OURNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

Special values of Goss L-series attached to Drinfeld modules of rank 2
Tome 33, n°2 (2021), p. 511-552.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_2_511_0>

© Société Arithmétique de Bordeaux, 2021, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
I’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal /). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que D'utilisation a fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/


http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_2_511_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/

Journal de Théorie des Nombres
de Bordeaux 33 (2021), 511-552

Special values of Goss L-series attached to
Drinfeld modules of rank 2

par OGuz GEZMIS

RESUME. Inspiré par le cadre classique, Goss a défini des séries L attachées
aux modules de Drinfeld. Dans cet article, pour une puissance fixée ¢ d’'un
nombre premier et un module de Drinfeld donné ¢ de rang 2 avec une certaine
condition sur ses coefficients, nous donnons des formules explicites pour les
valeurs de la série L de Goss attachée a ¢ aux entiers positifs n tels que 2n+1 <
q en termes de polylogarithmes et coefficients de la série logarithmique de ¢.

ABSTRACT. Inspired by the classical setting, Goss defined L-series attached
to Drinfeld modules. In this paper, for a fixed choice of a power ¢ of a prime
number and a given Drinfeld module ¢ of rank 2 with a certain condition on its
coefficients, we give explicit formulas for the values of Goss L-series attached
to ¢ at positive integers n such that 2n + 1 < ¢ in terms of polylogarithms
and coeflicients of the logarithm series of ¢.

1. Introduction

1.1. Background and Motivation. One of the major sources of con-
structing L-functions is related to Galois representations. For a number
field F, let F be its algebraic closure and G be its absolute Galois group.
Let [ be a prime number. Consider a collection p := (p;) of l-adic repre-
sentations which are continuous homomorphisms p; : Gp — GL(V;) where
V; is a finite dimensional Q;-vector space. Then we say p forms a strictly
compatible system if there exists a finite set U of places of F' such that

(i) For all u ¢ U and all [ relatively prime to p, p; is unramified at pu.
(ii) For such p and [, the polynomial
P,(X) :=det(1 — Xp;(Frob,) | V)
has coefficients in Q and is independent of [.

For example, let £/ be an abelian variety of dimension g over I and for any
i € Z>0, E[l'] be the group of all I'-torsion points of E in F. Then one can
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512 Oguz GEzZMIS

consider V; as the following vector space

= lim El] ©z, Q = Q)

to see that the family p = (p;) of representations p; : Gp — GLoy(V}) in-
duced from the continuous action of Gz on E[I*] forms a strictly compatible
system (see [17] and [30] for details).

For each such system p = (p;) of Galois representations, one can assign
the L-function

Ly(p,s) =[] BuWNp )"

where p runs over all finite places not in U and Ay is the norm of the place
p of F. The function Ly (p, s) converges to an analytic function for s € C
when the real part R(s) of s is sufficiently large. We refer the reader to [17]
and [33] for further details about the subject.

1.2. Drinfeld A-modules and L-series. In the present paper, we fo-
cus on the special values of an analogue of aforementioned L-series in the
positive characteristic case whose construction is due to Goss [23]. Let F,
be the finite field with ¢ elements and 6 be an independent variable over
F,. We define A to be the set of polynomials in § with coefficients in I,
and A4 to be the set of monic polynomials in A. Let K be the fraction
field of A and K, be the completion of K at the infinite place with respect
to the norm |- | normalized so that |#]| = ¢q. We also set C to be the
completion of a fixed algebraic closure of K,

Let K®°P be the separable closure of K in C,. Let t be another indepen-
dent variable and set A := F[t]. For any monic irreducible polynomial w
of A, we define K, to be the completion of Fy(t) at w. Consider a family
p = (pw) of continuous representations of Gal(K*P/K) on a finite dimen-
sional K,,-vector space V,,. For any prime element v of A, let us set Frob,
to be the geometric Frobenius at v. We say p forms a strictly compatible
system if there is a finite set U’ of primes of A, such that

(i) For all v ¢ U’ and all wy,—g € A relatively prime to v, p,, is unram-
ified at v.
(ii) For such v and w, the polynomial

P,(X) :=det(1 — X py(Frob,) | Vi)

has coefficients in F,(t) and is independent of w.

Analogously, we define the L-function Ly (p,n) corresponding to a strictly
compatible system p = (p,,) of representations p,, : Gal(K*P/K)— GL(V)
by

(1.1) Ly(p,n) = ] Polvpl,)”
vgU’
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where v runs over prime elements of A, not in U’. For integer values of n,
the function Ly (p,n) converges in the Laurent series ring F,((1/t)) when
n is sufficiently large. For further details, we refer the reader to [7] and [39].

We point out that throughout the paper, by a slight abuse of notation,
we continue to denote the value constructed by setting ¢ = 6 in Ly (p, n)
by the same notation and hence our L-values will converge in K.

Let L be a field extension of K in C,,. We define the twisted power series
ring L{7] with the rule 7¢ = ¢?7 for all ¢ € L and set L[] to be the subring
of L[r] containing only polynomials in 7.

A Drinfeld A-module ¢ of rank r is an Fy-linear ring homomorphism
¢ : A — L[7] defined by

(1.2) ¢g = Ao+ AT+ -+ AT

so that Ag = 6 and A, # 0. For each 0 < i < r, we call A; the i-th coefficient
of ¢.

One can assign the exponential series exp, = ;> &t o€ L] to ¢
subject to the condition that {o = 1 and expy 0 = ¢g exp,. The logarithm
series of ¢

log, = Z'yiri € L[]
i>0
is defined with respect to the condition that 79 = 1 and 6log, = log ¢.
It is also the formal inverse of the exponential series exp, in L[7].

One of the examples of Drinfeld A-modules is the Carlitz module C

given by

Cg =0+T7
and its relation with the class field theory has been studied by Carlitz [10,
11] and Hayes [27].

For any non-negative integer n, we set [n] := 1 if n = 0 and [n] := 69" —0
otherwise. The exponential series exp of the Carlitz module is defined by

TZ
expozzﬁ € K[]

i>0 Tt
where Dy := 1 and D; := [i{]D}_; for i > 1. Furthermore the logarithm
series log~ can be given by

IOgC:Z% € K[r]
>0
where Lo := 1 and L; = (—1)[i][i — 1]...[1] when i > 1. Using the coef-

ficients of log., one can also define the n-th polylogarithm function log,
given by

24

>0 0
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whenever |z| < ng/(q—1). For more information on Drinfeld A-modules,
we refer the reader to [24, §§3 and 4] and [40, §§2 and 3].

Taelman [36] introduced effective t-motives which can be seen as a gener-
alization of Anderson ¢-motives defined in [1]. Using Anderson’s theory [1],
one can show that for every Drinfeld A-module ¢, there exists a unique cor-
responding effective t-motive My up to isomorphism. Furthermore in [21],
Gardeyn proved that one can construct a strictly compatible system of Ga-
lois representations p = (p.,) attached to My with a certain choice of the
K,-vector space V,, (see Section 2.3 for definitions and details).

Let n be a positive integer and L/ (Mg, n) be the value of the L-function
defined as in (1.1) corresponding to the system of Galois representations
p = (pw) attached to My. Our main purpose in the present paper is to
study certain special values of the L-function L(Mg,n) := Ly(Mg,n) when
¢ is a Drinfeld A-module of rank 2 defined under some conditions on its
coefficients. To motivate our main result, we first explain the well-known
Carlitz module case: Consider the g-expansion of n given by n = > n;¢’
where 0 < n; < g—1and n; =0 for j > 0. Set I';,11 := szo D;Lj c A.
Thanks to the results of Hsia and Yu [28, Thm. 3.1] and Anderson and
Thakur [2, Thm. 3.8.3], we know that

1 1 & }
L(Me,n+1)= Y a—n:F—Zhjlogn(GJ)
=0

GEA+

for some h; € A and m < ng/(qg—1).

1.3. The Main Result. Let ¢ be a Drinfeld A-module of rank 2 defined
by

(1.3) b9 =0 + ar + br?

where a € L and b € L\ {0}. For any finite set S C Z>( and a non-negative
integer j, let us define S +j := {i+j : i € S}. Set P2(0) := {(0,0)} and
for any n > 1, we define

Pa(n) :={(S1,52) : S1NSe =0 and S; C {0,1,...,n—1}, i =1,2}

to be the set of tuples (S, S2) such that Si, Sy and Sy + 1 are distinct and
form a partition of {0,1,...,n—1}. We call the elements of P2(n) shadowed
partitions. For any positive integer n, we also set Pa(n) to be the set of
shadowed partitions (S1,S2) € Pa(n) such that 0 € S;.

Define w1 (S) := 0if S = 0 and w1 (S) := ;e ¢' otherwise. Furthermore,
for any finite set S C Z>o with 0 € S, we let wa(S) := 0 if S = {0} and
wa(S) == Yesvioy ¢ if {0} € S. For any U = (S1,52) € Pa(n), we define
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the component Cy of v, corresponding to U by

aw1(S1)pw1(S2)
Hi651 (_[Z+1]) HiGSQ (_[1’+2])
qw2(S1)pwi1(S2)

[Lics, O+ [ics, (- 142D
We set Fp := 0 and Ty := 1. For n > 1, define

F, = Z Cu

UG’P; (n)

if U = (S1,5) € Pa(n) \ Pi(n)
Cy ==

if U = (51,92) € Pgl(n)

and

T, = Z Cy.

UEP2(n)\Pa(n)

El-Guindy and Papanikolas [18, Thm. 3.3] showed that for any n > 0, the
n-th coefficient v, of the logarithm series log, can be given by

’Yn:aFn"i_Tn

We now further assume that ¢ is the Drinfeld A-module as in (1.3) such
that a € F, and b € F). Let ¢ be another Drinfeld A-module given by

dp = (=b )"V Dgp(—p=1)1/ (@~ = g —gb~1r 45172 for a fixed (¢—1)-
st root of —b~!. The class number formula [38, Thm. 1] of Taelman yields
that

L(M¢, 1) = log(g(l)

where log 3 is the logarithm function of <;~5 induced by its logarithm series
(see Remark 5.6 for details).

Our main result which concerns special values of L(My, n) at integers n >
2 in a certain domain can be stated as follows (later stated as Theorem 5.9).

Theorem 1.1. Let ¢ be a Drinfeld A-module of rank 2 given by
$g =0+ at + br?

such that a € Fy and b € F; . Then for any positive integer n satisfying
2n +1 < q, we have

L(Mg,n+1) = (i(—l)L":‘i%)(Hi( )bL(; DR 1>
1=0 ¢ i=1 g
= )| (S5 )
‘(Z( ) . )(Z )

=1 =0
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The strategy of the proof of Theorem 1.1 and the outline of the paper
can be explained as follows:

(I) After introducing some preliminaries and notation used throughout
the paper, we define, in Section 2.2, the t-module G,, given by the
tensor product of a Drinfeld A-module ¢ of rank 2 and the n-th
tensor power of the Carlitz module. We also discuss effective t-
motives, Taelman ¢-motives and their L-series (see Sections 2.3, 2.4
and 2.5 for details).

(IT) In Section 3, we analyze the certain entries of the coefficients of
the logarithm series Log of G,. Using Papanikolas’ method [32,
§4.3] as well as Lemma 3.1 and Proposition 3.2, we relate them
to shadowed partitions and Carlitz logarithm coefficients (Corol-
lary 3.3). We also detect some elements living in the convergence
domain of the function Logg induced by the logarithm series of
Gp, (Theorem 3.5).

(III) In Section 4, we introduce the unit module U(G,/A) of G,, (see
Definition 4.9) and recall some results on invertible lattices which
are due to Debry [16, §2]. Combining them with Theorem 3.5, we
give the generators of the unit module U(G,/A) as an A-module
in terms of the values of the logarithm function Logs; at some
algebraic points (Theorem 4.11).

(IV) In Section 5, we apply the work of Anglés, Ngo Dac and Tavares
Ribeiro [4] to our construction. We also study the Taelman L-
values and show how they are related to the special values of Goss
L-series (Proposition 5.7). Finally, we formulate the special value
L(Mg,n + 1) and prove Theorem 1.1 by using Theorem 4.11.

Remark 1.2. Assume that ¢ is a Drinfeld A-module of r > 2 given by
09 = 0+ A7+ -+ + A.7". Although our arguments introduce a way to
generalize Theorem 1.1 when o is defined with respect to the condition
that A; € F, forall 1 < i < r—1 and A, € FJ, our current method
does not allow us to prove similar results when some of the coefficients of
o is in A\ F,. This is due to the difficulty of understanding the generators
of U(G,/A) in that case. One can also generalize Theorem 1.1 for larger
values of n, if a version of Proposition 5.8 for such values of n is understood
(see §5.3 for details). We hope to tackle these problems in the near future.

2. Preliminaries

2.1. Hyperderivatives. For any non-negative integers ¢ and j, the bino-
mial coefficient (%) is given by

J
j 0 if i < j.
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Furthermore, when k£ = —i is a negative integer, we define

()-c(1)

We now define the j-th hyperdifferential operator Bg i Koo = Ko with
respect to 6 by

85 (Z ckOk) = Z Ck <k,>0k_j, c, € Fy.
k<Ko k<ko, \J
Note that if j = 0, then 95(g) = g for all g € Ke. Let Coo((t)) be the
field of formal Laurent series in ¢ with coefficients in C. For any j € Z>o,
we define the j-th hyperdifferential operator 8/ : Coo((t)) — Coo((t)) with
respect to t by

8{ Z giti = Z i <z) ti_j, gi € Coo.
i=io =g \J

Furthermore, when j = 0, we have 9?(f) = f for any f € Coo((t)) and if

f1, f2 € Co((t)) and n > 0, we have the following product rule:

(2.1) o (fif2) = . 9 (f)oF (f2).
J1,j220
Jitg2=n
For more details on hyperderivatives, we refer the reader to [8, 15, 20].
The next proposition is useful to deduce our results relating to the hy-
perderivatives.

Proposition 2.1 ([41, Cor. 2.7}, [13, Prop. 3.3.2]). Consider the power se-
ries f =Y 50pai(t—0)" € Cx[t] so that, as a function of t, it is convergent
in Dy :={z € Coo | |2|, < q}. Then for any j > 0, we have

aj = 5?(]”)“:9.

2.2. The t-module G,,. We start with the definition of t-modules and
then analyze the tensor product of certain t-modules which takes our inter-
est throughout the paper. For further details on ¢t-modules and their tensor
products, we refer the reader to [9, 25, 26, 29].

Let m,k € Z>1. For any matrix B = (B; ;) € Mat,,«x(L) and integer d,
set B(@ .= (BZ(;). Furthermore, we extend the norm |- | to Mat,xx(L)
by setting |B|,, := sup; ; [Bi |- We define the twisted power series ring
Mat,, k(D) [7] := {50 Bit" | Bi € Mat,,xx(L)} by the rule 7B = B7
for all B € Mat,,xx(L)[7] and set Mat,,xx(L)[7] C Mat,,x(L)[7] to be
the subring of polynomials in 7.
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Definition 2.2.

(i) A t-module of dimension d is a tuple G := (GZ/L,w) where Gg/L
is the d-dimensional additive algebraic group over L and 1 is an
[F4-linear ring homomorphism 1 : A — Matg(L)[7] defined by

(22) P(0) := Ag + A17 + - + Ay ™

such that Ag = 0 Idg+N where Idg is the d x d identity matrix and
N is a nilpotent matrix. For each 0 < i < m, if A4; is in Maty(R)
where R is a subring of L, then we say G is defined over R.

(ii) Morphisms between t-modules G = (GZI}L, Y1) and G' = (GgQ/L, 2)

are given by any element U € Maty, w4, (Coo)[7] satisfying

Wep1(6) = h2(0) V.
We also denote the category of t-modules by G.

Example 2.3.
(i) Any Drinfeld A-module ¢ defined as in (1.2) can be considered as
a t-module of dimension one defined over L.
(ii) Let n be a positive integer. Another example of t-modules can be
given by the Carlitz n-th tensor power C®" := (GZ/K,w) where 1
is the [Fy-linear ring homomorphism given by

0 1 0o ... ... 0

0) = + T
V() 01 . :
0 1 0 ... 0

Note that when n = 1, the definition of C®! coincides with the
Carlitz module. We refer the reader to [2] for further details.

Let R be an IF -algebra containing each entry of Ao, A1,...,Ay,. The
A-module action on Matgy (R) induced by G = (G¢ L 1) is given as

0-x:=90)x:= Agx + Az + . + A,2™ .z € Matgy (R)

and denote such A-module by G(R). Furthermore, we set 0,(0) := Ag and
define the A-module action on Matgy(R) via the map 9y : A — Maty(R)
so that

(2.3) 0z :=0y(0)x:= Agx = (Aldg+N)x, =z € Matgy1(R)

and denote such A-module by Lie(G)(R).
When L = K and R’ is any subring of Co, containing K, by using [19,
Lem. 1.7], the A-module action induced by 0y as in (2.3) can be uniquely
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extended to a K.-vector space action on Matgy(R’) via the map 0y :
Ko — Maty(Ko) defined by

(2.4) 8¢ (Z Cie_i) = Z Cl(e Idd —I—N)_i N c; € Fq

i>io i>io
so that f-x := 0y(f)z for any f € Ko and z € Matgx1(R'). We denote
such K-module by Lie(G)(R').
One can assign an exponential series Exp; € Maty(L)[7] to any t-module
G given by

(o]
Expg =Y Qir', Qo=1Idy4, Qi€ Matq(L)
i=0

subject to the condition that Expg dy(0) = 1 (0) Expg. The exponential

series Expg induces to an everywhere convergent and vector valued FFg-
linear homomorphism Expg, : Lie(G)(Co) = G(Co) defined by

Expg(u) = Z Qiu”,  u e Matgy1(Coo).
i>0

The logarithm series Log € Matg(L)[7] of G which is the formal inverse
of Expg is given by

o0
Logg ==Y Pir', Py=1d4, P; € Maty(L)
=0

with respect to the condition

(2.5) 9y (#) Logg = Logg ¥(6).

Similar to the exponential series, the logarithm series Log, induces to an
F,-linear homomorphism Logg : D — Lie(G)(Cy ) defined by

Logq(u) = Z Pu¥, weD
1>0
where D is the domain of convergence of Log; in G(C) (see [26, Lem. 2.5.4]
for more details on D).

We now fix a positive integer n and the Drinfeld A-module ¢ of rank 2
defined by

(2.6) b9 = 0 + at + br?

fora € Aand b € A\ {0}. We introduce the t-module G,, = (Giﬁgl, ®n),

constructed from ¢ and C®", where ¢, is the F,-linear ring homomorphism
On : A — Matg, 41 (K)[7] given by

(2.7) ¢n(0) = 01dg, 41 +N + E7
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such that N € Matgy,41(F,) and E € Matg,1(A) are defined as

0 0 1 ... ... 0] o ... ... ... 0]
0 O 1 ... 0
N = S E =
0 0 1|’ 0

0 O 1 0 ... ... :
i 0] la b 0 ... 0]

For any f € K, we also set d,[f] € Mata,+1(Ko) given by

[f 0 3(f) 0 () ... 0 )]

f 0 Oy(f)
dn[f]3:
f 0 9(f)
f 0
I [

Remark 2.4. It is important to emphasize that our definition for the
matrix d,[f] is slightly different than the d-matrices of Papanikolas defined
in [32, Eq. (2.5.1)].

Lemma 2.5. For any a € A, we have 04, (a) = dylal.

Proof. By the Fg-linearity of the action Jy, on A and hyperdifferential
operators with respect to 6, it is enough to prove the lemma for a = 6* for
it € Z>0. We do induction on i. If ¢ = 0, then we are done. Assume that the
assumption holds for all i. Note that for positive integers ¢ and j such that
t > 7 we have

2.9 () ' (a‘ : 1> ) ( i 1>'

Using (2.8), we obtain
(2.9) 00(0°) + 05~ (6") = 95(6").

Using the fact that ¢, is an [F-linear ring homomorphism, we obtain
D, (07T1) = Dy, (0)0s,, (0%). Thus the equality in (2.9) implies the assump-
tion for ¢ + 1 as desired. 0

2.3. Effective t-motives over K. We define K|t] to be the commutative
polynomial ring consisting of polynomials in ¢t with coefficients in K and
K(t) to be its quotient field. For any f = >>,~,¢;t' € K[t] and j € Z, we set
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fO) =3, cgj t'. We define the non-commutative ring K[t, 7] := K|[t][7]
subject to the condition

rf=fVr, feK[.
Definition 2.6.

(i) An effective t-motive M defined over K is a left KJt, 7]-module
which is free and finitely generated over K[t] such that the deter-
minant of the matrix representing the 7-action on M with respect
to any chosen K[t]-basis is equal to c(t — 6)° for some ¢ € K* and
S € ZZO'

(ii) The morphisms between effective t-motives are left K[t,7]-module
homomorphisms and we let M be the category of effective t-motives

defined over K. For any M, Ms € M, we denote the set of mor-
phisms between M; and My by Homng (M, Ms).

