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Journal de Théorie des Nombres
de Bordeaux 33 (2021), 835–852

Picard 1-motives and Tate sequences for function
fields

par Cornelius GREITHER et Cristian POPESCU

Résumé. En utilisant nos travaux antérieurs sur la structure des réalisations
`-adiques des 1-motifs de Picard en tant que modules galoisiens, nous construi-
sons des représentants explicites pour la classe de Tate `-adifiée. C’est-à-dire
qu’on trouve des suites de Tate explicites, comme définies dans [8], pour une
extension galoisienne générale de corps globaux en caractéristique p > 0. En
combinaison avec la Conjecture Principale Équivariante démontrée dans [4],
ceci nous amène à une preuve assez directe de la Conjecture Équivariante
des nombres de Tamagawa pour les motifs d’Artin à coefficients abéliens en
caractéristique positive.

Abstract. We use our previous work [4] on the Galois module structure of
`–adic realizations of Picard 1–motives to construct explicit representatives in
the `–adified Tate class (i.e. explicit `–adic Tate sequences, as defined in [8])
for general Galois extensions of characteristic p > 0 global fields. If combined
with the Equivariant Main Conjecture proved in [4], these results lead to
a very direct proof of the Equivariant Tamagawa Number Conjecture for
characteristic p > 0 Artin motives with abelian coefficients.

1. Introduction
In earlier work (see in particular [4]) we studied a certain Picard 1-

motive attached to a Galois cover of smooth projective curves over finite
fields, which lends itself to the formulation of an Equivariant Main Conjec-
ture in the Iwasawa Theory of function fields. This 1-motive was introduced
by Deligne in the 1970s [3] and played an important role in the Deligne–
Tate proof of the Brumer–Stark conjecture for function fields [9]. In [4]
our further investigations of this object led to proofs of refinements of the
Brumer–Stark and Coates–Sinnott conjectures for function fields. The most
prominent features of the 1-motive in question are the following: everything
is relatively explicit and computationally convenient, and the `-adic Tate
module attached to the 1-motive in question is projective over the `–adic
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group ring Z`[G] of the Galois group of the cover, as proved in [4]. In the
theory of Chinburg’s conjectures and their modern counterparts (the many
and various instances of the Equivariant Tamagawa Number Conjecture)
projective modules carrying arithmetic information are extremely impor-
tant, but they are rarely made explicit, which makes calculations involving
these extremely difficult. This holds in particular when one works in de-
rived categories and has to deal with Grothendieck determinants of Tate
complexes (middle parts of Tate sequences, proved to exist by Tate in [8]
but are extremely elusive, in general.)

In this paper we will show that one advantage of the above mentioned
1-motive, its explicitness, also can be used profitably for constructing and
understanding Tate sequences. A little more precisely: we start from the Pi-
card 1-motive and its `-adic realization (` being a fixed prime) and construct
an explicit four term exact sequence in the category of Z`[G]–modules. Then
we show that this sequence is, up to a minor and totally explicit modifica-
tion, Yoneda-equivalent to “the” Tate sequence. Of course the latter itself
is only determined up to Yoneda equivalence, so it would be more accurate
to say that we find a nice and explicit representative in the Yoneda class of
Tate sequences. This class is intimately linked to local and global fundamen-
tal classes in class field theory (see [8] and [9]) and also to special values
of Galois-equivariant global L–functions, as reflected by the far-reaching
Equivariant Tamagawa Number Conjecture of Burns and Flach.

In the present note we are concerned with the function field (global field
of positive characteristic) case. The number field case was treated in [6].
Our reason for presenting the function field case separately, even though the
ideas and tools involved in [6] have some overlap with the present case, is
twofold: The results in the function field case are neater and more complete,
and the proofs are more straightforward and natural. (See the Remark at
the end of Section 1.) We hope that this separate treatment will be useful
for readers.

We begin by reviewing some notation introduced in [4]. Let us fix a finite
field Fq of characteristic p > 0; in particular p = 2 is allowed. By X → Y
we will denote a Galois cover of smooth projective curves over Fq with a
finite Galois group G. We consider finite, disjoint G–equivariant sets S and
T of closed points on X, subject to the following standard conditions: T is
nonempty, and S contains all points that ramify in X/Y . Let F denote the
algebraic closure of Fq. The base-changed curves F×Fq X and F×Fq Y will
be written X and Y; the set of points on X above points of S (resp. T ) will
be written S (resp. T ). The Galois group Gal(F/Fq) is denoted by Γ. Of
course there is a bijection between closed points (simply called points from
now on) on X and Γ-orbits of (closed) points on X .
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Let clT (X) (resp. cl0T (X)) denote the ray class group (resp. degree 0 ray
class group) mod T of X, that is, the quotient of the group of divisors
(resp. degree 0 divisors) on X whose support does not meet T modulo the
subgroup of principal divisors div(f) where f is congruent to 1 “modulo T”
(meaning modulo every point in T .) This means of course that f is defined
at all points of T and evaluates to 1 there. Then cl0T (X) is just JX,T (Fq),
where JX,T is the generalized Jacobian associated to X and T .

Let LS be the lattice attached to S. More precisely, LS is the kernel of
the map degFq

: ZS → Z that sends v ∈ S to degFq
(v) ∈ Z. Here ZS is the

free Z-module with basis S and degFq
(v) is the degree relative to Fq.

