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Conjecture A and µ-invariant for Selmer groups
of supersingular elliptic curves

par Parham HAMIDI et Jishnu RAY

Résumé. Soit p un nombre premier impair et soit E une courbe elliptique sur
un corps de nombres F ayant bonne réduction en toute place au-dessus de p.
Dans cet article de synthèse, nous donnons un aperçu de certains des résul-
tats importants sur le groupe de Selmer fin et les groupes de Selmer signés
dans les tours cyclotomiques aussi que sur les groupes de Selmer signés dans
les Z2

p-extensions d’un corps quadratique imaginaire, où p est complètement
décomposé. Nous discutons uniquement des aspects algébriques en utilisant
des outils de la théorie d’Iwasawa. Nous donnons un survol de certains des
résultats récents impliquant l’annulation de l’invariant µ sous l’hypothèse de
la conjecture A. En outre, nous esquissons une analogie entre le groupe de Sel-
mer classique dans le cas de bonne réduction ordinaire et le groupe de Selmer
signé de Kobayashi dans le cas supersingulier. Nous mettons l’accent sur les
propriétés des groupes de Selmer signés dans le cas où E a bonne réduction
supersingulière, qui sont complètement analogues à celles des groupes de Sel-
mer classiques quand E a bonne réduction ordinaire. Cet article ne contient
pas de démonstrations, cependant pour le lecteur intéressé, nous donnons des
références pour les résultats exposés dans le texte.

Abstract. Let p be an odd prime and let E be an elliptic curve defined over
a number field F with good reduction at the primes above p. In this sur-
vey article, we give an overview of some of the important results proven for
the fine Selmer group and the signed Selmer groups over cyclotomic towers
as well as the signed Selmer groups over Z2

p-extensions of an imaginary qua-
dratic field where p splits completely. We only discuss the algebraic aspects
of these objects through Iwasawa theory. We also attempt to give some of the
recent results implying the vanishing of the µ-invariant under the hypothesis
of Conjecture A. Moreover, we draw an analogy between the classical Selmer
group in the ordinary reduction case and that of the signed Selmer groups
of Kobayashi in the supersingular reduction case. We highlight properties of
signed Selmer groups, when E has good supersingular reduction, which are
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completely analogous to the classical Selmer group, when E has good ordi-
nary reduction. In this survey paper we do not present any proofs, however, we
have tried to give references of the discussed results for the interested reader.

Introduction
Classical Iwasawa theory began from the work of Iwasawa who explored

the growth of ideal class groups in towers of number fields. Iwasawa theory
for elliptic curves, which shares many of its fundamental ideas with classical
Iwasawa theory, deals with the arithmetic of elliptic curves over various
infinite extensions. Among the main objects of study in Iwasawa theory are
Selmer groups of the Galois representations attached to the elliptic curves
at a prime p.

Over the cyclotomic Zp-extension of a number field, when the Galois rep-
resentation (or equivalently, the elliptic curve) has good ordinary reduction
over a prime p, then the Pontryagin dual of the Selmer group is conjectured
to be a finitely generated torsion module over the Iwasawa algebra of a p-
adic Lie group of dimension 1 (cf. Conjecture 6.1). This conjecture has been
proved by Kato for elliptic curves over Q for the cyclotomic Zp-extension
Qcyc of Q.

Mazur’s conjecture can be generalized for arbitrary p-adic Lie exten-
sions provided the elliptic curve has good ordinary reduction at p. Given
a compact p-valued p-adic Lie group, the corresponding Iwasawa algebra
admits a nice structure theory for finitely generated torsion modules (up
to pseudo-isomorphism) (cf. [17]). Therefore, the dual Selmer group enjoys
important algebraic properties, and in the ordinary reduction case, it has
been studied extensively.

When the elliptic curve has good supersingular reduction at primes over
p, however, the Pontryagin dual of the Selmer group, even though still
finitely generated, is not a torsion module over the corresponding Iwasawa
algebra. In fact, it is shown to have positive rank [20, Theorem 2.6] for the
cyclotomic Zp-extension and it is believed to be true more generally.

Nevertheless, this problem can be partially addressed if we focus our
attention to certain subgroups of the Selmer groups. The signed Selmer
groups, which were first introduced by Kobayashi (in [37]), are subgroups
of Selmer groups and the emerging picture seems to be that the signed
Selmer groups enjoy many of the properties in the supersingular case that
are enjoyed by the Selmer groups in the ordinary case. This survey intends
to give evidence for this claim.

Over the cyclotomic Zp-extension Qcyc/Q, the dual of the signed Selmer
groups (often called plus/minus Selmer groups) are finitely generated tor-
sion modules over the Iwasawa algebra of Gal(Qcyc/Q). In [19], Coates and
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Sujatha considered the notion of the fine Selmer group, which is a sub-
group of the signed Selmer groups. Therefore, the Pontryagin dual of fine
Selmer is a finitely generated module over the corresponding Iwasawa alge-
bra. They conjectured that the µ-invariant of the dual fine Selmer is zero;
this is known as Conjecture A to Iwasawa theorists.

Thus, we are left with four finitely generated torsion modules, viz. dual
fine Selmer, dual plus and minus Selmer, dual of the torsion submodule of
the Selmer. This article attempts to bring in light the connections between
µ-invariants of these torsion modules.

This article is organized as follows. In Section 1, we define the Selmer
group, the fine Selmer group, and the signed Selmer groups over cyclo-
tomic towers as well as the signed Selmer groups over a Z2

p-extension of an
imaginary quadratic field where p splits completely.

In Section 2, we give some of the definitions that we will use in the rest
of this article, such as the Iwasawa algebra, pseudo-nullity, and the Euler
characteristic. We discuss the structure theorem and use it to define the µ-
invariant and the characteristic polynomial of a finitely generated module
over a given Iwasawa algebra. Furthermore, we recall Conjecture A and
discuss how it is related to Iwasawa µ-invariant conjecture over cyclotomic
extensions. We finish Section 2 by describing what is known as Iwasawa
main conjecture which beautifully relates an algebraically defined object
to an analytically defined one, both coming from the arithmetic of number
fields.

Then, in Section 3, we recall some of the most important results proved
so far for the signed Selmer groups over the cyclotomic Zp-extension and
Z2
p-extension. We note an exact sequence, due to Kobayashi [37], connect-

ing the fine Selmer group with that of the signed Selmer groups. This
exact sequence can be thought of as a tool to transport information from
the fine Selmer group (like Conjecture A or its dual being torsion) to the
signed Selmer groups. Moreover, we talk about how the Euler characteris-
tic varies as we climb up the Iwasawa theoretic tower from the cyclotomic
Zp-extension to a Z2

p-extension; this is a result of Lei and Sujatha [41] (see
Theorem 3.18).

In Section 4, over the cyclotomic Zp-extension, when the elliptic curve has
supersingular reduction at the primes above p, we explain how Conjecture A
implies that the µ-invariant attached to the torsion part of the dual Selmer
group is zero. To show this, we use important results proved by Billot [10]
and then generalized by Wingberg [66].

Our goal in Section 5 is to give another view of Kobayashi’s signed Selmer
groups for the cyclotomic Zp-extension. Lei, Loeffler and Zerbes [40, 42]
have redefined Kobayashi’s signed Selmer groups using Fontaine’s p-adic
Hodge theory and Fontaine’s ring Ẽ (see [42, Section 2.1]). The Fontaine’s
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ring Ẽ is the tilt of the perfectoid field ̂Qp(µp∞) in the terminology of
Scholze. In Section 5, we start by recalling the notion of perfectoid spaces
of Scholze [60] which gives a geometric understanding of Fontaine’s p-adic
Hodge theory and Fontaine–Winterberger theorem [24]. Then, we use the
language of perfectoids to give the definition of signed Selmer groups. Since
the titling construction of Scholze works for any general perfectoid field,
this poses a natural open question of whether it is possible to define signed
Selmer groups for more general p-adic Lie extensions using Scholze’s con-
struction of perfectoid fields. Note that, at present, all the constructions:
EL, AL, (ϕ,Γ)-modules and their relation with Iwasawa cohomology dis-
cussed in Section 5 are difficult to generalize for extensions other than the
cyclotomic one (see for example [8] for an obstruction of the existence of
a lift of Frobenius and the Galois action from EL to AL). The reader can
consult [9, 38, 58] for progress in the Lubin–Tate extensions. For a result on
general perfectoid fields in Iwasawa theory see [55] which is a generalization
of [15].

Finally, in Section 6, we turn our attention to elliptic curves with good
ordinary reduction at p and we list some properties of the dual Selmer
group that are analogous to the case of signed Selmer groups in the super-
singular reduction case. To finish, we pose two questions that remain open
for elliptic curves with supersingular reduction concerning signed Selmer
groups and their µ-invariants, while their analogue holds for Selmer groups
in the ordinary reduction case.

Acknowledgments. We would like to thank Denis Benois, Sujatha Ram-
dorai, Antonio Lei, and the referee for their help and many invaluable com-
ments and suggestions.