Now for a given effective t-motive M which is also free and finitely gen-
erated over K[7], let {v1,...,v4} be a fixed K[r]-basis of M. Then there
exists a matrix ®g € Maty(K)[r]| such that

U1 V1
t = Py
Vg Vd

Thus we can define an F-linear ring homomorphism & : A — Maty(K)[7]
by ®(6) := ®p so that (Gg/K,(I)) forms a t-module of dimension d. We

call the t-module (Gg K ®) formed via this process an abelian ¢-module
corresponding to M.

By [37, Thm. 1] (see also [34, Thm. 10.8]), we know that there is an anti-
equivalence of categories between the subcategory of effective t-motives over
K which are also finitely generated over K[7] and the category of abelian ¢-
modules defined over K. We now see some examples of such correspondence
between effective t-motives and abelian ¢-modules.

Example 2.7.

(i) Let ¢ be the Drinfeld A-module of rank 2 given as in (2.6). We
set a left K[t, 7]-module My := K[t|m; @ K[t|my with some chosen
K[t]-basis {m1,ma} of My whose T-action is given by

7 (fima + foma) = £ (t = )b~ ma + (17 — £V ab™)my

for any f1, fo € K[t]. It is the effective t-motive corresponding to ¢.
One can also easily see that {m,} is a K[r]-basis for M.

(ii) Let M be an effective t-motive which is free of rank r over KJt].
The r-th exterior power of M is called the determinant of M and is
denoted by det(M). One can easily prove that det(M) is an effective
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t-motive of rank 1 over K|[t]. For instance, let ¢ be the Drinfeld A-
module of rank 2 defined as in (2.6). Then det(My) = K[tjm1 Amy

so that 7 acts on m1 A mg by
T f(my Amg) = —fIb~1(t — 0)(my Amy) |, f € KIt].
Observe that det(My) is also a free K[7]-module with the K[r]-basis

{m1 Ama}.
(iii) Let n be a non-negative integer. We now define the left K|t,7]-
module C®" := K|[t}m whose T-action is given by 7 - (fm) =

fO(@ — 6)™m for any f € K][t]. It is free of rank one with the
K|[t]-basis {m} and free of rank n over K|[r| with the basis {m,
(t—8)m,...,(t—0)""'m}. One can see that the abelian t-module
corresponding to C®" is given by C®" defined in Example 2.3 (ii).
When n = 1, we also set C := C®L.

Consider the left K[t, 7]-module M, := My @) C®" on which 7 acts
diagonally. Using Example 2.7, we see that M, is an effective t-motive
which is free of rank 2 over K[t] with the basis {v1,v2,0} introduced as

vip = m1 @ m and vag = ma ® m. For any 1 < j < n, we further
let v1; := m; ® (t — 6)m and similarly, set vy ; := mo ® (t — 0)’m for
1 < j <n—1. Thus using the K[t]-basis {v1,v20} of M, we see that the
set {v1,0,...,V1,n,020,...,V2n-1} is a K[7]-basis for M,, and hence M, is
free of finite rank over K|[r]|. Moreover, the following identities hold:

(t - 9)’017]‘ == U17]’+1 for 0 S j S n — 1,

(t - 9)’027]‘ == U27]’+1 for 0 S j S n — 2,

(t —0)vop_1 = TU10,

(t — 0)v1,, = atvi + bTvoy.

Thus we see that the multiplication by ¢ on M, is given by

V1,0 V1,0
V2,0 V2,0
t : = ¢n(0)
V1,n—1 VU1,n—1
V2,n—1 V2,n—1
Uln Uin

which shows that G,, = (Gi?}l, ¢n) is the t-module corresponding to M,,.
Hence G,, is an abelian t-module.
Let w be a monic irreducible polynomial in A and A, be the completion

of A at w. Let M be an effective t-motive over K and set

MKscp = M ®K Ksep
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which is a left K*P[t, 7]-module and the 7-action on Mgsep is given by
T(f®g)=71(f)®g? forall f e M and g € K*P. For any F,[t, 7]-module
I, let I™=! be the set of elements of I fixed by the action of 7. We define
the A,-module

Tw(M) = @(MKsep/wiMKsep)TZI.

(2

Furthermore we set
Vi (M) :=Tyy(M) @4, Ky

which is a finite dimensional K,-vector space with a continuous action
of Gal(K*P/K) (see [37, Prop. 1]). Let p = (pw) be the family of ho-
momorphisms p,, : Gal(K*P/K) — GL(V,,(M)) induced by the action of
Gal(K®*P/K) on V,,(M). The next theorem is due to Gardeyn (see also [37,
Prop. 2)).

Theorem 2.8 ([21, Thm. 3.3]). The following statements hold.
(i) We have dimk,, V(M) = rank g M.
(ii) The family p = (pw) forms a strictly compatible system.

Throughout the present paper, we call p = (p,) in Theorem 2.8 the
family of representations attached to the effective t-motive M.

2.4. Taelman t-motives. We review the properties of a certain category
T, which is a rigid A-linear pre-abelian tensor category [36, Thm. 2.3.7]
(see also [35, §2.2.5]), consisting of Taelman ¢-motives introduced in [36].

Let M7 and M5 be effective t-motives defined over K. The tensor product
M, ® My := M; QK My is also an effective t-motive on which 7 acts
diagonally.

We define Hom(Mj, Ma) := Hom gy (Mi, Mz). Taelman [36, Prop. 2.2.3]
showed that for sufficiently large n, Hom(M;, My ® C®") induces the struc-
ture of an effective t-motive whose K[7]-module structure can be described
in what follows.

For i = 1,2, let B; € Matg, (K[t]) be defined so that 7 - m{* = B;m!"
where m; := [m;1,...,m;,] consists of a K[t]-basis elements m; 1, ..., m;,
of M;. Let K be the algebraic closure of K in C,,. We consider the dual
K[t]—basis {fi,j S HOHI(Ml, My ® C®n) ’Z S {1, RN 81},j S {1, ceey 82}} of
Hom (M, My @ C®™) given by

g _Jmej @1 itk =i
fig(mig) : {0 otherwise.

Note that after the extension of scalars, we have

Hom(My, My ® C®") C Homp (M1 ® K (1), M2 ® C*" @ K(1)).
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Let S; ; € Matg, s, (K[t]) be the representation matrix of f; ; with respect
to m; and msy. Then we define 7 f;; : My — My ® C®" to be the K (t)-
module homomorphism whose representation matrix with respect to mq
and mh = {ma1 ® 1,...,mas, ® 1} is given by (t — 0)"BaS; (B Y.
Since the determinant of Bj is some power of (¢ — 6) times a unit in K,
for sufficiently large n, the matrix (t — 0)"ByS; ;(By )" will have coeffi-
cients in K[t]. Hence 7 - f;; is indeed a K[t]-module homomorphism in
Hom (M7, My @ C%").
We are now ready to give the definition of Taelman ¢t-motives.

Definition 2.9.
(i) A Taelman t-motive M is a tuple (M,n) where M is an effective
t-motive defined over K and n € Z.

(ii) We define the set of morphisms between Taelman t-motives (M, n1)
and (Ma,na) by

Hom((Mi,n1), (My,n3)) := Hompg (M) @ CEMH) | M,y @ C2Hn2))

where n > max{—nj, —na}.

(iii) For any ¢ € K*, we define c1 := (c1,0) to be the Taelman ¢-motive
where ¢1 = K[t] on which 7 acts as 7 - f = ¢f() for any f € 1.
When ¢ =1, we call 1 the trivial Taelman t-motive.

Remark 2.10.

(i) It is important to point out that for effective t-motives M; and Mo,
the canonical isomorphism

Hompg (M7, M3) = Hompm (M ® C, My ® C)

actually shows that the definition of morphisms between the objects
of T is independent of n.

(ii) The category M of effective t-motives can be embedded into T as
a subcategory via the fully faithful functor M — (M, 0) and by the
abuse of notation, we continue to denote the image of M under this
functor by the same notation.

For any Taelman ¢t-motive M := (M, ;) and My := (Ma, iz), we define
(210) M; @ My := (M1 ® Mo, i1 + 22)

Note that M; ® My = My ® M; and moreover, for M € 7, we obtain
M®1=1M=M.
We define the internal hom in 7 by

Hom (M, My) = Hom((My,i1), (My,i2)) := (Hom(My, My@C®271+0) ;)

where i € Z> is sufficiently large. For an effective t-motive M, we have the
natural isomorphism between M ® C? @ C and M ® C/*! for any j > 0
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which implies that
(2.11) MxCi)=(M,i+1), i€Z

by Definition 2.9 (ii). Moreover for sufficiently large i and My, My € M, we
have
Hom (M, My ® C") ® C = Hom (M, My ® C1).
Thus one can show that the definition of the internal hom above is actually
independent of 7 and well-defined up to isomorphism of Taelman ¢t-motives.
For Taelman ¢t-motives My, ..., My, we have

(212) Hom(Ml, Mg) X HOHI(MQ, M4) = Hom(M1 ® My, M3 ® M4)

Furthermore, we define the dual MY of the Taelman t-motive M by

MY := Hom(M, 1).

Taking dual of Taelman t-motives is also reflexive in the sense that
(MY)Y =M for any M € T.

Remark 2.10 (ii) explains how to identify an effective t-motive inside the
category T. Now we briefly discuss such identification for Hom (M, Ms)
when M, My € M up to isomorphism of Taelman ¢-motives: We already
know that for sufficiently large n, M’ := Hom(M7, M@ C®") is an effective
t-motive. Thus, by the definition of internal hom, we see that Hom (M, M>)

can be identified by the tuple (M’, —n) inside 7. Some examples are in
order.

Example 2.11.
(i) For any positive integer n, consider the effective t-motive C®™. One
can easily show that
Hom(C®", C¥") = 1.

In other words, (C®")Y = Hom(C®", 1) can be identified by (1, —n)
in 7. We also note that by (2.11), C®™ can be also identified by
(1,n) = (C®"=9 4) for any i € {0,...,n — 1}. Furthermore, us-
ing (2.10), one can see that

(2.13) (C¥")Y @ C¥™ = (1,m —n) , m € Zxo.

(ii) Let ¢ be the Drinfeld A-module given by ¢y = 6 — ab™ ' + b~ 172
such that a € F, and b € F. Using the K[r]-module structure on
Hom(Mjy, C), one can see that Hom(Mg, C) = M, where ¢ is the
Drinfeld A-module as in (2.6) with a € F; and b € F{. Thus, M(;\E/ is
identified by (Mg, —1) = My @ CY where the equality follows from
the previous example and (2.10). Moreover, since M ® (—b—11)
M, using (2.10), one further sees that

(2.14) M = (Mg, ~1) = (M,0) @ (=071, ~1) = My @ det(My)".
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2.5. L-series of Taelman t-motives and Taelman L-values. Using
Theorem 2.8 and the tensor compatibility of the functor V,, defined in
Section 2.3 for any monic irreducible element w € A, in [37, §2.8], Taelman
was able to introduce the L-function L(M,-) corresponding to a Taelman
t-motive M satisfying the property

(2.15) LM®C,s+1)=L(M,s), s€Z

provided that both sides of the identity converge.
As our first example, for any s € Z, we define the L-series L(1,s) corre-
sponding to the trivial Taelman ¢-motive 1 by

Ls)= [[1-v"= > ai € Koo

’U€A+ a€A+

where the product runs over irreducible elements in A and it converges
for any positive integer s (see [24, §8]).

In this subsection and the rest of the paper, for any positive integer n, we
are mainly interested in the L-function L(M,, ) of the effective t-motive
M,, defined in Section 2.3 corresponding to Gy, given in (2.7). Let p = (pw)
be the family of homomorphisms p,, : Gal(K%P/K) — GLa(V,(M,,)) in-
duced by the action of Gal(K*P/K) on V,,(M,). We know by Theorem 2.8
that p indeed forms a strictly compatible system and hence one can define
the L-function L(M,, ) := L((M,,0),-) = Ly/(p,-) as in (1.1). We recall
that the values of our L-function converge in K, simply after replacing the
variable ¢ with 6 as explained in Section 1.2. Furthermore one can check
that the exceptional set U’ of primes of A, in this case is empty.

Since M,, = (M’',m) for some effective t-motive M’ and m € Z, by
using (2.15), one can recover values of L(M,', s) in terms of L(M’, s) when-
ever they are convergent. Indeed by [38, Prop. 8|, we know that L(M,/,s)
converges to an element in K, for any integer s > 0.

Before we finish this subsection, we introduce the Taelman L-value corre-
sponding to an abelian t-module G = (GZ /K ) which plays a fundamental
role to prove our main result. We refer the reader to [19, 38| for further
details.

For any finite A-module M, we set

Mlg:=det (1X)Id—(0x1)| M F,[X
Ml = det (10 X)1A—(0@ 1) [ M g, FolX])
which is the characteristic polynomial of the map 8 ® 1 on M evaluated at
X =40.

_ Let B = (b;;) € Matq(A) and v € A} be a prime. We define the matrix

B := (b;;) € Maty(A/vA) where b;; = b; ; (mod v). For any 1 < j <m
and z = [z1,...,24)" € (4/vA)%, we set ) .= [27 ... ,xgj]“.
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We define Lie(G)(A/vA) to be the direct sum (A/vA)? of d-copies of
A/vA equipped with the A-module action given by

0-x:=0,0)z, xc(AvA)
Similarly, we define G(A/wA) as (A/wA)? with the A-module action given
by
0-x:=Agx+ -+ Anz™, z e (A/vA)

Now following [19], we define the Taelman L-value L(G/A) by the infinite
product

| Lie(G)(A/wA)|a LT
w6 ==, <+ %3]

(2

where v runs over all irreducible elements in A .

3. The Analysis on the Logarithm series Logg,

We fix a positive integer n and a Drinfeld A-module ¢ of rank 2 given
by ¢9 = 0+ at +b7? where a € A and b € A\ {0} unless otherwise stated.
We recall the definition of the t-module Gy, = (G2}1", ¢n) from (2.7) and

denote its logarithm series Logs by

o
Logg, =Y P7', Py=Idony1, Pi= (P € Matgni1(K).
i=0

In this section, we analyze the coefficients P; and using Papanikolas’ method
in [32, §§4.1 and 4.3|, we determine certain elements lying in the conver-
gence domain of the function Logg induced by the logarithm series of G,
if the coefficients of ¢ have certain conditions.

Lemma 3.1 (cf. [32, Lem. 4. 1 1]). Foranyi>1 and j = 0,1, we consider
T1,5,i—1 ‘= Py ,(2n43,2n) +a? Pz'—l,(2n+j,2n+1) € K and define r2,5,i—-1 =

i—1

b9 P 2n+jont1) € K. Let R;j € Matixont1(K) be given as

(D (=1

Rij = [ 71,41, Wrgm;l, e

—1)" 1" -1 n+1
Wﬁ,j,i—h Wrz,j,i—la Wﬁ,j,i—l .

Then the (2n)-th and (2n + 1)-st row of P; are given by R;o and R,
respectively.
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Proof. Recall that ¢,,(0) = 01da,,4+1 +N+ET. For any two matrices By, Bs €
Mata, +1(K), set [B1, Ba] := By Bs — B2 By. Then we define ad(B;)°(By) :=
By and for j > 1, ad(By)’ (Bs) = [By,ad’(B;)7~Y(By)]. Using [22, Lem. 3.4]
and a similar argument as in [14, Eq. 3.2.4], we have

P — 272 ad(N ) (P BUY)
v Z [i]+1
7=0
2(n+1)—2

NmR_lE(i_l)Nj_m

== Z Z (_1)]m( > i17+1
=0 m=0 m 2]

Note that N™ = 0 when m > n+1and N7°™ = 0if j —m > n + 1.
Therefore we see that

n_ n+m : mp. i—1) n7i—m
[ j\NmP,_E(-DN
Pi==% > (-1 m<m) lijrl
(3.1) m=0=m
B ’il z": 1 (l +m— 1) Nmp,_; (=1 yi-1
I=1 m=0 m [i]+m ’

where the last equality follows from setting [ = j — m + 1. Since the last
two rows of IV contain only zeros, one can notice from the direct calculation
that the multiplication N mp.  EG-D N1 has no contribution to the last
two rows of P; if m > 1. Thus we only consider the case when m = 0.
Observe that

N : : : : :
Pi—lE( )N — | % * * * * *
0O ... 0 T1,0,i—1 72,0,i—1 0O ... 0

0 0 r145-1 7m214-1 0 0

where the only non-zero elements occur in the 2(1—1)+1-st and 2(1—1)+2-
nd coordinates of the last two rows. We also mention that when | =n + 1,
the non-zero terms appear only in the last coordinate of the last two rows
which are actually the terms corresponding to 2(I — 1) + 1-st coordinate
when n = [. Thus, applying (3.1) together with above observation finishes
the proof. O

Let
logg = Z Vit

>0

be the logarithm series of ¢ defined so that vy = 1 and
(3.2) 0log, = log de.
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Recall that the logarithm series log~ of the Carlitz module is defined by
loge = S0 Ly 7" where Lo = 1 and L; = (—1)"[i][i — 1]...[1].

We also recall the definition of shadowed partitions and elements F; for
all ¢ > 0 from Section 1.3 and prove the following proposition.

Proposition 3.2. For any i > 2, we have

_]. 7— i—
— (" Fg+a’ 'Fi_)) = F,.

Proof. Note that for any Uy = (S1.1,S12) € P3(i—2) and Uz = (Sa,1, S2.2) €
Pi(i — 1) with corresponding components Cy, and Cyy, respectively, the
elements —quQCul /[i] and —aqlflCz,{2 /[i] are the corresponding components
to the shadowed partitions (511,512 U {i —2}) and (S21 U {i — 1}, S22)
in Py(i) respectively and they are actually distinct elements of P4 (i) by
definition. Define the map a : P3(i — 2) U P43 (i — 1) — Pi (i) by

altl) = {(Sl,Sgu{i—2}) if U = (S1,52) € P3(i —2)
’ (Sl U {’L — 1},52) ifU = (51,52) € le(’L — 1).

By the above discussion « is injective. Furthermore, it is also surjective as
any element U = (S}, S5) of P4(i) has the property that either {i —1} € 5]
or {i —2} € S5. For the former case we have a((S] \ {i — 1},55)) = U and
for the latter case a((S7,55\ {i — 2})) = U. Thus the proof is completed
after summing the components of +; corresponding to shadowed partitions
in P (4). O

Using Lemma 3.1 and Proposition 3.2, we prove the following.

Corollary 3.3. Let1 < k < n. For anyt > 1, the last row of P; is given by

[(1)”[2']”%' (=) M i

AU . e
(1) () ”]
L? Y L?Lrl Y Y L? )

and the (2n)-th row of P; is given by

(“D"@"F (=) i
L? ) L:L Yy

n , In o T |-

K3 2 K3

oA et ]
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Proof. We do induction on i. Note that if ¢ = 1, then Lemma 3.1 shows
that the last row and the (2n)-th row of P, are given by

a b a b a d 1 0 1 0 1
_— ..., —,—,—— | an —.0,...,—.,0, —
Ll, Ll’ ’ng Lrilu L?_A'_l L17 ’ 7L?'7 ,L’iH_l

respectively. By using (3.2), we see that 71 = a/(6 — 69) = a/L; which
implies that the induction hypothesis holds for ¢ = 1. Assume that it holds
for all i. We show that the hypothesis holds for i + 1. Observe that for any
1 <k <n+1, using the functional equation (3.2), we have

(=D)% (b9 i1 + af' v _ (— 1)1k 4 1)k
[i + 1]k L} Li+1]"(—-1)»
(_1)n+1—k’[i + 1]n+1—k,¥i+1

n
Li+1

(3.3)

Similarly for 1 < k < n, we also obtain

(DF by (D) R Ry () R 1Ry

OO G T LR I,

Thus, using Lemma 3.1, (3.3) and (3.4), we obtain that the induction hy-
pothesis holds for the last row. For the (2n)-th row, by using the similar
calculations above replacing ;1 with F;_; and ~; with F; and applying
Proposition 3.2 we also deduce that the latter statement of the corollary
holds. g

By definition, for ¢ > 1, we see that F; is of the form

ad T pyt - ad”" pyr
(=DF ][] (=D* [l [, ]

_l’_

(35)  F=

where xj,n;,y; € Z>o for 1 <

j < r. Recall that ¢ is an independent
variable over C,,. Then for each F; €

K of the form (3.5), we set,

- ad"t pyt a?™" pyr

F;(t) = - + -4 — —
= e (t—07") . (t—0a7)

and observe that F;(#) = Fj. Furthermore, we define T;(t) in a similar
way using the definition of 7} in Section 1.3 so that T';(6) = T; and for each
i € Z>o,set Yi(t) := aF;(t)+T;(t). It is now easy to notice that Y;(0) = ;.
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Let g1(t),...,92n+1(t) be elements in K(t). We define the matrices
O tlgi(t), -, gan+1(t)] and Oz¢[g1(¢), - - ., gan+1(t)] in Matopi1 (K (1)) by
07 (91(t)) I (g2n41(t))]
0 0
Ol (®), - gz ()= | 5
9e(g1(t)) 9 (92n+1(1))
0 0
L g1(t) Gon+1(t)
and
S 0 ]
o (g1(t)) 97 (gant1(t))
Botlg1()s . ganar (D)] = : 3
22[91(1), -5 gans1(t)] 0 0
91(t) gont1(t)
L 0 0 -

For any a(t) € K(t) we also consider dy[a(t)] € Matg,,1 (K (t)) given by
2

fa(t) 0 di(a(t) 0 82a(t)) .. 0 p(a(t)]

a(t) 0 B(a(t))

dnla(t)] ==
alt) 0 (a(t))
a(t) 0
L a(t)

Let Lo(¢) := 1 and for ¢ > 1, we define the deformation L;(¢) of elements
L; by _

Li(t) :== (t —07)...(t—09) € K[t].
From the definitions, we have L;(§) = L;. Finally, define Py(¢) := Idag,41
and for all i > 1 and 1 < k < n, we set

o [E=0)m i) (= 67)m T ()
Pi(t) : = 014 L OR n

(t — )1k (1) (£ — 09 Rpd T Y, (1) T, (t)
Li(t)” ’ Li(t)" Y ]Li(t)n

(t — 1Y Fy(t) (t—09)10d " Fi_1(t)

+ 82715 ]Lz(t)n , Li(t)n RN

(t— 00 R B (= 07) R (1) Fy(t)

L (t)" ’ Li(t)" L@ |
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The next proposition will be useful to deduce some facts about the domain
of convergence of Logg .