Definition 1.1. The set S is called large with respect to X and T (or
simply “large”) if the divisor class map d : ZS → clT (X) is surjective.
(Note that this is equivalent to the surjectivity of the degree 0 divisor class
map d0 : LS → cl0T (X) and the existence of a divisor of degree 1 in ZS.)

We fix the covering X → Y once for all, and we write US for the group of
S-units in the function field Fq(X); similarly US,T is the submodule of all
S-units in that field which are congruent to 1 modulo T . There is another
important lattice in the context of Tate sequences. Usually it is denoted
XS , but since X is already used as the name of a curve, we have to resort
to ΞS . This is defined as the kernel of the map aug : ZS → Z sending every
v ∈ S to aug(v) = 1. Please note the difference with the definition of LS !

We write M for the `-adic Tate module of the Picard 1-motive MS,T .
For the construction and the properties of this 1-motive and of the module
M , we refer to [4]; let us just recall that M is finitely generated projective
over Z`[G], as proved in [4].

Let us now describe our main result. In the first section (Proposition 2.1)
we will construct, for large S, an four-term exact sequence of Z`[G]–modules

0 −→ Z` ⊗Z US,T −→M −→M −→ Z` ⊗Z ΞS −→ 0.
This sequence defines an element of

Ext2
Z`[G](Z` ⊗Z ΞS ,Z` ⊗Z US,T ) ∼= Z` ⊗Z Ext2

Z[G](ΞS , US,T ),
which will be called ρ = ρX/Y,S,T . On the other hand, the theory of Tate
classes [8] proves the existence of certain (non-explicit) 4-term exact se-
quences of Z[G]–modules

0 −→ US −→ A −→ B −→ ΞS −→ 0
with A and B of finite projective dimension over Z[G] and whose class in
the extension group Ext2

Z[G](ΞS , US) is an explicit element denoted here
τ = τX/Y,S and called the Tate class. We will show below that there is a
canonical isomorphism

ι : Ext2
Z[G](ΞS , US,T ) −→ Ext2

Z[G](ΞS , US).
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Thus it makes sense to compare (ι⊗ 1Z`
)(ρ) and the `-adification Z`⊗ τ of

the Tate class τ , viewed in Ext2
Z`[G](Z` ⊗ ΞS ,Z` ⊗ US). Here and later on,

we abuse notation, simply writing ι instead of 1Z`
⊗ ι. Our main result (see

Theorem 3.3) then reads as follows:
Theorem 1.2. Assume that S is large (as defined above); if ` = p (the
characteristic of Fq) then assume moreover that the order of G is not di-
visible by p. Then we have agreement up to a sign:

ι(ρ) = ±(Z` ⊗Z τ) ∈ Ext2
Z`[G](Z` ⊗Z ΞS ,Z` ⊗Z US,T ).

We are grateful to an anonymous referee for pointing out that we can
actually arrange to have a plus sign in the above formula. The crucial point
is Step 6 in the proof of this main result. There we use a proposition of
Burns, which has a minus sign in it, but Burns explains why “his” sign
differs from the sign in a somewhat earlier paper [2] of Burns and Flach.
So if we follow that latter paper, we get a plus sign.

To conclude this introduction, let us mention two links with work of
other authors. In [7], Nickel compares two versions of the Equivariant Main
Conjecture in Iwasawa Theory for number fields (the Ritter–Weiss version,
and the version of the present authors as in [5]) in a very enlightening way.
However this does not involve an explicit translation from one algebraic
setup into the other. Nickel assumes both setups to be in place, plus the
validity of the main theorem of [5], and then shows: The validity of the
EMC for one setup is equivalent to its validity for the other. On p. 16 of [7],
Nickel does mention his “guess” that the two complexes involved should be
equivalent, which is more or less the statement of our main result in [6], but
he gives no proof, saying that is not needed in his treatment. In this paper
we confirm Nickel’s “guess” in the function field setting. We would also like
to mention that some proofs in this paper have some relation to deductions
in recent work of Witte [10] (see also [11]), but the two approaches were
developed independently of each other, and actually at roughly the same
time. (The present paper has existed as a preprint for several years now.)
For more detail on this last point let us refer to [6]; we should also say here
that Witte treats number fields and function fields simultaneously.

2. A four term exact sequence derived from the Picard 1-motive
Write F for the arithmetic Frobenius over Fq and view it as a canonical

topological generator of Γ := G(F/Fq). To deal with the `-adic realization
M of the 1-motive MS,T , we need a little more notation. The lattice LS
was already defined in the introduction. It has a counterpart LS at level F;
this is simply the kernel of the map degF̄ : ZS → Z sending every w ∈ S to
1. Then it is not difficult to see that we have canonical identifications

LS = (LS)Γ, (ZS)Γ = ZS.
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Note that (LS)Γ 6= LS , in general. In analogy with d0, we have a divisor
class map

δ0 : LS −→ cl0T (X ) = JX,T (F).
Note that d0 is the restriction of δ0 to LS (viewed now as a submodule
of LS .)

