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p-adic Dynamics of Hecke Operators on Modular
Curves

par Eyal Z. GOREN et Payman L KASSAEI

Résumé. Cet article se penche sur la dynamique p-adique des opérateurs de
Hecke d’indice premier à p agissant sur les points des courbes modulaires dans
les cas de bonne réduction ordinaire et supersingulière. Une attention parti-
culière est accordée à la dynamique des points CM. Dans le cas de réduction
ordinaire, nous exploitons les coordonnées de Serre–Tate, alors que dans le
cas de réduction supersingulière nous utilisons un paramètre sur l’espace de
déformations de l’unique groupe formel de hauteur 2 sur Fp et le morphisme
de périodes de Gross–Hopkins.

Abstract. In this paper we study the p-adic dynamics of prime-to-p Hecke
operators on the set of points of modular curves in both cases of good ordinary
and supersingular reduction. We pay special attention to the dynamics on the
set of CM points. In the case of ordinary reduction we employ the Serre–Tate
coordinates, while in the case of supersingular reduction we use a parameter
on the deformation space of the unique formal group of height 2 over Fp, and
take advantage of the Gross–Hopkins period map.

1. Introduction

In this paper we study the dynamics of Hecke operators on the modular
curves X1(N) in the p-adic topology. The motivation for this paper initially
came from a desire to understand the impact of this dynamics on the study
of the canonical subgroup over Shimura varieties, as part of the continuation
of our work [14]. While studying this problem, we realized that even in the
simplest case of Shimura varieties, the modular curves, there are significant
challenges. Our work on this specific setting is the content of this paper; the
techniques introduced here will be useful in studying much more general
situations that we hope to discuss in future work.

There are other motivations to study this problem. Let R be the maximal
order of a finite field extension of Qp. Let κ denote the residue field of R.
Let X be a Shimura variety of PEL type with a smooth integral model
over R, over which the action of the prime-to-p Hecke algebra extends. The
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action on the special fibre Xκ has been studied extensively by Chai and
Oort, as part of Oort’s philosophy of foliations on Shimura varieties of PEL
type [5, 7, 24]. From our perspective, the work of Chai and Oort is a “mod
p shadow” of the p-adic dynamics of Hecke operators.

Secondly, Clozel and Ullmo [8, 9] have studied dynamics of the Hecke
operators over the complex numbers in connection with the André–Oort
conjecture, bringing in tools from measure theory and ergodic theory. Our
work resonates well with theirs as our main interest lies in the action of
Hecke operators on special subvarieties, albeit in the p-adic topology. In
particular, in this paper we pay special attention to the action of Hecke
operators on CM points. More than that, somewhat serendipitously, after
non-trivial reductions, including via the Gross–Hopkins period morphism,
our analysis uses results on random walks on groups and ergodic theory.

When this work was essentially completed, we learned of interesting work
on the same topic by Herrero–Menares–Rivera-Letelier [19]; see also the
forthcoming [18]. The points of view taken in our respective works are
different, and the results fit well together to shed light on complementary
aspects of the theory. While we are interested in the distribution of the set of
points in a Hecke orbit in the p-adic topology, [18] considers the convergence
of a sequence of Hecke orbits to the Gauss point of the affine Berkovich
line. Unlike our work, [19] considers only modular curves of level 1, but it
is believed that their results hold in more general levels. See also the recent
preprint [11].

We now briefly discuss the contents of this paper. Our main interest is
in the action of the prime-to-p Hecke operators on CM points (points on
the modular curve that correspond to CM elliptic curves) regarded as the
special Shimura subvarieties of the modular curve X1(N). We denote a
point of X1(N)(Cp) by x = (Ex, Px), where Ex is an elliptic curve and Px
a point of order N of it. We simplify the analysis by looking at the action
of the (iterations of) a single Hecke operator T`, where ` 6= p is a prime.
A key point of our approach is to use reduction mod p to propel results
from characteristic p to characteristic 0. The analysis breaks naturally into
two cases: (i) ordinary reduction and (ii) supersingular reduction. That
is, we distinguish between the case where the elliptic curve Ex has good
ordinary reduction, and the case where it has supersingular reduction. The
case of bad reduction is not important to us as our main interest is in CM
points; these always have (potentially) good reduction. That being said,
the methods in the ordinary case can easily be applied to the case of bad
reduction.

Ordinary reduction. The locus of ordinary reduction in the modular
curve X1(N) can be partitioned into a union of residue discs which are
shuffled around via the Hecke operator T` in a way that can be fully
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understood using the theory of `-isogeny volcanoes. In fact, the centre of
these discs, i.e., the canonical lifts, are moved around exactly according to
the `-isogeny volcano. Consequently, to study the dynamics of T` acting on
a point x of ordinary reduction, one needs to understand the returns of the
orbit to the residue disc D containing x. It transpires that this question can
be reduced to the dynamics of a single automorphism of the disc, induced
by a particular endomorphism f of E, the reduction of Ex. At this point,
we switch gears and, by means of Serre–Tate theory, view the residue disc
as the rigid-analytic generic fiber of the formal scheme that is the univer-
sal deformation space of E. As such, the disc has a natural parameter t,
where the canonical lift corresponds to t = 0. We prove (Theorem 4.1.2),
using [21], that the action of f on the disc is given by

t 7→ (1 + t)f̄/f − 1,

where f and its complex conjugate f are viewed as elements of Z×p via their
action on the p-adic Tate module of E. This provides a very clear picture
of the orbits and their closures and allows us to completely determine the
dynamics of T` on the CM points in D, which turn out to be periodic points
for the action of f ; see Section 4, in particular, Propositions 4.2.2, 4.2.3,
4.3.1, 4.4.1.

Throughout our discussion in Sections 2–4 of the action of Hecke opera-
tors on elliptic curves E with ordinary reduction E, we assume that

(?) End0(E) 6∼= Q(i),Q(ρ),

where i2 = −1, ρ2 + ρ + 1 = 0. This guarantees that for any elliptic curve
E′ isogenous to E, we have Aut(E′) = {±1}. This assumption is made for
simplicity only; the methods extend to the general case.

Supersingular reduction. Once more, our analysis begins in character-
istic p, where we introduce a class of directed graphs Λ`(N) that we call
“supersingular graphs”. These graphs are defined in a way that encodes the
action of T` on the supersingular points in X1(N)(Fp). Roughly speaking,
vertices of Λ`(N) correspond to supersingular points of X1(N)(Fp), and
edges to isogenies of degree `. They are directed graphs of outgoing degree
`+ 1, and usually of ingoing degree `+ 1 as well. They serve as level Γ1(N)
analogues of the (graphs defined by the) Brandt matrix B(`).

Again, the finitely many residue discs of supersingular reduction in
X1(N) move under the iterations of T` according to walks in the graph
Λ`(N). However, the returns under T` to a particular supersingular disc
turns out to be much more complicated than in the ordinary case. Fixing a
supersingular residue disc D ⊂ X1(N)(Cp) specializing to a supersingular
elliptic curve (E,P ) in characteristic p, the branches of the iterations of T`
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that return to D generate a subgroup HN ⊂ (End(E)⊗Zp)× =: R×, R be-
ing the maximal order in the unique non-split quaternion algebra over Qp.
The nature of the groups HN is not entirely clear. We prove several results
about these groups and, in particular, show that they have an abundance
of mutually non-commuting elements; enough so that they are dense in
GL2 relative to the Zariski topology, under the inclusion R× ↪→ GL2(Qq),
where q = p2, and Qq = W (Fq)[p−1].

To study the action of the highly complicated non-abelian group HN

on D, we once again interpret D as the rigid-analytic space associated to
a universal deformation space, this time of a 1-dimensional formal group
of height 2. This allows us to use the work of Gross–Hopkins [20] and
Lubin–Tate [22]. Using the equivariant Gross–Hopkins period morphism
Φ : D → P1, we may study of the action of HN on D via the action
of Möbius transformations on P1. We define open discs J ⊂ D,U ⊂ P1

such that Φ restricts to an isomorphism J → U . We show that all CM
points of discriminant prime to p lie in J(W (Fq)), which is in bijection
with U(W (Fq)), the open unit disc in W (Fq). The key point now is that
we are able to obtain a very explicit description of the p-adic closure HN of
HN in R×. We equip HN with a measure coming from the action of T`. We
translate our questions about the Hecke orbit of a CM point x ∈ D under
T` to questions about stationary measures for the action of HN . Using the
description of HN and the work of Benoist–Quint [2], we conclude that there
is a unique stationary probability measure (namely, a measure fixed under
the action of HN ), independent of x and N , whose support is J(W (Fq)).
See Theorems 5.10.4–5.10.7.

2. The `-isogeny graph: the ordinary case

Before defining the various `-isogeny graphs of elliptic curves, we recall
some definitions from graph theory.

2.1. Graph theory terminology. Let Λ be a directed graph. We will
call a directed edge, v → w, an arrow. A walk in Λ is a sequence of arrows
vi

ei→ wi for i = 1, . . . , d, where wi = vi+1 for i = 1, . . . , d− 1. This walk is
called a closed walk if v1 = wd. We allow the empty walk and consider it a
closed walk. If ω1, ω2 are walks in Λ such that the end point of ω1 is the
starting point of ω2, we denote ω2 ◦ ω1 the walk obtained by traversing ω1
followed by ω2. If v is a vertex in Λ, we define Ω(Λ, v) to be the monoid of
closed walks in Λ starting and ending at v under ◦. We often write ω2ω1
for ω2 ◦ ω1.

If ω is a closed walk in Λ starting at v1 and traversing, in order, vertices
v1, v2, . . . , vd = v1, we can view ω as a closed walk in Ω(Λ, vi) for all 1 ≤
i ≤ d. We will often abuse notation and denote all these walks by the same
notation if the starting point of the walk is understood.
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A path is a walk in which vertices do not repeat (and so a path is neces-
sarily open). In a cycle, vertices do not repeat, except that the last vertex
is equal to the first (and so a cycle is closed).

An undirected graph is called regular if every vertex has the same degree.
Every loop, i.e., an edge between a vertex and itself, contributes one to the
degree at the vertex. A directed graph is called regular of degree r if the
in-degree and the out-degree of each vertex equal r. An arrow of the form
v → v contributes one to both the in-degree and the out-degree. A directed
graph is called connected if given any two vertices x, y, there is a walk
starting from x and ending in y.

Let ` be a positive integer. An infinite connected undirected graph Σ is
called an `-volcano if there is a surjective function b : ΣV → N (where ΣV

is the set of vertices) such that

(1) Σ is (`+ 1)-regular,
(2) b−1(0) with its induced subgraph structure (called the rim) is a

regular graph of degree at most 2,
(3) for i > 0, each vertex in b−1(i) is connected to a unique vertex in

b−1(i− 1) and to ` vertices in b−1(i+ 1).

2.2. Definition of the ordinary `-isogeny graphs. Let p 6= ` be
primes. Let N ≥ 1 be an integer such that (N, p`) = 1. In the following
we will study the `-isogeny graph of E = (E,P ), consisting of an ordinary
elliptic curve E over Fp with a point P of order N on it (cf. [30] in the case
N = 1). Recall our standing assumption:

(?) End0(E) 6∼= Q(i),Q(ρ).

For two such objects, E1 = (E1, P1) and E2 = (E2, P2), we write

E1
`∼ E2

if there is an isogeny λ : E1 → E2 of degree a power of ` such that λ(P1) =
P2. This defines an equivalence relation on the set of isomorphism classes
of all such pairs (to see the symmetry, let α(N) denote the order of ` in
(Z/NZ)×. Then deg(λ)α(N)−1λ∨ : E2 → E1 takes P2 to P1).

We define a directed graph Λ`(E,N) as follows. The set of vertices
Λ`(E,N)V is the set of isomorphism classes of all pairs E1 = (E1, P1)
over Fp that satisfy E1

`∼ E. We define an arrow between two such isomor-
phism classes [(E1, P1)], [(E2, P2)] to be an isogeny λ : (E1, P1)→ (E2, P2)
of degree `, where we identify two such isogenies up to isomorphism. In
other words, arrows corresponding to isogenies λ : (E1, P1)→ (E2, P2) and
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λ′ : (E′1, P ′1)→ (E′2, P ′2) are identified if there is a commutative diagram

(E1, P1)

f1
��

λ // (E2, P2)

f2
��

(E′1, P ′1) λ′ // (E′2, P ′2)

where f1, f2 are isomorphisms. Note that Λ`(E,N) is a connected directed
graph. Also, due to our assumption on Aut(E), when N > 2, once we fix
representatives (E1, P1) and (E2, P2) above, an arrow between the corre-
sponding vertices determines a unique isogeny of degree ` from (E1, P1) to
(E2, P2). When N ≤ 2, this isogeny is only defined up to sign. We further
define

Λord
` (N) =

∐
E ordinary

Λ`(E,N),

where E runs over all representatives E = (E,P ) modulo the equivalence
relation `∼.

Let K = End0(E) be the algebra of rational endomorphisms of E, which
is a quadratic imaginary field of discriminant ∆ = ∆(E) (∆ 6= −3,−4). We
denote the order of conductor c in K by Rc. If E

`∼ E1 then End(E1) is an
order in K of conductor

f(E1) = `rm,

where (m, p`) = 1, and r ≥ 0. Note that m is an invariant of the equiva-
lence classes under `∼. The discriminant d(E1) of End(E1) satisfies d(E1) =
f(E1)2∆(E1). We can define a level function

bN : Λ`(E,N)V → N

by setting bN ([E1]) = r.

2.3. The isogeny associated to a walk. Let ω be a walk

[E0] λ1→ [E1] λ2→ . . .
λd→ [Ed]

in Λ`(E,N). Note that if N > 2 we can think of each λi as an isogeny of
degree ` from Ei−1 to Ei; if N ≤ 2, these isogenies are only defined up to
sign. We define

ω̃ := λd ◦ · · · ◦ λ2 ◦ λ1

which is an `d-isogeny from E0 to Ed sending P0 to Pd, defined only up to
sign if N ≤ 2. In particular, if ω ∈ Ω(Λ`(E,N), [E]) then ω̃ is an element
of End(E) of degree `d fixing P .
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2.4. Properties of the `-isogeny graphs. When N = 1, the directed
graph Λ`(E, 1) has the property that for every arrow [E1] → [E2] cor-
responding to an `-isogeny λ : E1 → E2, there is a corresponding arrow
[E2] → [E1] given by the dual isogeny λ∨ : E2 → E1. Identifying these
corresponding arrows, we obtain an undirected graph denoted Λud

` (E, 1).
Our convention is that if [E1] = [E2], and if λ∨ 6= ±λ, then the result-
ing loop is counted with multiplicity two in Λud

` (E, 1); otherwise, it is
counted with multiplicity 1. The function b1 defined above descends to
b1 : Λud

` (E, 1)→ N.
For a set S of endomorphisms of E (and in particular for a prime ideal

L of End(E)) we let E[S] = ∩s∈S Ker(s). The following proposition about
the structure of the graph Λud

` (E, 1) is known (cf. [30]).

Proposition 2.4.1. Let E be an ordinary elliptic curve over Fp for which
we have End0(E) 6∼= Q(i),Q(ρ) and f(E) = `rm.

(1) The graph Λud
` (E, 1) is an `-volcano with respect to the level function

b1. The rim is a regular graph of degree 1 + (∆(E)
` ), the vertices of

which are exactly those vertices of Λud
` (E, 1) that have CM by Rm.

(Here (∆(E)
` ) is the Kronecker symbol.)

(2) Let L|` be a prime ideal of Rm. Let a = ordcl(Rm)(L); in particular,
we have La = (f) for f ∈ Rm. If ` is inert in Rm, then the rim
consists of a single vertex and has no edges. If ` is ramified in Rm
but L is not principal, then the rim consists of two vertices [E1]
and [E1/E1[L]] with exactly one edge between them (the class of
the natural projection E1 → E1/E1[L]). In all other cases, the rim
consists of a cycle of length a given by

[E1]− [E1/E1[L]]− · · · − [E1/E1[La]] = [E1]
(using the isomorphism E1/E1[La]→E induced by f).

(3) The cardinality of b−1
1 (i) equals

|b−1
1 (i)| =

{
ordcl(Rm)(L) i = 0, L|` a prime ideal of Rm,(
`−

(∆(E)
`

))
`i−1 ordcl(Rm)(L) i ≥ 1.

If [E′] λ→ [E′′] is an arrow in Λ`(E, 1), we denote [E′′] λ
∨
→ [E′] the arrow

obtained via the dual isogeny. Similarly, we define for a walk ω from [E′]
to [E′′], a walk ω∨ in the reverse direction.

We define two particular walks in Λ`(E, 1) as follows. If ` is inert in Rm,
we define ω+

rim = ω−rim to be the empty walk. If ` = L2 is ramified in Rm we
define ω+

rim = ω−rim to be the unique closed walk in the rim (up to the choice
of starting point; see Remark 2.4.2 below). It is a loop if L is principal and
of length 2 if it is not. If ` is split, there are two distinct cycles in Λ`(E, 1)
traversing the rim of Λud

` (E, 1), one in each possible direction. Let us call



394 Eyal Z. Goren, Payman L Kassaei

them ω+
rim and ω−rim. We denote f+

rim, f
−
rim ∈ Rm the isogenies associated

to ω+
rim and ω−rim, respectively (with the usual sign ambiguity).

Remark 2.4.2. As explained at the beginning of this section, we are using
the same notation, ω±rim, to denote the several walks that start and end
at any vertex along the rim. This shall not cause confusion as it is always
understood what starting point is considered. Regardless of the starting
point of ω+

rim, f
+
rim will be the same element of Rm under the natural

identifications of the endomorphism rings of the elliptic curves on the rim.

Consider the homotopy equivalence relation defined on the set of walks
in Λ`(E, 1) generated by relations

ω2ω1 ∼h ω2ω
∨ωω1,

where ω1, ω2 are two walks such that the endpoint of ω1 is the starting
point of ω2 (call it [E1]), and ω is a walk starting at [E1]. It is easy to see
that Proposition 2.4.1 implies the following.

Corollary 2.4.3. Every element in Ω(Λ`(E, 1), [E1]) is equivalent under
∼h to a closed walk of the form

ω∨(ω±rim)nω,
where ω is a path from [E1] to the rim of the graph, and n is a non-negative
integer.

Consider the map of directed graphs
πN : Λ`(E,N)→ Λ`(E, 1)

which sends a vertex [(E1, P1)] to [E1], and an arrow [(E1, P1)] λ→ [(E2, P2)]
to [E1] λ→ [E2]. Note that for any N , and any vertex [E1] ∈ Λ`(E,N)V ,
the arrows starting in [E1] are in natural bijection with subgroups of order
` of E1 and so πN is a covering map of directed graphs. As such, many
properties of Λ`(E,N) can be deduced from the corresponding properties
of Λ`(E, 1). For example, since the action of the operator T` on a point [E1]
can be described by [E1] 7→

∑
[E1]→[E′1][E′1] (sum over arrows in Λord

` (N)),
the action of T` on [E1] = [(E1, P1)] and [E1] are easily related.

3. The Hecke correspondence T` on ordinary elliptic curves

3.1. T` in characteristic 0. For what follows, the reader may consult [6]
for a general introduction to deformation theory of abelian varieties and
p-divisible groups, and [21] for the case of ordinary abelian varieties. In
addition, the reference [10] provides a good introduction to rigid-analytic
geometry, while the construction of the generic fibre of a formal scheme
appears in [4].
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Recall that p 6= ` are primes, and N is an integer coprime to p`. Let E be
an ordinary elliptic curve defined over Fp. Assume that Aut(E) = {±1}. Let
D̃(E) ∼= Spf(W (Fp)[[x]]) be the deformation space of E defined overW (Fp);
it pro-represents the functor of deformations of E to local artinian rings
(R,mR) with a given isomorphism R/mR

∼= Fp. LetD(E) = D̃(E)rig denote
the associated rigid-analytic space; it is isomorphic to the open unit disc
overW (Fp)[1/p]. For an elliptic curve Ẽ lifting E, we define D(Ẽ) = D(E).

The same construction can be done for a pair E = (E,P ), where E is
as above, and P is a point of order N on E. Let D̃(E) denote the formal
deformation space of E over W (Fp), and let D(E) be the associated rigid-
analytic space. For Ẽ lifting E, we set D(Ẽ) = D(E).

Since E[N ] is an étale group scheme over Fp, the forgetful map provides
an isomorphism between the deformation space of E and E. Hence, the
rigid-analytic forgetful map

πN : D(E)→ D(E)
is an isomorphism too.

When N ≥ 4, the moduli of pairs (Ẽ, P̃ ) where Ẽ is an elliptic curve of
good reduction over an W (Fp)[1/p]-algebra is represented by the (noncus-
pidal part) of the rigid-analytic modular curve X1(N). Let X1(N)Fp be the
corresponding modular curve over Fp. Let sp : X1(N) → X1(N)Fp denote
the specialization map. Then, for any Ẽ = (Ẽ, P̃ ) of reduction E = (E,P ),
we have D(Ẽ) = D(E) = sp−1([E]), where [E] denotes the isomorphism
class of E viewed as a point on X1(N)Fp .

When N < 4, there may be points E = (E,P ) with a nontrivial auto-
morphism group and the moduli space is no longer representable. We could
still define coarse moduli spaces X1(N), X1(N)Fp , and a specialization map
sp : X1(N)→ X1(N)Fp . In this case, we have sp−1([E]) = D(E)/Aut(E).

We are interested in the p-adic dynamics of T` on the ordinary good
reduction part of X1(N), or, to be more precise, on the set of Cp-points of
tE D(E), where E runs over the isomorphism classes of ordinary elliptic
curves over Fp equipped with a point of order N . If n > 0 is an integer, the
correspondence Tn` acts on X1(N) via the formula

Tn` ([(Ẽ, P̃ )]) =
∑
C

µC [(Ẽ/C, P mod C)],

where C runs over all subgroups of Ẽ of order `n, [(Ẽ, P̃ )] denotes the
isomorphism class of (Ẽ, P̃ ), and µC are positive multiplicities that can be
explicitly calculated.

3.2. Automorphisms of residue discs. Let α(N) be the order of ` in
the group (Z/NZ)×. Recall our standing assumption (?).
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Lemma 3.2.1. Let λ : E1 = (E1, P1)→ (E2, P2) = E2 be an `n-isogeny of
elliptic curves over Fp sending P1 to P2. There is a unique rigid-analytic
isomorphism,

λ∗ : D(E1)→ D(E2),
such that for all x = [(Ẽ1, P̃ 1)] ∈ D(E1), we have λ∗(x) = [(Ẽ1/C, P̃ 1 mod
C)], where C is the unique subgroup of Ẽ1 lifting Ker(λ). The inverse of
λ∗ is given by (deg(λ)α(N)−1λ∨)∗. If E1 = E2 and λ ∈ Z then λ∗ = id. For
λ1 : E1 → E2, and λ2 : E2 → E3 we have (λ2 ◦ λ1)∗ = λ∗2 ◦ λ∗1.

Proof. We claim there is a unique family of subgroup schemes C̃ of order
`n of the universal family of elliptic curves over D(E1) with the following
property: its specialization at every point (Ẽ1, P̃ 1) ∈ D(E1) is a subgroup of
Ẽ1 reducing to Ker(λ) in E1. The morphism λ∗ is then defined via dividing
the universal family of elliptic curves on D(E1) by the subgroup C̃. More
precisely, let (E1,P1) be a formal deformation of (E1, P1) to a local artinian
ring (R,mR) with a given isomorphism R/mR

∼= Fp. This data includes an
isomorphism ε : E1⊗R/mR

∼→ E1 sending P1 to P1. Since (`, p) = 1, Ker(λ)
is an étale subgroup scheme of E1, and hence it lifts uniquely to a subgroup
C of the deformation E1. We define

λ∗(E1,P1) = (E1/C,P1 mod C),
where the right side is viewed as a formal deformation of (E2, P2) via the
isomorphism

(E1/C)⊗R/mR
ε→ E1/Ker(λ)→ E2,

where E1/Ker(λ) → E2 is the isomorphism induced by λ. This defines
a morphism of the formal deformation spaces λ̃∗ : D̃(E1) → D̃(E2). The
desired map is the rigid-analytic morphism λ∗ associated to λ̃∗. The unique-
ness follows from the uniqueness of the lift of Ker(λ). The other statements
follow easily from the construction and its uniqueness. �

Let E = (E,P ) be an ordinary elliptic curve over Fp along with a point
of order N . Let End`∞(E) denote the monoid of `-power isogenies of E
fixing P . The above construction gives a monoid homomorphism

∗ : End`∞(E)→ Aut(D(E)).
sending λ to λ∗.

Proposition 3.2.2. The kernel of ∗ is precisely Z ∩ End`∞(E).

Proof. Let λ ∈ End`∞(E) such that λ∗ = 1. From the construction of λ∗
that means that for any lift Ẽ with its unique subgroup C̃ lifting C :=
Ker(λ), we have Ẽ/C ∼= Ẽ and so that Ẽ has an endomorphism of degree
]C. As most lifts have only Z as endomorphisms, for some lift Ẽ we most
have C̃ = Ker(`n) and so λ = ±`n. The converse proceeds the same way. �
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Using the above construction, we have a homomorphism of monoids (that
we still denote ∗ hoping no confusion will arise)

∗ : Ω(Λ`(E,N), E)→ Aut(D(E)),

sending ω to ω∗ := ω̃∗, where ω̃ is the isogeny associated to ω. Note that
even when the isogeny ω̃ may only be defined up to sign, ω̃∗ is uniquely
defined. More generally, if ω is a walk in Λ(E,N) of length d from [E0] to
[Ed], then ω∗ can be similarly defined to be an isomorphism

(3.1) ω∗ : D(E0)→ D(Ed).

induced by the walk ω. For two walks ω1, ω2 such that the endpoint of ω1
is the starting point of ω2, we have (ω2 ◦ ω1)∗ = ω∗2 ◦ ω∗1.

Proposition 3.2.3. The image of ∗ : Ω(Λ`(E,N), E) → Aut(D(E)) is a
cyclic group.

Proof. Note that this image is a subgroup of the image of

∗ : Ω(Λ`(E, 1), [E])→ Aut(D(E)).

We prove that the image of the latter is cyclic. Note that for a walk ω1 in
Λ`(E, 1), we have (ω∨1 )∗ = (ω∗1)−1. Consequently ω∗ depends only on the
class of ω under the equivalence relation ∼h. Thus, applying Corollary 2.4.3,
it follows that the image of ∗ is generated by an automorphism conjugate
to (ω+

rim)∗. �

Finally, we define

f : Ω(Λ`(E, 1), [E])→ Z×p , ω 7→ fω,

where fω is the image of ω̃ under the map End(E) → End(TpE) ∼= Zp.
When N ≤ 2, fω is defined only up to sign. We denote by fω the image of
ω̃ in Z×p , where the bar sign denotes complex conjugation in End(E).

3.3. T` via walks. Let n > 0 be an integer. Let Walk(n, [E]) be the set
of all walks of length n in Λ`(E,N) starting at E. For ω ∈ Walk(n, [E]),
let [Eω] denote its endpoint. The action of Tn` on the vertices of Λ`(E,N)
is then none other than Tn` ([E]) =

∑
ω∈Walk(n,[E])[Eω].

Proposition 3.3.1. The correspondence Tn` on the residue disc D(E) de-
composes as a sum of rigid-analytic functions. More explicitly,

Tn` =
∑

ω∈Walk(n,[E])
ω̃∗,

where ω̃∗ : D(E)→ D(Eω) is the isomorphism defined in (3.1).
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Proof. Proceeding by induction on n, it suffices to check the case n = 1. In
this case, for any point (Ẽ, P̃ ) in D(E) we have

T`(Ẽ, P̃ ) =
∑
C⊂Ẽ

(Ẽ/C, P̃ mod C),

where the summation is over all subgroups C of Ẽ of order ` (that cor-
respond bijectively under reduction with the subgroups of E of order `).
On the other hand, the last sum is precisely

∑
ω∈Walk(1,[E]) ω̃

∗(Ẽ, P̃ ), by
Lemma 3.2.1. �

4. Dynamics of T` on ordinary points

4.1. Proposition 3.3.1 shows that the flow of the disc D(E) under the
iteration of T` is exactly like the flow of E ∈ Λ`(E,N)V under the iteration
of T`. The mass of Tn` (E) escapes to infinity. More precisely, we have the
following proposition.

Proposition 4.1.1. For [E] ∈ Λ`(E,N)V and a positive integer n, define
the probability measure

δn = δn,[E] = 1
]Walk(n, [E])

∑
ω∈Walk(n,[E])

δ[Eω ],

where δ[Eω ] is the Dirac measure on Λ`(E,N)V concentrated at [Eω]. Then,
for any compactly supported function f : Λ`(E,N)V → C, we have∫

fdδn → 0 as n→∞.

Proof. As πN is a covering map that commutes with T`, it is enough to prove
the statement for N = 1. In this case, we may further reduce the question to
the `-volcano Λ`(E, 1), where it follows from standard techniques of random
walks; see, for example, [26, 31]. �

Therefore, the further study of the dynamics of T` on D(E) is reduced
to the study of the dynamics of branches of Tn` that bring the disc back
to itself, or, equivalently, the branches corresponding to the closed walks
of Λ`(E,N). Let ω be a closed walk starting and ending at [E]. Let ω
denote its image in Λ`(E, 1). It is clear from the definitions that we have a
commutative diagram

D(E)

πN∼=
��

ω∗ // D(E)

πN∼=
��

D(E) ω̄∗ // D(E)
This shows that the dynamics of ω∗ on D(E) is equivalent to the dynamics
of ω∗ on D(E). In view of Proposition 3.2.3, understanding the dynamics
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of such functions boils down to understanding the dynamics of a single
function on the open unit disc; that of the automorphism of D(E) induced
by ω+

rim. In the following, for a closed walk ω in Λ`(E, 1), we explicitly
calculate ω∗ on D(E) in terms of a coordinate on it.

Theorem 4.1.2. There is a choice of local parameter t on D(E) such that
for any ω ∈ Ω(Λ`(E, 1), [E]), the automorphism ω∗ : D(E) → D(E) is
given by the map

t 7→ (1 + t)f̄ω/fω − 1
where fω ∈ Z×p is defined in Section 3.2. Such a map is an isometry of the
disc.

The theorem follows from the following Lemma.

Lemma 4.1.3. Let κ be a field of characteristic p, and (A,µA) be a prin-
cipally polarized ordinary abelian scheme of dimension g over κ. Fix an
isomorphism TpA ∼= Zgp. Let

f : A→ A

be an isogeny of degree n prime to p, and f † denote the image of f under
the Rosati involution induced by µA. Let M(f−1) = (fij)i,j ∈ GLg(Zp)
(respectively, M(f †) = (gij)i,j) denote the matrix of the automorphism on
TpA ∼= Zgp induced by f−1 (respectively, f †). Let f denote the automorphism
of the deformation space D of (A,µA) induced by f : A → A. There is an
isomorphism D ∼= Spf[[tij ]]i,j under which the automorphism f takes the
shape

f∗(tij) =
∏

1≤r,s≤g
(1 + trs)frigsj − 1 1 ≤ i, j ≤ g.

Proof. Let Cκ denote the category of local Artin rings (R,mR) such that
R/mR = κ. By Serre–Tate’s theory of deformation of ordinary abelian
varieties, deformations of A over R are in correspondence with the elements
of HomZp(TpA ⊗Zp TpA

∨
, Ĝm(R)), where Ĝm denotes the multiplicative

formal group over R. We briefly recall (following [21]) how a bilinear form
ηA ∈ HomZp(TpA⊗Zp TpA

∨
, Ĝm(R)) is associated to a deformation A of A

over R ∈ Cκ. By Serre–Tate’s theory of deformation of abelian varieties [21]
(See also [23, Appendix]), to give a deformation A over R is equivalent to
give a deformation A[p∞] of A[p∞] over R. This, in turn, is equivalent to
giving an extension

0→ Â→ A[p∞]→ TpA⊗Zp (Qp/Zp)→ 0,

where Â, the formal group of A, is isomorphic to the unique toroidal for-
mal group lifting Â. Every such extension is the push-out of the canonical
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extension

0→ TpA→ TpA⊗Zp Qp → TpA⊗Zp (Qp/Zp)→ 0

by a unique map
φA : TpA→ Â(R)

defined as follows. Choose N such that mN+1
R = 0, and note that Â(R)

is killed by pN , as p ∈ mR. Let x = (xn) be an element of TpA. Pick
n ≥ N , and let x̃n be an arbitrary lift of xn ∈ A(Fp) to A(R). We define
φA(x) = pnx̃n which is easily seen to be independent of the choice of n ≥ N .
The definition is independent of the choice of x̃n, as any two choices differ
by an element on Â(R) which is killed by pN . Also, φA(x) lies in Â(R)
since its reduction mod mR is zero by construction. Finally, we use the
Weil pairing to identify Â(R) with Hom(TpA

∨
, Ĝm(R)) (this identification

is valid over κ, and can be lifted to R since Â is of multiplicative type).
This re-interprets φA : TpA→ Â(R) as a bilinear form

ηA ∈ HomZp(TpA⊗Zp TpA
∨
, Ĝm(R)).

First we claim the following general statement. Let δ : A1 → A2 be a
prime-to-p isogeny of principally polarized ordinary abelian schemes over
R ∈ Cκ, and δ : A1 → A2 be its reduction. Then the following diagram

TpA1 ⊗Zp TpA
∨
1

δ⊗(δ∨)−1

��

ηA1 // Ĝm(R)

TpA2 ⊗Zp TpA
∨
2

ηA2 // Ĝm(R)

is commutative. The commutativity follows from the commutativity of the
following diagram (which itself follows from the construction):

TpA1
φA1 //

δ
��

Â1(R)

δ
��

// HomZp(TpA∨1 , Ĝm(R))

(δ∨)∗
��

TpA2
φA2 // Â2(R) // HomZp(TpA∨2 , Ĝm(R))

Going back to the proof, let C denote the kernel of the isogeny f , and
π : A → A/C be the canonical projection. There is a unique isomorphism
λ : A/C ∼−→ A such that f = λ◦π. Let (A,C) be a deformation of (A,C) to
R ∈ Cκ, which implies that A/C is a deformation of A/C ∼= A to R. By the
above discussion, to deformations A,A/C of A, we can associate bilinear
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forms

ηA ∈ HomZp(TpA⊗Zp TpA
∨
, Ĝm(R))

ηA/C ∈ Hom(Tp(A/C)⊗Zp Tp((A/C)∨), