw.) = L(2s + 1, ®1—1L1 @ s v
p(s,Bw,) = s+ 5, ® vy Vg 50 Ta ® Hg g

by (4.5). The unramified case follows from (4.7).



Restriction of Hilbert—Eisenstein series 911

Suppose that v = ¢ divides NC. Then pq, pi5 are unramified, the conduc-
tors of vy and v are CZy, and

1 .
pa(a) lal” 2 Ig,(a) ifq|C,

Wa(t(a)) = {qu ifg1C.

Here Wiy, is the spherical vector for Il = pga® H vga™®. Put

Uo(NCZy) = {(2 :) € GLa(Z,)

We claim that fp s q is supported in B(Qq)Uo(NCZy). Indeed, if fp sq(g) #
0 for g = (25) € GL2(Qy), then ®p4((0,t)g) # 0 for some t € QX.
According to the recipe in Definition 3.2, we find that (tc,td) € NCZ,®Z;,
and hence cd—1 € NCZ,. Since fpsq(1l2) =1, we see that

ZD(S, Bwﬂ)
= [GLa(Zy) : Up(NCZ,)] /Q (g ) (@)l 3 Wy (8(a)) Wi (6(a))d"a

q

ce NCZq}.

_ &(2)|INC] ( 1 1) (1 -1 _1)
= &) L 25+2,7T®1/+ L 2,7r®,ua Vg )

The case of a prime factor ¢ of N follows from (4.7).
Finally, we assume that C is divisible by q. We have

By, (s54°) :/qu W (t(a) <€ _11)>qu(@)an

= |C2 0,(C) /Q Jal? x5 eg(a)B(a)d*a

q
in view of W, (t(a)) = o4(a) ]a\% Iz,(a), where ®(a) = ¥ (—a)lg-1z,(a).
The integral above equals
1 -1 1~
(5ate) [ labda@)ae i
q
_ vol(C~'Z,,da)
(3. x5 ' 2q)
G Gq(1)
1,1 - -1 1
(X5 00 £(0,x71)eq(C)|C2

vol(1 + CZy,d*a)

by the local functional equation (2.5) for GL;. In the final stage we uti-
lized (2.6). O
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Proposition 4.5. If v = q remains a prime in F' and does not divide pNC,
then

a1 1
Zp(s, Bw,) = n(0) 1165 2 L(Qs + 507 @ I/J:1>BWW(12).

Proof. By assumption 7 and y are both unramified. Thus W, = W0 is the
normalized spherical Whittaker function, and so by the Iwasawa decompo-
sition GL2(Qq) = B(Qq) GL2(Z,), we have

Zn(s, Byyo) :/X Gla) - WO(t(a)) d*a,

q

where
1

)= Syl Ja,

fps.q(m(z)t(a))y(z) da.

1
Recall that ®p, = |02 15 10,55 10, and 7 = 5*1( L ) Put ¢° =

lo,e00, and & 1= pv~ a%ﬁl The computation in the proof of Lemma 4.3

shows that

1(8) 6|3 G ‘“'F /Q ®%(—ag™, ¢™(0 — ) (x) da.

q mEZ

If F/Qq is unramified, then Byo(12) =1 and

lalF & / a®
= I I .
) l/(a) mE::O OF(aq qu ]/(a) Zq(a)
It follows that
Zo(s, Bun) = | al  (@WO(t(a)) a¥a = L(25+ 5007,
’ Q; v(a) ™ 2’ *

Next we consider the case where ¢ is ramified in F. Then 6 is a uni-
formizer. We see that

Byo(12) = WO(1a) - [Ap|2 + WO(T(0))x " (6) |A|2

from the decomposition F* = QX0 LQ O and vol(Op, dt,) = ]AF\%
Writing 7 = pHB v, a = 9(q) and 8 = v(q), we get

16172 Byyo(La) = 1+ x(0) (o + B) lalF = 1+ () (0~ [gl? (o + B)
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by the Iwasawa decomposition of ¥(6). On the other hand, u(d) 8|5 G(a)
equals

|alf 2m 0(gg2m. g2m .
) o, S (9@ 020 )

+ €073 (a0, 02" 1(D - x)) }ep(w) da
= v(a) " |a|* (g, (a) + £(0)Tz, (@) + £07") la] - Tz, (a))

Since
- 0 qm 0 —2ms —-m __ ’q‘2s+% _ 1 25+
Swe((fy 1)) = S ks o™ ),

we conclude that
1
Zp(s, Byo) = u(67 1) 10| 5° L<28 + 3 ® yzl)

X< {1+ €(6) + €07 lal-la***2 v() " (o + B — aBu(a) gl F2)}

Since (,uu)\Q; = w, the second factor equals

s — 1 — s+1
L+ (1) (0) [ ™ + () (071 |2 (a+ 8 — (v w) (@) [¢*2)
1 _1
=1+ ()(07") |g|2 (a + B) = Byo(12) [8]*
which finishes the proof of the ramified case. O

Proposition 4.6. In the p-adic case, if 1 = Q H v with o unramified and
v(—1) =1, then for n > 0, we have BWord(gp ) # 0 and

1
Zp(8, By, ywerd) = (W o) (™) Ip"2

me (s5) & (2)
v(2s+ L, oY) ¢ (1)

Proof. We first assume that p = pp is split. Then F' = Q, © Q, and
¢, = &, ® 5, where &, = ¢#_1 ® ¢,-1 with v = p or p. From (4.5)

Zp(s, Bp(tn)W;grd)

fps(9) <(1 o> > o
= %Wf g Wﬂ—r gtn dTg
/N(Qp)\PGLQ(Qp) w(detg) P\\O -1 (gtn)

Put u(x) = (P _1). Using the integration formula

1 —x

o (2 L
/PGLQ(QP) hla)d’a = (1) // /ph(n(y)t(a)J1n(x))]a Vdyd* adz
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for an integrable function h on PGL2(Qp), we see that Zp(s, By, ywerd)
equals

<p2 / L, 7 @) 0" oI Wiea)u)

»(1)
ord apn 0 1 0 X
(2 e e
Since fpsp(Jin(z)) = gg 1(z) by (3.3), if n > 0, then Zp(s, B, ywerd)

equals Cp(clziif()p") times

Yp

[ L @ @) a6, @) Wa(t(@)u(e) W (¢(ap™)) dad*a.

Since the function a — $V;1($)Wﬁ(t(a)u(x)) has a bounded support uni-

formly with respect to x, if n > 0, then the integral is equal to o(p*") [p"|
times

/ / (W™ ) (@) a]* 6,1 () Wy (t(a)u(z)) (@)l -2, (a) dzd*a
:/X/ (Uﬁlﬂp)(a)\@|8¢§y;1(9€)Wﬁ(t(a)u(x))dxdxa.

Put Il = ppa® B vya™*. We use the local functional equation for GLs
(see Section 2.6.4) to see that the last integral equals the ratio of

/ / a) ] 6,1 ()W (b(a)J; () uprpa") d*ada

divided by

1 1\ /1
7<s+2,upv 1®Hﬁ> =7(28+2,9v+1)7<2,9xp 1).

Since

w = 0v= s, 6(a) T u(e) = n(~az)t(—a), Wy(t(a)) = Ly (a)

P

by Lemma 3.7, this integral equals
(e @)l Wat(-a)) |8, ()(-ar) ded”a

p
D P

= [ o)™ ol Ty (@Wyle(~a)d e = 1.

P
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On the other hand, we see by (2.5) that

Byyora (ngn)) = /QX werd (t(a) (p(;l _11>)X,3(a)_1 d*a

P

= [ ela")lap"*p(~a)Iz, (") x(a) " da

P

1/2 vol(p™"Zy, da)

=o(p") Ip"| ——L = vol(1 + p"Zy,,d*a)
V(3 0x5 )
ny | (1)
= o(p") Ip |1/2 %-
V(3> 0% )

Now we consider the case where p is inert in F' and 7 is a principal series.
Using the decomposition GL2(Q,) = W(F*) - B(Q)), we have

ZD(S B )Word)
= / L I @@ @) B (a0
We proceed to compute

fp,sp(nt(a)n(z))

=<uu><5—1>fp,s,p((_11 ‘89) (g f))

= (6" )p(a) a2 / Opp(—ta, t(0 — za)) (pv ) () [t d*t

=@ ol [ @pp(—ta = )0 E 0
Since ®p, = ¢, -1 @ §,-1, we find that

fosp(mt(@n(@) = p(~ () alz" 2 3,1 (a0 — ).

