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Restriction of Eisenstein series and
Stark–Heegner points

par Ming-Lun HSIEH et Shunsuke YAMANA

Résumé. Dans un travail récent de Darmon, Pozzi et Vonk, les auteurs consi-
dèrent une famille p-adique de séries d’Eisenstein–Hilbert Ek(1, φ) associées
à un caractère impair φ du groupe de classes d’idéaux au sens restreint d’un
corps quadratique réel F . Ils calculent la dérivée première d’une certaine série
L p-adique à une variable d’un produit triple tordu attachée à Ek(1, φ) et à
une forme elliptique nouvelle f de poids 2 sur Γ0(p). Dans cet article, nous
généralisons leur construction afin de prendre en compte la variable cycloto-
mique, et obtenons ainsi une série L p-adique à deux variables du produit
triple tordu. De plus, quand f est associée à une courbe elliptique E sur Q,
nous prouvons que la dérivée première de cette série L p-adique par rapport
au poids est le produit du logarithme p-adique d’un point de Stark–Heegner
de E sur F introduit par Darmon et de la fonction L p-adique cyclotomique
de E.

Abstract. In a recent work of Darmon, Pozzi and Vonk, the authors consider
a particular p-adic family of Hilbert–Eisenstein series Ek(1, φ) associated with
an odd character φ of the narrow ideal class group of a real quadratic field
F and compute the first derivative of a certain one-variable twisted triple
product p-adic L-series attached to Ek(1, φ) and an elliptic newform f of
weight 2 on Γ0(p). In this paper, we generalize their construction to include
the cyclotomic variable and thus obtain a two-variable twisted triple product
p-adic L-series. Moreover, when f is associated with an elliptic curve E over
Q, we prove that the first derivative of this p-adic L-series along the weight
direction is a product of the p-adic logarithm of a Stark–Heegner point of E
over F introduced by Darmon and the cyclotomic p-adic L-function for E.
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1. Introduction
In the work [8], to each odd character φ of the narrow ideal class group of

a real quadratic field F , the authors associate a one-variable p-adic family
E

(p)
k (1, φ) of Hilbert–Eisenstein series on Γ0(p) over a real quadratic field F

and investigate the connection between the spectral decomposition of the
ordinary projection of the diagonal restriction Gk(φ) of E(p)

k (1, φ) around
k = 1 and the p-adic logarithms of Gross–Stark units and Stark–Heegner
points. In particular, if p is inert in F and let G′1(φ)ord denote the elliptic
modular form of weight two obtained by the taking ordinary projection
of the first derivative d

dkGk(φ)|k=1, then it is proved in [8, Theorem C(2)]
that the coefficient λ′f of each normalized Hecke eigenform f of weight
two on Γ0(p) in the spectral decomposition of G′1(φ)ord can be expressed in
terms of the product of special values of the L-function for f and the p-adic
logarithms of Stark–Heegner points or Gross–Stark units over F introduced
in [6] and [7].

The purpose of this paper is to provide some partial generalizations of
this work to the two-variable setting by introducing the cyclotomic variable.
To begin with, we let F be a real quadratic field with different d over Q.
Let x 7→ x denote the non-trivial automorphism of F and let N : F →
Q, N(x) = xx be the norm map. Let ∆F be the discriminant of F/Q. Let
Cl+(OF ) be the narrow ideal class group of F . Let φ : Cl+(OF )→ Q× be
an odd narrow ideal class character, i.e. φ((δ)) = −1 for any δ ∈ OF with
δ = −δ. Let L(s, φ) be the Hecke L-function attached to φ. Fix an odd
rational prime p unramified in F . For x ∈ Z×p , let ω(x) be the Teichmüller
lift of x (mod p) and let 〈x〉 := xω−1(x) ∈ 1 + pZp. Let X := {x ∈ Cp |
|x|p ≤ 1} be the p-adic closed unit disk and let A(X ) be the ring of rigid
analytic functions on X . Fix an embedding ιp : Q ↪→ Cp throughout. For
each ideal mCOF coprime to p, define σφ(m) ∈ A(X ×X ) by

σφ(m)(k, s) =
∑

aCOF , a|m
φ(a) 〈N(a)〉

k−s
2
〈

N(ma−1)
〉 s−2

2 .

Let X cl := {k ∈ Z≥2 | k ≡ 2 (mod 2(p− 1))} be the set of classical
points in X . Let h = #Cl+(OF ). Fix a set {tλ}λ=1,...,h of representatives
of the narrow ideal class group Cl+(OF ) with (tλ, pOF ) = 1. For each
classical point k ∈ X cl, the classical Hilbert–Eisenstein series Ek/2(1, φ)
on SL2(OF ) of parallel weight k

2 is determined by the normalized Fourier
coefficients

c(m, E k
2
(1, φ)) = σφ(m)(k, 2), cλ(0, E k

2
(1, φ)) = 4−1L(1− k/2, φ).

Let IF be the set of integral ideals of F . Assume that n ∈ IF and p are
coprime. Let M(n) be the space of two-variable p-adic families of Hilbert
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modular forms of tame level n, which consists of functions
IF −→ A (X ×X ), m 7−→ c(m, f),

Cl+(OF ) −→ A (X ×X ), a 7−→ c0(a, f)

such that the specialization f(k, s) = {c(m, f)(k, s)} is the set of normalized
Fourier coefficients of a p-adic Hilbert modular form of parallel weight k
on Γ0(pn) for (k, s) in a p-adically dense subset U ⊂ Zp × Zp (cf. [28,
p. 535-536]). Define E{p}φ : IF → A(X ×X ) by the data

c
(
m,E

{p}
φ

)
= σφ(m) if (m, pOF ) = 1,

c
(
m,E

{p}
φ

)
= 0 otherwise,

c0
(
a,E

{p}
φ

)
= 0.

By definition, for (k, s) ∈X cl ×X cl with k ≥ 2s, we have

E
{p}
φ (k, s) = 〈∆F 〉

s−2
2 · θ

s−2
2 E

{p}
k+4−2s

2
(1, φ),

where E{p}k (1, φ) is the p-depletion of Ek(1, φ) and θ is Serre’s differen-
tial operator θ(

∑
β aβq

β) =
∑
β NF/Q(β)aβqβ. Therefore, E

{p}
φ (k, s) is a

p-adic Hilbert modular form of parallel weight k for all (k, s) ∈ Z2
p, and

E
{p}
φ ∈ M(OF ). For each prime ideal q, define Uq : M(n) → M(nq) by

c(m,Uqf) := c(mq, f). Let N be a positive integer such that p - N and

(Splt) NOF = NN, (N,N) = 1.
Define Eφ ∈M(N) by

Eφ :=
∏
q|N

(
1− φ(q)−1 〈N(q)〉

2s−2−k
2 Uq

)
·E{p}φ

and the diagonal restriction Gφ ∈ A(X ×X )[[q]] of Eφ by

Gφ :=
∑
n>0

( ∑
β∈d−1

+ ,Tr(β)=n

c(βd,Eφ)
)
qn,

where d−1
+ is the additive semigroup of totally positive elements in d−1.

By definitionGφ(k, s) is the q-expansion of a p-adic elliptic modular form
on Γ0(pN) of weight k obtained from the diagonal restriction of E{p}φ (k, s)
for (k, s) ∈X cl×X cl with k ≥ 2s. Let U be an appropriate neighborhood
around 2 ∈ X . Let Sord(N) be the space of ordinary A(U )-adic elliptic
cusp forms on Γ0(Np), consisting of q-expansion f =

∑
n>0 c(n,f)qn ∈

A(U )[[q]] whose weight k specialization fk is a p-ordinary cusp form of
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weight k on Γ0(pN) for k ∈ X cl. By Hida theory Sord(N) is a free A(U )-
module of finite rank. It can be shown that the image eGφ under Hida’s
ordinary projector e actually belongs to Sord(N) ⊗̂A(U ) A(U ×X ), where
A(U ) is regarded as a subring of A(U ×X ) via the pull-back of the first
projection U ×X → U . We can thus decompose

eGφ =
∑
f

LEφ,f · f + (old forms), LEφ,f ∈ A(U ×X ),

where f runs over the set of primitive Hida families of tame conductor
N . We shall call LEφ,f ∈ A(U ×X ) the twisted triple product p-adic L-
function attached to the p-adic Hilbert–Eisenstein series Eφ and a primitive
Hida family f .

The arithmetic significance of this p-adic L-function stems from its con-
nection with the Stark–Heegner points of elliptic curves. Let E be an elliptic
curve over Q of conductor pN . Assume that p is inert in F . In [6], Darmon
introduced Stark–Heegner points of elliptic curves over real quadratic fields.
These are local points in E(Fp) but conjectured to be rational over ray class
fields of F . The rationality of Stark–Heegner points has been one of the ma-
jor open problems in algebraic number theory. Now let f ∈ A(U )[[q]] be a
primitive Hida family of tame level N such that the weight two specializa-
tion f := f2 is the elliptic newform associated with E. In the special case
N = 1, [8, Theorem C(2)] implies that LEφ,f (2, 1) = 0 and the first deriva-
tive of LEφ,f (k, 1) at k = 2 is essentially a product of the p-adic logarithm
logE Pφ of the twisted Stark–Heegner point Pφ ∈ E(Fp)⊗Q(φ) introduced
in [6, (182)] and the central value L(E, 1) of the Hasse–Weil L-function
of E. As pointed out in [8, Remark 3], this connection has potential of
providing a geometric approach to Stark–Heegner points via the K-theory
of Hilbert modular surfaces. The main result of this paper (Theorem 7.4)
is to offer the following generalization of [8, Theorem C(2)] to include the
cyclotomic variable and the case N > 1.

Theorem A. Suppose that p is inert in F and the conductor N satis-
fies (Splt). Then LEφ,f (2, s) = 0 and

∂LEφ,f
∂k

(2, s+ 1) = 1
2(1 +φ(N)−1wN ) logE Pφ · Lp(E, s)

m2
E2α(E)

cf
〈∆F 〉

s−1
2 ,

where
• wN ∈ {±1} is the sign of the Fricke involution at N acting on f ,
• Lp(E, s) is the Mazur–Tate–Teitelbaum p-adic L-function for E,
• cf ∈ Z>0 is the congruence number for f , mE ∈ Q× is the Manin
constant for E and

2α(E) = [H1(E(C),Z) : H1(E(C),Z)+ ⊕H1(E(C),Z)−].
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Our main motivation for this two-variable generalization is that we have
the non-vanishing of the p-adic L-function Lp(E, s) thanks to Rohrlich’s
theorem [22], so we can still compute logE Pφ from the twisted triple prod-
uct p-adic L-function even when the central value L(E, 1) vanishes.

Remark 1.1.

• Note that the definition of Stark–Heegner points Pφ for odd φ in [6]
depends on a choice of the purely imaginary period Ω−E . In the above
theorem, we require (

√
−1)−1Ω−E to be positive.

• The Eisenstein contribution in the spectral decomposition in
Part (2) of [8, Theorem C] is connected with the p-adic logarithms
of Gross–Stark units over F , while in our two-variable setting, eGφ

is a p-adic family of cusp forms, so we do not get any information
for Gross–Stark units.
• Theorem A only applies to real quadratic fields F possessing a to-
tally positive fundamental unit due to the existence of odd charac-
ters of the narrow ideal class group of F .

We briefly outline the proof. Let Lp(f/F, φ, k) be the (odd) square-root
p-adic L-function associated with the primitive Hida family f and the char-
acter φ constructed in [1, Definition 3.4] with w∞ = −1 and let Lp(f , k, s)
be the Mazur–Kitagawa two-variable p-adic L-function so that Lp(f , 2, s)
is the cyclotomic p-adic L-function for f2. The main point of the proof is
to prove the following factorization formula of LEφ,f :

(1.1) C∗(k) · LEφ,f (k, s+ 1) = 4 〈∆F 〉
s−k+1

2 · Lp(f/F, φ, k) · Lp(f , k, s),

where C∗(k) is a meromorphic function on X holomorphic at all clas-
sical points k ∈ X cl with C∗(2) = 1. By construction, the square root
p-adic L-function Lp(f/F, φ, k) interpolates the toric period integrals Bφ

fk
.

Thus we get LEφ,f (2, s) = Lp(f/F, φ, 2) = 0 by a classical theorem of
Saito and Tunnell. Moreover, from the formula [1, Corollary 2.6], it is not
difficult to deduce that the first derivative of Lp(f/F, φ, k) at k = 2 is
1
2(1 + wNφ(N)−1) logE Pφ, and hence we obtain Theorem A from (1.1).
The factorization formula (1.1), proved in Theorem 7.3, is established

by the inspection of the explicit interpolation formulae on both sides. In
particular, the interpolation formula of LEφ,f (k, s) (Proposition 5.8) is the
most technical part of this paper. Roughly speaking, for (k, s) ∈X cl×X cl

with k ≥ 2s, Hida’s p-adic Rankin–Selberg method shows that LEφ,f (k, s)
is interpolated by the inner product between the diagonal restriction of a
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nearly holomorphic Hilbert–Eisenstein series Eφ(k, s) and fk. Therefore, a
result of Keaton and Pitale [20, Proposition 2.3] tells us that LEφ,f (k, s) is
a product of

(i) the toric period integral Bφ
fk

of fk over F twisted by φ (see (4.2)),
(ii) the special value L(fk, s) of the L-function for fk;
(iii) local zeta integrals ZD(s,BWv) for every place of Q in (4.4).

It is known that items (i) and (ii) are basically interpolated by Lp(f/K, φ, k)
and Lp(f , k, s), so our main task is to evaluate explicitly these local zeta
integrals in item (iii). These calculations occupy the main body of Sec-
tion 4. From the explicit interpolation formulae of these p-adic L-functions,
we can deduce that the ratio C∗ between Lp(f/F, φ, k) · Lp(f , k, s) and
LEφ,f (k, s + 1) is independent of s, and hence C∗ is a meromorphic func-
tion in k only. Finally, by a standard argument using Rohrlich’s result on
the non-vanishing of the cyclotomic p-adic L-functions for elliptic modular
forms, we can conclude that C∗(k) is holomorphic at all k ∈X cl and C∗(2)
is essentially the congruence number.

This paper is organized as follows. After preparing the basic notation
for modular forms and automorphic forms in Section 2, we give the con-
struction of Hilbert–Eisenstein series and compute the Fourier coefficients
in Section 3. In Section 4, we compute the inner product between the diago-
nal restriction of Hilbert–Eisenstein series and a p-stabilized newform. The
main local calculations are carried out in Proposition 4.4 for the split case,
Proposition 4.5 for the non-split, and Proposition 4.6 for the p-adic case. In
Section 5, we use p-adic Rankin–Selberg method to construct the p-adic L-
function LEφ,f and obtain the interpolation formula in Proposition 5.8 by
combining the local calculations in Section 4. In order to make the compar-
ison between p-adic L-functions easier, the interpolation formulae shall be
presented in terms of automorphic L-functions in this paper. In Section 6,
we review the theory of Λ-adic modular symbols in [21] and the construc-
tion of the square root p-adic L-function Lp(f/F, φ, k). Our treatment for
modular symbols is semi-adelic, which allows simple descriptions of Hecke
actions and are amenable to the calculations from the automorphic side.
The connection with Greenberg–Stevens’ approach [9] is explained in Sec-
tion 6.4. In Proposition 6.8, we give the complete interpolation formula for
Lp(f/F, φ, k), including the evaluation at finite order characters of p-power
conductors. Finally, we deduce the factorization formula and the derivative
formula for LEφ,f in Section 7.

Acknowledgements. We thank the referees for careful reading and help-
ful suggestions on the improvement of the earlier version of the paper. This
paper was written during the first author’s visit to Osaka City University
and RIMS in January 2020. He is grateful for their hospitality.
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2. Classical modular forms and automorphic forms
In this section, we recall basic definitions and standard facts about clas-

sical elliptic modular forms and automorphic forms on GL2(A), following
the notation in [16, Section 2] which we reproduce here for the reader’s
convenience. The main purpose of this section is to set up the notation and
introduce some Hecke operators on the space of automorphic forms which
will be frequently used in the construction of p-adic L-functions.

2.1. Notation. We denote by Z, Q, R, C, A, R+ the ring of rational
integers, the field of rational, real, complex numbers, the ring of adeles of
Q and the group of strictly positive real numbers. Let µn(F ) denote the
group of nth roots of unity in a field F . For a rational prime ` we denote
by Z`, Q` and ord` : Q` → Z the ring of `-adic integers, the field of `-adic
numbers and the additive valuation normalized so that ord`(`) = 1. Put
Ẑ =

∏
` Z`. Define the idele $` = ($`,v) ∈ A× by $`,` = ` and $`,v = 1 if

v 6= `.
Let F be a number field. We denote its integer ring by OF . We write

TF/Q and NF/Q for the trace and norm from F to Q. For each place v of F
we denote by Fv the completion of F with respect to v. Let AF = A⊗QF be
the adele ring of F . Given t ∈ A×F , we write tv ∈ F×v for its v-component. We
shall regard Fv (resp. F×v ) as a subgroup of AF (resp. A×F ) in a natural way.
Let αFv = | · |Fv be the normalized absolute value on Fv. If v = q is finite,
then |$q|Fq = q−1

q , where $q is a generator of the prime ideal of the integral
ring Oq of Fq and qq denotes the cardinality of the residue field of Oq.
Define the complete Dedekind zeta function by ζF (s) =

∏
v ζFv(s), where

ζR(s) = π−s/2Γ
(
s
2
)
, and if v = q is finite, then ζFq(s) = (1− q−sq )−1. When

F = Q, we will write αv = | · |v and ζv(s) = ζQv(s). Let ψ : A/Q→ C× be
the additive character whose archimedean component is ψ∞(x) = e2π

√
−1x

and whose local component at ` is denoted by ψ` : Q` → C×. We define
the additive character ψF =

∏
v ψFv : AF /F → C× by setting ψF :=

ψ ◦TrF/Q. Let S(Am
F ) = ⊗′vS(Fmv ) denote the space of Schwartz functions

on Am
F .

For any set X we denote by IX the characteristic function of X. If R is a
commutative ring and G = GL2(R), we define homomorphisms t : R× → G
and n : R→ G by

t(a) =
(
a 0
0 1

)
, n(x) =

(
1 x
0 1

)
.

The identity matrix in G is denoted by 12. Denote by ρ the right translation
of G on the space of C-valued functions on G, i.e., ρ(g)f(g′) = f(g′g), and
by 1 : G → C the constant function 1(g) = 1. For a function f : G → C
and a character ω : R× → C×, let f ⊗ ω : G → C denote the function
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f ⊗ ω(g) = f(g)ω(det g). The subgroup B(R) (resp. N(R)) of GL2(R)
consists of upper triangular (resp. upper triangular unipotent) matrices.

2.2. Characters. If F is a number field and χ : F×\A×F → Q× is a
Hecke character of A×F , we denote by χv : F×v → C× the local component
of χ at a place v of F . When ω is a Hecke character of A×, we denote by
ωF := ω ◦NF/Q : F×\A×F → C× the base change of ω.

If v is non-archimedean and λ : F×v → C× is a character, let c(λ) be the
exponent of the conductor of λ.

2.3. Automorphic forms on GL2(A). Fix a positive integer N . Define
open compact subgroups of GL2(Ẑ) by

U0(N) =
{
g ∈ GL2(Ẑ)

∣∣∣∣ g ≡ (∗ ∗0 ∗

)
(mod N Ẑ)

}
,

U1(N) =
{
g ∈ U0(N)

∣∣∣∣ g ≡ (∗ ∗0 1

)
(mod N Ẑ)

}
.

Let ω : Q×\A× → C× be a finite order Hecke character of level N . We
extend ω to a character of U0(N) defined by ω

((
a b
c d

))
=
∏
`|N ω`(d`) for(

a b
c d

)
∈ U0(N). For any integer k the space Ak(N,ω) of automorphic forms

on GL2(A) of weight k, level N and character ω consists of automorphic
forms ϕ : GL2(A)→ C such that

ϕ(zγgκθuf) = ω(z)ϕ(g)e
√
−1kθω(uf), κθ =

(
cos θ sin θ
− sin θ cos θ

)
for z ∈ A×, γ ∈ GL2(Q), θ ∈ R and uf ∈ U0(N). Let A0

k(N,ω) be the
space of cusp forms in Ak(N,ω).

Next we introduce important local Hecke operators on automorphic
forms. At the archimedean place, let V± : Ak(N,ω) → Ak±2(N,ω) be
the normalized weight raising/lowering operator in [19, p. 165] given by

V± = 1
(−8π)

((
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗
√
−1
)
∈ Lie(GL2(R))⊗R C.

Define the operator U` acting on ϕ ∈ Ak(N,ω) by

U`ϕ =
∑

x∈Z`/`Z`

ρ

((
$` x
0 1

))
ϕ,

and the level-raising operator V` : Ak(N,ω)→ Ak(N`, ω) at a finite prime
` by

V`ϕ(g) := ρ(t($−1
` ))ϕ.

Note that U`V`ϕ = `ϕ and that if ` | N , then U` ∈ EndCAk(N,ω). For
each prime ` - N , let T` ∈ EndCAk(N,ω) be the usual Hecke operator
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defined by
T` = U` + ω`(`)V`.

Define the GL2(A)-equivariant pairing 〈 · , · 〉 : A0
−k(N,ω)⊗Ak(N,ω−1)→

C by
〈ϕ,ϕ′〉 =

∫
A×GL2(Q)\GL2(A)

ϕ(g)ϕ′(g) dτg,

where dτg is the Tamagawa measure of PGL2(A). Note that 〈T`ϕ,ϕ′〉 =
〈ϕ, T`ϕ′〉 for ` - N .

2.4. Classical modular forms. We recall a semi-adelic description of
classical modular forms. Let C∞(H) be the space of C-valued smooth func-
tions on the half complex plane H := {z ∈ C | Im(z) > 0}. The group
GL2(R)+ := {g ∈ GL2(R) | det g > 0} acts on H and the automorphy
factor is given by

γ(z) = az + b

cz + d
, J(γ, z) = cz + d

for γ =
(
a b
c d

)
∈ GL2(R)+ and z ∈ H.

Let k be any integer. The Maass–Shimura differential operators δk and
ε on C∞(H) are defined by

δk = 1
2π
√
−1

(
∂

∂z
+ k

2
√
−1y

)
, ε = − 1

2π
√
−1

y2 ∂

∂z

(cf. [14, (1a, 1b) p. 310]), where y = Im(z) is the imaginary part of z.
Let χ be a Dirichlet character of level N . For a non-negative integer m
let N [m]

k (N,χ) denote the space of nearly holomorphic modular forms of
weight k, level N and character χ. In other words N [m]

k (N,χ) consists of
smooth slowly increasing functions f : H×GL2(Q̂)→ C such that

• f(γz, γgfu) = (det γ)−1J(γ, z)kf(z, gf)χ−1(u) for any γ ∈ GL2(Q)+

and u ∈ U0(N);
• εm+1f(z, gf) = 0

(cf. [14, p. 314]). Let Nk(N,χ) =
⋃∞
m=0N

[m]
k (N,χ) (cf. [14, (1a), p. 310]).

By definition N [0]
k (N,χ) coincides with the space Mk(N,χ) of classical

holomorphic modular forms of weight k, level N and character χ. Denote by
Sk(N,χ) the space of cusp forms inMk(N,χ). Let δmk = δk+2m−2 · · · δk+2δk.
If f ∈ Nk(N,χ), then δmk f ∈ Nk+2m(N,χ) ([14, p. 312]). Given a positive
integer d, we define

Vdf(z, gf) = f(dz, gf); Udf(z, gf) =
d−1∑
j=0

f

(
z, gf

(
d j
0 1

))
.

The classical Hecke operators T` for primes ` - N are given by
T`f = U`f + χ`(`−1)`k−2V`f.
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We say that f ∈ Nk(N,χ) is a Hecke eigenform if f is an eigenfunction of
all the Hecke operators T` for ` - N and the operators U` for ` | N .

2.5. To every nearly holomorphic modular form f ∈ Nk(N,χ) we asso-
ciate a unique automorphic form Φ(f) ∈ Ak(N,χ−1) defined by the formula

Φ(f)(g) := f(g∞(
√
−1), gf)J(g∞,

√
−1)−k(det g∞) |det g|

k
2−1
A(2.1)

for g = g∞gf ∈ GL2(R) GL2(Q̂) (cf. [4, Section 3]). Conversely, we can
recover the form f from Φ(f) by

f(x+
√
−1y, gf) = y−k/2Φ(f)

((
y x
0 1

)
gf

)
|det gf |

1− k2
A .(2.2)

We call Φ(f) the adelic lift of f .
The weight raising/lowering operators are the adelic avatar of the dif-

ferential operators δmk and ε on the space of automorphic forms. A direct
computation shows that the map Φ from the space of modular forms to the
space of automorphic forms is equivariant for the Hecke action in the sense
that

Φ(δmk f) = V m
+ Φ(f), Φ(εf) = V−Φ(f),(2.3)

and for a finite prime `

Φ(T`f) = `k/2−1T`Φ(f), Φ(U`f) = `k/2−1U`Φ(f).

In particular, f is holomorphic if and only if V−Φ(f) = 0.

2.6. Preliminaries on irreducible representations of GL2(Qv).

2.6.1. Measures. We shall normalize the Haar measures on Fv and F×v as
follows. Let dxv be the self-dual Haar measures of Fv with respect to ψFv .
Put d×xv = ζFv(1) dxv

|xv |Fv
. If F = Q, then da∞ denote the usual Lebesgue

measure on R and da` be the Haar measure on Q` with vol(Z`,da`) =
1. The Tamagawa measure of AF is dx =

∏
v dxv while the Tamagawa

measure of A×F is defined by d×x = c−1
F

∏
v dx×v , where cF denotes the

residue of ζF (s) at s = 1. Define the compact subgroup K =
∏
v Kv of

GL2(A) by K∞ = SO(2,R) and K` = GL2(Z`). Let duv be the Haar
measure on Kv so that vol(Kv, duv) = 1. Let dgv be the Haar measure
on PGL2(Qv) given by dτgv = |av|−1

v dxvd×avduv for gv = ( av xv0 1 )uv with
av ∈ Q×v , xv ∈ Qv and uv ∈ Kv. The Tamagawa measure on PGL2(A) is
given by dτg = ζQ(2)−1∏

v dτgv.



Restriction of Hilbert–Eisenstein series 897

2.6.2. Representations of GL2(Qv). Denote by % � υ the irreducible
principal series representation of GL2(Qv) attached to two characters %, υ :
Q×v → C× such that %υ−1 6= α±1

v . If v = ∞ is the archimedean place and
k ≥ 1 is an integer, denote by D0(k) the discrete series of lowest weight k
if k ≥ 2 or the limit of discrete series if k = 1 with central character sgnk
(the k-th power of the sign character sgn(x) = x

|x|∞ of R×).

2.6.3. Whittaker models and the normalized Whittaker newforms.
Every irreducible admissible infinite dimensional representation π of
GL2(Qv) admits a Whittaker modelW(π) =W(π,ψv) with respect to ψv.
Recall that W(π) is a subspace of smooth functions W : GL2(Qv) → C
such that

• W (n(x)g) = ψv(x)W (g) for all x ∈ Qv,
• if v =∞ is archimedean, then there exists an integer M such that

W (t(a)) = O(|a|M∞) as |a|∞ −→∞.

The group GL2(Qv) (or the Hecke algebra of GL2(Qv)) acts on W(π) via
the right translation ρ. We introduce the (normalized) local Whittaker new-
form Wπ in W(π) in the following way: if v = ∞ and π = D0(k), then
Wπ ∈ W(π) is defined by

Wπ

(
z

(
y x
0 1

)
κθ

)
= IR+(y) · y

k/2

e2πy · sgn(z)kψ∞(x)e
√
−1kθ(2.4)

for y, z ∈ R× and x, θ ∈ R. Here one should not confuse the representation
π in the left hand side of the equation and the real number π in the right
hand side. If v is finite, then Wπ is the unique function in W(π)new such
that Wπ(12) = 1. The explicit formula for Wπ(t(a)) is well-known (See [25,
p. 21] or [23, Section 2.2] for example).

2.6.4. L-factors and ε-factors. Given a ∈ Q×v , we define an additive
character ψav on Qv by ψav(x) = ψv(ax) for x ∈ Qv. We associate to a
character % : Q×v → C× the L-factor L(s, %) and the ε-factor ε(s, %,ψav)
(cf. [25, Section 1.1]). The gamma factor

γ(s, %,ψav) = ε(s, %,ψav)
L(1− s, %−1)

L(s, %)
is obtained as the proportionality constant of the functional equation

(2.5) γ(s, %,ψav)
∫

Q×v
ϕ(a)%(a)|a|sv d×a =

∫
Q×v

ϕ̂(a)%(a)−1|a|1−sv d×a

for ϕ ∈ S(Qv), where

ϕ̂(y) =
∫

Qv

ϕ(xv)ψv(yxv) dxv
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is the Fourier transform with respect to ψv. When a = 1, we write
ε(s, %) = ε(s, %,ψv), γ(s, %) = γ(s, %,ψv).

When v = ` is a finite prime, we denote the exponent of the conductor of
% by c(%). Recall that

(2.6) ε(s, %,ψav) = %(a)|a|−1
v ε(0, %)`−c(%)s.

Let π be an irreducible admissible representation of GL2(Qv) with central
character ω. Denote by L(s, π) and ε(s, π) = ε(s, π,ψv) its L-factor and
ε-factor relative to ψv defined in [19, Theorem 2.18]. We write π∨ for the
contragredient representation of π. The gamma factor

γ(s, π) = ε(s, π)L(1− s, π∨)
L(s, π)

is obtained as the proportionality constant of the functional equation

γ

(
s+ 1

2 , π
)∫

Q×v
W (t(a)g) |a|sv d×a =

∫
Q×v

W (t(a)J−1
1 g)ω(a)−1 |a|−sv d×a

for every W ∈ W(π).

2.7. p-stabilized newforms. Let π be an irreducible cuspidal automor-
phic representation of GL2(A). The Whittaker function of ϕ ∈ π with
respect to the additive character ψ is given by

Wϕ(g) =
∫

A/Q
ϕ(n(x)g)ψ(−x) dx

for g ∈ GL2(A), where dx is the Haar measure with vol(A/Q, dx) = 1. We
have the Fourier expansion:

ϕ(g) =
∑
β∈Q×

Wϕ(t(β)g)

(cf. [3, Theorem 3.5.5]). Let f =
∑
n a(n, f)qn ∈ Sk(N,χ) be a normalized

Hecke eigenform whose adelic lift Φ(f) generates π = ⊗′vπv of GL2(A),
having central character χ−1. If f is a newform, then the conductor of π
is N , the adelic lift Φ(f) is the normalized new vector in π and the Mellin
transform ∫

A×/Q×
Φ(f)(t(y))|y|sA d×y = L

(
s+ 1

2 , π
)

is the automorphic L-function of π. Here |y|A =
∏
v |yv|v and d×y is the

product measure
∏
v d×yv.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ιp : C ' Qp. We say that a normalized Hecke eigenform f =∑∞
n=1 a(n, f)qn ∈ Sk(Np, χ) is an ordinary p-stabilized newform with re-

spect to ιp if f is new outside p and the eigenvalue of Up, i.e. the p-th
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Fourier coefficient ιp(a(p, f)), is a p-adic unit. The prime-to-p part of the
conductor of f is called the tame conductor of f .

The Whittaker function of Φ(f) is a product of local Whittaker functions
in W(πv,ψv) by the multiplicity one for new and ordinary vectors. To be
precise, we have

WΦ(f)(g) = W ord
πp (gp)

∏
v 6=p

Wπv(gv)

for g = (gv) ∈ GL2(A). Here Wπv is the normalized Whittaker newform of
πv and W ord

πp is the ordinary Whittaker function characterized by

W ord
πp (t(a)) = %f (a) |a|

1
2 · IZp(a) for a ∈ Q×p ,

where %f : Q×p → C× is the unramified character with %f (p) = a(p, f) ·
p(1−k)/2 (See [16, Corollary 2.3, Remark 2.5]).

3. The construction of Hilbert–Eisenstein series
3.1. Eisenstein series. We recall the construction of Eisenstein series
described in [18, Section 19]. Let F be a real quadratic field with integer
ring OF . We denote the set of real places of F by ΣR = {σ1, σ2}, the
different of F by d, the discriminant of F by ∆F and the unique non-trivial
automorphism of F by x 7→ x. For each finite prime q of F we write Oq for
the integer ring of Fq.

Let (µ, ν) be a pair of unitary Hecke characters of A×F . For each place v
we write B(µv, νv, s) for the space of smooth functions fv : GL2(Fv) → C
which satisfy

fv

((
a b
0 d

)
g

)
= µv(a)νv(d)

∣∣∣∣ad
∣∣∣∣s+ 1

2

Fv

fv(g)

for a, d ∈ F×v and b ∈ Fv. Recall that S(F 2
v ) denotes the space of

Schwartz functions on F 2
v . We associate to Φv ∈ S(F 2

v ) the Godement
section fµv ,νv ,Φv ,s ∈ B(µv, νv, s) by

fµv ,νv ,Φv ,s(gv)

= µv(det gv) |det gv|
s+ 1

2
Fv

∫
F×v

Φv((0, tv)gv)(µvν−1
v )(tv) |tv|2s+1

Fv
d×tv.

Let Φ =
⊗
v Φv ∈ S(A2

F ). Define a function fµ,ν,Φ,s : GL2(AF ) → C by
fµ,ν,Φ,s(g) =

∏
v fµv ,νv ,Φv ,s(gv). The series

EA(g, fµ,ν,Φ,s) =
∑

γ∈B(F )\GL2(F )
fµ,ν,Φ,s(γg)
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converges absolutely for Re(s) � 0 and has meromorphic continuation to
s ∈ C. It admits the Fourier expansion
(3.1) EA(g, fµ,ν,Φ,s) = fµ,ν,Φ,s(g) + f

ν,µ,Φ̂,−s(g) +
∑
β∈F×

W (t(β)g, fµ,ν,Φ,s),

where Φ̂ := ⊗vΦ̂v is the symplectic Fourier transform defined by

Φ̂v(x, y) =
∫∫

F 2
v

Φv(z, u)ψFv(zy − ux) dzdu.

We tentatively write fv,s = fµv ,νv ,Φv ,s. There exists an open compact sub-
group U of Fv such that for any open compact subgroup U ′ containing U∫

U
fv,s(J1n(xv)gv)ψFv(−xv) dxv =

∫
U ′
fv,s(J1n(xv)gv)ψFv(−xv) dxv,

where J1 =
( 0 −1

1 0
)
. We define the regularized integral by

W (gv, fµv ,νv ,Φv ,s) =
∫ st

Fv
fv,s(J1n(xv)gv)ψFv(−xv) dxv

:=
∫
U
fv,s(J1n(xv)gv)ψFv(−xv) dxv.

Then W (g, fµ,ν,Φ,s) =
∏
vW (gv, fv,s) for g = (gv) ∈ GL2(AF ).

3.2. The Eisenstein series Ek(µ, ν). Let N and C be positive integers
such that N∆F and C are coprime. We assume that
(Spl) every prime factor of NC splits in F .
Then there are ideals N and c of OF such that

NOF = NN, (N,N) = 1 COF = cc, (c, c) = 1.(3.2)

Fix a positive integer k. Assume that νσiµσi = sgnk for i = 1, 2. We recall
a construction of a certain classical Eisenstein series Ek(µ, ν) of parallel
weight k, level Γ1(NC) and central character µν, following [18]. We impose
the following hypotheses for (µ, ν):

Hypothesis 3.1.
• µ is unramified outside p,
• the prime-to-p part of the conductor of ν has a decomposition cc′

with c ⊂ c′.

Definition 3.2. Let k ≥ 2 be an integer. The quintuple
D := (µ, ν, k,N, c)

is called an Eisenstein datum of weight k. The Fourier transform of φ ∈
S(Fv) is defined by

φ̂(x) :=
∫
Fv
φ(y)ψFv(yx) dy,



Restriction of Hilbert–Eisenstein series 901

where the Haar measure dy is so chosen that ̂̂φ(x) = φ(−x). When q is a
finite prime, we associate to a character χ : F×q → C a function φχ ∈ S(Fq)
by φχ(x) = IO×q (x)χ(x). We associate to D the Bruhat–Schwartz function

ΦD =
⊗
v

ΦD,v ∈ S(A2
F )

defined as follows:
• ΦD,v(x, y) = 2−k(x+

√
−1y)ke−π(x2+y2) if v ∈ ΣR,

• ΦD,v(x, y) = φµ−1
v

(x)φ̂ν−1
v

(y) if v | p,
• ΦD,v(x, y) = INcOv(x)φνv(y) if v | Nc,
• ΦD,v(x, y) = IOv(x)φ̂ν−1

v
(y) if v | c,

• ΦD,v(x, y) = Id−1Ov(x)Id−1Ov(y) · |∆F |
1
2
v if v - pNc.

These particular choices of Bruhat–Schwartz functions are inspired by [5,
Definition 4.1] used in the construction of primitive p-adic Rankin–Selberg
L-functions. We define the associated Godement section by fD,s = fµ,ν,ΦD,s
and fD,s,v = fµv ,νv ,ΦD,v ,s.

Remark 3.3. If v ∈ ΣR, then fD,s,v is the unique function in B(µv, νv, s)
such that

fD,s,v(κθ) = e
√
−1kθ · 2−k(

√
−1)kπ−(s+ k+1

2 )Γ
(
s+ k + 1

2

)
(see the proof of Lemma 3.6). If v = q is a finite place, then for any integer
M , let U1(M) be the open-compact subgroup of GL2(Oq) given by

U1(M) = GL2(Oq) ∩
(
Oq Oq

MOq 1 +MOq

)
,

and fD,s,q ∈ B(µq, νq, s) is invariant by U1(prNC) under the right transla-
tion for some sufficiently large r.

Definition 3.4. Define the classical Eisenstein series E±k (µ, ν) : HΣR → C
by

E±k (µ, ν)(x+y
√
−1) := y−

k
2EA

((
y x
0 1

)
, fD,s

)∣∣∣∣
s=± k−1

2

(x∈R2, y ∈R2
+).

Then E±k (µ, ν) is a Hilbert modular form of parallel weight k, level prNC
and character µ−1ν−1. By definition

Φ(E±k (µ, ν)|H)(g) = EA((g, g), fD,s)|s=± k−1
2

for g ∈ GL2(A), where Φ is the adelic lift defined in (2.2).

Proposition 3.5. For every non-negative integer t, we have
Φ(δtkE±k (µ, ν)) = EA(fDt,s)|s=± k−1

2
,
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where Dt = (µ, ν, k + 2t,N, c) is an Eisenstein datum of weight k + 2t.

Proof. Recall the differential operator V+ defined in Section 2.3. Propo-
sition 3.5 follows from (2.3) in view of the relation V t

+fD,s,∞ = fDt,s,∞
(see [19, Lemma 5.6(iii)]). �

3.3. Fourier coefficients of Eisenstein series.

Lemma 3.6. For a ∈ R×, we have

W (t(a), fD,s,∞)|s= k−1
2

= W (t(a), fD,s,∞)|s= 1−k
2

= a
k
2 e−2πa · IR+(a).

Proof. By definition, W (t(a), fD,s,∞) equals

2−kµαs+
1
2 (a)

∫
R

∫
R×
tk(a+

√
−1x)ke−πt2(x2+a2)sgn(t)k|t|2s+1ψ∞(−x) d×tdx

= µαs+
1
2 (a) · (−2

√
−1)−k · Γ

(
s+ k + 1

2

)
π−(s+ k+1

2 )

×
∫

R
(x+

√
−1a)−(s+ k+1

2 )(x−
√
−1a)−(s− k−1

2 )ψ∞(−x) dx.

By Cauchy’s integral formula we find that

W (t(a), fD,s,∞)|s= k−1
2

= µα
k
2 (a) · (−2π

√
−1)−k · Γ(k)

∫
R

e−2π
√
−1x

(x+
√
−1a)k

dx

= µ(a) · a
k
2 e−2πa · IR+(a),

and that

W (t(a), fD,s,∞)|s= 1−k
2

= µα1− k2 (a)(−2
√
−1)−kπ−1

∫
R

(x−
√
−1a)k−1e−2π

√
−1x

x+
√
−1a

dx

= µ(a) · a
k
2 e−2πa · IR+(a).

Since µ is a quadratic character, the lemma follows. �

Let qq = |$q|−1 = ](OF /q) denote the cardinality of the residue field.

Lemma 3.7. Let v = q be a prime ideal of OF . Let a ∈ F×q . Put

χq = µ−1
q νq, γq = χq($q), qq = |$q|−1 = ](OF /q), m = ordq(a).
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Then W (t(a), fD,s,q) equals

µq(a)|a|s+
1
2

m+ordq(d)∑
j=0

(γqq2s
q )j ,(q - pNc)

µq(a)|a|s+
1
2

(m−ordq(N)∑
j=0

(γqq2s
q )j − q−1

q

m−ordq(N)∑
j=−1

(γqq2s
q )j

)
,(q | N)

µq(a)|a|s+
1
2 · ε(−2s, χq)−1 · IOq(a),(q | c)

µq(a)|a|s+
1
2 IOq(a),(q | c)

IO×p (a).(q = p | p)

Proof. Fix a local uniformizer $q ∈ Oq of the prime ideal q. Note that if
Φ = Φ1 ⊗ Φ2 ∈ S(F 2

q ), then

(3.3) fD,s,q

((
0 −1
1 0

)(
a x
0 1

))
= µq(a)|a|s+

1
2

∫
F×q

Φ1(ta)Φ2(tx)(µqν−1
q )(t)|t|2s+1 d×t

and hence

W (t(a), fD,s,q) = µq(a)|a|s+
1
2

∫
F×q

Φ1(ta)Φ̂2(−t−1)(µqν−1
q )(t)|t|2s d×t.

If q - pNc, then ΦD,q = Id−1Oq
⊗ Id−1Oq

, and hence

W (t(a), fD,s,q) = µq(a)|a|s+
1
2

∫
F×q

Id−1Oq
(t−1a)IOq(−t)χq(t)|t|−2s d×t

= µq(a)|a|s+
1
2

m+ordq(d)∑
j=0

χq($j
q)q2sj

q .

If q | Nc, then µq is unramified by assumption. It is easy to verify that

φ̂νq(x) =


IOq(x)− q−1

q Iq−1Oq
(x) if q | N,

ε(1, ν−1
q )νq(x−1)I

$
−c(νq)
q O×q

(x) if q | c.

One can readily prove the case q | N. If c is divisible by q, then

µq(a)−1|a|−s−
1
2W (t(a), fD,s,q)

=
∫
F×q

ICOq(at)φ̂νq(−t−1)(µqν−1
q )(t)|t|2s d×t

= ε(1, ν−1
q )νq(−1)µq

(
$
c(νq)
q

)
q
−2sc(νq)
q I

C$
−c(νq)
q Oq

(a).
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Note that COq = $
−c(νq)
q Oq for q | c by our assumption on the conductor

of ν and that

ε(1, ν−1
q )νq(−1)µq

(
$
c(νq)
q

)
q
−2sc(νq)
q = νq(−1)ε(1 + 2s, χ−1

q ) = ε(−2s, χq)−1

by (2.6). If q | c, then W (t(a), fD,s,q) equals

µq(a)|a|s+
1
2

∫
F×q

IOq(at)φν−1
q

(t−1)(µqν−1
q )(t)|t|2s d×t = µq(a)|a|s+

1
2 IOq(a).

Finally, if v = p|p, then we find that W (t(a), fD,s,p) equals

µp(a)|a|s+
1
2

∫
F×p

φµ−1
p

(at)φν−1
p

(t−1)(µpν−1
p )(t)|t|2s d×t = IO×p (a)

by a similar calculation. �

For each non-zero element β ∈ F× we define the polynomials Pβ,q and
Qχ,q in Z(qq)[X,X−1] by

(3.4)
Pβ,q(X) =


∑ordq(βd)
j=0 q−jq Xj if q - pNc,∑ordq(βN−1)
j=0 q−jq Xj −

∑ordq(βN−1)
j=−1 q

−(j+1)
q Xj if q | N,

Qχ,q(X) = ε(0, χq)−1 · (qqX−1)c(χq).

Let β ∈ F . We write β > 0 if σi(β) > 0 for i = 1, 2.

Corollary 3.8. We have the following Fourier expansion around the infin-
ity cusp:

E±k (µ, ν)(τ1, τ2) =
∑

0<β∈d−1, (p,β)=1
σ±β (µ, ν, k) · e2π

√
−1(τ1σ1(β)+τ2σ2(β)),

where

σ+
β (µ, ν, k) = µ−1

p (β)
∏
q-cp
Pβ,q(γq · qkq )

∏
q|(c,β)

Qµ−1ν,q(qkq ),

σ−β (µ, ν, k) = NF/Q(β)k−1 · µ−1
p (β)

∏
q-cp
Pβ,q(γq · q2−k

q )
∏

q|(c,β)
Qµ−1ν,q(q2−k

q ).

Proof. Note that if Φ = φ1 ⊗ φ2 ∈ S(F 2
v ), then Φ̂(x, y) = φ̂2(−x)φ̂1(y).

Since ΦD,p(0, y) = 0 and Φ̂D,p(0, y) = φν−1
p

(0)φ̂µ−1
p

(y) = 0 for a prime p

lying above the distinguished prime p, we see that

(3.5) fD,s,p(g) = f
νp,µp,Φ̂D,p,−s

(g) = 0 for g ∈ B(Fp).

This in particular implies that

fD,s

((
y x
0 1

))
= f

νp,µp,Φ̂D,p,−s

((
y x
0 1

))
= 0.
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In view of (3.1) and Lemma 3.6, we find that

σ±β (µ, ν, k) = N(β)
k
2
∏
q<∞

W (t(β), fD,s,q)|s=± k−1
2
.

The assertion follows from Lemma 3.7 by noting that µ−1
q νq($q) = µν−1(q)

if q is the prime induced by v. �

4. Restriction of Eisenstein series
In this section, we study a certain global zeta integral of ZD(s, ϕ) intro-

duced in Section 4.2. This zeta integral naturally appears in the spectral
decomposition of the restriction of the Eisenstein series E±k (µ, ν), and the
main result (Theorem 4.8), which will be used in the explicit interpolation
formula of our twisted triple product p-adic L-functions, shows that this
integral is essentially a product of the toric period integral in (4.2) and an
automorphic L-function for GL2.

4.1. Optimal embeddings. Let F be a real quadratic field whose dis-
criminant is denoted by ∆F . Define θ ∈ F by θ = D′−

√
∆F

2 , where D′ = ∆F

or ∆F
2 according to whether ∆F is odd or even. Then OF = Z + Zθ, and

if q is ramified in F , then θ is a local uniformizer of Oq. Denote by x 7→ x
the unique non-trivial automorphism of Gal(F/Q). Put

δ := θ − θ =
√

∆F .

We choose an embedding σ1 : F ↪→ R such that σ1(δ) > 0. Define an
algebraic group T over Q by T (R) = (F ⊗ R)× for any commutative field
R of characteristic zero. We view T as a maximal torus of GL2 via the
embedding Ψ: F ↪→ M2(Q) defined by

Ψ(θ) =
(TF/Q(θ) −NF/Q(θ)

1 0

)
.

Put
η :=

( 1 −θ
−1 θ

)
δ−1 =

(
θ θ
1 1

)
−1 ∈ GL2(F ).

It is important to note that for t ∈ F

(4.1) ηΨ(t)η−1 =
(
t̄ 0
0 t

)
.

Let N and C be positive integers such that
• C and N∆F are coprime;
• Every prime factor of NC is split in F .

Fix decompositions NOF = NN and COF = cc once and for all. Fix a
prime ideal p of OF lying above p.
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Definition 4.1. We define special elements ς, ς(C) and ς(Cpn) in GL2(A)
as follows:

• At the archimedean place, put

ς∞ =
(
σ2(θ) σ1(θ)

1 1

)
∈ GL2(R).

• For each rational prime q we fix a prime ideal q of OF above q and
define ςq ∈ GL2(Qq) by

ςq =
(
θ θ
1 1

)
δ−1 ∈ GL2(Fq) = GL2(Qq) if q = qq is split,

ςq = 1 otherwise.
• Put

ς(C)
q =

(
C −1
0 1

)
∈ GL2(Qq);

ς(n)
p =


(
pn −1
0 1

)
∈ GL2(Fp) if p = pp is split in F(

0 1
−pn 0

)
∈ GL2(Qp) if p is inert in F .

Finally, we define

ς =
∏
v

ςv, ς(C) := ς
∏
q|C

ς(C)
q ; ς(Cpn) := ς(C)ς(n)

p .

Let OC = Z + COF be the order of F of conductor C. It is not difficult
to verify immediately that the inclusion map Ψ : F ↪→ M2(Q) is an optimal
embedding of OC into the Eichler order RN := M2(Q)∩ ς(C)M2(Ẑ)(ς(C))−1

of level N . In other words,
Ψ−1(RN ) ∩ F = OC .

4.2. A result of Keaton and Pitale. Let π ' ⊗′vπv be an irreducible
cuspidal automorphic representation of GL2(A) generated by a cusp form
Φ(f) ∈ A0

2k(N,ω). Let µ and ν be unitary Hecke characters of A×F such
that µ has p-power conductor and such that the restriction of µν to A× is
ω. Define the Hecke character χ : F×\A×F → C× by

χ(x) := µ(x)ν(x).
Given ϕ ∈ π, we define the global zeta integral by

ZD(s, ϕ) =
∫

A×GL2(Q)\GL2(A)
EA(g, fD,s)ϕ(g)ω(det g)−1 dτg,

where fD,s is the section defined in Definition 3.2 associated with the datum
D = (µ, ν, k,N, c). This integral converges absolutely for all s away from
the poles of EA(g, fD,s) and defines a meromorphic function in s.
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We define the Tamagawa measures d×x of A×F and d×a of A× as in
Section 2.6.1, and define the Tamagawa measure dt of T (A) as the quotient
measure of d×x and d×a. Let dg denote the quotient measure of dτg and
dt. Given ϕ ∈ π, we define the toric period integral by

(4.2) Bχ
ϕ(g) =

∫
A×F×\A×F

ϕ(Ψ(t)g)χ(t)−1 dt.

Theorem 4.2 (Keaton and Pitale). Let ϕ ∈ π. Then

ZD(s, ϕ) =
∫
T (A)\GL2(A)

Bχ
ϕ(g) dg.

Proof. This is nothing but Proposition 2.3 of [20]. �

4.3. Global setting. Now we let f =
∑∞
n=1 a(n, f)qn ∈ S2k(Npr, ω−1) be

a p-stabilized newform and ϕ = Φ(f) ∈ A0
2k(N,ω) be the automorphic form

associated with f in (2.1). For each prime factor q of C we choose a root
αq(f) of the Hecke polynomial X2 − a(q, f)X + ω−1(q)q2k−1. Let f̆ be the
unique form in S2k(NCpr, ω−1)[f ] such that a(1, f̆) = 1 and Uqf̆ = αq(f)f̆ .
Let ϕ̆ = Φ(f̆) be the adelic lift of f̆ . We impose the following assumptions:

• ω has a square root ω
1
2 ;

• µ and ω are unramified outside p;
• COF is the conductor of χω−

1
2

F (ω
1
2
F := ω

1
2 ◦N).

Note that these assumptions imply that the COF is the prime-to-p part of
the conductor of ν. Define the matrices J∞ and tn for each integer n in
GL2(A) by

(4.3) J∞ =
(
−1 0
0 1

)
∈ GL2(R), tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp).

4.4. Local zeta integrals. For each place v of Q we set fD,s,v(gv) =∏
v|v fD,s,v(gv) for gv = (gv)v|v ∈

∏
v|v GL2(Fv). Assume that ϕ has the fac-

torizable Whittaker function Wϕ(g) =
∏
vWv(gv) for g = (gv) ∈ GL2(A).

We associate to each Whittaker functionWv ∈ W(πv,ψv) a Bessel function
BWv : GL2(Qv)→ C by

BWv(gv) =
∫

Q×v \F×v
Wv(ς−1

v Ψ(tv)gv)χv(tv)−1 dtv

unless v = p is inert in F . Here dtv is the quotient measure of d×xv and d×av
(see Section 2.6.1). This integral is absolutely convergent (see the proof of
Proposition 4.4). If v = p is inert in F , then we will explicitly choose a
Whittaker function W̃ ∈ W(π∨p ,ψ−1

p ) in the proof of Proposition 4.6 so
that ρ(t)W̃ = χp(t)−1W̃ . Recall the standard GL2(Qp)-invariant pairing
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〈 · , · 〉 :W(πp,ψp)×W(π∨p ,ψ−1
p )→ C defined by

〈W1,W2〉 =
∫

Q×p
W1(t(ap))W2(t(ap)) d×ap.

Define the Bessel functionBWp : GL2(Qp)→ C byBWp(g) := 〈ρ(g)Wp, W̃ 〉.
The integral

(4.4) ZD(s,BWv) =
∫
T (Qv)\GL2(Qv)

fD,s,v(ηgv)ωv(det gv)−1BWv(gv) dgv

makes sense by (4.1), where dgv is the quotient measure of dτgv and dtv.

4.5. Convergence. In this and next subsections we fix a place v of Q and
suppress the subscript v from the notation. Thus

F = F ⊗Qv, ψ = ψv, | · | = | · |v, µ = µv, ν = νv,

π = πv, ΦD = ⊗v|vΦD,v ∈ S(F 2), . . . .

Lemma 4.3. The integral defining ZD(s,BW ) is absolutely convergent for
Re s� 0.