1. Definitions of Selmer, signed Selmer, and fine Selmer groups
Let p be an odd prime. Let F be a number field, F ′ be a subfield of

F , and E/F ′ be an elliptic curve with good reduction at all the primes
above p. Let S be a finite set of primes of F ′ containing primes above p,
the archimedean places and the primes where E has bad reduction.

1.1. Selmer group. Let Fcyc be the cyclotomic Zp-extension of F , and
let Γ denote Gal(Fcyc/F ) which is topologically isomorphic to Zp. For each
integer n ≥ 0, let Fn be the sub-extension of Fcyc such that Fn is a cyclic
extension of degree pn over F . The p-Selmer group over Fn is defined by
the sequence

0 −→ Selp(E/Fn) −→ H1(Fn, Ep∞) −→
∏
w

H1(Fn,w, E),
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where w runs over all primes of Fn and Fn,w is the completion of Fn at
prime w. For v ∈ S, we let

Jv(E/Fn) :=
⊕
w|v

H1(Fn,w, E)(p) ∼=
⊕
w|v

H1(Fn,w, Ep∞)
E(Fn,w)⊗Qp/Zp

,

where the isomorphism is due to the Kummer map (cf. [20, Section 1.6]).
Then, we have an exact sequence1

(1.1) 0 −→ Selp(E/Fn) −→ H1(FS/Fn, Ep∞) λn−→
⊕
v∈S

Jv(E/Fn).

Here FS is the maximal extension of F unramified outside S and λn is
consists of localization maps. Here, the choice of S implies that Fcyc ⊂ FS .

FS

Fcyc

...

Fn

...

F

F ′

GS(F )

Γ'Zp

Zp/pnZp

We define
Selp(E/Fcyc) := lim−→

n

Selp(E/Fn),

and we obtain the following exact sequence by taking the direct limit of the
exact sequence (1.1) over intermediate field extensions Fn

0 −→ Selp(E/Fcyc) −→ H1(FS/Fcyc, Ep∞) λcyc−−→
⊕
v∈S

Jv(E/Fcyc).

1We refer the reader to [20, Sections 1.7 and 2.2] for more details about the equivalent
definitions of the Selmer group.
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Definition 1.1. Suppose K is a p-adic Lie extension of F ′. The p-Selmer
group over K is

Selp(E/K) := ker
(
H1(K,Ep∞) −→

∏
w

H1(Kw, E)
)
,

where w runs over all primes of K and Kw is the union of the completions
at w of all finite extensions of F ′ contained in K.

It is not hard to see that

Selp(E/K) = lim−→
L

Selp(E/L)

where L runs over all finite extensions of F ′ contained in K.

1.2. Signed Selmer groups over cyclotomic extension. We write
Sss
p to be the set of primes of F ′ lying above p where E has supersingular

reduction. Let F ′v be the completion of F ′ at a prime v ∈ Sss
p with the

residue field k′v. Let Ẽ(k′v) be the k′v-points of the reduction of E at place
v. We assume the following:

(i) Sss
p 6= ∅;

(ii) For all v ∈ Sss we have that F ′v, the completion of F ′ at v, is Qp;
(iii) av = 1 + p−#Ẽ(k′v) = 0;
(iv) v is unramified in F .
Let Sss

p,F denote the set of primes of F above Sss. Note that every prime
v ∈ Sss

p,F is totally ramified in the extension Fcyc/F and therefore there
exists a unique prime in Fn for each prime v ∈ Sss

p,F . Let Fn,v be the
completion of Fn at the unique prime over v ∈ Sss

p,F . For every v ∈ Sss
p,F ,

following Kobayashi [37] and Kitajima–Otsuki [36], we define

E+(Fn,v) =
{
P ∈ Ê(Fn,v)

∣∣∣∣∣ Tracen/m+1 P ∈ Ê(Fm,v)
for all even m, 0 ≤ m ≤ n− 1

}
,(1.2)

E−(Fn,v) =
{
P ∈ Ê(Fn,v)

∣∣∣∣∣ Tracen/m+1 P ∈ Ê(Fm,v)
for all odd m,−1 ≤ m ≤ n− 1

}
.(1.3)

Here Tracen/m+1 is the trace map from Ê(Fn,v) to Ê(Fm+1,v). For all n ≥ 0,
we define

Epn+1 = ker
(
E(Q) pn+1

−−−→ E(Q)
)
,

Ep∞ =
⋃
n≥0

Epn+1 .
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Identifying E±(Fn,w)⊗Qp/Zp with a subgroup of H1(Fn,w, Ep∞) via the
Kummer map, we may define the local terms

J±v (E/Fn) =
⊕
w|v

H1(Fn,w, Ep∞)
E±(Fn,w)⊗Qp/Zp

.(1.4)

Definition 1.2. The plus and minus Selmer groups over Fn are defined by

Sel±p (E/Fn) = ker

Selp(E/Fn) −→
⊕

v∈Sss
p,F

J±v (E/Fn)

 .
The plus and minus Selmer groups over Fcyc are obtained by taking direct
limits

Sel±p (E/Fcyc) = lim−→
n

Sel±p (E/Fn).

1.3. Signed Selmer groups over a Z2
p-extension. Suppose F is an

imaginary quadratic field where p splits completely. Let F∞ denote the
compositum of all Zp-extensions of F . By Leopoldt’s conjecture2 we know
that

G = Gal(F∞/F ) ' Z2
p,

which implies that F∞ over Fcyc is a Zp-extension. Let v be a place of
F and w be a place of F∞ above v. If v | p, then Fv ' Qp and F∞,w
is an abelian pro-p extension over Fv and Gal(F∞,w/Fv) ' Z2

p. Under this
setting, it is possible to define the plus and minus norm groups E±(F∞,w) ⊂
Ê(F∞,w) via trace maps as in (1.2) and (1.3) (cf. [41, Section 5.2] which
is a generalization of a construction by Kim [35]). Similar to the above
construction, we may define the local terms

J±v (E/F∞) =
⊕
w|v

H1(F∞,w, Ep∞)
E±(F∞,w)⊗Qp/Zp

.(1.5)

Definition 1.3. Retain the settings described above. The plus and minus
Selmer groups over the Z2

p-extension F∞ are defined by

(1.6) Sel±p (E/F∞) = ker

Selp(E/F∞) −→
⊕

v∈Sss
p,F

J±v (E/F∞)

 .
Here the (classical) Selmer group Selp(E/F∞) is defined by taking in-

ductive limit of Selmer groups over all finite extensions contained in the
p-adic Lie extension F∞.

2Good references for Leopoldt’s conjecture are Sections 5.1 and 13.1 of [65]. In particular, for
our claim about the number of independent Zp-extensions above a number field, please look at
Theorem 13.4 and Corollary 5.32.
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1.4. Fine Selmer group. The fine Selmer group of an elliptic curve over
a number field is a subgroup of the Selmer group. The fine Selmer group is
obtained when we impose extra stronger conditions at the primes above p
on the sequence defining the Selmer groups.

Definition 1.4. The fine Selmer group of E/F ′ over a number field L/F ′
is

Sel0p(E/L) := ker
(
H1(L,Ep∞) −→

∏
ν

H1(Lν , Ep∞)
)
,

where ν runs over all places of L and Lν is the completion of L at ν. Let
Sel0p(E/Fcyc) := lim−→

n

Sel0p(E/Fn).

When K is a p-adic Lie extension of F ′, then
Sel0p(E/K) = lim−→

L

Sel0p(E/L)

where L runs over all finite extensions of F ′ contained in K.

Remark 1.5. We can turn the direct product in the above Definition 1.4
into a direct sum in the following way. Let S be a finite set of primes of F ′
containing primes above p, the archimedean places and the primes where E
has bad reduction. Let GS(L) = Gal(LS/L) where LS denote the maximal
extension of L unramified outside of S. Then, the above definition becomes
(cf. [19] for more details):

Sel0p(E/L) := ker
(
H1(GS(L), Ep∞) −→

⊕
ν∈S

Kν(L)
)
,

where
Kv(L) =

⊕
ω|ν

H1(Lω, Ep∞).

2. Preliminaries of Iwasawa theory
2.1. Iwasawa Algebra.

Definition 2.1. Let G be a compact p-adic Lie group. We define the Iwa-
sawa algebra of G, denoted by Λ(G), to be the completed group algebra of
G over Zp. That is

Λ(G) = Zp[[G]] := lim←−
N⊂G

Zp[G/N ],

where N runs over open normal subgroups of G.

Remark 2.2. If there exists n ≥ 1 such that the G ' Znp (as topolog-
ical groups), then Λ(G) is isomorphic to the ring of formal power series
Zp[[T1, . . . , Tn]], in indeterminate variables T1, . . . , Tn.
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When G = Gal(Fcyc/F ) ' Zp (resp. G ' Z2
p) then Λ(G) ' Zp[[T ]] (resp.

Λ(G) ' Zp[[T1, T2]]). In this case, Λ(G) is a commutative, regular local ring
of Krull dimension 2 (resp. 3). More generally, when our Galois group G is
a non-commutative, torsion-free, compact p-adic Lie group of dimension d,
then Λ(G) is a non-commutative, left and right Noetherian local domain,
and Auslander regular ring with global dimension d+1 (cf. [64]). This allows
Λ(G) to admit a nice dimension theory for its finitely generated modules3.