The following proposition produces a very explicit four term exact se-
quence which is already reminiscent of a 2-extension defining the Tate class.
The main goal of this note is to make this connection precise.
Proposition 2.1. Assume that 1Z`

⊗ d0 is surjective.
(a) Then we have an exact sequence of Z`[G]–modules

0 −→ Z` ⊗Z US,T −→M −→M −→ Z` ⊗Z (LS)Γ −→ 0,
where the map M → M in the middle is (1 − F ), and the other
maps are canonical.

(b) Assume further that 1Z`
⊗ d is surjective. Then the canonical sur-

jection ZS → ZS induces an isomorphism Z`⊗Z (LS)Γ ' Z`⊗Z ΞS,
and therefore we get an exact sequence of Z`[G]–modules

0 −→ Z` ⊗Z US,T −→M −→M −→ Z` ⊗Z ΞS −→ 0,
whose middle map is (1− F ) as before.

Proof. (a). Let for the moment MT denote the Tate module T`(M∅,T ), as-
sociated to (X/Y,S = ∅, T ) (so S has changed to the empty set). Note that
sinceM∅,T = JX,T (F) = cl0T (X ) (see [4]), we have a canonical identification

(Q/Z)⊗Z MT = Z` ⊗ JX,T (F) = Z` ⊗ cl0T (X ).
The first thing to note is that one has an exact sequence of Z`[G]–modules

0 −→ T`(τT ) −→MT −→ T`(JX) −→ 0,
where τT is an Fq–torus depending only on T (see [4] for details.) As a con-
sequence of the Weil conjectures, the eigenvalues of F acting on T`(JX) are
algebraic integers whose absolute values are equal to q1/2. The eigenvalues
of F acting on τT are all equal to q times a root of unity (which is 1 if the
torus is split). Consequently, F does not admit 1 as an eigenvalue when
acting on MT and therefore we have an isomorphism
(2.1) (1− F ) : Q⊗Z MT ∼= Q⊗Z MT .

Note that the arguments above are valid for ` = p as well: in that case
Tp(τT ) is trivial and Tp(JX) is a Zp–submodule of the first crystalline ho-
mology group of X , while F acts on the latter with the same eigenvalues
as it does on any T`(JX), for ` 6= p. (See [4] for more details.)

Deligne constructs our module of interestM as a pull back of the canon-
ical map

Q⊗Z MT −→ (Q/Z)⊗Z MT = Z` ⊗ JX,T (F),
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along the divisor map 1Z`
⊗ δ0 : Z` ⊗ LS → Z` ⊗ JX,T (F) = (Q/Z)⊗Z MT .

In other words, we have a commutative diagram of Z`[G]–modules which
reads as follows (see [4].)

(2.2)

0 // MT //

=
��

M
ϕ //

��

Z` ⊗ LS //

1Z`
⊗δ0

��

0

0 // MT // Q⊗Z MT
π // (Q/Z)⊗Z MT // 0.

For simplicity, we will denote y := π(y), for all y ∈ Q⊗ZMT in what follows.
Also, we will use d0 and δ0 instead of 1Z`

⊗ d0 and 1Z`
⊗ δ0, respectively.

The map ϕ in the diagram above induces a surjection ϕ′ : MΓ � (Z` ⊗
LS)Γ. We claim that ϕ′ is in fact an isomorphism. Indeed, let

(x, λ) ∈M ⊂ (Q⊗Z MT )× (Z` ⊗Z LS)

be an element whose class in MΓ is in the kernel of ϕ′; we want to show
that (x, λ) ∈ (1 − F )M . So we have x = δ0(λ), and there is an element
µ ∈ (Z`⊗ZLS) with λ = (1−F )µ. Now (2.1) allows us to write x = (1−F )y
for some y ∈ Q⊗Z MT . Then

(x, λ) = (1− F )(y, µ).

Since (1 − F )(y − δ0(µ)) = 0, we have (y − δ0(µ)) ∈ Z` ⊗ cl0T (X). The
surjectivity of 1Z`

⊗d0 gives an element ν ∈ Z`⊗LS with d0(ν) = (y−δ0(µ)).
Therefore

(y, µ+ ν) ∈M, (x, λ) = (1− F )(y, µ+ ν) ∈ (1− F )M,

as desired. This proves the injectivity of ϕ′ and the exactness of the right
half of the four term sequence in part (a).

We now look at the left half of the sequence in (a); so we have to look at
the kernel of (1−F ) onM , i.e. atMΓ. Since (2.1) givesMΓ

T = (Q⊗ZMT )Γ =
0, the commutative diagram above leads to isomorphisms

MΓ ∼= ker((Z` ⊗Z LS)Γ 1Z`
⊗δ0

−−−−→ (Q/Z⊗Z MT )Γ)

∼= ker(Z` ⊗ LS
1Z`
⊗d0

−−−−→ Z` ⊗ cl0T (X))

Let us consider the canonical divisor map

div : US,T −→ LS , div(x) :=
∑
w∈S

ordw(x) · w,

where ordw is the normalized valuation associated to w on the field Fq(X).
First let us observe that since T 6= ∅, the map div is injective. However, we
have

ker(d0) ∼= im(div),
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from the definitions of US,T and cl0T (X). Therefore div induces an isomor-
phism

(Z` ⊗ US,T ) ∼= ker(1Z`
⊗ d0),

which concludes the proof of (a).

Remark 2.2. There is a more conceptual but less explicit proof of the
“right half” of the exactness statement (a). One uses the exact sequence

0 −→MT −→M −→ Z` ⊗ LS −→ 0

and the ensuing long exact sequence

· · · −→ Z` ⊗ LS = (Z` ⊗ LS)Γ −→ (MT )Γ −→MΓ −→ (Z` ⊗ LS)Γ −→ 0.

The fact that 1 is not an eigenvalue of F acting on MT leads to an explicit
(slightly tricky) isomorphism ι : (MT )Γ ∼= (Z` ⊗ JT (F))Γ = Z` ⊗ cl0T (X).
(See [4] for details.) In the last exact sequence, if we identify (MT )Γ with
Z` ⊗ cl0T (X) via ι−1, the map LΓ

S → (MT )Γ is identified with 1Z`
⊗ d0 (this

has to be checked). Then the surjectivity of 1Z`
⊗d0 shows thatMΓ ∼= (LS)Γ.

We leave the details to the interested reader.

(b). By definition there is a short exact sequence

0 −→ Z` ⊗Z LS −→ Z`S −→ Z` −→ 0.

The ensuing long exact sequence of Γ-invariants and covariants reads as
follows:

0 −→ K −→ (Z` ⊗Z LS)Γ −→ (Z`S)Γ ∼= Z`S
aug−→ Z` −→ 0,

where K = coker((Z`S)Γ → Z`) = coker(Z`S → Z`). If 1Z`
⊗d is surjective,

there is a point in S whose degree is prime to `, and therefore K = 0.
This proves that (Z` ⊗Z LS)Γ identifies with ker(Z`S → Z`). note that the
map (Z`S)Γ = Z`S → Z` in the last displayed exact sequence sends every
point of S to 1, i.e. is the actual augmentation map, not the degree map.
Therefore its kernel ker(Z`S → Z`) is exactly the lattice ΞS , by definition.
Now (b) follows from (a). �

Remark 2.3. There is an analogue to the proposition above in the number
field case, but it is more difficult to prove (see [6] for details), since one
main ingredient is missing. Indeed, it is not true in general that γ (a chosen
topological generator of the Galois group Γ ∼= Zp of the cyclotomic Zp–
extension of a number field) avoids the eigenvalue 1 on the relevant modules.
This γ is a (non-canonical) analogue of the Frobenius F in the number field
setting.
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3. The Tate sequence and its connection to the 1-motive
We now consider a Tate sequence attached to the data (X/Y, S), satisfy-

ing the properties in the introduction. In contrast to the sequence in Propo-
sition 2.1, the set T is not involved, and we have a sequence of Z[G]-modules,
not of Z`[G]-modules. Assuming that S is large in the absolute sense (not
relative to any set T , meaning that the divisor class map ZS → cl(X) is sur-
jective), Tate proves in [8] that there is an exact sequence of Z[G]–modules,
now called a Tate sequence,
(3.1) 0 −→ US −→ A −→ B −→ ΞS −→ 0
with the following properties: the modules A and B are finitely gener-
ated over Z[G] and G-cohomologically trivial (i.e. of finite projective di-
mension over Z[G]); moreover the class τ = τX/Y,S of this sequence in
Ext2

Z[G](ΞS , US) is Tate’s canonical class, which is constructed through “an
interplay of local and global fundamental classes”. We will not review the
details of its construction and refer to the literature, particularly to Tate’s
original paper [8], or Chapter II.5 in Tate’s book [9]) (which however is writ-
ten for the number field case). In the sequel, all modules and Ext groups
will be over Z[G] or Z`[G]; the context will make it quite clear which of the
two rings is meant.

Remark 3.1. As Tate shows, the module B may be taken to be Z[G]-
projective, but A will contain torsion coming from US , so we cannot expect
it to be projective.

Now let us assume that (X/Y, S, T ) are as in the introduction and that
S is large relative to T . Since we have an obvious surjective morphism
clT (X)→ cl(X), then S is large in the absolute sense as well. Therefore we
have a Tate exact sequence (3.1) and a Tate class τ := τX/Y,S and, part (b)
of Proposition 2.1 gives an exact sequence of the form

0 −→ Z` ⊗Z US,T −→M −→M −→ Z` ⊗Z ΞS −→ 0,
for all primes `. Let ρ = ρX/Y,S,T,` denote the class of this 2-extension in
the group Ext2

Z`[G](Z` ⊗Z ΞS ,Z` ⊗Z US,T ). Before we can compare τ and ρ,
we need to clear up a small technical point.

Lemma 3.2. If S is large relative to T , then the canonical map
ι : Ext2

Z[G](ΞS , US,T ) −→ Ext2
Z[G](ΞS , US)

induced by the inclusion US,T → US is an isomorphism.

Proof. In general, we have a canonical exact sequence of Z[G]–modules

(3.2) 0 −→ US,T −→ US −→
⊕
w∈T

κ(w)× −→ cl0T (X)/ im(d0),
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where κ(w) is the residue field corresponding to w. Now, if d0 is surjective,
this induces an isomorphism of Z[G]–modules

US/US,T ∼=
⊕
w∈T

κ(w)×.

A standard application of Shapiro’s lemma combined with Hilbert’s theo-
rem 90 shows that the module on the right is G–cohomologically trivial,
therefore of projective dimension 1 over Z[G]. This implies that

ExtiZ[G](N, (US/US,T )) = 0, for all i ≥ 1,

and all Z[G]–modules N with no Z–torsion. This vanishing for i = 1, 2
and N := ΞS plus the long Ext exact sequence associated to (3.2) is just
what one needs to show that the canonical map in the lemma is an iso-
morphism. �

It is also easy to see that Ext commutes with the functor Z`⊗Z−, as long
as we stick to finitely generated modules. Let us repeat this more formally:
If N and N ′ are finitely generated Z[G]–modules, then the canonical map

ExtiZ[G](N,N
′) −→ ExtiZ`[G](Z` ⊗Z N,Z` ⊗Z N

′)

(which will be written as 1⊗Z∗ or sometimes suppressed entirely in context)
induces an isomorphism

Z` ⊗Z ExtiZ[G](N,N
′) ∼= ExtiZ`[G](Z` ⊗Z N,Z` ⊗Z N

′).

Hence the comparison in the following theorem makes sense.

Theorem 3.3. Assume that S is large relative to T . Then we have

(1Z`
⊗ ι)(ρ) = ±1⊗Z τ ∈ Ext2

Z`[G](Z` ⊗Z ΞS ,Z` ⊗Z US),

for all primes `, assuming that ` - |G| if ` = p.

The proof of this result will occupy the entire next section.

Remark 3.4. As will become clear below, one essential ingredient in the
proof is the link between Weil-étale cohomology (with Z(1)–coefficients)
and `–adic étale cohomology with coefficients in Z`(1), for ` 6= p. This is
the main reason why we are imposing the condition p - |G|, when ` = p. A
method we are envisaging for dealing with the general case when ` = p will
involve links between crystalline cohomology and Weil-étale cohomology;
we hope to be able to come back to this at a later occasion.
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4. Proof of Theorem 3.3
The argument will proceed in several steps. As a “zeroth step” let us get

the case ` = p out of the way; this case eludes the arguments given below.
So assume ` = p; we made the very strict hypothesis that in this case, p
does not divide |G|. This will allow to dispatch of this case quickly. Indeed,
under this hypothesis the module Zp ⊗ ΞS will be projective over Zp[G]
since it is G–cohomologically trivial and has no Zp–torsion. But then we
have Ext2

Zp[G](Zp ⊗ ΞS ,Zp ⊗ US) = 0, and therefore the Theorem above is
trivially true in this case.

So let us assume ` 6= p from now on. This hypothesis will be heavily
used in the arguments which follow, which are based on previous work by
Deligne [3] and Burns [1]. In the first three steps we will work over F. Recall
that calligraphic letters stand for objects over F: X = F ×Fq X, T , S and
so on. Let us denote by j and i the open, respectively closed immersion

j : X \ (S ∪ T ) −→ X \ S, i : T −→ X \ S.

Step 1: We claim that there is a canonical isomorphism M ∼= H1
et(X \ S,

j!Z`(1)). This first step essentially comes from 10.3.6 in [3]. As in loc. cit.,
let us fix a positive integer n coprime to p. Eventually, n will equal an
arbitrary power of `.

Let (X \ S)T and XT be the singular curves obtained from X \ S and X
by contracting T to a single point, call this point t. (In Deligne’s notation
in loc. cit. X := (X \S)T and X := XT .) Note that the Picard group of the
singular curve XT is precisely the generalized Jacobian JT (F) = cl0T (X ).
This is a well-known consequence of a Meyer–Vietoris sequence. Hence, we
have an equality

TZ/nZ(H1
m((X \ S)T )(1)) =MS,T [n]

between Deligne’s 1-motivic term TZ/nZ(H1
m((X \ S)T )(1)) and the n–

torsionMS,T [n] of our 1–motiveMS,T . (See [4] for a very concrete defini-
tion ofMS,T [n].)

Now in 10.3.6 of [3] Deligne establishes a canonical isomorphism
TZ/nZ(H1

m((X \ S)T )(1)) ∼= H1
et((X \ S)T ,Z/n(1)).

Let us consider the open immersion of singular curves jt : (X \S)T \ {t} →
(X \ S)T . By a direct argument (similar to Step 2 below but easier) we
observe that

H1
et((X \ S)T ,Z/n(1)) ∼= H1

et((X \ S)T , (jt)!Z/n(1)).
Let us consider the natural map π : (X \ S)→ (X \ S)T . Then we have an
equality of sheaves π∗(jt)!Z/n(1) = j!Z/n(1) and we get

H1
et((X \ S)T , (jt)!Z/n(1)) ∼= H1

et((X \ S), j!Z/n(1)).
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If we combine the isomorphisms above, we obtain
MS,T [n] ∼= H1

et((X \ S), j!Z/n(1)),
for all n coprime to p. Now we let n := `ν and pass to a projective limit as
ν →∞ to obtain the desired canonical isomorphism

M ∼= H1
et(X \ S, j!Z`(1)).

Step 2: We claim that the étale sheaf j!Z`(1) on X \ S has nonzero coho-
mology only in degree one. To show this, one first looks at the étale sheaf
Z`(1) on X \ S. We have

(4.1) H0(X \ S,Z`(1)) = Z`(1), H2(X \ S,Z`(1)) = 0.
The first equality above is obvious, while the second requires a proof. For
that, one considers the exact sequence of étale sheaves on X \ S

0 −→ Z/`nZ(1) −→ Gm
`n−→ Gm −→ 0.

Since H1(X \ S,Gm) = Pic(X \ S), which is a quotient of Pic0X and
therefore divisible, we obtain an isomorphism

H2(X \ S,Z/`nZ(1)) ∼= H2(X \ S,Gm)[`n].

However, H2(X \ S,Gm) = Br(X \ S), which injects in the Brauer group
Br(F(X )) of the function field of X , which is trivial by Tsen’s theorem. This
gives equalities H2(X \ S,Z/`nZ(1)) = 0, for all n. By taking a projective
limit when n→∞ this concludes the proof of (4.1).

Now we consider the long exact sequence in étale cohomology corre-
sponding to the following short exact sequence of sheaves on X \ S.
(4.2) 0 −→ j!Z`(1) −→ Z`(1) −→ i∗Z`(1) −→ 0.
In light of (4.1) the corresponding long exact sequence in cohomology reads
as follows.

0 −→ H0(X \ S, j!Z`(1)) −→ Z`(1) d−→
⊕
v∈T

Z`(1) −→ H1(X \ S, j!Z`(1))

−→ H1(X \ S,Z`(1)) −→ H1(X \ S, i∗Z`(1)) −→ H2(X \ S, j!Z`(1)) −→ 0.
Since the map d is just a diagonal embedding and therefore injective, we
have

H0(X \ S, j!Z`(1)) = 0.
On the other hand, since the functor i∗ is exact, we have

H1(X \ S, i∗Z`(1)) ∼= H1(T ,Z`(1)) = 0,
where the vanishing of the second cohomology group is a consequence of
the fact that T is just a finite union of copies of Spec(F) (spectrum of an
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algebraically closed field). Hence we also have H2(X \S, j!Z`(1)) = 0, which
concludes Step 2.

Remark 4.1. From general principles (see for example [1]) it is known that
RΓ(X \ S, j!Z`(1)) is represented by a perfect complex of Z`[G]-modules.
This general principle is very nicely illustrated here: the complex has only
one nonzero module M in degree 1, and that module is indeed Z`[G]-
projective.

Step 3: Hence RΓ(X \ S, j!Z`(1)) is represented by the complex which has
M in degree one and zero in all other degrees. In fact Step 1 tells us that
the first cohomology of any complex (say C•) which represents this RΓ, is
M , and all other cohomology groups vanish. From this it is rather easy to
construct a quasi-isomorphism between the complexes C• and [· · · → 0 →
M → 0→ 0 · · · ] with M in degree 1.

Step 4: Descent to the Fq-level: a representative for RΓ(X \S, j!Z`(1)). Now
we work at the Fq–level, and by abuse of notation we use j and i again for
the open and closed immersion at the X–level, respectively:

j : X \ (S ∪ T ) −→ X \ S, i : T −→ X \ S.
If we combine [1] with our Step 1 above we get that RΓ(X \ S, j!Z`(1)) is
represented by the complex

(4.3) · · · −→ 0 −→
1
M

1−F−→
2
M −→ 0 −→ · · · ,

where M shows up in degrees 1 and 2, and F is the Frobenius morphism
as usual.

In more detail: Let F be an etale sheaf on X \S and C• a complex repre-
senting RΓ(X \S,F), which has an appropriate action of G and Frobenius,
in the sense of loc. cit. p. 370 bottom. Then RΓ(X\S,F) is quasi-isomorphic
to the shifted mapping cone

Cone(C• 1−F−→ C•)[−1],
as shown in loc. cit. p. 371 (one also has to use Lemma 4 of loc. cit.). We
now take C• = [M ] concentrated in degree 1 and use the result above
combined with our Step 3. The shifted mapping cone above is exactly the
complex (4.3).

Step 5: Removing j!: a representative for RΓ(X \ S,Z`(1)). We look at
the standard exact sequence of sheaves in Step 2, now at level Fq, that
is, over X \ S; its first (respectively second) term is the sheaf Z`(1) with
(respectively without) j!, and the third term has cohomology in dimension
one only.
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We have determined a simple complex that represents RΓ(X\S, j!Z`(1)),
and we want to deduce a complex almost as simple that represents RΓ(X \
S,Z`(1)). Let ι denote the inclusion of sheaves j!Z`(1)→ Z`(1). (Note that
this map, somewhat abusively, also stands in Lemma 3.2 for the map on
Ext2 level induced by the inclusion US,T → US .) One checks that H1(X\S, ι)
is injective with cokernel US/US,T ∼= H1

et(X, i∗Z`(1)), and that H2(X \S, ι)
is an isomorphism.

There is a map f of complexes from some complex C• which represents
RΓ(X \ S, j!Z`(1)) (as in Step 3) to some complex D• which represents
RΓ(X \ S,Z`(1)), such that f induces H•(X \ S, ι) on cohomology. In par-
ticular it gives the inclusion US,T → US on H1, and an isomorphism on H2.
Let C ′• be the complex given by pushing out:

0 //

��

Z`US,T //

��

M //

��

M

0 // Z`US // (C ′)1 // (C ′)2

Then f extends to a map of complexes f ′ from C ′• to D•, just by the
universal property of the pushout. One verifies that f ′ is now an isomor-
phism on H1, and nothing has changed on H2, so f ′ is a quasi-isomorphism.
On the other hand, the pushed-out complex C ′• is quasi-isomorphic to a
complex arising from [M → M ] by the same pushout procedure, call the
resulting complex [M ′ →M ].

In a slightly different language: if we view representing complexes of
RΓ(X \ S,F) as Yoneda classes of 2-extensions of H1 by H0, with F being
either j!Z`(1) or Z`(1), then the pushout with ι sends a representative of
RΓ(X \ S, j!Z`(1)) to a representative of RΓ(X \ S,Z`(1)). In other words,
the complex [M ′ → M ] represents RΓ(X \ S,Z`(1)) and can be seen as a
2-extension of (Z`LS)Γ by Z`US .

Step 6: Putting things together. We invoke [1] again, to obtain that (maybe
up to a sign) RΓ(X \ S,Z`(1)) is the `-adified Tate class. In more detail:
We use Lemma 3 of loc. cit. in order to identify `-adified Weil cohomology
with etale cohomology with Z`(1)-coefficients, and then Proposition 4.1 of
loc. cit. Two things should be noted:

(i) When quoting the aforementioned lemma we again use ` 6= p.
(ii) Things are simpler in our case than in the situation of Proposi-

tion 4.1 in [1], since Burns is allowing AK,S (his notation for the
class group of X \ S) to be nonzero and c.t., whereas our assump-
tion “d0 surjective” actually makes it zero at least in the `-part,
and we may forget about the set S′ and the maps ιS , ιS,S′ in that
proposition.
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So the `-adified Tate class is represented by the complex [M ′ → M ]
constructed in the previous step. Since on the Ext level this complex is
gotten by applying ι (in the sense of Lemma 3.2) to [M →M ], we are done
with the proof of Theorem 3.3.

5. An example
Finally, we would like to exhibit an example which is as simple as possi-

ble without being trivial. Even this very simple setup presents interesting
complexities.

Let Fq = F11, Y the projective line (with variable x) and X → Y the
degree 2 cover given by y2 = x3−x. Of course X is an elliptic curve. It has
12 points over F11, so |cl0(X)| = 12. We take ` = 2 and S ⊂ X to be the set
of ramified points. It consists of ∞ and the three points Pr := (r, 0) with
r = −1, 0, 1. For T we may take any pair of Galois-conjugate F11-rational
points of X outside S; but since we will need to do explicit calculations, we
make a choice: T = {(4,±4)} = {t+, t−}.

Lemma 5.1. d0 : LS → cl0T (X) induces an isomorphism

δ : LS/2LS ∼= Z2 ⊗ cl0T (X).

Proof. At the finite level we have the usual exact sequence

1 −→ Z2 ⊗
F×11 × F×11
diag(F×11)

ρ−→ Z2 ⊗ cl0T (X) −→ Z2 ⊗ cl0(X) −→ 1,

where ρ((α, β)) = div(f), with f ∈ F11(X) such that f(t+) = α and
f(t−) = β, for all (α, β) ∈ (F×11 × F×11). On the one hand, Z2 ⊗ cl0(X)
has order 4, therefore we have

Z2 ⊗ cl0(X) = cl0(X)[2] = 〈[P0 −∞], [P1 −∞]〉.

On the other hand, the domain of ρ has order 2 and is generated by (4,−4).
Also,

div(y) = P−1 + P0 + P1 − 3∞
and (y(t+), y(t−)) = (4,−4). Consequently, the exact sequence above (ker-
nel and cokernel are elementary 2-groups) shows that Z2 ⊗ cl0T (X) is an
elementary 2-group of order 8 and

Z2 ⊗ cl0T (X) = cl0T (X)[2] = 〈[P1 −∞], [P0 −∞], [P−1 + P0 + P1 − 3∞]〉.

This implies that the map δ : LS/2LS → Z2⊗cl0T (X) exists; it is a surjective
morphisms of two groups of order 8, and therefore a group isomorphism. �

Corollary 5.2. The divisor map induces an isomorphism

1⊗ div : Z2 ⊗ US,T ∼= 2(Z2 ⊗ LS).
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Proof. This is a direct consequence of the above Lemma and the exact
sequence

0 −→ Z2 ⊗ US,T
div−→ Z2 ⊗ LS

1⊗d0−−−→ Z2 ⊗ cl0T −→ 0.
(The surjectivity of 1⊗ d0 is a consequence of the Lemma.) �

Let us note that since in this case all points in S are F11–rational, we
have an equality ΞS = LS .

Definition 5.3. We let ψ := 1/2(1⊗div) : Z2⊗US,T ∼= Z2⊗LS = Z2⊗ΞS.

Let us write G = Gal(X/Y ) = {id, σ}. We recall MT is the 2-adic Tate
module T2(cl0T (X )). So, in this case we have

MT /2 ∼= cl0T (X )[2] = cl0T (X)[2].
The isomorphism above is canonical (and general), while the equality (in
general just an inclusion from right to left) is a consequence of the fact that
in this case, since T consists of two F11–rational points (therefore |T | = 2)
and genus(X) = 1, we have |cl0T (X )[2]| = 8 = |cl0T (X)[2]|.

Since S and T consist of Fq–rational points and genus(X) = 1, we have
rankZ2(MT ) = rankZ2(Z2 ⊗ LS) = 3,

and σ acts onMT as multiplication by (−1) and on Z2⊗LS as multiplication
by (+1). Moreover, since Z2[G] is a local ring (as G is a 2–group) and M
is Z2[G]–projective (as proved in [4]), M has to be Z2[G]–free of rank 3.
(It does have rank 6 over Z2, according to the top exact sequence of (2.2).)
Consequently, we have the following isomorphisms of Z2[G]–modules:

M ∼= Z2[G]3, MT ∼= I3
G, Z2 ⊗ LS ' Z3

2,

where IG = Z2 · (σ−1) is the augmentation ideal in Z2[G] and Z2 is viewed
with the trivial G–action. Moreover, we have Z2[G]–module isomorphisms

Z2 ⊗ US,T ∼= Z2LS = Z2 ⊗ ΞS ' Z3
2,

because Z2 ⊗ LS = Z2 ⊗ LS (again, the Fq–rationality of points in S plays
a role.)

In this particular situation one has group isomorphisms

Ext2
Z2[G](Z2 ⊗ LS ,Z2 ⊗ US,T ) ∼= Ĥ2(G,HomZ2(Z2 ⊗ ΞS ,Z2 ⊗ US,T )

∼= Ĥ0(G,HomZ2(Z2 ⊗ ΞS ,Z2 ⊗ US,T )
∼= HomZ2(Z2 ⊗ ΞS ,Z2 ⊗ US,T )/2
∼= M3(Z/2Z).

(As usual, the notation Ĥi stands for the i-th Tate cohomology.) The first
isomorphism above is general (see Chapter II, Section 5 in [9]); the second
isomorphism is due to the cyclicity of G which makes its Tate cohomology
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periodic of period 2; the third and fourth isomorphism are consequences of
the Z2[G]–module structure of Z2 ⊗ΞS and Z2 ⊗US,T (free Z2–modules of
rank 3 with trivial G–action, see above.)

It is a bit tedious to write down explicitly the morphism in

HomZ2(Z2 ⊗ ΞS ,Z2 ⊗ US,T )/2

which corresponds to the extension class ρ we constructed above via the
above sequence of isomorphisms. However, we did this calculation and we
concluded that the morphism in question is the composition (ψ−1δ−1 1−F

2 δ)
of isomorphisms

ΞS/2ΞS
δ'MT /2MT

1−F
2' MT /2MT

δ−1
' ΞS/2ΞS

ψ−1

' US,T /2US,T .

The only isomorphism which requires an explanation is 1−F
2 . Due to the

fact that

ker(Z2 ⊗ cl0T (X ) 1−F−→ Z2 ⊗ cl0T (X )) = Z2 ⊗ cl0T (X) = cl0T (X )[2]

we can immediately conclude that we have an exact sequence

0 −→MT
1−F−→MT −→MT /2MT −→ 0.

Therefore (1 − F ) viewed as an endomorphism of MT has no kernel, and
image equal to 2MT . It is therefore equal to “2 times an isomorphism”.
That isomorphism reduced mod2 is what we call 1−F

2 above.
Now we will describe the matrix in M3(Z/2Z) of the action of 1−F

2 on
a carefully chosen basis of MT /2, leaving the (much easier) calculation of
the matrix for ψ to the interested reader. For that purpose we computed
F modulo 4 on the free Z2–module MT of rank 3. In other words, we
calculated F on the 4–torsion cl0T (X )[4]. The whole calculation is a little
cumbersome since (as far as we know) PARI does not have a function that
allows to calculate in generalized Jacobians. As a Z/4-basis for cl0T (X )[4]
we took divisor classes {d0, d1, div(f)}, where

2di = [Pi]− [∞], i = 0, 1, and f ∈ F11(X ), f(t+) = 2, f(t−) = 2 · ζ4,

with ζ4 a primitive root of unity of order 4 in F11. Recall that T = T =
{t+, t−} and that y(t+) = 4 = f(t+)2 and y(t−) = −4 = f(t−)2. Therefore

2 div(f) = div(y) = P0 + P1 + P−1 − 3∞.

We found the following matrix for F , the columns giving the coefficients
of F applied to the above basis elements:3 2 0

2 1 0
0 0 3

 = I3 + 2A, with A =

1 1 0
1 0 0
0 0 1

 .
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Hence the isomorphism (1 − F )/2 on the 2-torsion MT /2 is given by the
matrix A, in the basis given by the classes

{P0 −∞, P1 −∞, div(y)}.

Perhaps the basis {P0 −∞, P1 −∞, P−1 −∞} for clT (X)[2] = MT /2 (in
that order!) is more natural. In that basis, (1−F )/2 is given by the matrix

A′ =

1 1 1
1 0 0
0 0 1

 .

This completes our determination of the class of the 2-extension ρ. Our
main result says that ρ agrees (up to a sign, see Lemma 3.2) with the Tate
class. Even given this very explicit knowledge, it would appear very hard
to show this directly even in this particular case.

Remark 5.4. Since there are compatible automorphisms of Y andX which
exchange 1 and −1 (P1 and P−1 respectively) and fix the points 0 and P0,
one might expect a symmetry: exchanging simultaneously the 2nd against
the 3rd row (column respectively) should leave A′ unchanged, which is
obviously not the case. But there is no contradiction. Indeed, this tentative
symmetry argument is unsound, because it fails to take T into account; and
in fact the presence of T in the way we chose it spoils the symmetry.
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