Proof. Put Tq = T (Qq). For W ∈ W(π) we have

ZD(s,BW ) =
∫
Tq\GL2(Qq)

fD,s,q(ηg)ω(det g)−1BW (g) dg

=
∫
Tq\GL2(Qq)

fD,s,q(ηg)ω(deth)−1
∫

Q×q \Tq
W (ς−1

q tg)χ(t)−1 dtdh

=
∫
Tq\GL2(Qq)

∫
Q×q \Tq

fD,s,q(ηtg)ω(det(tg))−1W (ς−1
q tg) dtdg

by definition. We combine the iterated integral to obtain

ZD(s,BW ) =
∫

PGL2(Qq)
fD,s,q(ηg)ω(det g)−1W (ς−1

q g) dτg.

First assume that v = q = qq is split in F . Since ηςq = δ−1 and ηςq =
δ−1 ( 0 1

1 0 ), we get

(4.5) ZD(s,BW )

=
∫

PGL2(Qq)
fD,s,q(g)ω(det g)−1fD,s,q̄

((
0 1
1 0

)
g

)
W (g) dτg

=
∫
N(Qq)\PGL2(Qq)

fD,s,q(g)ω(det g)−1Wq̄

((
1 0
0 −1

)
g

)
W (g) dτg,

where Wq̄(g) := W (g, fD,s,q̄). This is nothing but the local Rankin–Selberg
integral for GL2×GL2, which is absolutely convergent for Re s ≥ 0.
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Next assume that v = q remains prime in F . It suffices to show that the
integral

(4.6)
∫

Q×q

∫
Qq

1
ω(a) |a|fD,s,q(ηn(x)t(a))ψ(x) dx ·W (t(a)) d×a

converges absolutely in view of the Iwasawa decomposition. Since η =
δ−1

(
1 −θ
−1 θ̄

)
, the inner integral is

µ(δ−1a) |δ
−1a|s+

1
2

F

ω(a) |a|

×
∫

Qq

∫
F×

(µν−1)(t)|t|2s+1
F Φ

(
(0, t)

( 1 −θ
−1 θ

)(
a x
0 1

))
ψ(x) d×tdx.

Put ξ := µν−1α2s+1
F . Let Φ = Φ1 ⊗ Φ2. We may assume that |Φ1(x)| ≤ 1

and Φ2(xc) = Φ2(x) for x ∈ F and c ∈ O×F . Since the integral∫
Qq

∫
Q×q
|ξ(t)Φ1(−at)Φ2(t(θ − x))|d×tdx ≤

∫
Qq

∫
Q×q
|ξ(t)Φ2(tθ − x)|d×tdx

|t|

converges for Re s � 0, the double integral (4.6) is absolutely convergent
for Re s� 0. �

4.6. Local calculations. We compute the local zeta integrals ZD(s,BWv)
occurring in the factorization of the global integral ZD(s, ρ(J∞tn)ϕ̆f ). Put
ν+ := ν|Q×v . Recall the normalized Whittaker newform Wπ ∈ W(π,ψ) (see
Section 2.6.3). For each prime factor v = q of C, if we write π = %q � υq
with %q(q) = αq(f)q

1−2k
2 , then

W̆π := Wπ − υq(q) |q|
1
2 π(t(q−1))Wπ.

Then W̆π is characterized uniquely by the conditions: W̆π(12) = 1 and
UqW̆π = %q(q) |q|−

1
2 W̆π. In the case v = p, we denote by W ord

π an ordinary
vector of eigenvalue a(p, f)p1−k. By our assumptions,

• µ and ν+ are unramified outside p;
• χω−

1
2

F is only ramified at primes dividing C.

Proposition 4.4. Let v 6= p be a place of Q which is split in F . We have
• If v =∞ is the archimedean place, then Bρ(J∞)Wπ

(ς∞) 6= 0, and

ZD(s,Bρ(J∞)Wπ
) = 4(−4

√
−1)−kνσ1(−1)ΓC(2s+ k) ·Bρ(J∞)Wπ

(ς∞).

• If v = q and NC are coprime, then

ZD(s,BWπ) = L

(
2s+ 1

2 , π ⊗ ν
−1
+

)
BWπ(ςq).
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• If v = q is a prime factor of N , then BWπ(ςq) 6= 0 and

ZD(s,BWπ) =
ζq(2) |NC|Qq

ζq(1) · L
(

2s+ 1
2 , π ⊗ ν

−1
+

)
BWπ(ςq).

• When v = q is a prime factor of C, then BW̆π
(ςqς

(C)
q ) 6= 0 and

ZD(s,BWπ) =
ζq(2) |NC|Qq

ζq(1) L

(
2s+ 1

2 , π ⊗ ν
−1
+

)
ε
(
0, χ−1

q̄

)
ζq(1) ·BW̆π

(ςqς(C)
q ).

Proof. We first treat the archimedean case. Let W = ρ(J∞)Wπ∞ . By defi-
nition, BW (ς∞n(x)) equals∫

R×
Wπ∞(t(a)n(x)J∞)µσ2(a)−1νσ1(a)−1 d×a

= (µσ2νσ1)(−1)
∫ ∞

0
e−2πa(1+x

√
−1)ak d×a

= (µσ2νσ1)(−1)(2π)−k(1 + x
√
−1)−kΓ(k)

by (2.4), where we have shifted the contour of integration. By the Iwasawa
decomposition GL2(R) = B(R)K∞ and Remark 3.3, the local integral
ZD(s,BW ) equals∫

R
fD,s,σ1(n(x))fD,s,σ2

((
0 1
1 0

)
n(x)

)
BW (ς∞n(x)) dx

= Γ(k)
(2π
√
−1)k

· 4−k(−1)k
Γ
(
s+ k+1

2
)2

π2s+k+1

×
∫

R
µσ2(−1)(1 + x2)−(s+1/2)

(
x−
√
−1√

1 + x2

)k dx
(x−

√
−1)k

= Γ(k)
(2π
√
−1)k

· 2(2π)−(2s+k)Γ(2s+ k) · 4(−4)−kµσ2(−1).

Let v = q = qq be a finite split prime. Then

(4.7) BWπ(ςq) = L

(1
2 , π ⊗ χ

−1
q̄

)
= L

(1
2 , π ⊗ µ

−1
q̄ ν−1

q

)
.

If q and Nc are coprime, then

ZD(s,BWπ) = L

(
2s+ 1

2 , πq ⊗ ν
−1
q ν−1

q̄

)
L

(1
2 , πq ⊗ µ

−1
q̄ ν−1

q

)
by (4.5). The unramified case follows from (4.7).
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Suppose that v = q divides NC. Then µq, µq̄ are unramified, the conduc-
tors of νq and νq̄ are CZq, and

Wq̄(t(a)) =
{
µq̄(a) |a|s+

1
2 IZq(a) if q | C,

WΠq̄ if q - C.

Here WΠq̄ is the spherical vector for Πq̄ = µq̄α
s � νq̄α−s. Put

U0(NCZq) =
{(
∗ ∗
c ∗

)
∈ GL2(Zq)

∣∣∣∣ c ∈ NCZq
}
.

We claim that fD,s,q is supported in B(Qq)U0(NCZq). Indeed, if fD,s,q(g) 6=
0 for g =

(
a b
c d

)
∈ GL2(Qq), then ΦD,q((0, t)g) 6= 0 for some t ∈ Q×q .

According to the recipe in Definition 3.2, we find that (tc, td) ∈ NCZq⊕Z×q ,
and hence cd−1 ∈ NCZq. Since fD,s,q(12) = 1, we see that

ZD(s,BWπ)

= [GL2(Zq) : U0(NCZq)]
∫

Q×q
(µqω−1)(a)|a|s+

1
2Wq̄(t(a))Wπ(t(a))d×a

= ζq(2) |NC|
ζq(1) L

(
2s+ 1

2 , π ⊗ ν
−1
+

)
L

(1
2 , π ⊗ µ

−1
q̄ ν−1

q

)
.

The case of a prime factor q of N follows from (4.7).
Finally, we assume that C is divisible by q. We have

BW̆π
(ςqς(C)

q ) =
∫

Q×q
W̆π

(
t(a)

(
C −1
0 1

))
χ−1
q̄ (a)d×a

= |C|
1
2 %q(C)

∫
Q×q
|a|

1
2 χ−1

q̄ %q(a)Φ(a)d×a

in view of W̆π(t(a)) = %q(a) |a|
1
2 IZq(a), where Φ(a) = ψq(−a)IC−1Zq(a).

The integral above equals

γ

(1
2 , χ

−1
q̄ %q

)−1 ∫
Q×q
|a|

1
2 Φ̂(a)(χq̄%

−1
q )(a)d×a

= vol(C−1Zq, da)
ε
(1

2 , χ
−1
q̄ %q

) vol(1 + CZq,d×a)

= ζq(1)
ε
(1

2 , χ
−1
q̄ %q

) = ζq(1)
ε
(
0, χ−1

q̄

)
%q(C) |C|

1
2

by the local functional equation (2.5) for GL1. In the final stage we uti-
lized (2.6). �
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Proposition 4.5. If v = q remains a prime in F and does not divide pNC,
then

ZD(s,BWπ) = µ(δ)−1 |δ|−s−
1
2

F L

(
2s+ 1

2 , πq ⊗ ν
−1
+

)
BWπ(12).

Proof. By assumption π and χ are both unramified. Thus Wπ = W 0 is the
normalized spherical Whittaker function, and so by the Iwasawa decompo-
sition GL2(Qq) = B(Qq) GL2(Zq), we have

ZD(s,BW 0) =
∫

Q×q
G(a) ·W 0(t(a)) d×a,

where

G(a) := 1
ω(a) |a|

∫
Qq

fD,s,q(ηn(x)t(a))ψ(x) dx.

Recall that ΦD,q = |δ|
1
2
F Iδ−1Oq⊕δ−1Oq and η = δ−1

(
1 −θ
−1 θ̄

)
. Put Φ0 =

IOq⊕Oq and ξ := µν−1α2s+1
F . The computation in the proof of Lemma 4.3

shows that

µ(δ) |δ|sF G(a) = |a|
s
F

ν(a)

∫
Qq

∑
m∈Z

ξ(qm)Φ0(−aqm, qm(θ − x))ψ(x) dx.

If F/Qq is unramified, then BW 0(12) = 1 and

G(a) = |a|
s
F

ν(a)

∞∑
m=0

IOF (aqm)ξ(qm)
∫
q−mZq

ψ(x) dx = |a|
2s

ν(a)IZq(a).

It follows that

ZD(s,BW 0) =
∫

Q×q

|a|2s

ν(a)IZq(a)W 0(t(a)) d×a = L

(
2s+ 1

2 , π ⊗ ν
−1
+

)
.

Next we consider the case where q is ramified in F . Then θ is a uni-
formizer. We see that

BW 0(12) = W 0(12) · |∆F |
1
2 +W 0(Ψ(θ))χ−1(θ) |∆F |

1
2

from the decomposition F× = Q×q O×F tQ×q O×F θ and vol(O×F ,dtq) = |∆F |
1
2 .

Writing π = %� υ, α = %(q) and β = υ(q), we get

|δ|−
1
2

F BW 0(12) = 1 + χ(θ)−1(α+ β) |q|
1
2 = 1 + (µν)(θ−1) |q|

1
2 (α+ β)
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by the Iwasawa decomposition of Ψ(θ). On the other hand, µ(δ) |δ|sF G(a)
equals

|a|sF
ν(a)

∫
Qq

∑
m∈Z

{
ξ(θ2m)Φ0(aθ2m, θ2m(θ − x))

+ ξ(θ2m−1)Φ0(aθ2m−1, θ2m−1(θ − x))
}
ψ(x) dx

= ν(a)−1 |a|2s
(
IZq(a) + ξ(θ)IZq(a) + ξ(θ−1) |q| · IqZq(a)

)
.

Since
∞∑
m=1

W 0
((

qm 0
0 1

))
q−2msν(q)−m = |q|

2s+ 1
2

ν(q)
(
α+ β − αβν(q)−1 |q|2s+

1
2
)
,

we conclude that

ZD(s,BW 0) = µ(δ−1) |δ|−sF L

(
2s+ 1

2 , π ⊗ ν
−1
+

)
×
{
1 + ξ(θ) + ξ(θ−1) |q| · |q|2s+

1
2 ν(q)−1(α+ β − αβν(q)−1 |q|2s+

1
2
)}
.

Since (µν)|Q×q = ω, the second factor equals

1 + (µν−1)(θ) |q|2s+1 + (µν)(θ−1) |q|
1
2
(
α+ β − (ν−1ω)(q) |q|2s+

1
2
)

= 1 + (µν)(θ−1) |q|
1
2 (α+ β) = BW 0(12) |δ|−

1
2

F ,

which finishes the proof of the ramified case. �

Proposition 4.6. In the p-adic case, if π = % � υ with % unramified and
υ(−1) = 1, then for n� 0, we have BW ord

π
(ς(n)
p ) 6= 0 and

ZD(s,Bρ(tn)W ord
π

) =
BW ord

π
(ς(n)
p )

γ
(
2s+ 1

2 , %ν
−1
+
)(ω−1%)(pn) |pn|

1
2
ζp(2)
ζFp(1) .

Proof. We first assume that p = pp is split. Then F = Qp ⊕ Qp and
Φp = Φp ⊗ Φp̄, where Φv = φµ−1

v
⊗ φ̂ν−1

v
with v = p or p. From (4.5)

ZD(s,Bρ(tn)W ord
π

)

=
∫
N(Qp)\PGL2(Qp)

fD,s,p(g)
ω(det g)Wp̄

((
1 0
0 −1

)
g

)
W ord
π (gtn) dτg.

Put u(x) =
(

0 −1
−1 −x

)
. Using the integration formula∫

PGL2(Qp)
h(g) dτg = ζp(2)

ζp(1)

∫
Qp

∫
Q×p

∫
Qp

h(n(y)t(a)J1n(x))|a|−1 dyd×adx
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for an integrable function h on PGL2(Qp), we see that ZD(s,Bρ(tn)W ord
π

)
equals

ζp(2)
ζp(1)

∫
Q×p

∫
Qp

(ω−1µp)(a) |a|s−
1
2 fD,s,p(J1n(x))Wp̄(t(a)u(x))

×W ord
π

((
apn 0
0 p−n

)(
1 0

−p2nx 1

))
dxd×a.

Since fD,s,p(J1n(x)) = φ̂ν−1
p

(x) by (3.3), if n � 0, then ZD(s,Bρ(tn)W ord
π

)

equals ζp(2)
ζp(1)ω(pn) times∫

Q×p

∫
Qp

(ω−1µp)(a) |a|s−
1
2 φ̂ν−1

p
(x)Wp̄(t(a)u(x))W ord

π (t(ap2n)) dxd×a.

Since the function a 7→ φ̂ν−1
p

(x)Wp̄(t(a)u(x)) has a bounded support uni-
formly with respect to x, if n� 0, then the integral is equal to %(p2n) |pn|
times∫

Q×p

∫
Qp

(ω−1µp)(a) |a|s φ̂ν−1
p

(x)Wp̄(t(a)u(x))%(a)Ip−2nZp(a) dxd×a

=
∫

Q×p

∫
Qp

(υ−1µp)(a) |a|s φ̂ν−1
p

(x)Wp̄(t(a)u(x)) dxd×a.

Put Πp̄ = µp̄α
s � νp̄α−s. We use the local functional equation for GL2

(see Section 2.6.4) to see that the last integral equals the ratio of∫
Qp

∫
Q×p

(µ−1
p υ)(a) |a|−s φ̂ν−1

p
(x)Wp̄(t(a)J−1

1 u(x))µp̄νp̄(a−1) d×adx

divided by

γ

(
s+ 1

2 , µpυ
−1 ⊗Πp̄

)
= γ

(
2s+ 1

2 , %ν
−1
+

)
γ

(1
2 , %χ

−1
p̄

)
.

Since

ω = %υ = µpνpµp̄νp̄, t(a)J−1
1 u(x) = n(−ax)t(−a), Wp̄(t(a)) = IZ×p (a)

by Lemma 3.7, this integral equals∫
Q×p

(%−1νp)(a) |a|−sWp̄(t(−a))
∫

Qp

φ̂ν−1
p

(x)ψ(−ax) dxd×a

=
∫

Q×p
%(a)−1 |a|−s IZ×p (a)Wp̄(t(−a))d×a = 1.
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On the other hand, we see by (2.5) that

BW ord
π

(ς(n)
p ) =

∫
Q×p

W ord
π

(
t(a)

(
pn −1
0 1

))
χp̄(a)−1 d×a

=
∫

Q×p
%(apn)|apn|1/2ψ(−a)IZp(apn)χp̄(a)−1 d×a

= %(pn) |pn|1/2 vol(p−nZp, da)
γ
(1

2 , %χ
−1
p̄

) vol(1 + pnZp, d×a)

= %(pn) |pn|1/2 ζp(1)
γ
(1

2 , %χ
−1
p̄

) .
Now we consider the case where p is inert in F and π is a principal series.

Using the decomposition GL2(Qp) = Ψ(F×) ·B(Qp), we have

ZD(s,Bρ(tn)W ord
π

)

=
∫

Qp

∫
Q×p

fD,s,p(ηt(a)n(x))ω(a)−1BW ord
π

(t(a)n(x)tn) |a| d×adx.

We proceed to compute

fD,s,p(ηt(a)n(x))

= (µν)(δ−1)fD,s,p
(( 1 −θ
−1 θ

)(
a ax
0 1

))
= ν(δ−1)µ(a) |a|s+

1
2

F

∫
F×

ΦD,p(−ta, t(θ − xa))(µν−1)(t) |t|2s+1
F d×t

= ν(δ−1)ν(a) |a|−s−
1
2

F

∫
F×

ΦD,p(−t, a−1tθ − xt)(µν−1)(t) |t|2s+1
F d×t.

Since ΦD,p = φµ−1 ⊗ φ̂ν−1 , we find that

fD,s,p(ηt(a)n(x)) = µ(−1)ν(aδ−1) |a|−s−
1
2

F φ̂ν−1(a−1θ − x).

In particular, the function x 7→ φ̂ν−1(a−1θ−x) has a bounded support with
respect to a. Hence for n�ν 0

µ(−1)ν(δ)ZD(s,Bρ(tn)W ord
π

)

=
∫

Qp

∫
Q×p

ν(a) |a|−2s φ̂ν−1(a−1θ − x)ω(a)−1BW ord
π

(t(a)tn) d×adx

=
∫

Q×p
ν(a)−1 |a|2s Φ2(a)ω(a)BW ord

π
(t(a−1)tn) d×a,

where Φ2(a) ∈ S(Qp) is defined by

Φ2(a) :=
∫

Qp

φ̂ν−1(x+ aθ) dx.
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Observe that if Φ2(a) 6= 0, then

ω(a)BW ord
π

(t(a−1)tn) = ω(pn)−1BW ord
π

(J−1
1 t(ap2n))

= ω(pn)−1%(ap2n)
∣∣∣ap2n

∣∣∣ 12 Z(W̃ ),

where

Z(W̃ ) =
∫

Q×p
%(t) |t|

1
2 IZp(atp2n)W̃ (t(t)J1) d×t

=
∫

Q×p
%(t) |t|

1
2 W̃ (t(t)J1) d×t

for n�
ν,W̃

0. Thus we find that µ(−1)ν(δ)ZD(s,Bρ(tn)W ord
π

) is equal to

(ω−1%2)(pn) |pn| Z(W̃ )
∫

Q×p
(ν−1%)(a) |a|2s+

1
2 Φ2(a) d×a.

The last integral equals

γ

(
2s+ 1

2 , %ν
−1
+

)−1 ∫
Q×p

(ν%−1)(a) |a|
1
2−2s Φ̂2(a) d×a

by (2.5), where

Φ̂2(a) =
∫

Qp

∫
Qp

φ̂ν−1(x+ yθ)ψ(ay) dxdy

=
∫
F
φ̂ν−1(z)ψF (aδ−1z) dz = φν−1(−aδ−1).

We conclude that

ZD(s,Bρ(tn)W ord
π

) = γ

(
2s+ 1

2 , %ν
−1
+

)−1
(ω−1%2)(pn) |pn|ω(−1) · Z(W̃ ).

On the other hand, for n� 0,

BW ord
π

(ς(n)
p ) = %(pn) |pn|

1
2 Z(W̃ ).

The following lemma will complete our proof. �

Lemma 4.7. Z(W̃ ) 6= 0.

Proof. Let ξ := χ−1υF . If ξ is unramified, then so is ξ|Q×p = ω−1υ2 = %−1υ,
which implies that both π and χ are unramified, so that W̃ is the spherical
Whittaker function, and

Z(W̃ ) = L(1, π∨ ⊗ %) 6= 0.

Suppose that ξ is a ramified character. Since χω−
1
2

F is assumed to be un-
ramified, we find that c(ξ|Q×p ) = c(%−1υ) = c(ω) > 0. Let f̃ ∈ υ−1� %−1 be
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the unique section such that

f̃

((
a b
0 d

)
Ψ(t)

)
= υ(a)−1%(d)−1

∣∣∣∣ad
∣∣∣∣ 12 χ−1(t)

for a, d ∈ Q×p , b ∈ Qp and t ∈ F×. Then we can choose W̃ (g) := W (g, f̃),
and W̃ (t(a)J1) equals∫ st

Qp

f̃

((
−1 0
x −a

))
ψ(−x) dx

= %(a)−1 |a|
1
2

∫ st

Qp

f̃

((
−1 0
x −1

))
ψ(−ax) dx.

Since (
−1 0
x −1

)
=
(

N(xθ − 1)−1 ∗
0 1

)
Ψ(xθ − 1),

we find that

W̃ (t(a)J1) = %(a)−1 |a|
1
2

∫ st

Qp

ξ(xθ − 1)
|xθ − 1|1/2F

ψ(−ax) dx.

Put ΦN (x) := ξ(xθ−1)
|xθ−1|1/2F

Ip−NZp(x). We have seen that

%(a) |a|−
1
2 W̃ (t(a)J1) = lim

N→∞
Φ̂N (a).

Take an integer B > c(ω). Then we have

Φ̂N (a) = Φ̂B(a) +
N∑

j=B+1
Ij

for N > B, where

Ij =
∫
p−jZ×p

ξ(xθ − 1)
|xθ − 1|1/2F

ψ(−ax) dx.

Note that Ij = 0 unless j = ordp(a) + c(ω). Recall an additive character
ψa defined by ψa(x) = ψ(ax). Then

Iordp(a)+c(ω) = ξ(θ)ε
(
−1

2 , %υ
−1,ψ−a

)
= ξ(θ)(%υ−1)(−a)|a|−1ε

(
−1

2 , %υ
−1
)

by (2.6). Since %υ−1 is ramified, we see that Z(W̃ ) is equal to∫
Qp

(
Φ̂B(a)+ξ(θ)(%υ−1)(−a)|a|−1ε

(
−1

2 , %υ
−1
)
IpB+1−c(ω)Zp(a)

)
|a| d×a

= ΦB(0)ζp(1) 6= 0. �
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4.7. The explicit pull-back formula. Now we are ready to give the
explicit formula of ZD(s, ρ(J∞tn)ϕf ). The notation is as in Section 4.3.
Let τF be the quadratic Dirichlet character associated to the extension
F/Q.

Theorem 4.8. Let λ be a Hecke character of A× of p-power conductor and
φ be a finite order Hecke character of A×F with φ|A× = 1 and conductor
COF . Put χ = ω

1
2
Fφ and

D =
(
ω

1
2
FλF , φ

−1λ−1
F , k,N, c

)
.

For n� 0, we have

ZD(s, ρ(J∞tn)ϕf )
Bχ
ρ(J∞)ϕ̆f (ς(Cpn))

= L{p}
(

2s+ 1
2 , π ⊗ ν

−1
+

)
γ

(
2s+ 1

2 , %pν
−1
+,p

)−1

×(ω−1
p %p)(pn)|pn|

1
2
Qp

ζp(2)
ζFp(1) ·

L(1, τF )f∞framfC
ζQ(2)[SL2(Z) : Γ0(NC)] ,

where f∞, fram and fC are local fudge factors given by

f∞ := 4(−4
√
−1)−k(λ∞φσ1)(−1),

fram :=
∏
q|∆F

ω
1
2
q λq(∆−1

F ) |∆F |
−s− 1

2
Qq

,

fC :=
∏
q|C

ω
1
2
q (C−1)

ε(0, φ−1
q̄ )

ζq(1) .

Proof. There exists a nonzero constant c such that Bχ
ϕ(g) = c

∏
v BWv(gv)

for ϕ ∈ π with Wϕ(g) =
∏
vWv(gv) by the uniqueness and the existence of

the Waldspurger models. Put

ϕ? = ρ(J∞tn)ϕ̆f , W ?
∞ = ρ(J∞)Wπ∞ , W ?

p = ρ(tn)W ord
πp .

The Whittaker function of ϕ? is given by

Wϕ?(g) = W ?
∞(g∞) ·W ?

p (gp) ·
∏
q|C

W̆πq(gq)
∏
`-pC

Wπ`(g`).

It follows that

Bχ
ρ(J∞)ϕ̆f (ς(Cpn)) = cBW ?

∞(ς∞) ·BW ord
πp

(ς(n)
p ) ·

∏
q|C

BW̆πq
(ςqς(C)

q )
∏
`-pC

Wπ`(ς`).

On the other hand, Theorem 4.2 gives

ZD(s, ρ(J∞tn)ϕf ) = c
L(1, τF )
ζQ(2) · ZD(s,BW ?

∞) · ZD(s,BW ?
p
)
∏
q 6=p

ZD(s,BWπq
).
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Theorem 4.8 now follows from Propositions 4.4, 4.5 and 4.6 with µ = ω
1
2
FλF ,

ν = φ−1λ−1
F and χ = ω

1
2
Fφ. �

5. The construction of p-adic twisted triple product L-functions
5.1. Notation. Define the p-adic cyclotomic character by

εcyc : Q×\A× −→ Z×p , εcyc(a) = |a|A a−1
∞ ap.

Let ω : Q×\A× → µp−1(Cp) be the Teichmüller character. Fix embeddings
ι∞ : Q ↪→ C and ιp : Q ↪→ Cp once and for all. The set of embeddings
ΣR = {σ1, σ2} from F to R is identified with Gal(F/Q) via ι∞.

Let O = OL for some finite extension L of Qp containing ιp(F ). Let
Λ = O[[1 + pZp]] and write [ · ] : 1 + pZp → Λ× for the inclusion of group-
like elements. Let u = 1 + p. For a variable X, let 〈 · 〉X : Z×p → Zp[[X]]× be
the character defined by

(5.1) 〈a〉X := (1 +X)
logp a
logp u .

Write N = NF/Q : F → Q for the norm map. If a is a fractional ideal of F
coprime to p, put 〈a〉X = 〈N(a)〉X . If I is a finite extension of Λ, a point
Q ∈ Spec I(Cp) is called a locally algebraic point of weight k and finite part
ε if the map Q|Λ : 1 + pZp

[ · ]−→ Λ× Q−→ Q×p is given by Q(x) = xkε(x) for
some integer k ≥ 1 and a finite order character ε : 1+pZp → µp∞(Qp). For a
locally algebraic point Q we denote by kQ the weight of Q and εQ the finite
part of Q. Let X+

I be the set of locally algebraic points Q in Spec I(Cp) with
kQ ≥ 1. A locally algebraic point Q ∈ X+

I is called arithmetic if kQ ≥ 2.
For every arithmetic point Q ∈ X+

I , we shall view the finite part εQ as a
Hecke character of A× via εQ(a) := ι∞ι

−1
p (εQ(εcyc(a)ω−1(a))). If A and B

are two complete O-modules, we write A ⊗̂ B for A ⊗̂O B for simplicity.

5.2. Preliminaries on Hida theory for modular forms. Let I be a
normal domain finite flat over Λ. Let N be a positive integer prime to p
and let χ : (Z/NpZ)× → O× be a Dirichlet character modulo Np. De-
note by M(N,χ, I) the space of I-adic modular forms of tame level N
and (even) branch character χ, consisting of formal power series f(q) =∑
n≥1 a(n,f)qn ∈ I[[q]] with the following property: there exists an in-

teger af such that for every point Q ∈ X+
I with kQ ≡ 0 (mod 2) and

kQ ≥ af , the specialization fQ(q) =
∑
n≥1Q(a(n,f))qn is the q-expansion

of a cusp form fQ ∈ MkQ(Npr, χω2−kQεQ) for some r > 0. We call fQ
the specialization of f at Q. For a positive integer d prime to p, define
Vd : M(N,χ, I) → M(Nd, χ, I) by Vd(

∑
n a(n,f)qn) = d

∑
n a(n,f)qdn.

Let S(N,χ, I) ⊂ M(N,χ, I) be the space of I-adic cusp forms, consisting
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of elements f ∈M(N,χ, I) such that fQ is a cusp form for a Zariski dense
subset Q ∈ X+

I .
The space M(N,χ, I) is equipped with the action of the usual Hecke

operators T` for ` - Np as in [28, p. 537] and the operators U` for ` | pN
given by U`(

∑
n a(n,f)qn) =

∑
n a(n`,f)qn. Recall that Hida’s ordinary

projector e defined by
e := lim

n→∞
Un!
p .

is a convergent operator on the space of classical modular forms preserving
the cuspidal part as well as on the spaces M(N,χ, I) and S(N,χ, I) (cf. [28,
p. 537 and Proposition 1.2.1]). The space eS(N,χ, I) consists of ordinary
I-adic forms defined over I. A key result in Hida’s theory of ordinary I-adic
cusp forms says that if f ∈ eS(N,χ, I), then fQ ∈ eSkQ(Npe, χω2−kQεQ)
for every arithmetic point Q ∈ X+

I . We call f ∈ eS(N,χ, I) a primitive
Hida family if fQ is a p-stabilized newform of tame conductor N for every
arithmetic point Q ∈ X+

I .
For a divisor M | N , let T(N,M) ⊂ End eS(N,χ, I) be the I-algebra

generated by Hecke operators {Tq}q-Np and {Uq}q|Mp. A classical result in
Hida theory for modular forms asserts that T(N, I) is free of finite rank
over I. Let f ∈ eS(N,χ, I) be a primitive Hida family. Then f induces the
I-algebra homomorphism λf : T(N, I)→ I with λf (Tq) = a(q,f) for q - Np
and λf (Uq) = a(q,f) for q | Np. We denote by mf the maximal ideal of
T(N, I) containing Kerλf and by Tmf the localization of T(N, I) at mf . It
is the local ring of T(N, I) through which λf factors. It is well-known that
there is an algebra direct sum decomposition

λ̃f : Tmf ⊗I Frac I ' Frac I⊕B, t 7−→ λ̃f (t) = (λf (t), λB(t)),
where B is a finite dimensional (Frac I)-algebra ([12, Corollary 3.7]).
Remark 5.1. Recall that the congruence ideal C(f) of f is defined by

C(f) := λf (AnnTmf
(Kerλf )) ⊂ I.

By definition, C(f) · 1f ⊂ T(N, I) and C(f) is the annihilator of the con-
gruence module of λf (see [11, Definition 6.1]). For each arithmetic point
Q ∈ X+

I , let ℘Q = kerQ. By the control theorem for the Hecke algebras
and the congruence modules (cf. [11, (0.4b), (5.8a)]), we find that Q(C(f))
is the congruence ideal for λfQ : T(N, I)/℘Q → I/℘Q. In particular, this
implies Q(C(f)) 6= 0 and hence 1f belongs to the localization T(N, I)℘Q at
℘Q. This fact will be used to deduce the finiteness of our p-adic L-function
in Definition 5.5 at arithmetic points.
5.3. A two-variable p-adic family of Hilbert–Eisenstein series. We
shall make the identification

Λ ⊗̂ Λ = O[[X,T ]], X = ([u]− 1)⊗ 1, T = 1⊗ ([u]− 1).
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Let (χ1, χ2) be a pair of finite order Hecke characters of A×F of level pOF
and pCOF . We assume that (χ1, χ2) satisfies Hypothesis 3.1 and χ1χ2 is
totally even. A Hecke character χ of A×F will be viewed as an ideal class
character by

χ(q) := χ($q)−1

for any prime ideal q away from the conductor of χ. Define the Λ ⊗̂ Λ-adic
q-expansion by

E(χ1, χ2)(X,T ) :=
∑

β∈d−1
+ ,(p,(β))=1

Aβ(χ1, χ2)qβ ∈ Λ ⊗̂ Λ[[qd
−1
+ ]],

where Aβ(χ1, χ2) ∈ Λ ⊗̂ Λ is defined by

Aβ(χ1, χ2) = 〈(β)〉X 〈(β)〉−1
T χ−1

1 ((β))
∏
q-cp
Pβ,q(χ1χ

−1
2 (q) 〈q〉−1

X 〈q〉
2
T )

×
∏

q|(c,β)
Qχ1χ

−1
2 ,q(〈q〉

−1
X 〈q〉

2
T ),

where Pβ,q and Qχ1χ
−1
2 ,q are polynomials defined in (3.4). If R is an OF -

algebra, the theta operator θσ∈End(R[[qd
−1
+ ]]) for σ∈Gal(F/Q) is defined by

θσ

(∑
β

aβq
β

)
=
∑
β

σ(β)aβqβ.

For Q ∈ XΛ, let ξQ be the finite order Hecke character of A×F given by

ξQ := εQω
−kQ ◦N.

Proposition 5.2. For every (Q,P ) ∈ X+
Λ ×X+

Λ with kQ ≤ kP , we have the
interpolation

E(χ1, χ2)(Q,P ) =

θ
kQ−kPE+

2kP−kQ(χ1ξ
−1
Q ξP , χ2ξ

−1
P ) if 2kP > kQ,

θkQ−1E−kQ−2kP+2(χ1ξ
−1
Q ξP , χ2ξ

−1
P ) if 2kP ≤ kQ,

where θ = θσ1θσ2 is the theta operator θ(
∑
β aβq

β) =
∑
β N(β)aβqβ.

Proof. Let µ = χ1ξ
−1
Q ξP and ν = χ2ξ

−1
P . Put k = 2kP − kQ. For an integer

n prime to p, we have

Aβ(χ1, χ2)(Q,P ) = N(β)kQ−kPµ−1((β))
∏
q-cp
Pβ,q(µν−1(q)qk

q )

×
∏

q|(c,β)
Qχ−1

1 χ2,q
(χ−1

1 χ2µν
−1(q)qk

q ).

Since χ−1
1 χ2µν

−1 is unramified outside p, one verifies that
Qχ−1

1 χ2,q
(χ−1

1 χ2µν
−1(q)X) = Qµ−1ν,q(X).
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By Corollary 3.8, we find that

Aβ(χ1, χ2)(Q,P ) =
{

N(β)kQ−kP · σ+
β (µ, ν,k) if k > 0,

N(β)1−k+kP−1 · σ−β (µ, ν, 2− k) if k ≤ 0.
The proposition follows immediately. �

5.4. The construction of the twisted triple p-adic L-function. For
any OF -algebra R, define the diagonal restriction map by

resF/Q : R[[qd
−1
+ ]] −→ R[[q]],

∑
β∈d−1

+

aβq
β 7−→

∑
n>0

( ∑
β∈d−1

+
TrF/Q(β)=n

aβ

)
qn.

For an even integer a and a finite order Hecke character

(5.2) φ : F×\A×F /Ô
×
C −→ O

× such that φσ(−1) = (−1)
j
2 for σ ∈ ΣR,

we define the two-variable q-expansion E[a]
φ (X,T ) ∈ Λ ⊗̂ Λ[[qd

−1
+ ]] by

E
[a]
φ (X,T ) = E

(
ω
a−j

2
F ,ω

−a2
F φ

)
((1 +X)1/2 − 1, (1 + T )1/2 − 1).

We define G[a]
φ (X,T ) ∈ Λ ⊗̂ Λ[[q]] as the diagonal restriction

G
[a]
φ (X,T ) := resF/Q

(
E

[a]
φ (X,T )

)
.

We regard Λ as a subring of Λ ⊗̂ Λ via x 7→ x⊗ 1. Let

X++
I :=

{
Q ∈ X+

I

∣∣∣ kQ ≡ 0 (mod 2)
}
⊂ X+

I .

Lemma 5.3. The q-expansion G[a]
φ belongs to M(NC,ωj−2,Λ) ⊗̂Λ (Λ⊗̂Λ).

Proof. Let Z = (1 + T )(1 +X)−1 − 1 and write

G(X,Z) = G
[a]
φ (X, (1 +X)(1 + Z)− 1).

If ζ ∈ µp∞(C) is a p-power root of unity, let αζ : A×F → C× be the
Hecke character αζ(a) = 〈N(a)〉X |X=ζ−1. By Proposition 5.2, for any point
Q ∈ X++

I , we have
G(Q, ζ − 1) = E+

kQ/2(µQ,ζ , νQ,ζ)|H ∈MkQ(CN,ωj−2ξQ),

where µQ,ζ = ω
a−j

2
F αζ and νQ,ζ = ω

−a2
F α−1

ζ ξ
− 1

2
Q . This shows that

G(X, ζ − 1) ∈M(NC,ωj−2,Λ)⊗O O[ζ]
for every ζ ∈ µp∞(Cp). We see that

G ∈M(NC,ωj−2,Λ) ⊗̂ O[[Z]] = M(NC,ωj−2,Λ) ⊗̂Λ (Λ ⊗̂ Λ)
by [14, Lemma 1 in p. 328]. �
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In view of the above lemma, we can apply the ordinary projector e ⊗ 1
to G[a]

φ and obtain an Λ-adic ordinary modular form eG
[a]
φ := (e ⊗ 1)G[a]

φ

with coefficients in Λ ⊗̂ Λ.

Lemma 5.4. We have eG[a]
φ ∈ eS(N,ωj−2,Λ) ⊗̂ (Λ ⊗̂ Λ).

Proof. Notation is as the above Lemma 5.3. For (Q, ζ) ∈ X++
I × µp∞(C)

as above, let µ = µQ,ζ and ν = νQ,ζ . Then G(Q, ζ − 1) is the diagonal
restriction of the holomorphic Eisenstein series E+

kQ/2(µ, ν). The adelic lift
of E+

kQ/2(µ, ν) is given by EA(g, fD,s)|
s=

kQ/2−1
2

with D = (µ, ν, kQ/2,N, c).

By (3.1), the constant term function of EA(g, fD,s) is given by fµ,ν,ΦD,s +
f
µ,ν,Φ̂D,s

, and by (3.5) its values at g ∈ GL2(AF ) all vanish whenever gp is
upper triangular. The lemma now follows from [15, Lemma 6.7]. �

Definition 5.5. Let f ∈ eS(N,ωj−2, I) be a primitive Hida family. The
p-adic twisted triple product L-series L

E
[a]
φ
,f

is defined by

L
E

[a]
φ
,f

:= the first Fourier coefficient of 1f (eG[a]
φ ) ∈ (I ⊗̂ Λ)⊗I Frac I.

By Remark 5.1, L
E

[a]
φ
,f

(Q,P ) is finite at every arithmetic point Q ∈ X+
I

and P ∈ Spec Λ(Cp).

Remark 5.6. If we replace the Eisenstein series E[a]
φ by a Hida family of

Hilbert cusp forms over F , then the above construction yields the twisted
triple product p-adic L-functions constructed in [17] and [2].

5.5. The interpolation formula. The weight space of critical points is
defined by

Xcrit :=
{

(Q,P ) ∈ X+
I × X+

Λ | kQ ≥ kP , kQ ≡ kP ≡ 0 (mod 2)
}
.

The purpose of this subsection is to give the precise formula of L
E

[a]
φ
,f

(Q,P ).
We begin with some notation. For an arithmetic point Q, denote by f◦Q the
normalized newform of weight kQ and conductor NQ = NpnQ correspond-
ing to fQ. Let ‖f◦Q‖2Γ0(NQ) be the usual Petersson norm of f◦Q and let
Ep(fQ,Ad) ∈ C× be the modified p-Euler factor for the adjoint motive
associated with fQ defined in [16, (3.10)]. Define the modified period

Per†(fQ) := (−2
√
−1)kQ+1‖f◦Q‖2Γ0(NQ) · Ep(fQ,Ad) ∈ C×.

Let %fQ,p : Q×p → C× be the unique unramified character with

(5.3) %fQ,p(p) = a(p,fQ)p
1−kQ

2 .
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Definition 5.7 (The test vector). Let eS(NC,ωj−2, I)[f ] be the sub-
space of eS(NC,ωj−2, I) consisting of ordinary I-adic forms h such that
th = λf (t)h for all t ∈ T(NC,N). For each prime factor q of C, let
{αq(f), βq(f)} be the roots of the q-th Hecke polynomial

Hq(x,f) := x2 − a(q,f)x+ q−1ωj(q) 〈q〉X .

We fix a choice of roots {αq(f)}q|C . Enlarging the coefficient ring O if
necessary, we can assume αq(f) ∈ I. Let f̆ be the unique Hida family in
eS(NC,ωj−2, I)[f ] such that a(1, f̆) = 1 and Uqf̆ = αq(f)f̆ for q | C.

The following interpolation formula asserts that L
E

[a]
φ
,f

essentially inter-

polates the values of the toric period integral BχQ

f̆Q
(ς(Cpn)) defined in (4.2)

at the special element ς(Cpn) in Definition 4.1.

Proposition 5.8. Let f(X,T ) := 〈∆FC〉
− 1

2
X 〈∆F 〉

1
2
T ∈ (Λ ⊗̂ Λ)×. For every

(Q,P ) ∈ Xcrit, we have

L
E

[a]
φ
,f

(Q,P ) = (−2)(−Cδ
√
−1)

kQ
2 L(1, τF )∏

q|C ζq(1) ·BχQ

f̆Q
(ς(Cpn))

× (−
√
−1)kP−1L

{p}(kP − kQ+1
2 , πfQ ⊗ ω

a−kP εP
)

Per†(fQ)

× γ
(
kP −

kQ + 1
2 , %fQ,pω

a−kP
p εP,p

)−1 ζp(1) · f(Q,P )c1

ζFp(2)ρp(pn) |pn|
1
2
Qp

,

where χQ := φ · ε−
1
2

Q ω
kQ−2

2 ◦NF/Q and c1 is the constant

c1 = 4(−1)
a−j

2 ω
− j2
p (C)ω

a−j
2

p (∆F )
∏
q|c
ε(0, φq) ∈ Z×(p).

Here γ(s, µ) is the gamma factor of the character µ = %fQ,pω
a−kP
p εP,p.

Proof. We first note that since the specialization fQ at Q is a p-stabilized
newform of tame conductor N , by the multiplicity one for new and ordinary
vectors, we have

(5.4) 1fQTrNc/N (e(G[a]
φ (Q,P ))) = L

E
[a]
φ
,f

(Q,P ) · fQ.

We put

ω
1
2 = ε

− 1
2

Q ω
kQ−j

2 and λ = ε
1
2
Pω

a−kP
2 .
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Put k1 = kQ
2 and k2 = kP

2 . By Proposition 5.2, we have

E
[a]
φ (Q,P ) =

θk1−k2E+
2k2−k1

(ω
1
2
FλF , λ

−1
F φ) if 2k2 > k1,

θk2−k1−1E−k1−2k2+2(ω
1
2
FλF , λ

−1
F φ) if 2k2 ≤ k1.

Applying the argument in the proof of [13, Lemma 6.5(iv)], it is not difficult
to see that for a Hilbert modular form h over F of weight (k1, k2) and non-
negative integers a, b,

eHol
(
(δak1,σ1δ

b
k2,σ2h)|H)

)
= e

(
(θaσ1θ

b
σ2h)|H

)
,

where δak1,σ1
δbk2,σ2

is the Maass–Shimura differential operator and Hol is the
holomorphic projection as in [14, (8a), p. 314]. It follows that

eG
[a]
φ (Q,P ) = e(E[a]

φ (Q,P )|H) = eHol(E†|H),(5.5)

where

(5.6) E† :=

δ
k1−k2
2k2−k1

E+
2k2−k1

(ω
1
2
FλF , λ

−1
F φ) if 2k2 > k1,

δk2−k1−1
k1−2k2+2E

−
k1−2k2+2(ω

1
2
FλF , λ

−1
F φ) if 2k2 ≤ k1.

where δmk = δmk,σ1
δmk,σ2

. Let f := fQ ∈ SkQ(Npr, εQωj−kQ) and let

ϕf = Φ(fQ) ∈ A0
kQ

(Npr, ω), ω = ε−1
Q ω

kQ−j .

Let n be a sufficiently large positive integer. Let J∞ and tn ∈ GL2(A) be the
matrices introduced in (4.3). Let [ · , · ] : A0

kQ
(Npn, ω)×AkQ(Npn, ω)→ C

be the pairing defined by[
ϕ1, ϕ2

]
:= 〈ρ(J∞tn)ϕ1 ⊗ ω−1, ϕ2〉,

where 〈 · , · 〉 is the pairing defined in Section 2.3. Pairing with the form ϕf⊗
on the adelic lifts on both sides of (5.4), we obtain that

L
E

[a]
φ
,f

(Q,P ) ·
[
ϕf , ϕf

]
=
[
ϕf , 1fQTrCN/NeΦ(Hol(E†|H))

]
,

where 1fQ ∈ (T(N, I)/℘Q)⊗C ⊂ End eSkQ(Npn, ω−1) is the specialization
of 1f at Q. Since the Hecke operators {Tq}q-Np and Up, the holomorphic
projection Hol and the trace map TrCN/N are self-adjoint operators with
respect to the pairing [ · , · ] (cf. the proof of [16, Proposition 3.7]), we thus
obtain

L
E

[a]
φ
,f

(Q,P ) ·
[
ϕf , ϕf

]
= [U0(CN) : U0(N)] ·

[
ϕf , Φ(E†|H)

]
.

On the other hand, according to (5.6) and Proposition 3.5, we have

Φ(E†|H) = EA(g, fD,s)|s= 2k2−k1−1
2

, g ∈ GL2(A),
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where D is the Eisenstein datum

D =
(
ω

1
2
FλF , φ

−1λ−1
F ,

kQ
2 , c, N

)
.

Therefore we see that

L[f ]
E (Q,P ) ·

[
ϕf , ϕf

]
= [Γ0(CN) : Γ0(N)] · 〈ρ(J∞tn)ϕf , EA(−, fD,s)⊗ ω−1〉|

s= 2k2−k1−1
2

= [Γ0(CN) : Γ0(N)] · ZD(s, ρ(J∞tn)ϕf )|
s= 2k2−k1−1

2
.

By [16, Lemma 3.6], we have[
ϕf , ϕf

]
= 〈ρ(J∞tn)ϕf ⊗ ω−1, ϕf 〉

= ζQ(2)−1

[SL2(Z) : Γ0(N)] · (−2
√
−1)−kQ−1 · Per†(f) ·

ω−1
p α2

f (pn) |pn|Qp
ζp(2)

ζp(1) .

Then we have the interpolation formula

L
E

[a]
φ
,f

(Q,P ) = ZD(s, ρ(J∞tn)ϕf )|
s=

kP−kQ/2−1
2

× ζQ(2)[SL2(Z) : Γ0(CN)](−2
√
−1)kQ+1

Per†(fQ)
· ζp(1)
ω−1
p %2

f (pn) |pn|Qp
ζp(2)

for any sufficiently large positive n. From the above equation and the for-
mula of ZD(s, ρ(J∞tn)ϕf ) in Theorem 4.8 with the fudge factors given by

f∞ = 4(−4
√
−1)−kQ/2(−1)

−j+a−kP
2 ,

fram = ω
1
2
p λp(∆F )∆

kP−kQ
2

F δ
kQ
2 = 〈∆F 〉

− 1
2

X (Q) 〈∆F 〉
1
2 (P ) · ω

a−j
2

p (∆F ) · δ
kQ
2 ,

fC = ω
1
2
p (C)

∏
q|c

ε(0, φq)
ζq(1) = 〈C〉−

1
2

X (Q) · ω−
j
2

p (C)
∏
q|c

ε(0, φq)
ζq(1) · C

kQ
2 ,

we get the desired interpolation formula by noting that

f∞framfC = f(Q,P )c1∏
q|C ζq(1) · (−

√
−1Cδ)

kQ
2 · (−2

√
−1)−kQ−1(

√
−1)−kP . �

6. p-adic L-functions attached to modular forms and real
quadratic fields

In [1], the authors construct square root p-adic L-functions associated
with Hida families and real quadratic fields, interpolating the toric period
integrals of elliptic cusp forms over real quadratic fields. The purpose of
this section is to give a mild improvement of this construction and more
general interpolation formulae.
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6.1. Preliminaries on modular symbols. We review the theory of clas-
sical modular symbols in the semi-adelic language. Let P := P1(Q) and
D0 := div0 P × GL2(Q̂). For each r ∈ P we denote by {r} its image
in the divisor group of P. Let γ ∈ GL2(Q) and u ∈ GL2(Q̂) act on
D = ({r} − {s} , gf) ∈ D0 by

γDu := ({γ · r} − {γ · s} , γgfu).
For a ring R, let Ln(R) be the space of two-variable homogeneous polyno-
mials of degree n with coefficients in R. For P = P (X,Y ) ∈ Ln(R) and
g ∈ GL2(R), define

P

∣∣∣∣(a b
c d

)
(X,Y ) = P (aX + bY, cX + dY ).

Let L∗n(R) = HomR(Ln(R), R). Moreover, if R is a Zp-algebra, let GL2(Ẑ)
acts on L∗n(R) by (ρn(u)ξ)(P ) = ξ(P |up). For an integer N and a Hecke
character χ modulo N valued in R, we denote byMSk(N,χ,R) the space
of p-adic modular symbols of weight k, level N and character χ, consisting
of maps ξ : D0 → L∗k−2(R) such that

ξ(γDu) = χ−1(u) · ρk−2(u−1
p )ξ(D)

for γ ∈ GL+
2 (Q) and u ∈ U1(N). This space is known to be a finitely

generated R-module equipped with the Hecke action. The Hecke operators
Tq for q - Np act onMSk(N,χ,R) by the formula

(6.1) Tqξ(D) = ξ

(
D

(
1 0
0 q

))
+

∑
b∈Zq/qZq

ξ

(
D

(
q b
0 1

))
.

Define the operator Uq for q | N and q 6= p by the formula

Uqξ(D) =
∑

b∈Zq/qZq
ξ

(
D

(
q b
0 1

))
for q | N(6.2)

and the operator Up by

Upξ(D) =
∑

a∈Zp/pZp
ρk−2

((
p a
0 1

))
ξ

(
D

(
p a
0 1

))
.

The ordinary projector e := limn→∞Un!
p is a convergent operator on

MSk(N,χ,R). Choosing any element γ ∈ GL2(Q) with det γ < 0, we
define an involution [c] on ξ ∈MSk(N,χ,A) by

[c]ξ(D) := ξ(γ ·D).
This definition does not depend on the choice of such γ. We define

ξ+ :=
(1 + [c]

2

)
ξ; ξ− :=

(1− [c]
2

)
ξ.
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6.2. Modular symbols associated with modular forms. To each
classical cusp form f = f(z, gf) ∈ Sk(N,χ), we associate a classical modular
symbol ηf : D0 → L∗k−2(C) defined by

ηf ({r} − {s} , gf)(P ) :=
∫ s

r
f(z, gf)P (z, 1) dz.

It is easy to see that for α ∈ GL+
2 (Q) and u ∈ U0(N),

ηf (αDu) = ρk−2(α)ηf (D)χ−1(u).

The involution [c] acts on the classical modular symbol ηf by [c]ηf (D) =
ρk−2(γ)ηf (γD), where γ ∈ GL2(Q) is any element with det γ < 0. By
definition,

[c]ηf (D) = −ηfρ(D),

where fρ(z, gf) = f
(
−z,

(−1 0
0 1

)
gf
)
. On the other hand, the associated p-

adic modular symbol ξf ∈MSk(N,χ,Cp) is defined by

(6.3) ξf (D)(P ) = ιp(ηf (D)(P |g−1
p )) for D = (d, gf) ∈ D0.

If f is a Up-eigenform with eigenvalue α ∈ Z×p , then ξf is also an eigenvector
of Up with eigenvalue α. Following the discussion in [21, p. 95], for each
D ∈ D0 we define the p-adic measure µf (D)(x) on Zp by the rule∫

a+pnZp
µf (D)(x) = α−nξf

(
D

(
pn a
0 1

))
(Y k−2) for n ∈ Z≥0.

Lemma 6.1. For any P ∈ Lk−2(Zp),∫
a+pnZp

P (x, 1)µf (D)(x) = α−nξf

(
D

(
pn a
0 1

))(
P

∣∣∣∣(pn a
0 1

))
.

Proof. This is [21, Lemma 4.6]. We paraphrase the computation there in
our semi-adelic formulation. Note that ξf has bounded denominators in the
sense that pA · ξf ∈ MSk(N,χ,Zp) for some A � 0. Let 0 ≤ j ≤ k − 2 be
an integer. For every m > A+ n, we have

α−nξf

(
D

(
pn a
0 1

))(
XjY k−2−j

∣∣∣∣(pn a
0 1

))

= α−m
pm−n−1∑
c=0

ξf

(
D

(
pm a+ pnc
0 1

))(
XjY k−2−j

∣∣∣∣(pm a+ pnc
0 1

))

≡ α−m
∑
c

(a+ pnc)jξf
(
D

(
pm a+ pnc
0 1

))
(Y k−2) (mod pm−AZp).
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Therefore, we find that∫
a+pnZp

xjµf (D)(x)

=
∑
m→∞

α−m
pm−n−1∑
c=0

(a+ pnc)jξf
(
D

(
pm a+ pnc
0 1

))
(Y k−2)

= α−nξf

(
D

(
pn a
0 1

))(
XjY k−2−j

∣∣∣∣(pn a
0 1

))
.

This shows the lemma. �

6.3. Hida theory for modular symbols. We review the I-adic symbols
developed in [21] in the semi-adelic formulation. Let I be a normal and
finite domain over Λ = O[[X]] with X = [u] − 1 and let N be a positive
integer coprime to p. Put

U1(Np∞) =
{
u ∈ U1(N)

∣∣∣∣ up =
(
a b
0 1

)
, a ∈ Z×p , b ∈ Zp

}
.

For each non-negative integer n, let ℘(n) be the principal ideal of I generated
by (u−2(1+X)−1)pn−1. Define the Λ-adic Hecke characterαX : Q×\A× →
Λ× by

αX(z) = 〈εcyc(z)〉X 〈εcyc(z)〉−2 ,

where 〈εcyc(z)〉X = (1 +X)
logp εcyc(z)

logp u is defined in (5.1).

Definition 6.2. Define the space of I-adic modular symbols of tame level
N by

MS(N, I) := lim←−
n

lim−→
m

MS2(Npm,αX , I/℘(n)).

In other words,MS(N, I) consists of functions Ξ : D0 → I such that
• Ξ(γDu) = Ξ(D) for γ ∈ GL+

2 (Q) and u ∈ U1(Np∞);
• Ξ(Dz) = αX(z−1) · Ξ(D) for z ∈ Q̂×;
• Ξ is continuous in the sense that for any n, there exists rn for which
the function Ξ : D0 → I/℘(n) factors through D0/U1(Nprn).

The spaceMS(N, I) is an I-module equipped with the action of Hecke
operators {Tq}q-Np and {Uq}q|N as in (6.1) and (6.2), while the Up-operator
is defined by

UpΞ(D) =
∑

a∈Zp/pZp
Ξ
(
D

(
p a
0 1

))
.

For (d, pN) = 1 we define the level-raising operator

Vd :MS(N, I) −→MS(Nd, I)
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by

(6.4) VdΞ(D) = d−1 · Ξ
(
D

(
d−1 0
0 1

))
.

The ordinary projector e = limn→∞Un!
p exists in EndIMS(N, I). The

space eMS(N, I) consists of the ordinary I-adic modular symbols. We re-
mark that eMS(N, I) is nothing but MSord(I) = HomΛ(UMord(O), I) de-
fined in [21, Section 5.5]. The involution [c] on MS(N, I) is defined by
[c]Ξ(D) := Ξ(γD) for any γ ∈ GL2(Q) with det γ < 0. Put

eMS(N, I)± := (1± [c])eMS(N, I).

The following is proved in [21, Proposition 5.7].

Theorem 6.3. The space eMS(N, I) is free of finite rank over I.

We recall the I-adic measure associated with ordinary I-adic modular
symbols. Let C(Zp, I) be the space of continuous I-valued functions on Zp
and D(Zp, I) := HomI(C(Zp, I), I) be the space of I-adic measures on Zp.
To each ordinary I-adic modular symbol Ξ ∈ eMS(N, I), we associate a
unique linear map D 7→ µΞ(D)(x) in Hom(D0,D(Zp, I)) such that

(6.5)
∫

Zp
P (x)µΞ(D)(x) := lim

m→∞

pm−1∑
a=0

P (a)U−mp Ξ
(
D

(
pm a
0 1

))
∈ I

for D ∈ D0 and P ∈ C(Zp, I). It is straightforward to verify that the
right hand side is a p-adically convergent Riemann sum valued in I. For
P ∈ C(Zp, I) and u ∈ U0(p) with up =

(
a b
c d

)
, define

P |u(x) = P

(
ax+ b

cx+ d

)
αX(cx+ d).

Lemma 6.4. Let P ∈ C(Zp, I).
(1) For m ∈ Z≥0,∫

pmZp
P (x)µΞ(D)(x) =

∫
Zp
P (pmx)µU−mp Ξ

(
D

(
pm 0
0 1

))
(x).

(2) For u ∈ U0(pN), we have∫
Zp
P (x)µΞ(Du)(x) =

∫
Zp
P |u−1(x)µΞ(D)(x).

Proof. The verification of part (1) is straightforward by (6.5). To see
part (2), it suffices to show the equation for up of the form ( 1 0

c 1 ) and
(
a b
0 d
)
.
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Let up = ( 1 0
c 1 ) with c ∈ pZp. By definition, the left hand side equals

lim
m→∞

pm−1∑
a=0

P (a)U−mp Ξ
(
D

(
1 0
c 1

)(
pm a
0 1

))

= lim
m→∞

pm−1∑
a=0

P (a)U−mp Ξ
(
D

(
pm a(1 + ac)−1

0 1

)(
(1 + ac)−1 0

cpm 1 + ac

))
.

Making change of variable a = z(1− cz)−1, we find that the last Riemann
sum equals

lim
m→∞

pm−1∑
z=0

P (z(1− cz)−1)U−mp Ξ
(
D

(
pm z
0 1

))
αX(1− cz)−1

=
∫

Zp
P

∣∣∣∣ ( 1 0
−c 1

)
(x)µΞ(D)(x).

The case for up =
(
a b
0 d
)
is similar. We omit the details. �

For an arithmetic point Q in X+
I , we denote by ℘Q the kernel of the

specialization Q : I → Cp. Put O(Q) = I/℘Q and rQ = max {1, cp(εQ)}.
Here cp(εQ) is the exponent of the p-conductor of εQ. For any O(Q)-algebra
A, we put

MSord
Q (A) := eMSkQ(NprQ ,ω2−kQεQ, A).

The following theorem is an integral version of the control theorem for
I-adic modular symbols proved in [9, Theorem 5.13]. The result must be
well-known to experts, but since we could not locate an exact statement in
the literature, we provide some details for the sake of completeness.

Theorem 6.5 (Control Theorem). For each arithmetic point Q, there is a
Hecke-equivariant specialization isomorphism

spQ : eMS(N, I)/℘Q ' MSord
Q (O(Q)),

Ξ (mod ℘Q) 7−→ spQ(Ξ) := ΞQ,

where ΞQ is the p-adic modular symbol of weight kQ defined by

ΞQ(D)(P ) = Q

(∫
Zp
P (x, 1)µΞ(D)(x)

)
, P (X,Y ) ∈ LkQ−2(O(Q)).

We call ΞQ the specialization of Ξ at Q.

Proof. First we note that ΞQ is a p-adic modular symbol of weight kQ
and character ω2−kQεQ by Lemma 6.4. It is straightforward to verify that
the map spQ is Hecke-equivariant, so ΞQ belongs to MSord

Q (O(Q)). We
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proceed to show spQ is an isomorphism. Let n = kQ − 2, O = O(Q) and
χQ = αX (mod ℘Q) = εncycω

−nεQ. We have

eMS(N, I)/℘Q = lim←−
t

lim−→
r

eMS2(Npr, χQ,O/pt).

For any Zp-module R, define ιn : L∗n(R) → R, ιn(`) = `(Y n). By [21,
Corollary 5.2], ιn induces a Hecke-equivariant isomorphism

ιn : eMSkQ(Npr, εQω−n,O/pt) ' eMS2(Np, χQ,O/pt)

for r ≥ t. Note that ιn(ΞQ(D)) = ΞQ(D)(Y n) = Q(Ξ(D)). We deduce that
spQ is indeed given by the isomorphism

eMS(N, I)/℘Q = lim←−
t

lim−→
r

eMS2(Npr, χQ,O/pt)

ι−1
n' lim←−

t

lim−→
r

eMSkQ(Npr, εQω−n,O/pt) = eMSkQ(NprQ , εQω−n,O),

where the last equality is the base change property [11, Lemma 1.8 and
Corollary 2.2] for ordinary p-adic modular symbols. �

6.4. The distribution-valued modular symbols of Greenberg and
Stevens. Let L′0 be the set of primitive elements in Zp ×Zp, i.e. elements
in Zp×Zp which are not divisible by p. We recall the connection of Λ-adic
modular symbols and modular symbols with valued in the space D(L′0) of
p-adic measures on L′0 described in [9, Section 5]. For each k ∈ Cp with
|k|p ≤ 1, let Qk ∈ Spec Λ(Cp) be the unique point with Qk([u]) = uk
and let Fk be the set of homogeneous functions of degree k on L′0, i.e.
continuous functions h : L′0 → Zp such that h(ax, ay) = 〈a〉k h(x, y) for all
a ∈ Z×p . Then to each Ξ ∈ eMS(N,Λ), we can associate a modular symbol
µGS

Ξ ∈ HomU0(N)(D0,D(L′0)) characterized by the property that we have∫
Zp×Z×p

h(x, y)µGS
Ξ (D)(x, y) = Qk

(∫
Zp
h(x, 1)µΞ(D)(x)

)
;∫

Z×p ×pZp
h(x, y)µGS

Ξ (D)(x, y) = Qk

(∫
Zp
h(1,−py)µU−1

p Ξ

(
D

(
0 1
−p 0

))
(y)
)

for any k ∈ Zp and h ∈ Fk−2. By a similar computation in Lemma 6.4, one
verifies that the map µGS

Ξ is U0(N)-invariant, namely for any u ∈ U0(N)

(6.6)
∫
L′0

h |u−1(x, y)µGS
Ξ (D)(x, y) =

∫
L′0

h(x, y)µGS
Ξ (Du)(x, y).
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6.5. The Mazur–Kitagawa two variable p-adic L-functions. Let
f ∈ eS(N, 1, I) be a primitive Hida family of tame conductor N and
let λf : T(N, I) → I be the corresponding homomorphism. For any in-
teger C prime to N , let eMS(NC, I)±[f ] be the space of I-adic ordi-
nary modular symbols Ξ ∈ eMS(NC, I)± such that t · Ξ = λf (t)Ξ for
all t ∈ T(NC,N). The space eMS(N, I)±[f ] ⊗I Frac I has rank one over
Frac I as f is primitive of tame conductor N . For an arithmetic point Q,
the spaceMSord

Q (O(Q))±[fQ] is free of rank one over O(Q). On the other
hand, Shimura in [26] proved that 0 6= ξ±fQ ∈ MS

ord
Q (Cp)±[fQ]. There-

fore, having fixed a basis β±fQ of MSord
Q (O(Q)), we can define the period

Ω±fQ ∈ C×p associated with the p-stabilized newform fQ by

ξ±fQ = Ω±fQβ
±
fQ
.

Definition 6.6 (p-adic error terms). Let Ξ ∈ eMS(N, I)[f ]. We define the
plus/minus error terms Er±(ΞQ) ∈ Cp by the equation

Ξ±Q = Er±(ΞQ)
Ω±fQ

· ξ±fQ .

To Ξ ∈ eMS(N, I)[f ] and a finite order Hecke character χ with χ(−1) =
(−1)i, Kitagawa in [21, Theorem 1.1] associates the two-variable p-adic L-
function Lp(Ξ, χ) ∈ I ⊗̂ Λ satisfying the interpolation property: for every
pair of arithmetic points (Q,P ) ∈ X+

I × X+
Λ with kQ ≥ kP ,

(6.7) Lp(Ξ(−1)i , χ)(Q,P )

= (−
√
−1)kP−1 ·

L{p}(kP − kQ+1
2 , πfQ ⊗ χω

−kP εP )

Ω(−1)i
fQ

× γ
(
kP −

kQ + 1
2 , %fQ,p ⊗ χpω

−kP
p εP,p

)−1
Er(−1)i(ΞQ),

The L-functions associated with modular forms are related to the automor-
phic L-functions in the following way:

L

(
kP −

kQ + 1
2 , πfQ ⊗ χ

)
= 2(2π)1−kPΓ(kP − 1) · L(kP − 1,fQ ⊗ χ).

6.6. The square root p-adic L-function associated with a Hida
family and a real quadratic field. We review the construction of the
square roots of p-adic L-functions attached to Hida families and real qua-
dratic fields in [1]. Let F+ be the group of totally positive elements in F and
let Cl+(OC) := F+\F̂×/Ô×C denote the narrow ring class group of conduc-
tor C. For t ∈ F̂×, write [t] = F+tÔ×C for the class represented by t. Let εC



934 Ming-Lun Hsieh, Shunsuke Yamana

be a generator of the unit group F+∩Ô×C . Let PΨ(X,Y ) = (X−θY )(X−θY )
and δ = θ − θ =

√
∆F . Define ϑX : Z×p → Λ× by

ϑX(x) = 〈x〉
1
2
X 〈x〉

−1 .

So ϑ2
X = αX |Z×p . Let φ be a finite order Hecke character of A×F as in (5.2).

Equivalently, φ|
F̂×

is an even/odd character of Cl+(OC), depending on the
sign of φ∞(δ) = (−1)

j
2 or the parity of j

2 .

Definition 6.7. Let Ξ ∈ eMS(NC, I)±[f ]. ForD ∈ D0, we define LΞ(D) ∈
I as follows: if p is split in F , put

LΞ(D) =
∫

Z×p
ϑX(x)µΞ(D)(x) ∈ I;

if p is inert in F , put

LΞ(D) =
∫

Zp
ϑX(PΨ(x, 1))µΞ(D)(x)

+ α−1
f

∫
Zp
ϑX(PΨ(1,−px))µΞ

(
D

(
0 1
−p 0

))
(x).

Fixing any base point r ∈ P, we define the (square root) p-adic L-function
LΞ±/F⊗φ ∈ I for f/F by

LΞ±/F⊗φ :=
∑

[t]∈Cl+(OC)

φ(t)ϑX(εcyc(N(t))) · LΞ±({r}−{Ψ(εC)r} ,Ψ(t)ς(C)
f ).

Note that the above definition does not depend on the choice of r and does
not depend on the representatives [t] in Cl+(OC).

6.7. The interpolation formulae. For an elliptic modular form f ∈
Sk(Npr, ω−1) and a finite order Hecke character χ of A×F with χ|A× = ω,
writing ϕf := Φ(f) for the adelic lift of f , recall that in (4.2) we have
introduced the toric period integral given by

Bχ
f (g) := Bχ

ϕf
(g) =

∫
A×F×\A×F

ϕf (Ψ(t)g)χ(t) dt.

Let f̆ ∈ eS(NC, 1, I)[f ] be the test vector in Definition 5.7. Then f̆ can be
expressed as

f̆(q) =
∏
q|C

(1− βq(f)Vq) · f ,

where βq(f) is the fixed choice of roots of the Hecke polynomial Hq(x,f)
of f at q. Let Ξ ∈ eMS(N, I)[f ] and define

Ξ̆ :=
∏
q|C

(1− βq(f)Vq) · Ξ ∈ eMS(NC, I)[f ],
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where Vd is the level-raising operator defined in (6.4). The next result shows
that LΞ̆/F⊗φ interpolates p-adically the toric period associated with f̆Q for
Q ∈ X++

I .

Proposition 6.8. For Q ∈ X++
I we set χQ := φ · ε−

1
2

Q ω
kQ−2

2 ◦ NF/Q. Let
± = φ∞(δ) = (−1)

j
2 . We have

LΞ̆±/F⊗φ(Q) = (−2)(−Cδ
√
−1)

kQ
2 L(1, τF )∏

q|C ζq(1) ·
B
χQ

f̆Q
(ς(Cpn))

Ω±fQ
· Er±(ΞQ)

× ζp(1)

ζFp(1)αnfQ |p
n|

kQ
2

Qp

for any sufficiently large n ≥ max {cp(χQ), 1}, where ς(Cpn) ∈ GL2(A) is
the special element defined in Definition 4.1 and αfQ = a(p,fQ) is the
Up-eigenvalue of fQ.

Proof. For simplicity, we write f = f̆Q and ϕ = Φ(f) and put

k = kQ, ω
1
2 = ε

− 1
2

Q ω
kQ−2

2 .

Then χQ = φω
− 1

2
F . The first step is to work on the right hand side of

the assertion, expressing the toric period integral BχQ
f (ς(cpn)) as a finite

sum of the values of the classical modular symbol η±f in Section 6.2. Let
m(y) =

(
y 0
0 y−1

)
for y ∈ R×. For t ∈ F̂×, define the partial period by

L[t](ϕ) :=
∫

R+/εZC

∑
[u]∈Ô×C/Ô

×
Cpn

ϕ
(
ς∞m(y)Ψ(tu)ς(Cpn)

f

)
χQ(u) d×y.

Then we see that the toric period BχQ

f̆Q
(ς(Cpn)) equals∫

A×F×\A×F
ϕ
(
Ψ(t)ς(Cpn)

)
χQ(t) dt = vol(O×C )

ζFp(1)
pnζp(1)

∑
[t]∈Cl+(OC)

χQ(t)L[t](ϕ),

where vol(Ô×C ) is the volume of the image of Ô×C in Q̂×\F̂× with respect
to the quotient measure dt/d×t∞ explicitly given by

vol(Ô×C )−1 =
√

∆FL(1, τF )#(Z/CZ)× = L(1, τF )δC
∏
q|C

(1− q−1).

By a direct computation, if z = ς∞m(y) ·
√
−1 = ς∞ · y2√−1, then

J(ς∞m(y),
√
−1)−2 = PΨ(z, 1) · (−

√
−1∆F )−1,
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and dz = (2δ
√
−1) · J(ς∞m(y),

√
−1)−2d×y. It follows that

L[t](ϕ) = (2
√
−1)−1(−

√
−1∆F )

2−k
2 δ

k−2
2 |CpnN(t)|

k−2
2

Q̂

×
∫ Ψ(εC)r

r

∑
[u]∈Ô×C/ÔCpn

χQ(u) · f
(
z,Ψ(tu)ς(Cpn)

f
)
PΨ(z, 1)

k−2
2 dz

= `1 · |N(t)|
k−2

2
A

∑
[u]∈Ô×C/Ô

×
Cpn

χQ(u)ηf
(
{r}−{Ψ(εC)r},Ψ(tu)ς(Cpn)

f

)(
P
k−2

2
Ψ

)
,

where r can be chosen to be any point in P and

`1 := (2
√
−1)−1(−Cδ

√
−1)

2−k
2 |pn|

k−2
2

Qp
.

For t ∈ F̂×, we set

Dt :=
(
{r} − {Ψ(εC)r} ,Ψ(t)ς(C)

f

)
∈ D0.

Putting

`2 := δ−1L(1, τF )−1C−1∏
q|C

ζq(1) ·
ζFp(1)
pnζp(1) ,

we have

B
χQ

f̆Q
(ς(Cpn)) = `2

∑
[t]∈Cl+(OC)

χQ(t)L[t](ϕ)

= `1`2
∑

[t]∈Cl+(OC)

χQ(t) |N(t)|
k−2

2
A

∑
[u]∈Ô×C/Ô

×
Cpn

χQ(u)ηf (Dtuς
(n)
p )

(
P
k−2

2
Ψ

)
.

On the other hand, if we replace the base point r by Ψ(δ)r, noting that
N(δ) < 0, we obtain that

B
χQ

f̆Q
(ς(Cpn)) = `1`2

∑
[t]∈Cl+(OC)

χQ(tδf) |N(t)|
k−2

2
A

×
∑

[u]∈Ô×C/Ô
×
Cpn

χQ(u)(−1)
k−2

2 [c]ηf (Dtu · ς(n)
p )

(
P
k−2

2
Ψ

)
,
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where [c] is the involution on classical modular symbols. Since χQ(δf) =
(−1)

k−2
2 φ∞(δ) = (−1)

k+j
2 −1, we conclude that

(6.8) B
χQ
ϕ (ς(Cpn)) = `1`2

∑
[t]∈Cl+(OC)

χQ(t) |N(t)|
k−2

2
A

×
∑

[u]∈Ô×C/Ô
×
Cpn

χQ(u)η(−1)
j
2

f (Dtuς
(n)
p )

(
P
k−2

2
Ψ

)
.

The second step is to work on the left hand side of the assertion

LΞ̆±/F (Q) =
∑

[t]∈F×\F̂×/Ô×C

χQ(t) |N(t)|
k−2

2
A N(tp)

k−2
2 ·LΞ̆±(Dt)(Q).

Put fQ = Er±(ΞQ)
Ω±
fQ

. In view of (6.8), we need to verify the following inter-

polation formula

(6.9) LΞ̆±(Dt)(Q) = fQα−nfQN(tp)
2−k

2

×
∑

[u]∈Ô×C/Ô
×
Cpn

ω−
1
2 (N(u))η+

f (Dtuς
(n)
p )

(
P
k−2

2
Ψ

)
,

where ς(n)
p =

(
pn −1
0 1

)
if p is split, and ς

(n)
p =

(
0 1
−pn 0

)
if p is inert. For

d | C, it is straightforward to verify that VdΞ±Q = fQ · ξ±VdfQ , and hence
Ξ̆±Q = fQ · ξ±f . It follows that for D = ({r} − {s} , gf) ∈ D0 and P (X,Y ) ∈
LkQ−2(Zp), we have

(6.10) Q

(∫
a+pnZp

P (x, 1)µΞ̆±(D)(x)
)

= α−nfQ · Ξ̆
±
Q

(
D

(
pn a
0 1

))(
P |
(
pn a
0 1

))
by (6.5)

= fQ · α−nfQη
±
f

(
D

(
pn a
0 1

))
(P |g−1

p ) by (6.3).

Now we verify (6.9) in the case where p is split in F . By Definition 6.7,
LΞ̆±(Dt)(Q) equals∑
a∈(Zp/pnZp)×

ω
− 1

2
p (a)Q

(∫
a+pnZp

x
k−2

2 µΞ̆±(Dt)(x)
) (

Q(ϑX(x)) = ω
− 1

2
p (x)x

k−2
2
)

= fQ
αnfQ

∑
a∈(Zp/pnZp)×

ω
− 1

2
p (−a)η±f

(
Dt ·

(
pn −a
0 1

))(
(XY )

k−2
2 |ς−1

p Ψ(t−1
p )
)
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by (6.10). Then (6.9) follows from the equations ω
1
2
p (−1) = (−1)

k−2
2 , and

(XY )|ς−1
p Ψ(t−1

p ) = (XY )|
(
tp̄ 0
0 tp

)( 1 −θ
−1 θ

)
= −N(t−1

p ) · PΨ(X,Y ).

In the inert case, LΞ̆±(Dt)(Q) equals

pn−1∑
a=0

ω−
1
2 (N(a− θ))

∫
a+pnZp

N(x− θ)
k−2

2 µΞ̆±Q
(Dt)(x)

+ α−1
fQ

pn−1−1∑
a=0

ω−
1
2 (N(1+paθ))

∫
a+pn−1Zp

N(1− pxθ)
k−2

2 µΞ̆±Q

(
Dt

(
0 1
−p 0

))
(x)

= N(tp)
2−k

2
fQ
αnfQ

(pn−1∑
a=0

ω−
1
2 (N(a− θ))η±f

(
Dt

(
pn a
0 1

))(
P
k−2

2
Ψ

)

+
pn−1−1∑
a=0

ω−
1
2 (N(1 + paθ))η±f

(
Dt

(
0 1
−p 0

)(
pn−1 a

0 1

))(
P
k−2

2
Ψ

))
.

We thus obtain (6.9) from the observations below(
pn a
0 1

)
U1(pn) = Ψ(a− θ)

(
0 1
−pn 0

)
U1(pn),(

0 1
−p 0

)(
pn−1 a

0 1

)
U1(pn) = Ψ(1 + paθ)

(
0 1
−pn 0

)
U1(pn).

This verifies (6.9) in both cases and finishes the proof. �

7. Derivative of the twisted triple product p-adic L-function
and Stark–Heegner points

7.1. Factorization of L
E

[a]
φ ,f

. In this section, we show that the p-adic L-
function L

E
[a]
φ
,f

in Definition 5.5 can be essentially factorized into a product
of the square root p-adic L-function LΞ̆−/F⊗φ for f over F and the Mazur–
Kitagawa p-adic L-function Lp(Ξ+,ωa). We will use an auxiliary p-adic
Rankin–Selberg L-function in the proof, so we first recall that for a primitive
Hida family g ∈ J[[q]] with some normal domain J finite over Λ, there exists
an element

Lfp (f ⊗ g) ∈ (I ⊗̂ J ⊗̂ Λ)⊗I Frac I
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such that for each point (Q1, Q2, P ) ∈ X+
I ×X+

J ×X+
Λ with kQ2 < kP ≤ kQ1 ,

we have the interpolation formula:

(7.1) Lfp (f ⊗ g)(Q1, Q2, P )

= (
√
−1)1+kQ2−2kP ·

L{p}(kP −
kQ1+kQ2

2 , πfQ1
× πgQ2

⊗ ω−kP )
Per†(fQ1)

× γ
(
kP −

kQ1 + kQ2

2 , %fQ1 ,p
⊗ πgQ2 ,p

)−1
,

where %fQ1 ,p
: Q×p → C× is the unramified character defined by (5.3) and

γ(s, %fQ1 ,p
⊗πgQ2 ,p

) is the gamma factor in Section 2.6.4. We call Lfp (f⊗g)
the primitive Hida’s three-variable Rankin–Selberg p-adic L-function asso-
ciated with f and g. Imprimitive three-variable p-adic L-functions (with
some Euler factors removed) were first constructed by Hida in [13, The-
orem I], and the primitive ones with the above form of the interpolation
formula were proved in [5, Theorem 7.1] following the method in [13]. We
first prove a preliminary result:

Proposition 7.1. Let f ∈ eS(N, 1, I) be a primitive Hida family. For every
Ξ ∈ eMS(N, I)[f ] there is an element CΞ ∈ Frac I which is holomorphic at
every arithmetic point Q ∈ X+

I with the value

CΞ(Q) =
Per†(fQ)
Ω+
fQ

Ω−fQ
· Er+(ΞQ)Er−(ΞQ).

Proof. Choose a Dirichlet character χ with χ(−1) = −1 and an imaginary
quadratic field K where p is split. Let χK := χ ◦ NK/Q be a finite order
Hecke character of A×K . Let g denote a primitive Hida family such that the
weight one specialization gQ0 is a p-stabilized theta series θ(p)

χK associated
with χK . Define the two-variable p-adic L-function Lp(f/K ⊗ χK) by

Lp(f/K ⊗ χK) := (1⊗Q0 ⊗ 1)
(
Lfp (f ⊗ g)

)
∈ I ⊗̂ Λ.

Let X(2)
Λ be the set of arithmetic points of weight 2. For P ∈ X

(2)
Λ , define

CΞ,P := (1⊗ P )
(
Lp(Ξ−, χ)Lp(Ξ+, χτK/Q)

Lp(f/K ⊗ χK)

)
∈ Frac(I⊗O O(P )).

From the interpolation formulae (6.7) and (7.1), we see that

CΞ,P (Q) =
Per†(fQ)
Ω+
fQ

Ω−fQ
· Er+(ΞQ)Er−(ΞQ)

for all Q ∈ X+
I with kQ > 2. Hence CΞ,P is independent of the choice of

P and can be denoted as CΞ. Thanks to Rohrlich’s theorem [22], for any
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arithmetic point Q ∈ X+
I and P ∈ X

(2)
Λ , one can find an odd Dirichlet

character χ such that Lp(f/K ⊗ χK)(Q,P ) 6= 0, which implies that CΞ is
holomorphic at Q. �

Remark 7.2. If the residual Galois representation associated with f is
absolutely irreducible and p-distinguished, then the Gorensteiness of the
local component of the Hecke algebra T(N, I) corresponding to f is known
thanks to the work of Wiles et al. ([29, Corollary 2, p. 482]). It follows
that the I-module eMS(N, I)±[f ] is free of rank one by [21, Lemma 5.11].
Choose a basis Ξ± in each space. It is determined up to multiple of I×.
Put Ξ = Ξ+ + Ξ−. Then p-adic error terms Er±(ΞQ) are p-adic units for all
Q ∈ X+

I by [21, Proposition 5.12], and CΞ is a generator of the congruence
ideal C(f) by a result of Hida [11, Theorem 0.1].

Now we are ready to prove the factorization.

Theorem 7.3. Let a be an even integer, φ : Cl+(OC) → O× an odd
character of the exact conductor C, f ∈ eS(N, 1, I) a primitive Hida family
of tame conductor N , and Ξ ∈ eMS(N, I)[f ]. Then we have

CΞ · LE[a]
φ
,f

= LΞ̆−/F⊗φ · Lp(Ξ
+,ωa) · fc1,

where f ∈ (Λ ⊗̂ Λ)× and the constant c1 ∈ Z×(p) are defined in Proposi-
tion 5.8 with j = 2.

Proof. Propositions 5.8, 6.8, (5.3) and (6.7) immediately show that

L
E

[a]
φ
,f

(Q,P ) = LΞ̆−/F⊗φ(Q)Lp(Ξ+,ωa)(Q,P )
Ω+
fQ

Ω−fQ · f(Q,P )c1

Per†(fQ)Er+(ΞQ)Er−(ΞQ)
,

which combined with Proposition 7.1 completes our proof. �

7.2. The derivative of L
E

[2]
φ ,f

. We shall keep the notation in Section 6.4.
Let E be an elliptic curve over Q of conductor pN . There exists a primitive
Hida family f ∈ I[[q]] whose specialization fQ at some weight two point
Q ∈ X+

I is the elliptic newform f associated with E by the modularity
theorem [29]. Here I is the local component of T(N, I) corresponding to
λf . Let X = {k ∈ Cp | |k|p ≤ 1}. We write j : X ↪→ Spec Λ(Cp) for
the map k 7→ (Qk : [x] 7→ xk). Let ℘2 be the kernel of Q2. Then we have
I ⊂ I℘Q = Λ℘2 since f has rational coefficients. This implies that there
exists a neighborhood U around 2 ∈ X such that j : U ↪→ Spec I(Cp).
Define an analytic function on U ×X by

L
E

[a]
φ
,f

(k, s) = L
E

[a]
φ
,f

(Qk, Qs), (k, s) ∈ U ×X .
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Theorem 7.4. Suppose that p is inert in F and φ : Cl+(OF )→ O× is an
odd narrow ideal class character, i.e. C = 1. Then L

E
[a]
φ
f
(2, s) = 0 and

∂L
E

[2]
φ
,f

∂k
(2, s+1) = 1

2(1+φ(N)−1wN ) logE Pφ · Lp(E, s)
m2
E2α(E)

cf
〈∆F 〉

s−1
2 ,

where
• wN ∈ {±1} be the sign of the Fricke involution at N acting on f ,
• Pφ ∈ E(Fp)⊗Q(φ) is the Stark–Heegner point in [6, (182)],
• Lp(E, s) is the Mazur–Tate–Teitelbaum p-adic L-function for E,
• cf ∈ Z>0 is the congruence number for f , mE ∈ Q× is the Manin
constant for E and

2α(E) = [H1(E(C),Z) : H1(E(C),Z)+ ⊕H1(E(C),Z)−].

Proof. For each Ξ ∈ eMS(N,Λ)⊗Λ A(U )[f ] we put

Lp(Ξ/F, φ, k) = LΞ−/F⊗φ(Qk), k ∈ U .

Shrinking U if necessary, we may assume that the function Lp(Ξ/F, φ, k) is
analytic on U . Since πf is special at the inert prime p, it is well-known that
the local root number of the base change BCF (πf ) ⊗ φ is −1, and hence
the toric period Bφ

f must vanish by the dichotomy theorem of Saito and
Tunnell (See [24] and [27]). Proposition 6.8 shows that Lp(Ξ/F, φ, 2) = 0,
and so by Theorem 7.3, we have L

E
[a]
φ
,f

(2, s) = 0 for all even a, and get

CΞ(2)
∂L

E
[2]
φ
,f

∂k
(2, s+ 1) = dLp

dk (Ξ/F, φ, 2) ·Lp(Ξ+,ω2)(2, s+ 1) · f(2, s+ 1)c1

by Theorem 7.3.
Now we fix the normalization of Ξ. The Λ℘2-module

eMS(N, I)±[f ]⊗I I℘Q = (eMS(N,Λ)± ⊗ Λ℘2)[f ]

is free of rank one. Let Ξ± be the basis normalized so that the weight two
specialization Ξ±Q = ξ±

f

Ω± with the periods Ω± = (2π
√
−1)−1Ω±E , where Ω±E

are the plus/minus periods for E such that Ω+
E and (

√
−1)−1Ω−E are real and

positive. By the inspection on the interpolation (6.7), we see easily that the
associated Mazur–Kitagawa p-adic L-function Lp(Ξ+,ω2)(2, s + 1) is the
cyclotomic p-adic L-function 2Lp(E, s) for the elliptic curve E. This extra
2 comes from the factor 2 in the definition of the archimedean Γ-factor
ΓC(s) = 2(2π)−sΓ(s). On the other hand, it is clear that f(2, s + 1)c1 =
4 〈∆F 〉

s−1
2 with a = j = 2, and by the formulae in [10, p. 255], we have

‖f‖2Γ0(N) = cfm
−2
E 2−2−α(E)π−2(

√
−1)−1Ω+

EΩ−E .
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We thus obtain

CΞ(2) = Per†(f)
Ω+Ω− =

−(−2
√
−1)3‖f‖2Γ0(N)

(−4π2)−1Ω+
EΩ−E

= 8cf
m2
E2α(E) .

Putting these together, we get the stated formula from the following
lemma. �

Lemma 7.5. Assumptions being as in Theorem 7.4, if Ξ is normalized as
above, then we have

dLp
dk (Ξ/F, φ, 2) = 1

2(1 + φ(σN)wN ) logE Pφ.

Proof. We will compute the derivative of Lp(Ξ/F, φ, k) at k = 2 for the
normalized Ξ above. Let µGS

Ξ−(x, y) be the p-adic measure on L′0 attached
to Ξ− introduced in Section 6.4. By definition, we have the expression

Lp(Ξ/F, φ, k) =
∑

[t]∈Cl+(OC)

φ(t) 〈εcyc(N(t))〉
k−2

2

×
∫
L′0

〈
(x−θy)(x−θy)

〉k−2
2 µGS

Ξ−({r}−{Ψ(ε1)r},Ψ(t)ςf)(x, y).

Here ε1 is the totally positive fundamental unit in O×F and ςf is the finite
part of ς ∈ GL2(Q̂) defined in Section 4.1. Choosing a branch of the p-adic
logarithm log : F×p → Fp, we obtain

(7.2) dLp
dk (Ξ/F, φ, 2) = 1

2
∑

[t]∈Cl+(OF )

φ(t)(Jθ[t] + Jθ̄[t]),

where for τ ∈ Cp with τ 6∈ Qp,

Jτ [t] :=
∫
L′0

log(x− τy)µGS
Ξ−({r} − {Ψ(ε1)r} ,Ψ(t)ςf)(x, y).

Let J =
(
−1 T(θ)
0 1

)
∈ GL2(Q) ↪→ GL2(Q̂). Write Jp and J (p) for its image

in GL2(Qp) and GL2(Q̂(p)) respectively and let τN =
( 0 1
−N 0

)
∈ GL2(Q̂(p))

be the Fricke involution at N . Since J 2 = 1 and ςp = 1, one verifies that

ςJp = JJ (p)ςf = JΨ(σN)ςf · τN

for an appropriate choice of a finite idele σN ∈ F̂× such that (σNÔF ∩F ) =
N. We have J (θ) = θ and

∫
L′0
µΞ−(D)(x, y) = 0 as f2 is new at p. It follows
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from the U0(N)-invariance (6.6) that

(7.3)

Jθ̄[t] =
∫
L′0

logp(x− θy)µGS
Ξ−({r} − {Ψ(ε1)r} ,Ψ(t)ςJp)(x, y)

=
∫
L′0

log(x− θy)µGS
Ξ−([c]({r} −

{
Ψ(ε−1

1 )r
}
,Ψ(tσN)ςτN ))(x, y)

= (−1) · (−1) · wN · Jθ[tσNε1].

With the fixed choice of periods Ω±, it is straightforward to deduce from [1,
Corollary 2.6] that the p-adic logarithm of the Stark–Heegner point Pφ is
given by

logE Pφ =
∑

[t]∈Cl+(OF )

φ(t)Jθ[t].

We thus obtain the formula for dLp
dk (Ξ/F, φ, 2) from (7.2) and (7.3). �

Remark 7.6. The same argument applies to more general ring class char-
acters with split conductor (i.e. C 6= 1 is a product of primes split in F ),
but the formulae are more complicated due to the non-canonical choice of
the test vector Ξ̆ in the construction of LΞ̆−/F⊗φ.
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