Definition 2.3. Let M be a finitely generated Λ(G)-module. Then, M is
said to be pseudo-null if

dimΛ(G)(M) ≤ dimΛ(G)(Λ(G))− 2.

Furthermore, M is Λ(G)-torsion if

dimΛ(G)(M) ≤ dimΛ(G)(Λ(G))− 1.

Therefore, a pseudo-null Λ(G)-module is Λ(G)-torsion.

Remark 2.4. Equivalently, whenever G is a torsion-free pro-p group, a
finitely generated Λ(G)-module M is torsion if

Ext0
Λ(G)(M,Λ(G)) = 0,

and it is pseudo-null if

ExtiΛ(G)(M,Λ(G)) = 0

for i = 0, 1.

Remark 2.5. We note that if Λ(G) is commutative, a Λ(G)-module M is
pseudo-null exactly when the annihilator ideal AnnΛ(G)(M) has height at
least 2. If

Γ := Gal(Fcyc/F ) ' Zp,
and hence Λ(Γ) ' Zp[[T ]], then we can show that a finitely generated Λ(Γ)-
module is pseudo-null if and only if it is finite.

Remark 2.6. For a general compact torsion-free p-adic Lie group G, a
finite Λ(G)-module is always pseudo-null but the converse is not true.

Definition 2.7. Suppose G is a compact p-adic Lie group and M is a
Λ(G)-module. The Pontryagin dual of M , denoted by M̂ , is defined to be

M̂ := Hom(M,Qp/Zp)

where Hom denotes the group of continuous homomorphisms.

3For information on the ring-theoretic properties of Iwasawa algebras we suggest Ardakov’s
survey paper [4].
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2.2. Euler characteristic. Suppose G = Gal(K/F ), where K is a p-adic
Lie extension of a number field F . Suppose G has finite dimension d as a
p-adic Lie group. Then, provided that G has no non-trivial p-torsion, G has
p-cohomological dimension equal to d (cf. [62, Corollary 1]).
Definition 2.8. Suppose G is a p-adic Lie group with p-cohomological di-
mension equal to d. Given a discrete primary G-moduleM and if H i(G,M)
is finite for i = 0, . . . , d, the G-Euler characteristic4 of M is defined to be

χ(G,M) :=
d∏
i=0

(
#H i(G,M)

)(−1)i
.

2.3. Structure theorem. Suppose K/F is a Zp-extension, and therefore
G = Gal(K/F ) ' Zp.

Moreover, supposeM is a finitely generated Λ(G)-module. Then, the struc-
ture of M as a Λ(G)-module is well understood up to pseudo-isomorphism.

We say that a Λ(G)-homomorphism f : M → M ′ between two Λ(G)-
modules M and M ′ is a pseudo-isomorphism if f has finite kernel and
cokernel. We say M and M ′ are pseudo-isomorphic and we denote this by
M ∼M ′. The following structure theorem is due to Iwasawa.
Theorem 2.9. Let M be a finitely generated Λ(G)-module. Then

M ∼ Λ(G)r ⊕
(

s⊕
i=0

Λ(G)/pniΛ(G)
)
⊕

 t⊕
j=1

Λ(G)/fj(T )mjΛ(G)

 ,
where r, s, t, ni, and mj are non-negative integers and are unique up to
reordering. Moreover, fj(T ) ∈ Zp[T ] is an irreducible monic distinguished
polynomial 5 for each j ∈ {1, . . . , t}.

Note that in Theorem 2.9, r is the rank of M as a Λ(G)-module and M
is torsion if and only if r = 0. This enables us to define some important
structural invariants for finitely generated Λ(G)-modules.
Definition 2.10. Let M be a finitely generated Λ(G)-module. Then the
characteristic polynomial of M , denoted by CharpolyG(M), is defined by

CharpolyG(M) := pµG(M)
t∏

j=1
fj(T )mj ,

where µG(M) :=
∑s
i=0 p

ni and s, t, ni, andmj are as in Theorem 2.9. More-
over, the characteristic ideal of M , denoted by CharG(M), is the principle
Λ(G)-ideal generated by CharpolyG(M)

CharG(M) := (CharpolyG(M)) ⊂ Λ(G)
4see [46, Definition 3.3.12].
5A monic polynomial in Zp[T ] is distinguished if p divides all of its coefficients except for the

leading one.
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It turns out that the above theorem can be naturally extended6 to any
extension K/F with G = Gal(K/F ) ' Znp where n ≥ 1. Suppose G is
a pro-p, p-adic Lie group that is topologically isomorphic to Znp for some
n ≥ 1, and as a result, Λ(G) ' Zp[[T1, . . . , Tn]] for indeterminate variables
T1, . . . , Tn. SupposeM is a finitely generated Λ(G)-module. Recall from the
Definition 2.3 that we say M is a pseudo-null if

dimΛ(G)(M) ≤ dimΛ(G)(Λ(G))− 2 = (n+ 1)− 2 = n− 1

Moreover, we call a Λ(G)-homomorphism f : M →M ′ between two finitely
generated Λ(G)-modules a pseudo-isomorphism if the kernel and cokernel
of f are pseudo-null Λ(G)-modules.

Suppose M is a finitely generated torsion Λ(G)-module. Let us denote
the p-primary torsion Λ(G)-submodule of M by M(p). Then, we have the
following theorem [11, Chapter VII, Section 4.4, Theorems 4 and 5]:

Theorem 2.11. Let G be a pro-p p-adic Lie group that is isomorphic to
Znp for some n ≥ 1 and let M be a finitely generated torsion module over
Λ(G) with no elements of order p. Then, there exist a pseudo-isomorphism

M(p) ∼
s⊕
i=0

Λ(G)/pniΛ(G)

where n1, . . . , ns are unique up to reordering.

The µ-invariant of M , denoted by µG(M), is defined to be

µG(M) =
s∑
i=0

ni,

where n1, . . . , ns are as in Theorem 2.11 described above.

2.4. Introduction to Conjecture A. Let F be a number field and let p
be an odd prime. Let Fcyc/F be the cyclotomic Zp-extension of F and let
Γ := Gal(Fcyc/F ). Then, let Fn/F be the sub-extension of Fcyc such that

Gal(Fn/F ) = Γ/Γpn = Z/pnZ.

6When G is a non-commutative torsion-free, compact p-adic Lie group, there is a structure
theory for finitely generated torsion modules over the Iwasawa algebra Λ(G) [18].
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Let Ln/Fn be the maximal unramified abelian p-extension of Fn (so Ln is
the p-Hilbert class field extension of Fn).

L

Fcyc

Ln

Fn

F

Γ

Note that by class field theory Gal(Ln/Fn) is isomorphic to the p-Sylow
subgroup of the ideal class group of Fn. Let L :=

⋃
n Ln, and then

X(Fcyc) := Gal(L/Fcyc)
can be given a (natural) Γ-action, and therefore it can be turned into a
Λ(Γ)-module. Iwasawa proved that X(Fcyc) is a finitely generated torsion
Λ(Γ)-module (cf. [31]). Moreover, in his celebrated work [32], Iwasawa con-
jectured the following.

For any number field F, X(Fcyc) is a finitely generated Zp-module.
By the structure theorem, this is equivalent to say that µΓ(X(Fcyc)) = 0.

We have the following important theorem of Ferrero–Washington [21].
Theorem 2.12. Iwasawa µ-invariant conjecture holds for all abelian num-
ber fields.

Let X0(E/Fcyc) denote the Pontryagin dual of Sel0p(E/Fcyc). Then, we
have the following conjecture of Coates and Sujatha [19].
Conjecture A. For any number field F , X0(E/Fcyc) is a finitely generated
Zp-module.

We note that this is equivalent to X0(E/Fcyc) being a torsion Λ(Γ)-
module and having µ-invariant equal to zero (for the definition of µ-
invariant see Section 2.1).
Remark 2.13. See Section 4.2 for several examples of elliptic curves where
it is shown that Conjecture A is satisfied.

The following theorem of Coates–Sujatha [19, Theorem 3.4] relates Con-
jecture A and the Iwasawa µ-invariant conjecture for cyclotomic field ex-
tensions of algebraic number fields.
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Theorem 2.14. Suppose E/F is an elliptic curve over a number field F .
Suppose p is an odd prime such that the field extension F (Ep∞)/F is a
pro-p extension. Then Conjecture A holds for E over Fcyc if and only if the
Iwasawa µ-invariant conjecture holds for Fcyc.

Using Theorem 2.14, Coates and Sujatha gave the following conditions
for an elliptic curve E/F to satisfy Conjecture A [19, Corollary 3.5].
Theorem 2.15. Suppose p is an odd prime. If there exists a finite extension
L/F of F such that

(1) L ⊂ F (Ep∞);
(2) F (Ep∞) is pro-p, and
(3) the Iwasawa µ-invariant conjecture hold for Lcyc,

then Conjecture A holds for E over Fcyc. That is, X0(E/Fcyc) is a finitely
generated Zp-module.

Moreover, Coates and Sujatha combined the above theorem and Theo-
rem 2.12 to prove [19, Corollary 3.6]:
Theorem 2.16. Suppose p is an odd prime and let F/Q be a number field
such that Gal(F/Q) is abelian. If Ep∞(F ) 6= 0 then Conjecture A holds for
E over Fcyc.
Remark 2.17. In [63], the authors investigate the behavior of Conjec-
ture A under the change of base field, short exact sequences of representa-
tions, and isogenies. Moreover, they give various equivalent formulations of
Conjecture A and they discuss the relation between Conjecture A and the
Iwasawa µ-invariant conjecture in more details.7

2.5. Iwasawa main conjecture. In this section, we give a brief account
of the classical Iwasawa main conjecture. Iwasawa main conjecture describes
a striking relation between two objects attached to number fields, a p-
adic analytic object, in the form of the values of the p-adic L-functions
and certain algebraically defined Iwasawa module. Therefore, Iwasawa main
conjecture gives us a bridge between algebraic treatments of arithmetic
objects and that of the analytic side. To give the statement of Iwasawa main
conjecture, we need to introduce more notations. We follow Chapter 15 of
Washington’s book [65].

Let p be an odd prime. Let F = Q(µp) and consider the cyclotomic
extension Q(µp∞)/Q(µp) = Fcyc/F , where µpn denotes a pn-th primitive
root of unity and Q(µp∞) =

⋃
n≥0 Q(µpn). Let Γ = Gal(Q(µp∞)/Q(µp)).

Furthermore,
(1) Let An be the p-Sylow part of the ideal class group of Q(µpn+1) for

n ≥ 0 and A∞ := lim−→n
An.

7We thank the referee for suggesting Remark 2.17 to us.
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(2) Let L be the maximal unramified abelian p-extension of Q(µp∞)
and X(Fcyc) = Gal(L/Q(µp∞)).

(3) Let εi denote the ith idempotent element of Gal(Q(µp)/Q) where i
is odd.

(4) Let Lp(s, ωj) be the p-adic L function for ωj where ω is the Te-
ichmüller character at p and j is even (cf. [65, Chapter 5-7] for a
construction of the p-adic L function).

(5) Let f(T, ωj) ∈ Zp[[T ]] ∼= Zp[[Γ]] be such that f((1 + p)s − 1, ωj) =
Lp(s, ωj) (cf. [65, Chapter 13, Section 6]).

Then, as we discussed, X(Fcyc) is a Λ(Γ)-module and Iwasawa proved that
X(Fcyc) is finitely generated and torsion. Since F = Q(µp) is an abelian
extension of Q. Theorem 2.12 implies that µΓ(X(Fcyc)) = 0 and by the
structure theorem (see Theorem 2.9), we see that

X(Fcyc) ∼
t⊕

j=1
Λ(Γ)

/
fj(T )mjΛ(Γ)

and

CharpolyΓ(X(Fcyc)) =
t∏

j=1
fj(T )mj

where fj ∈ Λ(Γ) ∼= Zp[[T ]] is an irreducible distinguished polynomial for
each j ∈ {1, . . . , t}, as described in Theorem 2.9. The (classical) Iwasawa
main conjecture was proved by Mazur and Wiles in [45] and it states that
(cf. [65, Chapter 15, Section 4, Theorem 15.14]):

Theorem 2.18. Retain the notations (1) to (5) described above. Let i be
an odd integer such that i 6= 1 (mod p− 1). Then

CharpolyΓ(εiX(Fcyc)) = f(T, ω1−i)u(T )
where u(T ) ∈ Λ(Γ)× is a unit of Λ(Γ).

The Iwasawa main conjecture was generalized (and proved in many cases)
to more general number fields and elliptic curves.

3. Properties of fine Selmer and signed Selmer groups
Let p be an odd prime and let F be a number field. Suppose E/F is an

elliptic curve with good reduction at all the primes above p. Let X(E/Fcyc)
denote the Pontryagin dual of Selp(E/Fcyc). Then X(E/Fcyc) is finitely gen-
erated as a Λ(G)-module where G = Gal(Fcyc/F ). If E has good ordinary
reduction over all the primes above p then X(E/Fcyc) is conjectured to be
torsion as a Λ(Γ)-module (see Conjecture 6.1 for more details). Similarly,
assume now that F is a quadratic imaginary field where p splits and F∞ is
the compositum of all Zp-extensions of F which by Leopoldt’s conjecture we
know that it is a Z2

p-extension. Let X(E/F∞) denote the Pontryagin dual of
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Selp(E/F∞). Then, X(E/F∞) is finitely generated as a Λ(G)-module and if
E has good ordinary reduction over all the primes above p, it is conjectured
to be torsion as a Λ(G)-module (a generalization of Conjecture 6.1). For
simplicity, let X(E/F�) denote the Pontryagin dual of Selp(E/F�), where
� ∈ {cyc,∞}. Unlike the ordinary case, X(E/F�) is believed (shown for
the cyclotomic Zp-extension, see [20, Theorem 2.5]) to have positive rank,
and therefore it is no longer a torsion Iwasawa module. However, the Pon-
tryagin dual of the signed Selmer groups Sel±p (E/F�), which we denote by
X±(E/F�), is conjectured to be torsion.

3.1. Cyclotomic case. Let E be an elliptic curve over Q with good super-
singular reduction at p and suppose ap = 0. (The signed Selmer groups are
defined by Sprung [29] when ap is nonzero). In this survey paper we mainly
focus on ap = 0 case. Let us denote Gal(Qcyc/Q) by Γ. Then, Kobayashi
proved that ([37, Theorem 1.2]):

Theorem 3.1. The dual Selmer group X±(E/Qcyc) is a finitely generated
torsion Zp[[Γ]]-module.

Moreover, Kobayashi used Kato’s Euler system to prove the following
theorem [37, Theorem 1.3]:

Theorem 3.2. Suppose E/Q does not have complex multiplication. Then
for almost all primes p, we have that the ideal generated by Pollack’s p-adic
L-function L±p (E,X) as Λ(Γ)-modules (see [54] for more details) is con-
tained in the characteristic ideal of the Pontryagin dual of Sel±p (E/Qcyc).
That is,

(L±p (E,X)) ⊆ CharΓ(X±(E/Qcyc)).

The plus/minus-Iwasawa main conjectures predict that these contain-
ments are an equality8.

More generally, let us adapt the notations of Section 1.2. Here, F ′ is a
number field and E/F ′ is an elliptic curve with good reduction at all the
primes above p, where p is an odd prime. Suppose F/F ′ is a finite extension
of F ′. Then, we have the exact sequence

(3.1) 0 −→ Sel±p (E/Fcyc) −→ H1(FS/Fcyc, Ep∞)
λ±cyc−−→

⊕
ν∈S

J±v (E/Fcyc).

Lei and Sujatha proved the following statement ([41, Proposition 4.4]).

Theorem 3.3. X±(E/Fcyc) is torsion as a Λ(G)-module if and only if λ±cyc
is surjective in (3.1) and H2(FS/Fcyc, Ep∞) = 0.

8Kobayashi showed that, in this supersingular setting, the plus/minus-Iwasawa main conjec-
tures are equivalent to Kato’s and Perrin-Riou’s main conjectures (cf. [37, Theorem 7.4]).
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Remark 3.4. H2(FS/Fcyc, Ep∞) = 0 is called the weak Leopoldt’s conjec-
ture for Ep∞ over Fcyc. This is equivalent to say that X0(E/Fcyc), the Pon-
tryagin dual of Sel0p(E/Fcyc), is a finitely generated torsion Λ(Γ)-module [19,
Lemma 3.1]. More generally, the weak Leopoldt’s conjecture for Ep∞ on a
number field F predicts that

H2(FS/F,Ep∞) = 0.

Remark 3.5. Note that if Selp(E/F ) is finite then Sel±p (E/F ) is finite and
the dual signed Selmer groups X±(E/Fcyc) are Λ(Γ)-torsion (cf. Remark 4.5
of [41]). This provides examples for X±(E/Fcyc) to be torsion. By the above
theorem, it also provides examples for the weak Leopoldt’s conjecture for
Ep∞ over Fcyc.

For an elliptic curve E defined over Q, we have:

Theorem 3.6 ([37, Theorem 5.1 and Corollary 7.2]). X0(E/Qcyc) is a
finitely generated torsion Λ(Γ)-module.

In the following, we give an exact sequence due to Kobayashi [37] which
connects the signed Selmer groups with that of the fine Selmer group.

Let Fn = Q(ζpn+1). Let kn denote Qp(ζpn+1). Let Tp(E) be the p-adic
Tate module of the elliptic curve E and Vp(E) := Tp(E)⊗Qp. Suppose Sn
is the set of places of Fn over S, Gn,S := Gal(Fn,S/Fn) where Fn,S is the
maximal unramified extension of Fn outside Sn. We let

H i
/S(Tp(E)) := lim←−

n

H i(Gn,S , Tp(E)), H i
Iw,ν(Tp(E)) := lim←−

n

H i(Fn,ν , Tp(E)).