Proposition 3.4. For any i > 0, we have that P;(0) = P;.
Proof. Assume first that ¢ > 1. Using (2.1), we can obtain
(3.6) dnlt — 07 |Pi(t)

(t—07 )T (8) (E—607)"be L1 (t) (t— 09 )yn+2=ky (1)
L) Li(t)" Li(t)" ’

1—1

=01

)

(t—0T) Ry (h) (=67 Ta(t)
L;(t)m U L)

o, [E=0)"E() (t—0T)0T T Fia(t) (1= 67) P RE(D)
+ 2.t Ll(t)n ) Lz(t)n g ey Lz(t)n )
(t=07) "1 —hpd Ry (1) (t—07)F(t)
Lo R WAL )

Note also that we have

(3.7) Pi(tH)N

i—1

(t—07)YC5(t) (t—09 )" 1p7 T (t)
o [0’0’ Lyt 7 L;(t)" R

(t—OT )ik (1) (t— 07 ) FpT T T, (¢) (t—67)Y;(t)
L; () ’ L;(t)" T Lo
(t—07) Fy(t) (t—09 )" 167" Fi_i(t)

+ 0oy lo, 0, L , MOR 1 Y

(t—00)" K E (1) (t—07)"RbT T iy (2) (t—07)Fi(t)

Lq(t)" ’ Li(t)™ U L |

Thus, combining (3.6) and (3.7) we obtain

(3.8) dnlt — 07 |P;(t) — Pi(t)N

(t — 0TI (8) (t— 07)bT Yy (¢)
= 81 t ) 707 s 70
’ L ()™ L (t)™
(t — 7)Y LR (1) (t—67)bd " Fi_y(t)
+ 0oy ()" , L. ,0,...,0].
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On the other hand, again by using (2.1), we also have

(3.9) P;_EGD

T, o (t)bqi72 + aqFl T, (t) bqi71 T, (t)
:al,t ) 70)"'70
L, ()" L, ()"
Fia(t)0? " +a? 'Fyy(t) b9 Fiq(t)
+82,t szl(t)n ’ ]LZ,]_(t)n 707 )O .

By the functional equation (3.2), we see that

i—2 i—1

Tico " +a? Y (8)] (- 09)TIT(2)
- Bl T o,
I CEAD e ¥10))
Li(t)" t=0
Similarly, we also have
(3.11) bt (¢ —'qu)”Ti_l(t) I (s i SR ()
(t =07 Lia(t)" | _, L;(t)" -

By Proposition 3.2, similar calculation as in (3.10) and (3.11) also gives
Fiob' " +a? "Fia@)| _ (- )"“ i(t)
L (o) T =0T yLiL )],
(3.12) t=0 y -
_ (-0 )"“F i(t)
Li(t) t=0
and
b9t — 09V F, (¢ bt — 0TV E, (1
(t — 09 )" L;—1 (t)" o L;(¢t) o

Moreover, by definition, we have
(314) CAZ;L [t — Hqiht:g = (9 — qu) Idon4+1 +N.

Finally, evaluating both sides of (3.8) and (3.9) at t = 6 together with
using (3.10), (3.11), (3.12), (3.13) and (3.14), we see that

((68 — 67) Idgp 11 +N)P;y(6) — P;(6)N = Py (§) B

which implies that the matrix P;(6) satisfies the same functional equa-
tion (2.5) as P; does. Since such a solution is unique, we conclude that
P;(#) = P; for i > 1. Note that when i = 0, the proposition follows from
the definition of Py(¢). Thus we finish the proof. O
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We are now ready to give the main result of this section.

Theorem 3.5. Let ¢ be the Drinfeld A-module of rank 2 defined as in (2.6)
such that a € Fg and b € F. Let Gy, be the t-module constructed from ¢

and C®™ as in (2.7). Then the logarithm function Logg, of Gn converges
on the polydisc ©,, := {z € Lie(Gy)(Cx) | |2|, < 1}.

Proof. For i > 1, we first analyze the last two rows of P; by using Corol-
lary 3.3. Since a,b € Fy, by [18, Lem. 4.1], we see that |y, < 1. For any
1 <k<n+1 we have

[ﬂn+1_k

v

)

[ﬂn+1_k
L

)

Jil o = qqi(nH*k)*n(qi“fq)/(qfl)

(3.15)

o0 o0

— qq"(—k+n+1—nQ/(q—1))+nq/(q—1)'
Since b € Fy, for 1 < k < n, we also have

[ﬂnfk
L

i—1

[i]"Fb7 i
JE2

(]

< _ qq"(n—k)—N(qi“—q)/(q—l)

(3.16)

[e.e] [e.e]

= ¢ (“ktn—ng/(g=1))+nq/(a—1)
Similar estimation can be also made for the elements [i]"*'~*F;/L? and
[i]* %67 F;_1 /L by using (3.15) and (3.16) respectively. Thus by Corol-
lary 3.3, we see that the norm of any element in one of the odd (resp. even)
entries in (2n)-th or the last row of P; is bounded by the right hand side
of (3.15) (resp. (3.16)). By Proposition 3.4 and the definition of L;(t), we
see that for 0 < [,m < n, we have

I’L(t)
P‘ — al - T
z,(2n+1 2l72m+1) t ((t gq)n o (t qu—l)n(t eq'L)m>

i

t=0

and for 1 < j < n, we obtain

b (8)
(t—09). .. (t— 09 " )n(t —09')d

11
P ony1-212j) = at( .
t=0
Moreover again by Proposition 3.4, for 0 < s <nmn—1and 0 <r < n, we
have

Pi,(?n—28,2r+1) - at ((t o aq)n o (t B eqi—l)n(t B eqi)r>

and for 1 < j < n, we obtain

t=0

b F (1) >

P. _ - = 68 3 i\ 4
1,(2n—2s,275) t ((f _ eq)n . (t _ qu_l)n(t — 9‘11)]

t=0
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Thus, a small calculation implies that the norm of the elements in an odd
entry (resp. even) of each row of P; is smaller than the bound obtained in
the right hand side of (3.15) (resp. (3.16)). Now let x be an element in D.
Then the bound on the norm of P; implies that

[Pzt |, < max gf (RHntlona/(a=1)+na/(a=1) _,

~ 1<k<n
as ¢ — oo. Since x € D, is arbitrary, the function Logg converges on
Dn. O
Remark 3.6. Let G,, = (Gi?}l,qﬁn) be the abelian ¢-module as in the

statement of Theorem 3.5. For a fixed choice of (¢ — 1)-st root of —b~1,
sNet v = (=b~H)V@=D) and let G, = (GZ?;QI, ¢n) be the t-module given by
&n(0) = 7y Ln(0)7. It is easy to check by using the functional equation (2.5)
that Logs = vt Logg, 7. In other words, if P; is the i-th coefficient of
Logg, , then we have ]51 = (=1)%~P; for all i > 0.Therefore one can also

obtain similar results for the logarithm series coefficients of G, and hence
sees that the function Logs also converges on D,,.

4. Class and Unit modules

We fix an abelian t-module G,, which is constructed as the tensor product
of the n-th tensor power of the Carlitz module and a Drinfeld A-module ¢
of rank 2 given by ¢y = 6 + ar + br? such that a € F, and b € F7. In this
section, our aim is to prove some properties of the class and unit module
of G,,. For more general description of class and unit modules, we refer the
reader to [6, 19, 38].

For 1 < i < 2n+ 1, let e; € Mat(g,41)x1(Fy) be such that the i-th
coordinate of e; is 1 and the rest is equal to 0.

Lemma 4.1. The A-module Lie(G,)(A) is free of rank 2n + 1 generated
bye; fori=1,...,2n+1.

Proof. Suppose that there exist elements aq,...,a2,+1 in A such that
(41) Z 8¢n (a,;)ei = [0, ey O]tr.
i>0

By Lemma 2.5, the equality in (4.1) is equivalent to

[a1 + Og(az) + - - + Oy (azn+1)]
az + Og(as) + -+ 95 azn)

(42) X Opu(as)ei = asn 2 + Op(an) = |o
20 aon—1 + Op(azn41) 0

a2n 0

a2n+1 0
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Thus we obtain that a; = 0 for 1 < 7 < 2n + 1 recursively. This im-
plies that the set {ei,...,e,41} is A-linearly independent. Using the first
equality in (4.2), one can show that the same set also spans the A-module
Lie(Gp)(A) and we leave the details to the reader. O

Let voo( ) be the valuation corresponding to the norm |- |, normalized
so that v (#) = —1. Consider the F,-module

m:= {x € Lie(Gp)(Kx) | voo(x) > 1}.
We have the following decomposition of Fg-modules:
(4.3) Lie(Gn) (K ) = Lie(Gy)(A) & m.
Recall that Logg, = 3250 P, is the logarithm series of G,,.

Proposition 4.2. For 1 <i < 2n +1, let \; :== Logg (e;). Then the set
{A\1,..., Aont1} is A-linearly independent in Lie(Gr)(Kx).

Proof. By Theorem 3.5, we see that e; is in the domain of convergence
of Logg, for 1 < ¢ < 2n + 1. Assume to the contrary that there exist
ai, ... asm+1 € A not all zero satisfying

2n+1
(4.4) > 0, (a)i =[0,...,0]"
=1

and let 7' := maxj<j<2n+1{degy(a;)}. By using Proposition 3.4 and a simple
calculation on the valuation of the coefficients of Log, , we see that for any
k>1andje{1,...,2n+ 1}, Pye; € m. Since all entries of Py for k > 1
has valuation bigger than 0, if we set g; := > .72, Pre;, then we see that
gi € m. Now dividing both sides of (4.4) by 67 and using the fact that
Py =1doy 11, Lemma 2.5 yields

CLZ'T-HI;- 0 eiTag(ai) 0 GiTagL(ai) 0
a;7+a; 0 0~T0p(a;)
2n+1 . . .
(45) > ‘ S (ci+gs) =
i=1 a;r+al 0 0 T9(a;)
(liT-i-CL; 0 .
a;7+al 0

where a;7’s are the 7-th coefficient of a;’s some of which may possibly be
zero and a} = a;/07 — a;7. We also note that v (al) > 1for 1 <i < 2n+1.
Thus by comparing both sides of (4.5), we see that

2n+1
Z a;re; + gy = [0, . ,O]tr

=1
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for some g. € m. By the decomposition of Lie(G,)(K) in (4.3) we have

that
2n+1

Z a;T7€; = [0, cee ,O}tr.
i=1

But it is only possible if a;7 = 0 for all 4. Using the similar argument for
the remaining coefficients of a;, inductively, we can show that a; = 0 for
all 7. But this is a contradiction with the assumption on a;’s. Thus the set
{A1,..., A2nt1} is A-linearly independent. O

Let G be an abelian t-module and consider the exponential function
Expg : Lie(G)(Cx) — G(Cx) of G. The class module H(G/A) of G is the
A-module given by the quotient

B ()
HG/A) = e (Tae(G) (Ko)) 1 CLA)

We prove the following proposition.

Proposition 4.3. For any n > 1, we have
H(Gn/A) ={0}.
Proof. By Theorem 3.5, we have that the set m is in the domain of conver-
gence of Logg . Since Logg ~is the formal inverse of Expg , the image of
Expg, contains m. Thus by (4.3) we have that
Expg, (Lie(Gr)(Ku)) + Gn(A) 2 Gp(Ku)

which implies that H(G,/A) = {0}. O
Definition 4.4. Let V be a finite dimensional K-vector space. We say

that an A-module M C V is an A-lattice in V if it is free and finitely
generated over A such that the map M ® 4 Ko, — V is an isomorphism.

Remark 4.5. It is important to point out that by [6, Lem. 1], an A-lattice
in V is a free A-module of finite rank r = dimg_ (V).

We now continue with the theory of invertible A-lattices introduced
in [16].
Definition 4.6 ([16, Def. 2.19]).

(i) An invertible A-lattice in K is a tuple (J, o) consisting of a finitely
generated and locally free of rank one A-module J and an isomor-
phism « : J ® 4 Koo — Koo of Koo-modules.

(ii) Let Idx_ be the identity map on K. We say (J1, 1) and (Ja, a2)
are equivalent whenever there exists an isomorphism ¢ : J; — Jy of
A-modules satisfying

Q9 O (g X IdKoc) =
where g @ Idg, : J1 @4 Koo = J2 ®4 K is the map induced by g.



538 Oguz GEzZMIS

One can obtain that the relation between invertible A-lattices stated
in Definition 4.6(ii) is an equivalence relation and we denote the set of
equivalence classes of invertible A-lattices in Ko by Pic(4, Keo).

Given two finitely generated locally free A-modules J; and Jo, we can
construct an invertible A-lattice J as follows: Let d; and dy be the rank
of J1 and Jg over A and « : J1 Q4 Koo — Jz ®4 K+ be an isomor-
phism of Ks-modules. For i = 1,2, we define det4(J;) to be the ds-th
exterior power A% J, of JZ. Since A is a Dedekind domain, we see that
Hom 4 (det 4(J1), det 4(J2)) is a finitely generated and locally free A-module
of rank one. Moreover the tuple .J := (Hom 4 (det 4(.J1), det 4(J32)), &) is an
element of Pic(A, K, ) where

& : Homy (dgt(Jﬂ,dgt(Jg)) ®4 Koo = Koo
is the isomorphism induced by «.

Proposition 4.7 ([16, Prop. 2.38]). There exists a unique homomorphism
v : Pic(4, Kx) — Q whose composition with KZ — Pic(A, K) is the
valuation v .

We call an element g = > cj#’ € KZ monic if the leading co-

J<jo
efficient ¢j, € Fy is equal to 1. The monic generator of the A-module
Hom 4 (det 4(J 1), det4(J2)) is denoted by [J1 : Ja]a. Note that Proposi-

tion 4.7 actually implies that
v(HomA<d£t(j1),dgt(jﬁ),&) = oo ([J71 1 J2]a)-

We continue with an observation due to Angles and Tavares Ribeiro [6,
§2]. Let V{ and V4 be A-lattices in a finite dimensional K-vector subspace
V' in V defined by V/ := V; NV’ for i = 1,2. Then V;/V{ and V5/Vj are
A-lattices in V/V’ with the property that
[Vi: Vala
(Vi V3la

Using the homomorphism v : Pic(A4, K« ) — Q, Debry also proved the
following.

(4.6) i/ vV =

Lemma 4.8 ([16, Cor. 2.40]). Let A C A’ be two finitely generated locally
free A-modules of the same rank. Then we have

Voo ([A 1 Al4) = — dimp, (A'/A).

Definition 4.9. Assume that G is an abelian t-module. We define the unit
module U(G/A) corresponding to G by

U(G/A) := {z € Lie(G)(K) | Expg(z) € Lie(G)(A)} C Lie(G)(Kx)-
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By [19, Thm. 1.10], we know that Lie(G)(A) and U(G/A) are A-lattices
in Lie(G)(K ). Since A is a Dedekind domain, Lie(G)(A) and U(G/A) are
also locally free A-modules.

The following proposition is useful to determine the generators of the
unit module U(G,/A).

Proposition 4.10 (cf. [16, Prop. 4.29]). Let A be a finitely generated
locally free A-submodule of U(G/A) of the same rank as Lie(G)(A). If
Voo ([Lie(G)(A) : Ala) = 0 and H(G/A) = {0}, then A = U(G/A).

Proof. We first note that the inclusion of A in Lie(G)(K~) induces an
isomorphism

t:A®4 Koo — Lie(G)(Ko) ®a4 Ko
and hence the tuple (Hom 4(det 4 (Lie(G)(A)),det4(A)),7) is in Pic(A, K)
where

v HomA(dgt(Lie(G)(A)),dgt(A)) ®4 Koo = Ko

is the isomorphism induced by ¢. Recall the definition of L(G/A) from Sec-
tion 2.7. Note that vs(L(G/A)) = 0. Thus by the assumption on H(G/A)
and [19, Thm. 1.10], we have v ([Lie(G)(A) : U(G/A)]a) = 0. Moreover,
by [16, Lem. 2.23], we have the equality that

(47)  [Lie(G)(A) : Ala = [Lie(G)(A) : U(G/A)A[U(G/A) : Ala.

Note also that the tuple (Hom4(det4(U(G/A)),det4(A)), @) is an element
in Pic(A, K ) where

a: HomA(dSt(U(G/A)), dgt(A)) ®4 Koo = Koo
is the isomorphism induced by
a:U(G/A) @4 Koo > A®4 Ko
Calculating the valuation of both sides of (4.7), we see that
Voo([Lie(G)(A) : Ala) = v ([U(G/A) : Ala).

Thus by the assumption, we get v ([U(G/A) : AJa) = 0. The proposition
now follows from Lemma 4.8. g

Observe that by [19, Thm. 1.10] and Proposition 4.3, we obtain

(4.8) L(Gn/A) = [Lie(Gn)(A) : U(Gr/A) 4.
We set
2n+1
A= A\ C Lie(Gn)(Kx),
i=1

to be the A-module generated by A;’s, where )\; is as in Proposition 4.2
whose A-module structure is induced by 0y, . By Proposition 4.2, we observe
that A is an A-submodule of U(G,/A) which is free of rank 2n + 1 and
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therefore has the same rank as Lie(G,)(A) by Lemma 4.1. It is also locally
free as it is a torsion free module over the Dedekind domain A. Moreover
one can note that the element [Lie(G,)(A) : Ala € KX can be given by the
determinant of the matrix II € Matg,+1 (K~ ) whose i-th column having the
coordinates of \; = Logg, (e;). Since the idea of the proof of Theorem 3.5
implies that the entries of P; for ¢ > 1 has valuation bigger than 0, we obtain
[Lie(Gp)(A) : Ala = det(I) = 1+ m’ where m’ € m. Therefore we have

oo ([Lie(Gr)(A) : Ala) = voo(1 +m') = 0. Thus using Proposition 4.10, we
conclude the following.

Theorem 4.11.
(i) We have

2n+1
U(Gn/A) = €D A- N C Lie(Gyp)(Kx)
i=1
where \; = Logg, (e;) for all 1 <i < 2n+ 1.
(ii) Let Gy (G?f/‘;l,(ﬁn) be the t-module defined as in Remark 3.6.
Then Gn is an abelian t-module. Furthermore we have
B 2n+41 N _
U(Gn/A) = €D A- N C Lie(Gy)(Kxo)

i=1
where \; = Logén(ei) foralll <i<2n+1.

Proof. The first part follows from the previous discussion. For the second
part, we first show that G,, is an abelian t-module. Let M’ be the Taelman
t-motive defined as M’ := My@C®" 1 @det(M4)" where My is the effective
t-motive corresponding to ¢. Note that

C¥"H @ det(My)¥ = (C®", 1) ® (=b1, —1) = (My,0)

where M is the effective t-motive K[t]m with K[t]-basis {m} and whose
T-action is given by 7 - fin = —bfM(t — 6)"m for all f € K[t]. Thus,
M = (My,0) ® (Mp,0) = (My @ My,0) is indeed an effective t-motive.
By a similar calculation as in Section 2.3, we see that M’ is free of rank
2n + 1 over K|[7] and the t-module corresponding to M’ is given by Gn

(GZ’;}l, ¢n) which implies that G, is an abelian t-module. By Remark 3.6,

we know that the logarithm coefficients of G, are F7-multiple of the loga-
rithm coefficients of GG,,. Therefore one can obtain by using the idea of the
proof of Proposition 4.2 that the set {)\1, .. XQn_A'_l} is A-linearly indepen-
dent in Lle(G )(Ks). On the other hand, since ¢,(0) = 7 ¢, (0)y where

( b~11/(a=1) by using the same idea in the proof of Lemma 4.1 that
Lle(Gn)( ) is free of rank 2n + 1 generated by e; for i = 1,...,2n + 1.
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Now the second part follows by using Proposition 4.10 and obtaining the
formula

L(Gn/A) = [Lie(Gy)(A) : U(Gn/A))a

in a similar way used to deduce (4.8). O

5. The proof of the main result

Throughout this section, we let the ¢-module G,, = (GZ’;}l, ¢n) be con-

structed from ¢ given by ¢9 = 0 + ar + br? such that a € F, and b € Fy
and C®" as in (2.7).