In particular, the function z — qg,jfl (a='0 — ) has a bounded support with
respect to a. Hence for n >, 0

u(=1)v(6)Zp(s, By, ywerd)

/ / 0) |a] ™% §,-1 (6718 — 2)w(a) ™ Byyra (b(a)tn) d* ada
= [ v(a)7af*® By(a)w(a) By (t(a Ht,) d%a,
Q, "
where @3(a) € S(Qp) is defined by

a) _/Q b1 (x + af) dz.
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Observe that if @3(a) # 0, then
(0) Byygra (60~ )t) = w(p™)~ Byyra (J5 1t(ap™)

1

FZ(W),

= w(p) " o(ap™) |ap™
where
Z00) = [ ot 1 Iz, (ot (60)) 0
= [ e [t]2 W(s() ) d*t
Qp
for n >, i 0. Thus we find that 1i(—1)v(0) Zp(s, By, )wera) is equal to

X
P

=~ 1
(W LA (") Ip"| Z(7) /Q (v""0)(a) |af*** @2(a) d*a.
The last integral equals
1 -t 1oy~
325+ 3 07 L e @) ol Ba(a)

P

by (2.5), where

Ba(a) = | [ Gua(o -+ 9 ay) dudy

= [ o (plas2) dz = 6, (<07,

We conclude that

1N i .
Zo(s, Byygn) =1(25+ o007t} (@) " w(-1) - 2.

On the other hand, for n > 0,

l —~
Byora(sS) = o(p™) p"|7 Z(W).

The following lemma will complete our proof. O

Lemma 4.7. Z(W) # 0.

1 1

Proof. Let € := x " lup. If € is unramified, then so is £|Q§ =w ? =p o,

which implies that both 7 and x are unramified, so that W is the spherical
Whittaker function, and

ZW) =L(1,7" ® o) £ 0.
_1
Suppose that ¢ is a ramified character. Since xwp? is assumed to be un-

ramified, we find that c(£|Q§) =c(o ') =c(w) >0.Let fe v 'Bo ! be
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the unique section such that

(5 ) vo)=v@ e

for a,d € Q), b € Qp and t € F'*. Then we can choose Wi(g) :=Wi(g, f),
and W (t(a).J;) equals

R 2ot
= o(a)"! ya|é/: f((‘xl _01)>¢(—ax) dz.

P

a

2| X

Since
1 0\ _ (N@b-1)"" «
(a: —1) _< 0 1) P(@0 - 1),
we find that
— B 1 st £(xf -1
Wit(a) ) = o) Jaf* [ =Dy ar)a
Put &y (x) := S@h=1) 1 (). We have seen that

—N
lz0—1|/2 P Zp

o(a) lal™2 W(t(a) 1) = lim B (a).

Take an integer B > ¢(w). Then we have

for N > B, where
0—1
I; :/ M@b(—am) dz.
P

Zy |26 — 1|}Lﬂ/2

Note that I; = 0 unless j = ord,(a) + c¢(w). Recall an additive character
1 defined by 1?%(x) = ¥ (ax). Then

Iordp(a)—i-c(w) = 5(9)8<—;, Qv—l’ 'l,b_a) - 5(9)(@@‘1)(_a)|a|_15<—;, QU_1>

by (2.6). Since gv~! is ramified, we see that Z(W) is equal to
~ 1
[ (8@ + €@ @0 allal e (=500 oo, (@)) ol d*a
P
— 050G, (1) £0. O
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4.7. The explicit pull-back formula. Now we are ready to give the
explicit formula of Zp(s, p(Jsotn)®s). The notation is as in Section 4.3.
Let 77 be the quadratic Dirichlet character associated to the extension

F/Q.

Theorem 4.8. Let A be a Hecke character of A* of p-power conductor and
¢ be a finite order Hecke character of A% with ¢p|ax = 1 and conductor

1
COrp. Put x =wp¢ and
1
D= (w;AF,¢—1A;1,k,m, c).

For n> 0, we have

Zp (s, p(Tootn) 1) _ 115} 1 I
B 7.6, (7) =t (28+2 Tevy >7(28+2’pr“’>

CP(Q) . L(1, 77 )fooframfc
(r,(1) (Q(2)[SLa(Z):To(NC)]’

where foo, fram and fo are local fudge factors given by
foo 1= 4(—4v _1)_k(/\00¢01)(_1)7

1 1
fram 1= H qu)‘q(AI;l) ’AF‘Qq o

1
X (w, 'e,) (") IP"13,

Q|AF
(o,¢—‘1>
fo =1 |wé -1
“ 1} N

Proof. There exists a nonzero constant ¢ such that BX(g) = c[[, Bw,(gv)
for ¢ € m with W, (g) = ], Wu(gv) by the uniqueness and the existence of
the Waldspurger models. Put

0" = p(Toctn) B, W =p(Toc)Wrar Wy = pltn) W,
The Whittaker function of ¢* is given by
th* (9) = Wgo(goo) : W;(gp) : H Wﬂ'q (gq) H Wfrg (QZ)-
qC UpC
It follows that
BY 716, () = eBwg (So0) - Buara(55™) - T By, (60 1T Wi (0)-
q|C UpC
On the other hand, Theorem 4.2 gives
L(1,7F)

Zp (8, p(Tootn)ps) = ¢c——= - Zp(s, Bws,) - Zp(s, Bwy) [ [ Zn(s, Bw,,)-
Ca(2) q7#p
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1
Theorem 4.8 now follows from Propositions 4.4, 4.5 and 4.6 with p = Wi AF,

1
v=¢""\;" and x = wi¢. O

5. The construction of p-adic twisted triple product L-functions
5.1. Notation. Define the p-adic cyclotomic character by
€cye 1 Q\AX — Z;, €cyc(a) = |a|Aa;olap.

Let w : Q“\A* — pp_1(Cp) be the Teichmiiller character. Fix embeddings
lo 1 Q = C and ¢ : Q — C, once and for all. The set of embeddings
Yr = {o1,02} from F to R is identified with Gal(F/Q) via (0.

Let O = Oy, for some finite extension L of Q, containing ¢,(F'). Let
A = O[1+ pZ,] and write [-] : 1 + pZ, — A for the inclusion of group-
like elements. Let u = 1+ p. For a variable X, let (-)y : ZX — Z,[X]” be
the character defined by

logp a

(5.1) (a) y = (14 X)"oer,

Write N = Np/q : I' — Q for the norm map. If a is a fractional ideal of F
coprime to p, put (a)y = (N(a))y. If I is a finite extension of A, a point
Q@ € SpecI(C,) is called a locally algebraic point of weight k& and finite part

€ if the map Q|x : 1 + pZ, Lloax 9 Q; is given by Q(z) = zFe(x) for

some integer k > 1 and a finite order character € : 14+pZ;, — up(Q,). For a
locally algebraic point () we denote by k¢ the weight of ) and eq the finite
part of Q. Let f{fr be the set of locally algebraic points @ in SpecI(C,) with
kg > 1. A locally algebraic point @ € Xi is called arithmetic if kg > 2.
For every arithmetic point Q € X7, we shall view the finite part €Q as a
Hecke character of A% via eg(a) := tooty, ' (€Q(€cyc(a)w ™ (a))). If A and B
are two complete O-modules, we write A ® B for A ®¢ B for simplicity.

5.2. Preliminaries on Hida theory for modular forms. Let I be a
normal domain finite flat over A. Let N be a positive integer prime to p
and let x : (Z/NpZ)* — O* be a Dirichlet character modulo Np. De-
note by M(N, x,I) the space of I-adic modular forms of tame level N
and (even) branch character x, consisting of formal power series f(q) =
Yons1a(n, f)g" € I[q] with the following property: there exists an in-
teger af such that for every point @ € X{ with kg = 0 (mod 2) and
kq > ag, the specialization f(q) = 3,1 Q(a(n, f))¢" is the g-expansion
of a cusp form f € MkQ(NpT,Xw2_erQ) for some r > 0. We call fg
the specialization of f at Q). For a positive integer d prime to p, define
Vi : M(N,x,I) = M(Nd, x,I) by Vi3, a(n, f)g*) = d3, a(n, £)g®.
Let S(V, x,I) € M(NV, x,I) be the space of I-adic cusp forms, consisting
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of elements f € M(N, x,I) such that f, is a cusp form for a Zariski dense
subset @ € X7 .

The space M(N, x,I) is equipped with the action of the usual Hecke
operators Ty for ¢ 1 Np as in [28, p. 537] and the operators Uy for ¢ | pN
given by Uy}, a(n, f)¢") = >, a(nl, f)q". Recall that Hida’s ordinary
projector e defined by

. !
e := lim U".
n—oo P

is a convergent operator on the space of classical modular forms preserving
the cuspidal part as well as on the spaces M(N, x,I) and S(NV, x, I) (cf. [28,
p. 537 and Proposition 1.2.1]). The space eS(N, x,I) consists of ordinary
I-adic forms defined over I. A key result in Hida’s theory of ordinary I-adic
cusp forms says that if f € eS(N, x,I), then fg € eSkQ(Npe,XwQ*erQ)
for every arithmetic point @ € X{. We call f € eS(N,x,I) a primitive
Hida family if f is a p-stabilized newform of tame conductor N for every
arithmetic point @) € %f .

For a divisor M | N, let T(N,M) C EndeS(N, x,I) be the I-algebra
generated by Hecke operators {Tq}qu and {Uq}q‘ wp- A classical result in
Hida theory for modular forms asserts that T(N,I) is free of finite rank
over I. Let f € eS(IV, x,I) be a primitive Hida family. Then f induces the
I-algebra homomorphism Ay : T(N,I) — I with A¢(7,) = a(q, f) for gt Np
and A¢(Uy) = a(q, f) for ¢ | Np. We denote by my the maximal ideal of
T(N,I) containing Ker Ay and by Th, the localization of T(N,I) at my. It
is the local ring of T(N,I) through which As factors. It is well-known that
there is an algebra direct sum decomposition

Af i T, ®1FracI ~ FracI® B,  t+— Ap(t) = (\p(1), Az(t)),
where 4 is a finite dimensional (FracI)-algebra ([12, Corollary 3.7]).
Remark 5.1. Recall that the congruence ideal C'(f) of f is defined by

c(f) = )\f(AnnTmf (KerAf)) C I

By definition, C(f) - 17 C T(N,I) and C(f) is the annihilator of the con-
gruence module of As (see [11, Definition 6.1]). For each arithmetic point
Q € %f , let pg = ker Q. By the control theorem for the Hecke algebras
and the congruence modules (cf. [11, (0.4b), (5.8a)]), we find that Q(C(f))
is the congruence ideal for Ay, : T(N,I)/pq — I/pq. In particular, this
implies Q(C(f)) # 0 and hence 1y belongs to the localization T(N,I),,, at
©¢q- This fact will be used to deduce the finiteness of our p-adic L-function
in Definition 5.5 at arithmetic points.

5.3. A two-variable p-adic family of Hilbert—Eisenstein series. We
shall make the identification

AA=0[X,T], X=(u-1)®1,T=1® ([u] -1).
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Let (x1,x2) be a pair of finite order Hecke characters of Aj of level pOp
and pCOp. We assume that (x1, x2) satisfies Hypothesis 3.1 and yix2 is
totally even. A Hecke character x of Ay will be viewed as an ideal class

character by
x(a) = x(eq) !

for any prime ideal q away from the conductor of x. Define the A ® A-adic
g-expansion by
~ —1
E(X17 XZ)(X7 T) = Z A,B(X17X2)q6 S X A[[anr ]]7
pea !, (p.(8)=1
where Az(x1,Xx2) € A ® A is defined by

Asxx2) = (B x (B x1((8) T] Poalxaixz (@) () x' (a)7)

qfep

< I Qugral@x (@7),
ql(c,8)

where Pg 4 and QX1X2_1 ; are polynomials defined in (3.4). If R is an Op-
algebra, the theta operator 6, € End(R[[qall]]) for 0 € Gal(F'/Q) is defined by

0, (Z aﬂCJﬂ) = o(Bagq”.
5

B
For Q € Xy, let {g be the finite order Hecke character of A7 given by

§g = eQw_kQ oN.

Proposition 5.2. For every (Q, P) € %X X .’%IX with kg < kp, we have the
interpolation

ekQ_kaip_kQ (Xl&élﬁp, x26pt)  if 2kp > kg,
f*a- 1E1;Q 2kp+2(X1§§15P, x26pt) if 2kp < ko,
where 0 = 05,0, is the theta operator 6(3 5 aﬁqﬁ) =35 N(B)agqﬁ.

E(x1,x2)(Q, P) = {

Proof. Let pu = leélfp and v = ngISI. Put k = 2kp — k. For an integer
n prime to p, we have

As(x1:x2) (@, P) = N(&) == (8)) ] P~ (a)ay)
qfep
< ]I Qx;lm,q(XI1X2HV_1(q)q§).
al(c.8)

1 is unramified outside p, one verifies that

Qxflxz,q (X1_1X2MV71 (a)X) = Qu’lV»q(X)'

Since Xl_l XolbV ™
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By Corollary 3.8, we find that
N(ﬁ)kQ—kP . gg(,u’ v, k) if k >0,
N(B)i-ktkp—1. 0'/5(“7 v,2—-k) ifk<O0.

The proposition follows immediately. [

As(x1,x2)(Q, P) = {

5.4. The construction of the twisted triple p-adic L-function. For
any Op-algebra R, define the diagonal restriction map by

—1
resp/qQ : R[[q°+ 1 — R[q], Z agqﬁ — Z ( Z a5> q".
peat n>0 pevt
Trp/q(B)=n

For an even integer a and a finite order Hecke character
(5.2) ¢: F*\AX/OF — O% such that ¢,(—1) = (—1)? for o € Sg,

we define the two-variable g-expansion E([;] (X, T)eEA® A[[qajrl]] by

a=j

E[;Sl](X’T) =F (wFQ,w;;Qs) ((1 +X)1/2 1, (1 —|—T)1/2 B 1)

We define G([;f] (X,T) € A ® A[q] as the diagonal restriction
GUI(X,T) = resp/q(EY (X, T)).
We regard A as a subring of A ® A via z — 2 ® 1. Let
Xt = {Qef{fr’kQEO(mon)}C%f.
Lemma 5.3. The q-expansion G[d?] belongs to M(NC, w2, A) @5 (AA).
Proof. Let Z = (1+T)(1 + X)~' — 1 and write
G(X,Z)=GY(X,(1+ X)(1+2) - 1).

If ¢ € pp=(C) is a p-power root of unity, let a¢ : A — C* be the
Hecke character a¢(a) = (N(a)) y |x=c—1. By Proposition 5.2, for any point
Q € X7, we have

G(Q?C - 1) = E;Q/Z(/“LQﬁ? VQ()’fJ € MkQ (CNa wj72£Q)’

a—j _a

where pg ¢ = wg® a¢and vg ¢ = wFQaC_lgé%. This shows that
G(X,(—1) e M(NC,w' 2 A) @0 O[]
for every ¢ € ji,(Cp). We see that
G e M(NC,w'™2,A) ® O[Z] = M(NC,w' "2, A) &, (A A)
by [14, Lemma 1 in p. 328]. O
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In view of the above lemma, we can apply the ordinary projector e ® 1
to GE;} and obtain an A-adic ordinary modular form eGE;} =(e® I)GE;}
with coefficients in A ® A.

Lemma 5.4. We have eG([;] ceS(N,w 2 A) ® (A B A).

Proof. Notation is as the above Lemma 5.3. For (Q,¢) € X{T X ppe(C)
as above, let = pg ¢ and v = vg¢. Then G(Q,( — 1) is the diagonal
restriction of the holomorphic Eisenstein series E;FQ /Q(N, v). The adelic lift

of B /2(,u, v) is given by Ea (g, vas)‘s:M with D = (u, v, kg /2, M, ¢).
By (3.1), the constant term function of EAz(g, fp,s) is given by fu,aop.s +
fu,ufﬁp,s’ and by (3.5) its values at g € GLa(Ap) all vanish whenever g, is
upper triangular. The lemma now follows from [15, Lemma 6.7]. O
Definition 5.5. Let f € eS(N,w’~2 1) be a primitive Hida family. The
p-adic twisted triple product L-series £ E([;]’ P is defined by

L := the first Fourier coefficient of 1f(eG([;]) € (I® A) @ Fracl.

AN

By Remark 5.1, £ ) f(Q,P) is finite at every arithmetic point Q € Xj
¢ b

and P € Spec A(C,).

Remark 5.6. If we replace the Eisenstein series Egﬂ by a Hida family of

Hilbert cusp forms over F', then the above construction yields the twisted
triple product p-adic L-functions constructed in [17] and [2].

5.5. The interpolation formula. The weight space of critical points is
defined by

X = {(Q, P) € X x X[ | kg > kp, kg = kp =0 (mod 2)}.
The purpose of this subsection is to give the precise formula of £  ja) f(Q, P).
¢ b

We begin with some notation. For an arithmetic point @, denote by f¢) the
normalized newform of weight kg and conductor Ng = Np"@ correspond-
ing to fg. Let HfQHFO(N be the usual Petersson norm of f¢, and let

Ep(fg,Ad) € C* be the modiﬁed p-Euler factor for the adjoint motive
associated with f, defined in [16, (3.10)]. Define the modified period

Per'(fo) = (=2v=D)* ™| £33, (ny) - En(fg: Ad) € C*.
Let of,p Q, — C* be the unique unramified character with

(5.3) ofo.p(P) = alp, fQ)ple
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Definition 5.7 (The test vector). Let eS(NC,w’=2 I)[f] be the sub-
space of eS(NC,w’~2 1) consisting of ordinary I-adic forms h such that
th = Ag(t)h for all t € T(NC,N). For each prime factor g of C, let
{ag(f), By(f)} be the roots of the g-th Hecke polynomial

Hy(x, f) =2 —alq, f)z + g 'w’(q) (a)x -
We fix a choice of roots {ay( f)}q|c. Enlarging the coefficient ring O if
necessary, we can assume aq(f) € I. Let f be the unique Hida family in

eS(NC,w’=2,1)[f] such that a(1, f) = 1 and U, f = a,(f)f for q | C.

The following interpolation formula asserts that £ essentially inter-

El g
¢
polates the values of the toric period integral B;Q( <(€P")) defined in (4.2)

Q

at the special element <(@P") in Definition 4.1.

-

1 1 .
Proposition 5.8. Let f(X,T) := (ArC)* (Ar)7 € (A ® A)*. For every
(Q, P) € XMt we have

(=2)(=Cov/=T) L1, 7¢)

;C a ’P == BXQ (Cpn)
5.4 (@ ) Myc () ol
Lin} (kp — in+ Tpy @ W kP ep)

k-1
*(=V-1) Pert(fo)

1 G(1) 1@, Par
CFp(2)pp(pn

kg +1 -
(ke = o ers )

1
ary
1 kQ72

where xq = ¢ - erw 2 oNp/q and ¢ is the constant

a—j j a—

q\t
Here ~(s, p) is the gamma factor of the character p = Qnypwa kp Pepp.

Proof. We first note that since the specialization fg at @ is a p-stabilized
newform of tame conductor N, by the multiplicity one for new and ordinary
vectors, we have

(5.4) g, ooy (e(GS(Q, P))) = Lglo g (@ P)- fo

We put
kQ —J 1 a—k

1
w2 and A = epw 2

N|=

w :EQ
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k oy
Put k; = =% and ky = ]%P. By Proposition 5.2, we have

1
O ES L (WEAR AR ) if 2ko > Ky,

1
O B o (WEAR AR G) if 2ky < Ky

EYNQ,P) = {

Applying the argument in the proof of [13, Lemma 6.5 (iv)], it is not difficult
to see that for a Hilbert modular form h over F' of weight (k1, k2) and non-
negative integers a, b,

e Hol (07, 0, 0] ) = € ((02,65,0)]5)
b

k2,02

holomorphic projection as in [14, (8a), p. 314]. It follows that

where oy ;6 is the Maass—Shimura differential operator and Hol is the

(5.5) eGS(Q, P) = e(ES(Q, P)|g) = eHol(E'g),
where
1
(5 6) ET — 5129}1“27—’21E2+kz—k1 (w}27‘>\F7 )\;‘lqb) if 2]{32 > kjl’
. — ;
F ML B o (WEAR ARG) if 2k < Ky

where 0;" = 05", o1, . Let f:= fo € Sk, (Np", eqw’~*@) and let

ko1 9k,
vr=®(fq) € AgQ(Npr,w), w= eélwk‘?*j.
Let n be a sufficiently large positive integer. Let J and ¢,, € GL2(A) be the
matrices introduced in (4.3). Let [-,-] : AgQ (Np",w) X Ay, (Np"™,w) — C
be the pairing defined by
[p1, pa]:= (p(Tootn)p1 @ w ™, @2),

where (-, -) is the pairing defined in Section 2.3. Pairing with the form ¢ ;®
on the adelic lifts on both sides of (5.4), we obtain that

EE([;],f(va)' [or,e5]= [05: 15, Tronyve @(Hol(ET|5))],

where 1¢, € (T(NV,I)/pq)®C C End eS, (Np™, w™1) is the specialization
of 14 at Q. Since the Hecke operators {7, q}qu and U, the holomorphic
projection Hol and the trace map Troy v are self-adjoint operators with
respect to the pairing [-,-] (cf. the proof of [16, Proposition 3.7]), we thus
obtain

EEE;L],f(Q?P)' [or,8]= [Us(CN) : Us(N)] - [05, B(ET|9)].
On the other hand, according to (5.6) and Proposition 3.5, we have
dj(E”ﬁ) = EA(gv fD,S)|s:2k2*2k1*17 g e GLZ(A)a
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where D is the Eisenstein datum

1 k
D= <W;AF, oG, 7‘9, c, m)

Therefore we see that
£IQ. Py [¢r. 7]
= [Lo(CN) : To(N)] - {p(Tsctn) oy, EA(—, fD,s) ®w_1>|5:%
= [Fo(ON) : To(N)] - Zp (s, p(Toctn)0f)| 22—t -1
By [16, Lemma 3.6], we have
[or, 5] = (p(Tootn) s @ W™, 0f)

L@@y ket pe(py . S0P, GL2)

[SLa(Z) : To(N)] (1)
Then we have the interpolation formula
EE([;],f(Q’ P) = Z'D(Sa p(jootn)sofﬂsz ’“P*’“QQ/Q*1
. $Q(2)[SLa(Z) : To(CN)](-2y/—T)*e* (1)
Perf(fg) wy ' &3 (P™) [P, o (2)

for any sufficiently large positive n. From the above equation and the for-
mula of Zp(s, p(Jsctn)@y) in Theorem 4.8 with the fudge factors given by

foo = A(—4v/=) R/ T,
1 kp—kq kg _1 1 a—j kQ
fram = wp A\p(AR)AR 2 072 =(Ap)x* (Q) (Ap)2 (P)-wp® (Ap) 672,

o= O G = O @ e O g o
e >

we get the desired interpolation formula by noting that

fooframfc = DL (L /T108)F - (~2y=T)He (VD). O
Hq\C Cq(l)

6. p-adic L-functions attached to modular forms and real
quadratic fields

In [1], the authors construct square root p-adic L-functions associated
with Hida families and real quadratic fields, interpolating the toric period
integrals of elliptic cusp forms over real quadratic fields. The purpose of
this section is to give a mild improvement of this construction and more
general interpolation formulae.
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6.1. Preliminaries on modular symbols. We review the theory of clas-
sical modular symbols in the semi-adelic language. Let P := P!(Q) and
Do := div’P x GLy(Q). For each r € P we denote by {r} its image
in the divisor group of P. Let v € GLy(Q) and u € GLy(Q) act on
D= ({r}—{s},9t) € D9 by

YDu = ({y-r} —{y-s},v9ru).
For a ring R, let L,(R) be the space of two-variable homogeneous polyno-

mials of degree n with coefficients in R. For P = P(X,Y) € L,(R) and
g € GLa(R), define

P d

Let L} (R) = Hompg(L,(R), R). Moreover, if R is a Z,-algebra, let GL2(Z)
acts on L} (R) by (pn(u)§)(P) = &(P|up). For an integer N and a Hecke
character xy modulo N valued in R, we denote by MSi(N, x, R) the space
of p-adic modular symbols of weight k, level N and character y, consisting
of maps § : ©9 — Lj_5(R) such that

E(vDu) = x () - pr—2(uy E(D)

for v € GL$(Q) and u € Uj(N). This space is known to be a finitely
generated R-module equipped with the Hecke action. The Hecke operators
T, for ¢t Np act on MSk(N, x, R) by the formula

o ra=o() )+ 5, o6 1)

beZy/qZ,

<CC‘ b) (X,Y) = P(aX +bY, X +dY).

Define the operator Uy for ¢ | N and ¢ # p by the formula
b
(6.2) Ut = Y §<D ((q) 1)) for ¢ | N
b€Zq/qZq
and the operator U, by
_ p a p a
a€Zy/pZy

The ordinary projector e := lim, oo Ug! is a convergent operator on
MSi(N, x, R). Choosing any element v € GL2(Q) with dety < 0, we
define an involution [c] on £ € MSk(N, x, A) by

[c¢(D) :==&(v- D).

This definition does not depend on the choice of such 7. We define

= (H)e o= (59
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6.2. Modular symbols associated with modular forms. To each
classical cusp form f = f(z, gr) € Sp(IV, x), we associate a classical modular
symbol 7y : Dg — Li_,(C) defined by

ny({r} — {s}, 90)(P) := / f(z,9¢)P(2,1)dz.
It is easy to see that for « € GLJ (Q) and u € Up(N),

ng(aDu) = pr_a()ns(D)x " (u).

The involution [c] acts on the classical modular symbol n¢ by [c]n(D) =
pr—2(y)ns(vD), where v € GL2(Q) is any element with dety < 0. By
definition,

[clng (D) = —ny, (D),

where fy(z,9r) = f (=% (' 9)gr). On the other hand, the associated p-
adic modular symbol &5 € MS,(N, x, Cp) is defined by

(6.3) Er(D)(P) = 1p(ng(D)(Plg, 1)) for D = (d, gr) € Do.

If f is a Up-eigenform with eigenvalue o € Z,5, then & is also an eigenvector
of U, with eigenvalue «. Following the discussion in [21, p. 95], for each
D € © we define the p-adic measure pr(D)(x) on Z, by the rule

T
/ pr(D)(x) =a " (D (pO C{))(Yk_z) for n € Z=°.
a+p"Zp
Lemma 6.1. For any P € Ly_(Z,),

Jo, P00 = (05 ) (7[5 5))

Proof. This is [21, Lemma 4.6]. We paraphrase the computation there in
our semi-adelic formulation. Note that {; has bounded denominators in the
sense that p4 - & € MSi(N, x,Z,) for some A > 0. Let 0 < j <k —2 be
an integer. For every m > A + n, we have

(o] ) 9)
S s e ()

=a ™ Ec:(a + e (D (p(;n “ —|—1p"c) > (Y*=2) (mod p™~4Z,).
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Therefore, we find that

/ g, (D))
— Z Q™ mi 1 a+p cjff( (p(;” a—l—lp”c))(YkQ)

—era(o ) D)(erlE )

This shows the lemma. O

6.3. Hida theory for modular symbols. We review the I-adic symbols
developed in [21] in the semi-adelic formulation. Let I be a normal and
finite domain over A = O[X] with X = [u] — 1 and let N be a positive

integer coprime to p. Put
b
Uy = (g 1),aez;, bezp}.

For each non-negative integer n, let p(™ be the principal ideal of I generated
by (u™2(1+X)—1)P" —1. Define the A-adic Hecke character acy : Q*\A* —
A* by

U1(Npoo) = {u € Ul(N)

ax(z) = <EcyC(2)>X <Ecy6(2)>_2 )
log, ecyc ()

where (€cye(2))y = (1 +X) ™" is defined in (5.1).
Definition 6.2. Define the space of I-adic modular symbols of tame level
N by

MS(N,1) := im iy MSy(Np™, ax, 1/p™).

In other words, MS(N,I) consists of functions = : ®¢ — I such that
e =(yDu) = Z(D) for v € GL3 (Q) and u € Uy (Np™);
E(Dz) = ax(z71) - E(D) for z € Q%;
= is continuous in the sense that for any n, there exists 7, for which
the function Z : 9 — I/p(™ factors through Do /U (Np'™).

The space MS(N,I) is an I-module equipped with the action of Hecke
operators {Ty} v, and {Uq}q|N as in (6.1) and (6.2), while the Up-operator

is defined by
- — a
UED)= Y :(D (g 1))

a€Zy/pZy
For (d,pN) = 1 we define the level-raising operator

Vy: MS(N,I) —s MS(Nd,I)



930 Ming-Lun HsIEH, Shunsuke YAMANA

by
(6.4) VyE(D) = d~t E(D (d; ?))

The ordinary projector e = lim,_, Ug! exists in Endf MS(N,I). The
space e MS(N, 1) consists of the ordinary I-adic modular symbols. We re-
mark that e MS(N,I) is nothing but M S°"4(I) = Homy (UM°(0), 1) de-
fined in [21, Section 5.5]. The involution [c] on MS(N,I) is defined by
[c]2(D) := E(vyD) for any v € GL2(Q) with dety < 0. Put

eMS(N,I)F := (1 =+ [c])eMS(N,I).
The following is proved in [21, Proposition 5.7].
Theorem 6.3. The space e MS(N, 1) is free of finite rank over 1.

We recall the I-adic measure associated with ordinary I-adic modular
symbols. Let C(Z,,I) be the space of continuous I-valued functions on Z,
and D(Zy,I) := Homy(C(Zy,I),I) be the space of I-adic measures on Z,.
To each ordinary I-adic modular symbol Z € e MS(N,I), we associate a
unique linear map D — pz(D)(x) in Hom(®g, D(Z,,I)) such that

pm_l m
_ T -m= p a
(6.5) . P(z)pz(D)(z) = lim_ ;} P(a)U, _(D ( 0 1)) el
for D € ©¢ and P € C(Zp,I). It is straightforward to verify that the
right hand side is a p-adically convergent Riemann sum valued in I. For
P € C(Zy,1) and u € Uy(p) with u, = (2Y), define

ar+b
d).
cx+d) ax(er+d)

P|u(m):P<

Lemma 6.4. Let P € C(Zy,1).
(1) For m € Z=°,

e

(2) Foru € Uy(pN), we have

P@pz(Du)(a) = [ Plu @=(D)).

Z, Zy

Proof. The verification of part (1) is straightforward by (6.5). To see

part (2), it suffices to show the equation for u, of the form (19) and (25).
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Let up = (19) with ¢ € pZ,. By definition, the left hand side equals
pT—1
: - L 0\ (p" a
RN az:%) P(a)U, “(D <c 1) ( 0 1))

p"—1

o e p™ a(l+ac)™t [(1+ac)™! 0
- W}gnoo (;) P(a)U, “(D ( 0 1 cp™ 1+ac))

Making change of variable a = z(1 — cz)~!, we find that the last Riemann
sum equals

p"—1 m
e— z _
im Zgo P(z(1—cz) HU, :(D (pO 1)>ax(1—cz) !
1 0
- P‘ (_C 1) ()p=(D)(x).
ZP
The case for u, = (8 g) is similar. We omit the details. O

For an arithmetic point @ in %f’ , we denote by pg the kernel of the
specialization @ : I — C,. Put O(Q) = I/pg and rg = max {1, cy(eq)}-
Here c¢p(eq) is the exponent of the p-conductor of eg. For any O(Q)-algebra
A, we put

./\/nggrd(A) = eMSkQ(Np’”Q,wZ*erQ, A).
The following theorem is an integral version of the control theorem for
I-adic modular symbols proved in [9, Theorem 5.13]. The result must be
well-known to experts, but since we could not locate an exact statement in
the literature, we provide some details for the sake of completeness.

Theorem 6.5 (Control Theorem). For each arithmetic point Q, there is a
Hecke-equivariant specialization isomorphism

spg: eMS(N.I)/pg =~ MSFUO(Q)).
= (mod pg) — spQ(E) = =g,
where Zq is the p-adic modular symbol of weight kg defined by

Zo(D)(P) = @( [ P u=(D)@).  PIX.Y) € Lig-2(0(Q).

We call Z¢q the specialization of = at Q).

Proof. First we note that Zg is a p-adic modular symbol of weight kg
and character w?~*e €g by Lemma 6.4. It is straightforward to verify that
the map sp, is Hecke-equivariant, so Z¢ belongs to MS%rd(O(Q)). We
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proceed to show spg is an isomorphism. Let n = kg — 2, O = O(Q) and
X@ = ax (mod pg) = €g,.w "eg. We have

eMS(N,1)/pq = Qi%nligeMsz(Np’”,XQj O/p').

For any Z,-module R, define ¢, : Lj(R) = R, ,(¢) = £(Y"™). By [21,
Corollary 5.2], ¢, induces a Hecke-equivariant isomorphism

tn: eMSg, (N, eqw ™™, 0/p") ~ eMSy(Np, xq,0/p")

for > t. Note that ¢,(Eg(D)) = Eg(D)(Y™) = Q(E(D)). We deduce that
spg is indeed given by the isomorphism

eMS(Nv I)/@Q = I&th CMSQ(NpT, XQs O/pt)
t T
1
= mhﬂeM‘st (Npr7 eQw_nv O/pt) = eMSkQ (NpTQ7 EQw_na 0)7
t r

where the last equality is the base change property [11, Lemma 1.8 and
Corollary 2.2] for ordinary p-adic modular symbols. O

6.4. The distribution-valued modular symbols of Greenberg and
Stevens. Let L be the set of primitive elements in Z, x Z,, i.e. elements
in Z, x Z, which are not divisible by p. We recall the connection of A-adic
modular symbols and modular symbols with valued in the space D(Lj) of
p-adic measures on Lj described in [9, Section 5]. For each k € C, with
\k:\p < 1, let Q € SpecA(C,) be the unique point with Qx([u]) = u*
and let %, be the set of homogeneous functions of degree k on Ly, i.e.
continuous functions h : Ly — Z,, such that h(az,ay) = (a)* h(z,y) for all
a € Z,'. Then to each = € eMS(N, A), we can associate a modular symbol
MSS € Homy, (3 (Do, D(Ly)) characterized by the property that we have

/szz; W, y)u€S (D) (x,y) = Qi (/Z Wz, 1),uE(D)(x)>;

Lé;miph@%wquIU@%w——Qk(éphU,—pqu;5<D<f; 0))®)

for any k € Z,, and h € .%},_». By a similar computation in Lemma 6.4, one
verifies that the map S5 is Up(N)-invariant, namely for any u € Up(N)

66 [ o @@ D)ey = [ ha Do)y,
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6.5. The Mazur—Kitagawa two variable p-adic L-functions. Let
f € eS(N,1,I) be a primitive Hida family of tame conductor N and
let Ay : T(IN,I) — I be the corresponding homomorphism. For any in-
teger C prime to N, let e MS(NC,I)*[f] be the space of I-adic ordi-
nary modular symbols = € eMS(NC,I)* such that t - = = Af(t)= for
all t € T(NC, N). The space e MS(N,1)*[f] ®1 FracI has rank one over
FracI as f is primitive of tame conductor N. For an arithmetic point @),
the space MSgd((’)(Q))i[fQ] is free of rank one over O(Q). On the other

hand, Shimura in [26] proved that 0 # S;EQ € /\/ngfd(Cp)i[fQ]. There-
fore, having fixed a basis ﬂij of MS&rd(O(Q)), we can define the period
Q}tQ € C; associated with the p-stabilized newform f by

£ _ ot af
ng_QfQﬁfQ'

Definition 6.6 (p-adic error terms). Let = € e MS(N, I)[f]. We define the
plus/minus error terms Er*(Zg) € C, by the equation

To = € e MS(N,I)[f] and a finite order Hecke character y with x(—1) =
(—1)%, Kitagawa in [21, Theorem 1.1] associates the two-variable p-adic L-
function L,(Z,x) € I ® A satisfying the interpolation property: for every
pair of arithmetic points (Q, P) € X{ x %X with kg > kp,

6.7) Ly(E"Y",x)(Q. P)

= (vt

L (kp — "2 7 ® xw*rep)

1)
Q-

ko +1

-1
x 7(]‘713 T T g 2 Cfer ® Xp‘*’pkpﬁRp) Er

The L-functions associated with modular forms are related to the automor-
phic L-functions in the following way:

ko + 1
LG@— Q;

D'(=g),

Tfo ®X> = 2(277')17kpr(kp —1)- L(kp — 1,fQ ® X)-

6.6. The square root p-adic L-function associated with a Hida
family and a real quadratic field. We review the construction of the
square roots of p-adic L-functions attached to Hida families and real qua-
dratic fields in [1]. Let F; be the group of totally positive elements in F' and
let C1M(O¢) := F,\F*/ @é denote the narrow ring class group of conduc-
tor C. For t € F*, write [t] = F@@é for the class represented by ¢. Let ec
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be a generator of the unit group F+ﬂ@g. Let Py(X,Y) = (X—0Y)(X-0Y)
and 6 =0 — 0§ = /Ap. Define 9x: Z; — A* by

1
Ix(x) = (@)% ()"

So W% = O‘X‘Z;' Let ¢ be a finite order Hecke character of A% as in (5.2).

Equivalently, ¢|5, is an even/odd character of C1™(O¢), depending on the

sign of ¢ (d) = (—1)% or the parity of %

Definition 6.7. Let Z € e MS(NC,I)*[f]. For D € Dg, we define L=(D) €
I as follows: if p is split in F', put

Lz(D) = - Ux (@)p=(D)(z) € I;
P
if p is inert in F', put

L=(D) = . Ux (Py(z,1))p=(D)(x)

wag [ ax(Pal —pr)ns (2(% o))

Fixing any base point r € P, we define the (square root) p-adic L-function
Lzt /pgy € 1 for f/F by

C
Laspas = D, O(O0x(Eeye(N(1)- Loz ({r} —{W(eo)r}, W(t)).
[tleC1t (Oc)
Note that the above definition does not depend on the choice of r and does
not depend on the representatives [t] in C1T(O¢).

6.7. The interpolation formulae. For an elliptic modular form f €
Sk(Np",w™!) and a finite order Hecke character x of A% with y|ax = w,
writing ¢y := @(f) for the adelic lift of f, recall that in (4.2) we have
introduced the toric period integral given by

BYo) =B = [ . er@Oex®a

Let f € eS(NC, 1,I)[f] be the test vector in Definition 5.7. Then f can be
expressed as
Fo) =110 = By(F)Va) - F,
e
where (,(f) is the fixed choice of roots of the Hecke polynomial Hy(z, f)
of f at ¢q. Let = € e MS(N,I)[f] and define

— H(l — Bo(f)Vy) - E € eMS(NC,I)[f],

qC

[1]c
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where Vj is the level-raising operator defined in (6.4). The next result shows
that L JF®s interpolates p-adically the toric period associated with fg for
Qexft.

ko—2

1
Proposition 6.8. For () € %++ we set xg = ¢ - EQQw o Np/q- Let
+ = poo(0) = (-1 )% We have

o) (s V=T 2 B2 (7)
Eéi/Fw(Q):( OW=DZ L) "o T -Er(Zq)
Hq|CCq(1) QfQ
o ¢p(1) i

Cr (D, I0"g,

for any sufficiently large n > max {cy(xq), 1}, where ¢(Cr") e GLy(A) is
the special element defined in Definition 4.1 and ag, = a(p, fg) is the
U, -eigenvalue of fq.

Proof. For simplicity, we write f = j”Q and ¢ = @(f) and put

% kQ272
== EQ w .

[

k=kg, w

Then xq = d)wF The first step is to work on the right hand side of
the assertion, expressing the toric period integral B}CQ( (")) as a finite

sum of the values of the classical modular symbol n}[ in Section 6.2. Let

m(y) = (g - ) fory e R*. Fort € FX define the partial period by

Liy(o) = | > so(goom(y)qf(w)cf“p"))m(u)d*y.
R /e C )% /0%,

Then we see that the toric period B;Q (<(€P™) equals
Q

/A XFX\Axcp(\I/(tk(Cp”)) o(t) dt = vol (O )CFP( ) Y xot)Ly(e),

PG )[t1e01+<oc>

where Vol(@é) is the volume of the image of @é in Q*\F* with respect
to the quotient measure dt/d*t. explicitly given by

vol(O = VApL(1L,mp)#(Z/CZ)* = L(1,7p)0C T[(1 — ¢ ).
qlC

By a direct computation, if z = ¢oem(y) - vV—1 = ¢ - y*v/—1, then

J(goom(y)7 \/?1)72 = P\I/(Z7 1) ' (_\/leF)ilv
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and dz = (20v/—1) - J(soom(y), v/—1)"2d*y. It follows that

Liy(9) = (2 1)7 (—VTTAR) 555 (0N ()|
(ec)r
x /\P S xe) - f(z Wt ) Py(z,1) T dz

[u]e@é/é\cpn
k=2

=0-NOL Y xewns({rh—{w(ec)r}, wtn)s ) (P,

[W]€OS /O n
where r can be chosen to be any point in P and
= @V=)H(-CovE) T \p\2
For t € ﬁ'x, we set

- ({T} o {\II(EC>T} ’ \Il(t)gf(c)) € Dyp.

Putting
1
by = 5’1L(1,TF)*1C’*1 ng(l) . CF”( ) ,
q‘c pngp(l)
we have
B;fz( <Oy = 1, Z xQ () L)
[t]eC1t (O¢)
k-2 k=2
—at Y x®ONORE Y m(u)nf(Dmcé”))(Pqﬁ ):
[tleC1t (Oc) [u]e0 /Oy,

On the other hand, if we replace the base point r by W(§)r, noting that
N(6) < 0, we obtain that

B =0t Y xqlth) N

© et (Oc)
k=2 n £
x> xe)(=1)F [elng(Du - i) (Py7 ),
[u]EOC/(’)Cpn
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where [c] is the involution on classical modular symbols. Since xq(d¢) =
L R

(‘1)%%0(5) = (—1)2 7", we conclude that

k—2
(6.8) BN =06 > xot) N4
[feCtt (0c)

1 " k2
x> xe(wn§ Y (Dust™)(Py? )
(W€D /O n

.

The second step is to work on the left hand side of the assertion

Lop@= Y xo®NOIE Nt)'F - Zen(D)(Q).
[{]e FX\F* /0%

(=

Put Og = w. In view of (6.8), we need to verify the following inter-
fo
polation formula

(6.9) Lz+(Dy)(Q) = UQa;gN(tp)¥

1 n (n) k=2
x Y W RN (Dust™) (P )
[u]€O% /O m

where g},") = (1”5 _11) if p is split, and gﬁ”) = (_(;,n (1)) if p is inert. For

d | C, it is straightforward to verify that VdEg = 0q - 5‘2 for and hence

ég =0Uq- {}t. It follows that for D = ({r} — {s},gr) € D9 and P(X,Y) €
Lig—2(Zy), we have

610 @ g, P D (D))

(o DA ) e
:UQ-afgnjf(D (pon ‘f))(mgp—l) by (6.3).

Now we verify (6.9) in the case where p is split in F'. By Definition 6.7,
L2 (D)(Q) equals

a€(Zp /P Zp) * P Zp
[8) _1 (L) k=2  _ _
—at 2 whean(o (7 7)) (600 F g ee)

an
fQ ac(zp/p2p)*
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1
by (6.10). Then (6.9) follows from the equations wj (—1) = (—1) 2z , and

(XY 0 (5 = (XY) <t('; 2) (_11 _99> — N(5Y) - Py(X,Y).

In the inert case, Lz (Dy)(Q) equals

pn—1

> N - 0) / g, N =0 T g (DO
p”flfl
-1 -3 a — px = .t 0 1 T
Fagy 3 T Npan) [ NGO pe0) S (00, o))

2k Ug (= 1 7 "
=N(tp) 2 :1”@ (Z w 2(N(a-9))7}}t <Dt (pO Cll)
fo Na=0
p"flfl n—1
_1 N 0 1\ /p a
+ az:% w2 (N(1 4 pafl))n; (Dt (_p 0)( 0 1

We thus obtain (6.9) from the observations below

(%1 ‘f) Ur(p") = ¥(a — ) (_On é) Uy (p™),

p
0 1\ /p" ! a o ~ (0 1 n
(2 o) (Ty 1) uaen =va ) (. ) Ui
This verifies (6.9) in both cases and finishes the proof. O

7. Derivative of the twisted triple product p-adic L-function
and Stark—Heegner points

7.1. Factorization of £ In this section, we show that the p-adic L-

la] p-
qu v.f

function £ in Definition 5.5 can be essentially factorized into a product

E[a] f
d) b
of the square root p-adic L-function L<_ P& for f over F' and the Mazur—
Kitagawa p-adic L-function L,(2t,w®). We will use an auxiliary p-adic
Rankin—Selberg L-function in the proof, so we first recall that for a primitive
Hida family g € J[¢] with some normal domain J finite over A, there exists

an element

LI(f®g) e I® I & A) @1 Fracl
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such that for each point (Q1, Q2, P) € %f X %ff X %X with kg, < kp < kg,
we have the interpolation formula:

(7.1) LI(f ©9)(Q1,Q2,P)

kg, +k _
_ (VT) a2k L (kp — =52 g, X Tag, @ W H7)
PerT(le)

k’Q —I—k‘Q -1
X’y(kp— 1 2 27QfQ11p®7TgQ2’p) 5

where g7, p : Q; — C* is the unramified character defined by (5.3) and

~(s, ng17p®7rgQ2,p) is the gamma factor in Section 2.6.4. We call Lg(f®g)
the primitive Hida’s three-variable Rankin—Selberg p-adic L-function asso-
ciated with f and g. Imprimitive three-variable p-adic L-functions (with
some Euler factors removed) were first constructed by Hida in [13, The-
orem I, and the primitive ones with the above form of the interpolation
formula were proved in [5, Theorem 7.1] following the method in [13]. We
first prove a preliminary result:

Proposition 7.1. Let f € eS(N, 1,1) be a primitive Hida family. For every
= € eMS(N,I)[f] there is an element C= € FracI which is holomorphic at
every arithmetic point QQ € %fr with the value

_ PerT(fQ)

C= = -Ert(Zp)Er (Zp).
=(Q) Q}FQQ?Q T (EQ)Er (Eq)

Proof. Choose a Dirichlet character y with x(—1) = —1 and an imaginary
quadratic field K where p is split. Let xx := x o Ng,q be a finite order

Hecke character of Aj. Let g denote a primitive Hida family such that the

weight one specialization gg), is a p-stabilized theta series 0%2 associated

with xk. Define the two-variable p-adic L-function Ly(f,x ® xk) by
Lp(f/xk ®xK) =10Qu®1)(LI(f®g)eId A
Let %5\2) be the set of arithmetic points of weight 2. For P € %5\2), define
LP(E_7 X)LP(E+7 XTK/Q)
Ly(f )k ® XK)

From the interpolation formulae (6.7) and (7.1), we see that

. PerT(fQ)

= =7 a-
QfQQ fo

for all Q € .’{f with kg > 2. Hence Cz p is independent of the choice of
P and can be denoted as Cz. Thanks to Rohrlich’s theorem [22], for any

Czp:=(1® P)( ) € Frac(I®p O(P)).

Cz,p(Q) Bt (2Q)Er (Eq)



940 Ming-Lun HsIEH, Shunsuke YAMANA

arithmetic point @ € %f and P € %5\2), one can find an odd Dirichlet
character x such that L,(f,x ® xx)(Q, P) # 0, which implies that Cz is
holomorphic at Q. O

Remark 7.2. If the residual Galois representation associated with f is
absolutely irreducible and p-distinguished, then the Gorensteiness of the
local component of the Hecke algebra T(N,I) corresponding to f is known
thanks to the work of Wiles etal. ([29, Corollary 2, p. 482]). It follows
that the I-module e MS(N,I)*[f] is free of rank one by [21, Lemma 5.11].
Choose a basis E* in each space. It is determined up to multiple of I*.
Put = = ZF + Z~. Then p-adic error terms Er*(Z() are p-adic units for all
Q € Xy by [21, Proposition 5.12], and Cxz is a generator of the congruence
ideal C'(f) by a result of Hida [11, Theorem 0.1].

Now we are ready to prove the factorization.

Theorem 7.3. Let a be an even integer, ¢ : CIT(Og) — O* an odd
character of the exact conductor C, f € eS(N,1,1) a primitive Hida family
of tame conductor N, and = € e MS(N,1)[f]. Then we have

C=z- Eng],f - Lé—/F@qb ’ Lp(5+,w“) ~fe,

where f € (A @ A)* and the constant ¢; € Z(Xp) are defined in Proposi-
tion 5.8 with j = 2.

Proof. Propositions 5.8, 6.8, (5.3) and (6.7) immediately show that

Q;{QQJZQ (Q, P)ey
Per!(fo)Ert (2q)Er (2g)’

ﬁE[;]’f(Q, P) =L jpgy(Q)Lp(ET, w")(Q, P)
which combined with Proposition 7.1 completes our proof. O

7.2. The derivative of EE[z] - We shall keep the notation in Section 6.4.
¢ b

Let E be an elliptic curve over Q of conductor p/N. There exists a primitive
Hida family f € I[q] whose specialization f, at some weight two point
Q € i{f is the elliptic newform f associated with E by the modularity
theorem [29]. Here I is the local component of T(V,I) corresponding to
As- Let 27 = {k € Cp | [k|, < 1}. We write j : 27 < SpecA(Cp) for
the map k +— (Qg : [z] — 2¥). Let po be the kernel of Q5. Then we have
I CI,, = Ay, since f has rational coefficients. This implies that there
exists a neighborhood % around 2 € 2" such that j : Z — SpecI(C,).
Define an analytic function on % x %" by

£E$]7f(kas) = EEgZ]’f(QkaQs)v (k78) EUXZ.
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Theorem 7.4. Suppose that p is inert in F and ¢ : C1T7(Op) — O* is an
odd narrow ideal class character, i.e. C = 1. Then L a]f( s) =0 and

OL 2 2 9a(E)
B, 1 9 .
o (9 541) = S (14 ¢ ) loggs Py - Ly(B, 5) " E—— (Ap)'T",
ok 2 cy
where

wyn € {£1} be the sign of the Fricke involution at N acting on f,
P, € E(F,) ® Q(¢) is the Stark-Heegner point in [6, (182)],
L,(E,s) is the Mazur—Tate-Teitelbaum p-adic L-function for E,
cr € Z>0 is the congruence number for f, mg € Q* is the Manin
constant for E and

2*(") = [H,(E(C), Z) : Hy(E(C), Z)" © Hi(E(C), Z)"].
Proof. For each E € e MS(N, A) @ A(%)[f] we put
,Cp(E/F, ¢, k) — ﬁE*/F@(jy(Qk)a k S %

Shrinking % if necessary, we may assume that the function £,(Z/F, ¢, k) is
analytic on % . Since 7 is special at the inert prime p, it is well-known that
the local root number of the base change BCp(mf) ® ¢ is —1, and hence

the toric period Bjc5 must vanish by the dichotomy theorem of Saito and
Tunnell (See [24] and [27]). Proposition 6.8 shows that £,(2/F,¢,2) =0
and so by Theorem 7.3, we have £, o f(2’ s) = 0 for all even a, and get

OL 12
et (5,5 41) = SEE/F6,2) L(E, 0254 1) 2,5+ Der

by Theorem 7.3.
Now we fix the normalization of Z. The A,-module

eMS(N,DF[f] @11, = (eMS(N,A)F @ Ay, ) [f]

C=(2)

is free of rank one. Let =+ be the basis normalized so that the weight two

specialization = HQ = gf with the periods QF = (2my/—1)~ 1Q§, where Qi
are the plus/minus perlods for E such that Qf and (v/—1)71Q7 are real and
positive. By the inspection on the interpolation (6.7), we see easily that the
associated Mazur-Kitagawa p-adic L-function L,(ET,w?)(2,s + 1) is the
cyclotomic p-adic L-function 2L, (FE, s) for the elliptic curve E. This extra
2 comes from the factor 2 in the definition of the archimedean I'-factor
I'c(s) = 2(2m)7°I'(s). On the other hand, it is clear that §(2,s + 1)c; =
s—1
4(Ap) 2 with a = j = 2, and by the formulae in [10, p. 255], we have

1f 1By = epmp*2 >~ Fa2(V=1) "'ty
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We thus obtain

C=(2) = Per'(f) _(_2\/_1)3||f”12“0(N) 8¢y
=Tt (—4An?)T1QRQy mEi2e®)

Putting these together, we get the stated formula from the following
lemma. O

Lemma 7.5. Assumptions being as in Theorem 7.4, if Z is normalized as
above, then we have

a,
dk
Proof. We will compute the derivative of £,(Z/F, ¢, k) at k = 2 for the

normalized = above. Let S5 (z,y) be the p-adic measure on L{, attached
to 27 introduced in Section 6.4. By definition, we have the expression

(2/F,6,2) = L(1 + dlow)wx) logp P,

LEF oK)= > 6 (ecNE)T

[t]eCIT (Oc)
< [ ((a=0m)a=8y) * n€({ry— (W)}, ¥(O) @)

Here € is the totally positive fundamental unit in O and ¢ is the finite

~

part of ¢ € GL2(Q) defined in Section 4.1. Choosing a branch of the p-adic
logarithm log : F)X — F,, we obtain

dz, ,_ 1
12 CEE/Fe2 =g Y el + ),

[tleCI* (OF)

where for 7 € C, with 7 € Q,,
51t = [ tog(e = )€ ({r} = {¥(en)r}, (D) (@.v)

Let J = (;)1 Tg‘”) € GLy(Q) < GLy(Q). Write J, and J® for its image

in GL2(Q,) and GL2(Q®) respectively and let 7y = (%Nd)e GLy(Q®)
be the Fricke involution at N. Since J2 =1 and Sp = 1, one verifies that

cJp=TTW ¢ = TU(om)st - T

for an appropriate choice of a finite idele o € F* such that (am@ rNEF) =
N. We have J(0) = 0 and f% pz—(D)(z,y) =0 as f, is new at p. It follows
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from the Up(NN)-invariance (6.6) that

Tt = [ gy = 9} = (W}, W(1)T,) @)

9 = [ oo = € ({7} — {W(ei )} Lltow)sr)) . v)

= (—1) . (—1) s WN - Jg[tdmel].

With the fixed choice of periods QF, it is straightforward to deduce from [1,
Corollary 2.6] that the p-adic logarithm of the Stark-Heegner point Py is
given by

loguPs= . (t)Jslt).

[t]eCI* (OF)
We thus obtain the formula for dd%(E/F, ¢,2) from (7.2) and (7.3). O

Remark 7.6. The same argument applies to more general ring class char-
acters with split conductor (i.e. C' # 1 is a product of primes split in F),
but the formulae are more complicated due to the non-canonical choice of

the test vector = in the construction of Eé, JF®p"
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