Moreover, we define H1
Iw,±(Tp(E)) as the inverse limit of the exact annihi-

lator of subgroups

E±(kn)⊗Qp/Zp ⊆ H1(kn, Vp(E)/Tp(E))

with respect to the Tate pairing (cf. [37])

H1(kn, Vp(E)/Tp(E))×H1(kn, Tp(E)) −→ Qp/Zp.

Additionally, we have the following exact sequence relating the fine Selmer
group with the signed Selmer groups ([37, Theorem 7.3]):

(3.2) 0 −→ H1
/S(Tp(E)) α−→ H1

Iw(Tp(E))/H1
Iw,±(Tp(E))

−→ X±(E/Qcyc) −→ X0(E/Qcyc) −→ 0.

We note that if Tp(E)/pTp(E) is irreducible as a two dimensional repre-
sentation of Gal(Q/Q) over Fp, then H1

/S(Tp(E)) is a free Λ(Γ)-module of
rank 1 ([33, Theorem 12.4]).
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Remark 3.7. Kobayashi uses the Coleman maps and Kato’s Euler system
to show that the map α in (3.2) is a non-zero map and the cokernel of α
is a Λ(Γ)-torsion module ([37, Theorem 6.3]). Then Theorem 3.6 and the
exact sequence (3.2) give a proof of the fact that X±(E/Qcyc) is torsion.

The following theorem tells us about the triviality of the finite Λ(Γ)-sub-
modules of the dual signed Selmer groups of an elliptic curve E/Q over the
cyclotomic Zp-extension ([34, Theorem 1.1]).

Theorem 3.8. Let p be an odd prime and suppose F is a finite extension
of Q in which p is unramified. Let E/Q have good supersingular reduction
at p with ap = 0.

(1) Suppose X−(E/Fcyc) is Λ(Γ)-torsion. Then, X−(E/Fcyc) has no
nontrivial finite Λ(Γ)-submodules.

(2) Suppose X+(E/Fcyc) is Λ(Γ)-torsion, and that p splits completely
in F . Then X+(E/Fcyc) has no nontrivial finite Λ(Γ)-submodules.

Remark 3.9. More generally, suppose E/F is an elliptic curve satisfying
the following conditions (cf. [41, Theorem 4.8]):

(1) E has supersingular reduction at all the primes of F above p.
(2) The map λ±cyc from (3.1) is surjective.
(3) H2(FS/F,Ep∞) = 0.
(4) H1(Γ, Sel±p (E/Fcyc)) = 0.

Then, X±(E/Fcyc) has no nontrivial finite Λ(Γ)-submodules.

Remark 3.10. See Theorem 4.2 for a similar result of Billot on elliptic
curves with complex multiplication.

Recall the Definition 2.8 of the Euler characteristic. Let Γ = Gal(Fcyc/F )
and thus Γ is topologically isomorphic to Zp. Hence Γ has p-cohomological
dimension equal to 1. Therefore, if χ(Γ,Sel±p (E/Fcyc)) is defined, i.e.
H i(Γ,Sel±p (E/Fcyc)) is finite for i = 0 and 1, then

χ(Γ,Sel±p (E/Fcyc)) =
#H0(Γ, Sel±p (E/Fcyc))
#H1(Γ, Sel±p (E/Fcyc))

.

The following theorem is due to Kim ([34, Theorem 1.2]).

Theorem 3.11. Let E/F be an elliptic curve over a number field F
and let Γ = Gal(Fcyc/F ). Suppose E has supersingular reduction at ev-
ery prime above p. Furthermore, suppose that Selp(E/F ) is finite. Then,
χ(Γ,Sel±p (E/Fcyc)) is well-defined, and up to a p-adic unit, is equal to

χ(Γ, Sel±p (E/Fcyc)) = # Selp(E/F )×
∏
ν

cν
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where ν runs over all primes of F , cν is the Tamagawa number of E at
prime ν and cν = [E(Fν) : E0(Fν)]. Here, E0(Fν) denotes the subgroup of
points of E(Fν) with non-singular reduction.

Finally, we mention a result analogous to the above result.

Remark 3.12. Ahmed and Lim in [2] extend the above result to compute
the Euler characteristics of the signed Selmer groups of elliptic curves with
mixed reduction type (not necessarily supersingular reduction at all the
primes above p) over the cyclotomic Zp-extension (cf. [2, Theorem 1.1]).

3.2. Z2
p-extension case. We work under the setting of Section 1.3 and

follow the results of Lei and Sujatha [41]. Let H = Gal(F∞/Fcyc) ∼= Zp and
G = Gal(F∞/F ). In particular, note that:

G/H = Gal(Fcyc/F ) = Γ ∼= Zp.
Recall the left exact sequence (3.1). Let us consider the following commu-
tative diagram (cf. [41, diagram 5.2]):

(3.3)

0 Sel±p (E/F∞)H H1(FS/F∞, Ep∞)H
⊕
ν∈S
J±ν (E/F∞)H

0 Sel±p (E/Fcyc) H1(FS/Fcyc, Ep∞)
⊕
ν∈S
J±ν (E/Fcyc).

λH,±∞

α±∞

λ±cyc

β±∞ γ±∞=
⊕

γ±ν,∞

Then, Lei and Sujatha proved the following results (cf. [41, Section 5.3]).

Theorem 3.13. The following statements hold true for the maps appearing
in (3.3):

(1) If λ±cyc is surjective, then α±∞ is injective and coker(α±∞) ∼= ker(γ±∞).
(2) The map β±∞ is an isomorphism.
(3) The map γ±ν,∞ is an isomorphism for all ν ∈ Sss

p,F and for all ν ∈ S
with ν 6 |p.

(4) The map γ±ν,∞ is surjective and ker(γ±ν,∞) is Λ(Γ)-cotorsion9 for all
ν ∈ S\Sss

p,F .

Remark 3.14. In particular, note that if E has good supersingular reduc-
tion at all the primes above p, then all the vertical maps in (3.3) become
isomorphism maps.

Recall that Theorem 3.3 implies that if X±(E/Fcyc) is torsion, then λ±cyc is
surjective. Furthermore, Lei and Sujatha proved (cf. [41, Proposition 5.11]):

Theorem 3.15. Suppose X±(E/Fcyc) is torsion. Then the map λH,±∞ in
(3.3) is surjective.

9A Λ(G)-module M is cotorsion if its Pontryagin dual is a torsion Λ(G)-module.
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Remark 3.16. We have a similar statement as Theorem 3.3 for the map
λ±∞ : H1(FS/F∞, Ep∞) −→

⊕
ν∈S

J±ν (E/F∞).

Namely, X±(E/F∞) is Λ(G)-torsion exactly when λ±∞ is surjective and
H2(FS/F∞, Ep∞) = 0

(cf. [41, proof of Corollary 5.12]).

Remark 3.17. Using Kim’s control theorems (cf. [35, Theorem 1.1]), Lei
and Sujatha proved that (cf. [41, Corollary 5.12 and Proportion 5.14]):

(i) If we assume Selp(E/F ) is finite, then H1(H,Sel±p (E/F∞)) = 0.
(ii) If we assume Selp(E/F ) is finite and E has supersingular reduction

at every prime above p, then H i(G,Sel±p (E/F∞)) = 0 for i ≥ 1.

The following theorem [41, Theorem 5.15] extends Theorem 3.11 to G-
Euler characteristic of Sel±p (E/F∞).

Theorem 3.18. Let E/F be an elliptic curve with supersingular reduction
at every prime above p. Furthermore, suppose Selp(E/F ) is finite. Then,
χ(G,Sel±p (E/F∞)) is well-defined, and

χ(G,Sel±p (E/F∞)) = χ(Γ,Sel±p (E/Fcyc)).

4. Conjecture A and µ-invariant of the torsion part of dual
Selmer group

In this section, we would like to show that Conjecture A implies that
the torsion part of the p-Selmer group has µ-invariant zero. To see this,
we need to relate the fine Selmer group and the torsion part of the Selmer
group.

4.1. Results of Billot and Wingberg. Suppose the following state-
ments hold:

(i) E/F is an elliptic curve with complex multiplication by an imagi-
nary quadratic field K and K ⊂ F .

(ii) Ep ⊂ E(F ).
(iii) p is an odd prime number inert in K.
(iv) E has good reduction on all the places of F over p.

Let F∞ = F (Ep∞). Then, Gal(F∞/F ) is topologically isomorphic to Z2
p [10,

Section 3]. Let G = Gal(F∞/F ) and let Λ(G) be the Iwasawa algebra of G.
Furthermore, we assume:

(v) The Leopoldt’s conjecture10 holds for all the intermediate fields in
the Z2

p-extension F∞ of F .

10See [65, Sections 5.5 and 13.1] for more information on Leopoldt’s conjecture.
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In the case when E has good supersingular reduction for some of the primes
above p, we expect the Pontryagin dual of the Selmer group X(E/F∞) to
have a positive rank. On the other hand, assuming conditions (i) to (iv),
Billot proved that the dual of Sel0(E/F∞) is a torsion Λ(G)-module (cf. [10,
Proposition 3.8]). Let us denote the Λ(G)-torsion submodule of X(E/F∞)
by TΛ(G)(X(E/F∞)). We have the following results by Billot.

Theorem 4.1 ([10, Theorem 3.23]). Given the above assumptions (i) to
(v), the Λ(G)-torsion submodule of the Pontryagin dual of the Selmer group
TΛ(G)(X(E/F∞)) is pseudo-isomorphic to the Pontryagin dual of the fine
Selmer group X0(E/F∞).
Theorem 4.2 ([10, Proposition 3.26]). Suppose the assumptions (i) to (v)
hold true. Further assume

(1) X(E/F∞) has no non-trivial pseudo-null Λ(G)-submodule.
(2) Let K∞ be a Zp-extension of F contained in F∞ and let H =

Gal(K∞/F ). Suppose
rankΛ(G)(X(E/F∞)) = rankΛ(H)(X(E/K∞)).

Then, X(E/K∞) has no non-trivial pseudo-null Λ(H)-submodule.
Now, suppose F is a number field and K∞/F is a Zp-extension of F .

The Tate–Shafarevich group X(E/F ) of an elliptic curve E/F is defined
by the exact sequence

0 −→X(E/F ) −→ H1(F,E) −→
⊕
ω

H1(Fω, E),

where ω runs over all archimedean and non-archimedean places of F . We
let X(E/F )pi to be the pi-th torsion subgroup of X(E/F ) and

X(E/F )p∞ = lim−→
i

X(E/F )pi .

Let Fn/F be the n-th layer of the cyclotomic Zp-extension Fcyc/F . Here,
we denote X(E/Fn)p∞ by Xn. The following theorem by Wingberg ([66,
Corollary 2.5]) is a generalization of Billot’s result.
Theorem 4.3. Suppose E/F is an elliptic curve with supersingular reduc-
tion for every prime of F over p. Assume that Xn is finite for all n and
the Pontryagin dual of E(Fcyc)⊗Qp/Zp is Λ(Γ)-torsion. Then,

TΛ(Γ)(X(E/Fcyc)) ∼ X0(E/Fcyc).

Remark 4.4. Assuming Conjecture A, we get that TΛ(Γ)(X(E/Fcyc)) has
µ-invariant equal to zero.
Remark 4.5. Wingberg shows that the dual fine Selmer group can be
identified with the adjoint of M , where M = TΛ(Γ)(X(E/Fcyc)) is the tor-
sion submodule of the dual Selmer group. The adjoint of M is defined as
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Ext1
Λ(G)(M,Λ(G)) (cf. [66, p. 473]). This adjoint is pseudo-isomorphic to

M , as M is a torsion Λ(G)-module (cf. [49, Chapter 1, Section 2.2]).
Remark 4.6. In [43], Ahmed Matar gives a Galois theoretic proof of Wing-
berg’s result (Theorem 4.3) with slightly different hypotheses. See [43, The-
orem 1.1].
4.2. Numerical examples. In this section, we give some evidences for
Conjecture A. We use the results of C. Wuthrich [67].
Theorem 4.7 ([67, Proposition 8.1]). Suppose p is an odd prime and E/Q
is an elliptic curve which admits an isogeny over Q of degree p. Then, the
µ-invariant of the Pontryagin dual of the fine Selmer group X0(E/Qcyc) is
zero.

Recall that, by Theorem 3.6, X0(E/Qcyc) is a finitely generated Λ(Γ)-
module. Therefore, if E/Q satisfies the hypothesis of Theorem 4.7, then
Conjecture A is satisfied for E/Q.

Here we summarize several numerical examples of elliptic curves E/Q
with a description of their fine Selmer groups for specific primes p discussed
in [67, Sections 9, 10, and 11].

Cremona label
of E/Q

Mordell–Weil
rank of E

Fine Selmer groups
Sel0p(E/Qcyc)

11A1 0 Trivial for all odd primes p 6= 5
Finite (but non-trivial) for p = 5

11A2 0 Trivial for all odd primes
11A3 0 Trivial for all odd primes
182D1 0 Conjecture A holds for p = 5
37A1 1 Finite for all odd primes p < 1000
53A1 1 Finite for p = 3
5692A1 2 Conjecture A holds for p = 3

Remark 4.8. Note that the Pontryagin dual of a finite (resp. trivial) group
is again finite (resp. trivial). Therefore, when the fine Selmer Sel0p(E/Qcyc)
is finite, its Pontryagin dual X0(E/Qcyc) is finite (and so pseudo-null). In
particular, Conjecture A holds here.
Remark 4.9. The first three elliptic curves (11A1, 11A2, and 11A3) in
the above table represent all the elliptic curves E/Q of conductor 11 up to
isogeny.

5. Signed Selmer groups and p-adic Hodge Theory
In this section, we revisit signed Selmer groups using Fontaine’s p-adic

Hodge Theory. These definitions of signed Selmer groups are due to Lei,
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Loeffler and Zerbes (see [39, 40, 42]). They defined the “local conditions”
(cf. (5.2)) on these Selmer groups using Fontaine’s rings E and Ẽ (cf. Sec-
tion 5.3) over the extension L(µp∞) where L is a finite extension of Qp. The
Fontaine’s ring Ẽ is the tilt of the perfectoid field L̂(µp∞) in the terminol-
ogy of Scholze (cf. Theorem 5.4). This tilting construction works in general
for any perfectoid field. Therefore, a natural question is to ask whether
the local conditions on the signed Selmer groups can be generalized using
the tilt of any general perfectoid field and thereby extend the definition of
signed Selmer groups for any general p-adic Lie extension (other than the
cyclotomic extension, for which they are already defined by Kobayashi for
ap = 0 and Sprung for ap nonzero). We record this as an open question (see
Question 6.10). This is the motivation behind this section and therefore we
start by defining the Fontaine rings using the language of perfectoid spaces
of Scholze [60]. At the moment, there are certain obstructions mentioned
in the introduction in generalizing signed Selmer groups to any p-adic Lie
extension.

5.1. Perfectoid and Tilts. Let L be a finite extension of Qp with ring
of integers OL. Here, we will write ΓL for the Galois group Gal(L(µp∞)/L)
which we identify with Z∗p via the cyclotomic character χL. Fix π a uni-
formizer of L normalized by |π| = q−1 where q = |kL|, the cardinality of
the residue field kL of L. Here, we will follow the exposition of [57]. Up to
notation, this is very close to the presentation of Fontaine–Wintenberger’s
theory for cyclotomic extension (see [23]). Although we will cite results
in [57] because we want to use the perfectoid language, the constructions
that we will review below are originally due to Fontaine [22].

Definition 5.1. Any intermediate field L ⊂ K ⊂ Cp is called perfectoid,
if it satisfies the following conditions:

(1) K is complete,
(2) The value group |K∗| is dense in R∗>0, and
(3) The p-power map

OK/pOK −→ OK/pOK
x 7−→ xp

is surjective.

One can show that every element of the value group |K∗| is a p-th power.
Let K be a perfectoid field as in the definition above. From the field K,
we will construct a new field K[ (the tilt of K) of characteristic p. We first
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choose an element $ ∈ mK such that |$| ≥ |π| and define

OK[ := lim←−

(
· · · ( · )q−−→ OK/$OK

( · )q−−→ OK/$OK
( · )q−−→ · · · ( · )q−−→ OK/$OK

)
= {(. . . , αi, . . . , α1, α0) ∈ (OK/$OK)N0 : αqi+1 = αi for all i ≥ 0}.

LetK[ be the fraction field of the integral domain OK[ . Let k be the residue
field of K. The k-algebra OK[ is perfect and one can further show that, for
any element α = (. . . , αi, . . . , α0) ∈ OK[ , if we choose ai ∈ OK such that
ai mod $OK = αi, then the limit

α] := lim−→
i→∞

aq
i

i ∈ OK

exists and is independent of the choice of lifts ai’s. This gives the (untilt)
map

OK[ −→ OK
α −→ α]

which is a well-defined multiplicative map such that α] mod $OK = α0.
We have a multiplicative bijection

OK[
∼−→ lim←−

( · )q
OK

given by
α 7−→ (. . . , (α

1
qi )], . . . , α])

which shows that OK[ is independent of the choice of the element $.

5.2. Values on Tilt. The map

| · |[ : OK[ −→ R≥0

α −→ |α]|

is a non-archimedean absolute value such that
(i) |OK[ |[ = |OK |;
(ii) mK[ := {α ∈ OK[ : |α|K[ < 1} is the unique maximal ideal in OK[

and we have OK[/mK[
∼= OK/mK ;

(iii) Let $[ ∈ OK[ be any element such that |$[|[ = |$|, then we have
an isomorphism OK[/$[OK[

∼= OK/$OK .
Since K[ is the fraction field of the integral domain OK[ , the norm | · |[
extends to a non-archimedean absolute value on K[. One can show that
the value group of K[ under the norm | · |[ is same as the value group
of K under | · |. Under the norm | · |[, OK[ is the ring of integers of K[.
Further, K[ with | · |[ is a perfect and complete non-archimedean field of



876 Parham Hamidi, Jishnu Ray

characteristic p. When K = Cp, Lemma 1.4.10 of [57] shows that its tilt C[p
is algebraically closed.

An important example of a perfectoid field is the completion L̂(µp∞) of
the field L(µp∞) (cf. [57, Proposition 1.4.12]). We have a natural continuous
action (cf. [57, Lemma 1.4.13]) of Gal(Qp/L) on C[p which is continuous with
respect to the topology induced by | · |[.

The subgroup Gal(Qp/L(µp∞)) fixes L̂(µp∞)
[
⊆ C[p and hence we have a

continuous action of ΓL = Gal(L(µp∞)/L) on the tilt L̂(µp∞)
[
. Let

ε = (. . . , εi, . . . , ε1, ε0) ∈ L̂(µp∞)
[

be such that ε0 = 1, ε1 6= 1 and let X = ε−1. Then, we have a well-defined
embedding of fields (cf. [57, p. 50])

(5.1) k((X)) θ−→ L̂(µp∞)
[
,

where k is the common residue field of L(µp∞), L̂(µp∞), and L̂(µp∞)
[
(cf. [57,

Proposition 1.3.12(i) and Lemma 1.4.6(iv)]). We denote the image of θ by
EL. Then, (EL, | · |[) is a complete non-archimedean discretely valued field
with residue field k which is preserved by the ΓL-action on L̂(µp∞)

[
.

Remark 5.2. See [1] and [3] for some progress in the generalization of the
construction of the “field of norms” k((X)) and see [59] for the construction
of the field of norms when the residue field is imperfect.

Remark 5.3. IfK/F is an infinite Galois extension whose Galois group is a
p-adic Lie group in which the inertia subgroup is open, then the completion
of K is a perfectoid field. This is essentially due to Sen [61], see also [15,
Theorem 2.13]. The fact that the extension K/F is deeply ramified if and
only if the completion of K is a perfectoid field can be found (in a much
more general setting) in [25, Proposition 6.6.6].11

5.3. Perfect hull. Suppose E is any field of characteristic p > 0 and let
E/E be an algebraic closure. Then, we define

Eperf := {a ∈ E | apm ∈ E for some m ≥ 0},

which is called the perfection (or perfect hull) of E. In particular, Eperf is
the smallest intermediate field of E/E which is perfect. Here are two most
crucial theorems whose proofs can be found in [57, Proposition 1.4.17 and
Proposition 1.4.27].

11We thank the referee for pointing this out to us.
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Theorem 5.4 (Scholze). Let ELbe the image of the injective map θ in (5.1).
Then, we have:

(1) ÊperfL = L̂(µp∞)
[
,

(2) ÊsepL = C[p.

For simplicity, we let E := EsepL and Ẽ := ÊperfL . We can identify HL =
Gal(L/L(µp∞)) with Gal(E/EL); this is Fontaine–Wintenberger’s theo-
rem [24]. (This now holds for all perfectoid fields by the work of Scholze). By
continuity, the action of Gal(L/L) on E extends uniquely to an action on Ẽ
and we let ẼL := ẼHL . Let Ã be the ring of Witt vectors of Ẽ, B̃ = Ã[p−1].

Recall from (5.1) that EL ∼= k((ε − 1)) and let E+
L
∼= k[[ε − 1]] be its

valuation ring. Let A+
L be a complete regular local ring of dimension 2 such

that A+
L/(p) ∼= E+

L . Such a lift exists and it is unique (see [14]). Let AL be
the p-adic completion of A+

L [ 1
ε−1 ]. Define B+

L := A+
L [1

p ] and BL := AL[1
p ].

The rings AL, A+
L , BL, and B+

L are endowed with an action of Γ, a
semi-linear action of the Frobenius ϕ, and its left inverse ψ. When L is
unramified, we have simple formulae for Γ, ϕ, and ψ-action. Write X :=
ε− 1 and γ ∈ Γ, then we have (cf. [5, 51]),

γ(X) = (1 +X)χL(γ) − 1,
ϕ(X) = (1 +X)p − 1,

ϕ ◦ ψ(f(X)) = 1
p

∑
ζp=1

f (ζ(1 +X)− 1) .

Let B be the p-adic completion of the maximal unramified extension of
BQp = AQp [p−1] in B̃ = W (Ẽ)[1

p ] = Ã[1
p ] and let A = B ∩ Ã.

These rings are also stable under Frobenius and the absolute Galois group
GQp of Qp (under this identification, AL = AHL). We write RepZp(GQp)
(resp. RepQp(GQp)) for the category of finitely generated Zp-modules (resp.
finite dimensional Qp-vector space) with a continuous action of GQp .

For a p-adic representation T ∈ RepZp(GQp) (resp. V ∈ RepQp(GQp)),
Fontaine defines a free finitely generated module over AL of rank equal
to rankZp(T ) (resp. a finite dimensional vector space over BL of dimension
equal to dimQp(V )) byDL(T ) = (A⊗ZpT )HL (resp.DL(V ) = (B⊗QpV )HL).
The module DL(T ) is a (ϕ,Γ)-module [23]. These are equipped with a
commuting semi-linear action of ϕ and ΓL. Further, we can define the left
inverse ψ of ϕ on A which then extends to a left inverse ψ of ϕ on DL(V )
and DL(T ) (cf. [13, 14, 28]).
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5.4. Iwasawa Cohomology. Let T ∈ RepZp(GL) and let L∞ be a p-adic
Lie extension of L. We define

H i
Iw(L∞, T ) := lim←−

K

H i(K,T ),

where K varies over the finite extensions of L contained in L∞ and the
inverse limit is taken with respect to the corestriction maps.

If V = Qp ⊗Zp T , then we write

H i
Iw(L∞, V ) = Qp ⊗Zp H

i
Iw(L∞, T ),

which is independent of the choice of the lattice T ⊂ V . These are finitely
generated Λ(G)-modules, where G = Gal(L∞/L).

5.5. Fontaine Isomorphism. Suppose L/Qp is unramified. In the case
when L∞ = L(µp∞), we have a canonical isomorphism of Λ(ΓL)-modules:

h1
Iw,T : DL(T )ψ=1 ∼=−→ H1

Iw(L(µp∞), T ).

Further, if L is an unramified extension of Qp and V = Qp⊗Zp T is a crys-
talline representation of Gal(L/L) with non-negative Hodge–Tate weights
and no quotient isomorphic to Qp, then we have

h1
Iw,T : NL(T )ψ=1 ∼=−→ H1

Iw (L(µp∞), T )

where NL(T ) is the Wach module associated to T (see [14]; for the crys-
talline version see [6]).

5.6. Iwasawa Cohomology and µ-invariant. Recall the structure the-
orem of finitely generated modules over the Iwasawa algebra (see Theo-
rem 2.9 for more details). By Shapiro’s lemma, we know that for L∞ =
L(µp∞), we have

H i
Iw(L∞, V ) = H i (GL,OL[[ΓL]]⊗OL V ) ,

where the right hand side is the usual Galois cohomology with continuous
cochains and GL = Gal(L/L). We have the following [52, Appendix A].

Lemma 5.5.
(i) H i

Iw(L∞, V ) = 0 for i 6= 1, 2.
(ii) H2

Iw(L∞, V ) is a finitely generated OL-module (and therefore has
µ-invariant zero).

5.7. p-adic Hodge Theory and Signed Selmer groups. In this sec-
tion, following [42], we define signed Selmer groups using p-adic Hodge
theory. The reader is encouraged to consult [53] where the signed construc-
tions first appear in relation to Perrin-Riou’s logarithmic map.
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5.7.1. Good supersingular elliptic curves. Suppose E is an elliptic
curve over Q. Let p ≥ 3 and ap = 0. Let T := Tp(E) be the p-adic Tate
module of E and write V = Tp(E) ⊗Zp Qp which is a crystalline represen-
tation of GQp with Hodge–Tate weights 0, 1. Let {v+, v−} be a basis of
Dcris(V ) = (Bcris ⊗Qp V )GQp (see [7] or [23]) such that the matrix of ϕ on
Dcris(V ) in this basis is [

0 −1
p 0

]
.

One can find such a matrix because ϕ satisfies ϕ2 − ap
p ϕ + 1

p = 0. Let
q = ϕ(π)/π where π := [ε]− 1. Define

log+(1 + π) =
∏
i≥0

ϕ2i(q)
p

,

and
log−(1 + π) =

∏
i≥0

ϕ2i+1(q)
p

,

where ε = (ε(i)) was the fixed element in Ẽ such that ε(0) = 1, ε(1) 6= 1,
and [ε] is the Teichmüller lift of ε ∈ Ẽ. Suppose[

n+
n−

]
= M

[
v+
v−

]
,

where
M =

[
log+(1 + π) 0

0 log−(1 + π)

]
.

Then, n+ and n− from a basis of the Wach module N(T ).
By Section 5.5, any element

x ∈ NQp(T )ψ=1 ∼= DQp(T )ψ=1 ∼= H1
Iw(Qp(µp∞), T )

can be written as
x = x+v+ + x−v− = x′+n+ + x′−n−,

where x+ = x′+ log+(1 + π) and x− = x′− log−(1 + π). Then, for i = ±, we
define

H1
Iw(Qp(µp∞), T )i := {x ∈ NQp(T )ψ=1 |ϕ(xi) = −pψ(xi)}.