5.1. The dual t-motive of G,,. Before giving the definition of the dual
t-motive of G,,, we require further setup. Assume that L is a perfect field
and is an extension of K in C,,. We define the non-commutative polynomial
ring Mat,,,«x(L)[o] with the condition

oB =B, B e Maty (L)

For any g = go + g17 + -+ + g7 € Mat,,«x(L)[7], we further define
g* € Matgxm(L)[o] by g* := g¥ + (g%fl))tra +-F (gl(fl))tral. Moreover
we set the ring L[t, o] := L[t][o] subject to the condition

ct =tc, oc= c(_l)a, toc =ot, ce€ L.

Definition 5.1.

(i) A dual t-motive H over L is a left L[t, o]-module which is free and
finitely generated over L[o] satisfying

(t—0)°H/oH = {0}

for some s € Z>g.
(ii) The morphisms between dual ¢-motives are left L[t, 7]-module ho-
momorphisms and we denote the category of dual t-motives by H.
(iii) We define the dual t-motive Hg of a t-module G = (GZ/LJL) as
the left L[t,o]-module Hg := Matyyq(L)[o] whose L[o]-module
structure given by the free L[o]-module Maty4(L)[o] and the L[t]-
module action is given by

(5.1) ct' - h =chip(9))*, heHg, celL.

In his unpublished notes, Anderson proved that the category H of An-
derson dual t-motives over L is equivalent to the category G of t-modules
defined over L (see [26, §2.5] and [9, §4.4] for more details). In the above
definition, we see that one can correspond a t-module to a dual ¢-motive.
We now describe how we can relate a dual t-motive to a t-module.



542 Oguz GEzZMIS

Let 89,01 : L[o] — L be L-linear homomorphisms defined by

do (Zami) :=ag, and d; (Zaigi> — Za?i.

1>0 1>0 >0

It is easy to observe that the kernel of dyg (resp. d1) is equal to oL|o]
(resp. (o — 1)L[o]). By a slight abuse of notation, we further denote
the maps do,d1 : Matixa(L)[o] — Mataxi(L) given by do((f1,. .-, fa)) =
(50(f1), ce ,60(fd))tr and 51((f1, ce ,fd)) = (51(f1), ce ,61(fd))tr for any

(fla cee 7fd) E Matlxd(L){U]‘
Let H be a dual t-motive which is free of rank d over L[o]. We consider

the map 7 : H — Matgx1(L) given by the composition of ¢; with the map
which gives the L[o]-module isomorphism H = Mat;yq(L)[c]. One can see
that 7 induces the isomorphism

(5.2) H/(oc —1)H = L%

The F,[t]-module structure on H/(o —1)H allows us to put an F,[t]-module
structure on L? by using (5.2) which provides us an F,-linear ring ho-
momorphism 7" : Fy[t] — Matg(L)[7]. This process induces a t-module
G= (GZZ/L, 1) where ¢ : A — Maty(L)[7] is given by setting ¢(6) := n/(t),
and such G is called the t-module corresponding to H.

Our aim is to describe the dual t-motive corresponding to the t-module
Gn = (Gq/1, #n)- Let Hy, be the left L[t, o]-module given by

H, = L[t]hl D L[t]hQ
with the L[t]-basis {h1, ho} on which o acts as

t—0)" A\
(53) U'hlz( b ) hoy and O"hg:(t—e)nJrlhl_a(b)

By the definition of the o-action on H,,, we easily see that H,, is the dual
t-motive with the L[o]-basis {(t —6)"h1, (t —0)"th, ..., (t—0)h1, ho, h1}.

We consider an element f = 31" a;(t — 0)'hy + Z?:_ol bi(t —0)'he € Hy,
where a;,b; € L. Then we compute

tf=(t—0+0)f

ha.

= Z ai_l(t — Q)Zhl + an(t — 9)n+1h1
=1

n—1 n
+ Z bi_l(t — Q)ZhQ + bn_l(t — 9)nh2 + Z Ha,,;(t — Q)Zhl
i=1 i=0

n—1
+ ) Obi(t — 6)'hy
1=0
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n n—1
= Z a;i—1(t — G)ihl + Z bi—1(t — H)ihg + ano - ho + apaoc - hy
=1 i=1
n ) n—1 ]
+ by_1bo - by 4+ Bai(t — 0)'hy + > 0bi(t — 6)'hy
=0 1=0
n ) n—1 )
= ai_1(t—0) ki + > bi1(t —0)'ha + (0 — 1) - (alhs) + alhs
i=1 =1
+ (0 —1) - (alahy) + alahy + (o — 1) - (b _,bhy) + bL_ bk
n n—1
+> Bai(t—0)'hi+ Y 0bi(t — 6)'ho.
i=0 =0

Thus we obtain
tf = (0an + an—1)(t — 0)"h1 + (0by_1 + by_2)(t — 0)" 'hy

+ (Ban_1 4 an_2)(t —0)" " Thy + - 4 (Bby + bo)(t — O)hy

+ (Bay + ag)(t — 0)h1 + (0bo + al)he + (Pag + aad + bbY_,)hy

+ (0 —1)-(alhy + alahy + b%_lbhl).
Therefore the Fy-linear ring homomorphism 7' : Fy[t] — Mato,41(L)[7]
described above is given by 7/(t) = ¢,(0) which proves that G, is the t-
module corresponding to H, under the equivalence between the categories
H and G.

For all i € {1,...,2n + 1}, we recall the definition of e; and then set
e; = ej" € Maty(2,41)(Fy). Let Hg, be the dual t-motive of G,. We have
that H, = Hg,, as left L[t, o]-modules. We now define a left L[t, o]-module
isomorphism

L Hn — HGn
by t(h1) = ey,yq and t(hg) = ey,. Using the L[t]-module action on H,
defined as in (5.3) and the L[t]-module action on Hg,, defined as in (5.1), we
obtain ¢((t—60)""7hy) = ey;,, for 0 < j < nand o((t—60)""""7hy) = e;/(jﬂ)
for0<j<n-—1.

Next proposition is crucial to deduce our main result.

Proposition 5.2. Let fihy + foho be an arbitrary element in H,, for some
fi, f2 € L[t]. Then

do o L(fih1 + fah2) = [8?(f1)|t:0’6?_1(f2)|t:97atn_l(fl)\tzﬁv c

O(f2)1t=05 Or(f1) =05 [2]t=0 fl\t:&] "

Proof. For i = 1,2, we can write f; = Z?i:o gij(t — 0)7 where d; is a non-
negative integer and g; ; € L. By the o-action on H,, given as in (5.3), we
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see that (t —0)"hy € 0 H,, and (t — 0)"*'hy = ohy — achy € o H,,. Thus we
have

n n—1
60 0 t(fih1 + faha) = do o (Z g1t =0y h1+ > ga(t — 9)”@) :

j=0 §=0
Since both dy and ¢ are L-linear maps, we see that
(5.4) 8o 0 t(fihy + f2h2) = (91m, 92n—15 GLn—1, - - -, 92,0, 91,0)"-
By Proposition 2.1, we have 8z(fi)|t:9 = g;j for i = 1,2. Thus by (5.4), we

obtain

80 0 t(fihn + faha) = [O7(F1)ju=0, O~ (f2) 1=, O (F)je=ss - -

tr
O (f2) =0+ Ot (f1)|1=0: f2)1=0> f1|t:6}
which finishes the proof. O

5.2. Inverse of the Frobenius. In this subsection, for any j € Zx>q,
we introduce a crucial map ¢; : Hy, — Mat(g,41)x1(L) for our purposes
(see [4, §2] for more details). We set po(t) := 1 and for any j € Z>q, choose
p;(t) € K[t] such that

(5.5) pi(t)(t—67)" " =1 (mod (t — 6)" " K]t]).

By the o-action on H, as in (5.3), we see that (t — 0)""'H, C oH,.
Thus for any h € H,, there exists a unique element x € H, such that
Hi;é(t — 97 "yt = giz. We now set

@j(h) :=dpoulpo(t)...pi(t)z).

The map ; is called the j-th inverse of the Frobenius.
We define the K-vector space W given by

W= {c1-@1(h1) +ca-p1(ha) | c1,c2 € Koo} C Lie(Gr)(Coo).

Note that the K.-vector space structure on W is induced by the map given
in (2.4).

We now calculate ¢1(h1) and o1 (h2). Note that by the property (5.5) of
the polynomial p;(t) € K[t], we have
(5.6) pr(t)(t = 01" —r(t)(t - 0" =1
for some r(t) € K[t]. Hence, writing py (t) = Y7 yi(t —0)" +y(t)(t — 6)" !
and (t—09)" T = (t—0460—09)"T1 =37 ¢;(t—60)7 + (t—0)""" for some
y(t) € K[t] and ¢;,y; € K where 1 <14,j <n, we see that (5.6) becomes

i=0 §=0

(2
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for some Y(t) € K][t]. From (5.7), one can calculate ys for 0 < s < n
recursively using the equations

s 1 ifs=0
(5.5) S e — { .
=0

0 otherwise.

Since equations in (5.8) to determine ys are also used to determine the

coefficient of (t — 0)* in the Taylor expansion of (t — #9)~("*+1) at ¢ = 6, we

see that

(5.9) pi(t)(t —69)’ (mod (t — )" K[t])
1

= = goyiT (mod (t — 6)" "1 K[t])

for j = 0,1. Using (5.3) and our assumption on the elements a and b, we
also observe that

(t —60)""hy = (t — 0)obhy = ob(t — 8V)hy.
Thus by Proposition 2.1, Proposition 5.2 and (5.9), we have

O (o) o,
0

n—1 b
rthe) = 8o tmonte - o) = | % Ty

0
_ b
(t—=09)" |1=p

On the other hand, by (5.3), we also have
(t — 0)n+1h1 = JhQ + aah1 = J(hQ + ahl).

Thus similar to the calculation of ¢;(h2), we now obtain

i
)

(hl) —6OOL(p0() ()(h2+ah1)) 8,? 1((t gaynF1 =0
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Theorem 5.3. For any positive integer n satisfying 2n + 1 < q, we have
Lie(Gn)(Koo)
(O (0) — 01dop 1) Lie(Gr) (o)

In particular p1(h1) and ¢1(he) are Koo-linearly independent.

W =Ko e ® K eopt1 =

Proof. We first prove the inclusion 2. To do this we need to find ¢; ; € K
for 4,5 € {1,2} so that

2
Y s, (cig)ei(hy) = eanoi.
j=1
Note that by the properties of hyperderivatives (see [32, Lem. 2.3.23]) and
Proposition 2.1 we have

(t—09)" = 0‘((t —01)") =g (t — 0)’

(") (6 — 09" (t — )"

(6 —69)")(t — )",

(5.10)

Il
M: EM: i M:

s
Il
o

Thus, (5.10) implies that 82((t —09)")j1—p = FH((0 —07)") for all 0 < i < n.
Therefore, using (2.1), we see that

> 240 -0 (),

i.5>0
i+j=m
‘ A 1
= X e
( ) :ngz:o  (( ) )It 009t (t — ga)n =0
i+j=m
= 0/"(1)
=0

for all 1 < m < n. We now choose ¢ 2 = b*1(6 —09)" and ¢;; = 0. Thus
by (5.11), one can obtain

(5.12) 9, (c12)p1(h2) = dp[c12]p1(h2) = e2pt.

Similarly, if we choose cg2 = —ab™1(6 —09)" and co 1 = (0 — 09)"!, we see
that

(5.13) 9p,, (c21)p1(h1) + g, (c2,2)01(h2) = €an.

Thus, we have W O Ky -e9,® K €2,+1- On the other hand, note that since
the matrices 0y, (cij) = dn[ci ;| has non-zero determinant when ¢;; # 0,
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by using (5.12), we obtain ¢j(hg) = dn[6172]_162n+1. Thus, by multiplying
both sides of (5.13) with dy,[co1]7!, we can obtain ¢i(h1) in terms of a
linear combination of ey, and es,+1. Thus we have the desired inclusion
W C Ky - eap @ Koo - €241. It also implies that ¢1(h1) and ¢1(ho) are
K o-linearly independent. The isomorphism of the K -vector spaces in the
statement of the theorem follows from the definition of GG,, and the details
are left to the reader. Il

We recall the t-module G,, = (Gi’;}l, ¢n) defined as in Remark 3.6. To

prove the main result of the paper, we need some further analysis on én
and its dual t-motive. Consider the left L[t, o]-module
H, = L[t]h1 ® L[t]hy
on which o acts as
c-hy=—({t—0)"hy and o -hy=—b(t—0)" " hy + a(t — 0)"hs.

By a straightforward modification of the calculations in the present sec-
tion, one can obtain that H, is the dual t-motive Correspondmg to Gh.
Furthermore, we have o1(hi) = —b~Yp1(h1) and ¢;(hg) = —b Y1 (ha).
Since b € F, by Theorem 5.3, one can obtain

W= {cl . gol(ﬁl) + ¢y - cpl(ﬁg) ‘ c1,0o € Koo}
=Ky e ® Koo - €241

N Lie(Gp)(Kso)

(93, (0) — 01dap 1) Lie(Gn)(Koo)

(5.14)

By using Theorem 5.3 and [4, Prop. 4.2, 4.3, Thm. 4.4], one can easily
deduce the following theorem.

Theorem 5.4.

(i) Let W be the Ko-vector space as in (5.14) and let Logs =3 i>0 Pyri
be the logarithm series of the t-module Gn. Then for any natural
number n satisfying 2n+1 < q, the K -vector space (via the action
of 95 ) generated by Piri(x) for alli > 1 and any = € Lie(G,)(Cso)
is contained in w. N e .

(ii) U(Gn/A)NW and Lie(G,,)(A) N W are A-lattices in W.

5.3. Taelman L-values and Goss L-series. For a given abelian t-
module G, we recall the definition of the dual of the Taelman t-motive
corresponding to G and the Taelman L-value L(G/A) from Section 2.4 and
Section 2.5.

We continue with letting ¢ to be the Drinfeld A-module of rank 2 given
by ¢9 = 0 + at + br? such that a € F, and b € F; and recall that M, is
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the effective t-motive corresponding to ¢ introduced as in Example 2.7 (i).
We have by [38, Rem. 5] (see also [12, §2]) that

(5.15) L(MY,0) = L(¢/A).

Using Goss’ results [24, §5.6] on abelian ¢t-modules and applying the
thegry of Hom shtukas developed in [31, §8,12] on a suitable shtuka model
of G,,, one can obtain that

L(MY ,0) = L(Gyn/A).
We also refer the reader to [3] for another approach using the dual t-motive

H, of G, as well as [5, §4.1] and the references therein for more details.

Remark 5.5. Let ¢ be the Drinfeld A-module given in Example 2.11 (ii)
and M 3 be the effective t-motive corresponding to ¢. Since L(M(Z)V, s) con-

verges for any integer s > 0 by [38, Prop. 8], using (2.14) and (2.15), we
see that L(My,s) converges for any integer s > 1.

Remark 5.6. We briefly explain how one can obtain the value of L(Mgy,n)

at n = 1. Let ¢ be the Drinfeld A-module given in Example 2.11 (ii). Con-
sider the F,-vector space

m' = {2 € Koo | voo(z) > 1}.
By [18, Cor. 4.2], we know that log; converges on m’. Thus, in a similar

way to the proof of Proposition 4.3, we get H(¢/A) = {0}. Moreover,
again by using [18, Cor. 4.2], we see that log j converges at 1. This implies

that logz(1) € U(¢/A). Since U(p/A) is an A-lattice in Ko, using the
minimality of the norm of log;(1) among the elements of U(¢/A), we see
that U(¢/A) = logg(1)A. Thus by [38, Thm. 1], we have L(¢/A) = log(1).
By using Example 2.11 (ii), (2.15) and (5.15), we obtain

L(Mg, 1) = L(My ® C¥,0) = L(M,0) = L(/A) = log(1).
We finish this subsection with the following proposition.
Proposition 5.7. For any n > 1, we have
L(Gp/A) = L(My,n +1).
Proof. In a similar way to show (2.14), one can also obtain
(5.16) My = My ® det(My)".
We also have

(5.17) det(My)Y ® det(My) = (b1, —1)® (=b~'1,1) = 1.
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Now recall the effective t-motive M’ = My ® C®" ! ® det(My)Y from
the proof of Theorem 4.11(ii) whose corresponding ¢-module is given by

Gn = (Gi?}gl,gbn). By (2.12), (5.16) and (5.17), we have

(M) = M, ® det(M,)" @ (CZ 1) @ det(M,) = My @ (CE"HY,

Since C®™ © C®"2 = C®(M+n2) for any positive integers n; and no,
using the equality in (2.15) repeatedly together with (2.13), we obtain

L(Gy/A) = L((M")Y,0) = L(My,n +1). O

5.4. Proof of Theorem 5.9. Using Theorem 5.4, we prove the next
proposition.

Proposition 5.8. For any positive integer n such that 2n+1 < q, we have
U(én/A) N W =A- Logén (GQn) PA- Logén (€2n+1)

and
Lie(Gn)(A)NW = A- €2, & A+ eanyr.

Proof. By Theorem 4.11 (ii), we obtain U( Gn/ANW C &1 A. Logg, (ei).
By Theorem 5.4 (i ) we see that Pjes, € W for i > 1. Since the vectors €2n
and eg,41 are in W and W is a finite dimensional normed vector space,
the sum ez, qj + > 724 Pl€2n+j = Loan(egnﬂ) is also in W for j=0,1.
By Theorem 5.4 (i), we know that U(G,/A) N W is an A-lattice in W and
therefore is a free A-module of rank two by Remark 4.5. Thus we obtain
U(Gn/A)NW = A-Logg (e2,) ® A-Logg (€2n+41) as desired. The latter
equality in the statement of the proposition can be obtained similarly. [

Now we are ready to state our main result.

Theorem 5.9. Let ¢ be the Drinfeld A-module defined as in (2.6) such that
a € Fg and b € Fj¥. Then for any positive integer n such that 2n +1 < g,
we have

(5.18) L(M‘f””Jrl):(i( )L: %><1+Z ib—i- 1)Fl-1>

=0

. (—1)ib 0y, (& ()R,
(e )

=1 1=0

where F; is the sum of the components of ~v; corresponding to shadowed
partitions in Ps (i) for all i > 0.
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Proof. For 1 < i < 2n+1, let N\ = = Logg, (e;) be as in the statement of
Theorem 4.11 (ii). By (4.6) and Theorem 5. 4(11) we have

[Lle(én)(A) : U(én/A)]A

[Lie(Gn)(A)NW: U(Gyn/A)NW] 4 =

[ Lie(Gn)(A) . _U(Gn/A)_ }
(5_19) Lie(Gn)(A)NW " U(Gn/A)NW ] 4
_ L(Gn/A)
B
_ [_Lie(Gn)(A) . _U(Gn/A) :
where § := {Lie(én)(A)nW : U(én/A)nVV}A € KX and the last equality fol-

lows from (4.8). Theorem 5.4 (i) implies that Pje; € W for all k > 1 and
1 < i <2n+1. Therefore we have by Theorem 4.11 (ii) and Proposition 5.8
that _U@Gn/A) 692" 1A-X¢ is generated by ]5()61' =eforl <i<2n-1

U(Gn /AW ]
Lie(Gn)(Koo)

as an A-module (via the action of 9; ) in . Using Lemma 4.1

o : Lle(Gn/A ~ 2n Log. .
and Proposition 5.8, one can also obtain that TG/ AT = P; A-e;is

generated by e; for 1 < ¢ < 2n — 1 as an A-module (via the actlon of 95, )
in % Thus we have 5 = 1.

For i,j € {0,1}, let X2n+i72n+j be the (2n + j)-th coordinate of the
element Logén(eQn_i_i). Consider the matrix

by by
U= |- 2n,2n _2n+12n c Matg(Koo).
A2 2041 A2n412n+1

Now by Proposition 5.8, after applying the projection map onto the last
two coordinates to the A-lattices in the left hand side of (5.19), we see that

L(Gn/A)
= [Lie(Gn)(A) N W : U(Gyp/A) N W4
= det(¥)
(5.20) _ <§:( )L: %><1+Z )b (- p F;_ 1)
=0
00 (_1)zb—(z—1),yi_1 00 (_1)zb—iFZ_
. (Z Ly )(Z Ly )

where the last Qquality follows from combining Corollary 3.3 with the fact

that P; = (—1)"b"P; for i > 0 and P; is the i-th coefficient of the logarithm

series of G, = (Gi?};l, ¢n). Note that by Proposition 5.7, we have
L(Gp/A) = L(My,n +1).

Thus the result follows from (5.20). O
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