For n ≥ 1, we define H1(Qp,n, T )i to be the image of H1
Iw(Qp(µp∞), T )i

under the natural projection map
H1

Iw(Qp(µp∞), T ) −→ H1(Qp,n, T ),
where Qp,n = Qp(µpn).

In [40, Section 5.2.1], the authors define two Coleman maps
Coli = H1

Iw(Qp(µp∞), T ) −→ Λ(Γ),
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and by Remark 3.2 of [42], we know that

H1(Qp(µp∞), T )i = H1
Iw(Qp(µp∞), T ) ∩ ker(Coli).

Let H1
f (Qp,n, Ep∞)± be the exact annihilator of H1(Qp,n, T )± under the

Pontryagin duality

[∼,∼] : H1(Qp,n, T )×H1(Qp,n, Ep∞) −→ Qp/Zp.

Let S be a finite set of primes of Q containing p and all the primes where
E has bad reduction and the infinite primes. For v ∈ S, define the “new”
local conditions

(5.2) J±v (Qn) =
⊕
wn|v

H1(Qwn,n, Ep∞)
H1
f (Qwn,n, Ep∞)±

,

for wn prime of Qn = Q(µpn) over ν.
We write J±v (Qcyc) = lim−→n

J±v (Qn). We define

Sel±p (E/Qn) := ker
(
H1(QS/Qn, Ep∞) −→

⊕
v∈S

J±v (E/Qn)
)

;

Sel±p (E/Qcyc) := lim−→
n

Sel±(E/Qn).

Further, Lei shows that the “local conditions” H1
f (Qwn,n, Ep∞)± in

the definition of J±v (Qn) exactly coincides with E±(Qwn,n) ⊗ Qp/Zp of
Kobayashi (see the paragraph after the proof of Lemma 4.12 of [39]). There-
fore, this p-adic Hodge theory definitions of Selmer groups are the usual
Kobayashi’s ± Selmer groups.

The reader is encouraged to consult Florian Sprung’s article [30] pub-
lished in the same volume for an outline of the construction of multi-signed
Selmer groups in the supersingular setting over a Z2

p-extension of a qua-
dratic imaginary number field in which p splits. Note that [12] give similar
constructions to study Iwasawa theory of motives associated to abelian va-
rieties at non-ordinary primes over the cyclotomic extension of a totally
real or a CM field.

6. Analogy with the ordinary reduction case
Here, we list some of the main results proved in the case where we con-

sider elliptic curves with good ordinary reduction over the primes above
p and we can find analogous results for elliptic curves with supersingular
reduction. The main take away here is that, many of the properties that
the Selmer groups enjoy in the ordinary reduction case are observed for the
signed Selmer groups when the reduction type is supersingular.
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Suppose p ≥ 5 is an odd prime. We have the following conjecture by
Mazur ([44]).12

Conjecture 6.1. Suppose E/F has good ordinary reduction at all the
primes above p. Then, X(E/Fcyc) is a finitely generated13 Λ(Γ)-torsion
module.
Remark 6.2. This has been shown in several cases. For example, Mazur
proved in [44] that, if Selp(E/F ) is finite, then the above conjecture holds.
Furthermore, Kato in [33] proved this conjecture for the case where E/Q
is an elliptic curve defined over Q.

Often, the results proved for elliptic curves with good ordinary reduction
motivate results in the supersingular reduction case like Theorem 3.8. We
have the following (cf. [26]).
Theorem 6.3. Suppose E/F is an elliptic curve with good ordinary reduc-
tion at all the primes above p. Assume X(E/Fcyc) is a finitely generated
torsion Λ(Γ)-module. Furthermore, assume that E(F ) has no element of
order p. Then, X(E/Fcyc) has no non-zero finite Λ(Γ)-submodule.

The following theorem (cf. [50]) is analogous to Theorem 3.3.
Theorem 6.4. Suppose p is an odd prime and E/F is an elliptic curve
with good ordinary reduction at all the primes above p. Then, X(E/Fcyc) is
a finitely generated torsion Λ(Γ)-module if and only if the sequence

(6.1) 0 −→ Selp(E/Fcyc) −→ H1(FS/Fcyc, Ep∞) λcyc−−→
⊕
ν∈S

Jv(E/Fcyc)

is short exact and H2(FS/Fcyc, Ep∞) = 0.
Let

F̃∞ := F (Ep∞) =
⋃
n≥0

F (Epn).

F̃∞ is often referred as the trivializing extension of F (with respect to E
and the prime p). Let X(E/F̃∞) denote the Pontryagin dual of the Selmer
group Selp(E/F̃∞) and G̃ := Gal(F̃∞/F ). We mention the following result
of Ochi–Venjakob (cf. [47, Theorem 5.1]).
Theorem 6.5. Let E/F be an elliptic curve without complex multipli-
cation. Let p ≥ 5 and suppose E has good ordinary reduction at all the
primes above p. Moreover, assume that X(E/F̃∞) is a finitely generated
Λ(G̃)-torsion module. Then, X(E/F̃∞) has no non-zero pseudo-null Λ(G̃)-
submodule.

12This conjecture can be extended to other Galois extensions where the Galois group is a
general p-adic Lie group.

13It is not hard to show that, for any Zp-extension K∞/F of F , X(E/K∞) is a finitely
generated module over the Iwasawa algebra of Gal(K∞/F ) (cf. [20, Lemma 2.4]).
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Remark 6.6. The reader may also look at a similar theorem by B. Perrin-
Riou for the CM case ([48, Theorem 2.4]).

Recall the definition 2.8 of Γ-Euler characteristic. The following theorem
is analogous to Theorem 3.11 (cf. [20, Theorem 3.3]).

Theorem 6.7. Suppose E/F has good ordinary reduction at all the primes
above p and Selp(E/F ) is finite. Then, χ(Γ, Selp(E/Fcyc)) is well-defined
and is given by

χ(Γ, Selp(E/Fcyc)) = #X(E/F )p∞
#(E(F )p∞)2 ×

∏
ν

c(p)
ν ×

∏
ν|p

(d(p)
ν )2.

Here,
(1) ν runs over all the finite primes of F .
(2) cν is the Tamagawa number of E at the prime ν and cν := [E(Fν) :

E0(Fν)], where E0(Fν) denotes the subgroup of points of E(Fν) with
non-singular reduction.

(3) dν := #(Ẽν(fν)), where fν is the residue field of Fν and Ẽν(fν) is
the reduction of E modulo ν.

(4) c(p)
ν (resp. d(p)

ν ) is the largest power of p dividing cν (resp. dν).

Remark 6.8. Similarly, one may look at Theorem 1.1 of [16] for an ana-
logue of Theorem 3.18 in the ordinary setting.

Now, suppose E/F is an elliptic curve with complex multiplication by
the ring of integers OF . Suppose F is an imaginary quadratic field with
class number one. Let p be an odd prime such that it splits in F , pOF = pp
and suppose E has good reduction at p and p. Since E/F has complex
multiplication, then G̃ = Gal(F̃∞/F ) is topologically isomorphic to Z2

p and
Λ(G̃) ∼= Zp[[T1, T2]]. We have (cf. [56, Proposition 3.2]):

Theorem 6.9. X(E/F̃∞) is a finitely generated torsion Λ(G̃)-module and

µ
G̃

(X(E/F̃∞)) = 0.

To conclude, we pose two questions that remain open.

Question 6.10. Can we define the signed Selmer groups for general p-adic
Lie extensions of a given number field?

In cases where signed Selmer groups are defined, many of the results
that have been proven for the Selmer group of elliptic curves with good
ordinary reduction are expected to be true in the supersingular reduction
for the signed Selmer groups under suitable hypotheses. For example, we
may ask:
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Question 6.11. Is it possible, under suitable conditions for an elliptic
curve with supersingular reduction over the primes above p, to prove that
the µ-invariants of the Pontryagin dual of the signed Selmer groups (also
known as plus/minus µ-invariants) vanish over the cyclotomic extension?

Remark 6.12. It is worth mentioning that Greenberg conjectured that, in
the ordinary setting for an elliptic curve over the rational numbers, if Ep(Q)
is irreducible then the µ-invariant of the Pontryagin dual of the Selmer
group vanishes over the cyclotomic extension (cf. [27, Conjecture 1.11]).
Furthermore, Pollack in [54] notes that when p has supersingular reduction
for an elliptic curve over the rational numbers, then Ep is always irre-
ducible. Pollack then extends Greenberg’s conjecture to the supersingular
case (cf. [54, Conjecture 6.3]). In particular, Pollack conjectures that the
(algebraic) plus/minus µ-invariants (coming from the Pontryagin dual of
the signed Selmer groups) as well as the analytical plus/minus µ-invariants
(coming from plus/minus L-functions) vanish over the cyclotomic extension
of the rationals.14

Answering these questions should involve some new ideas.
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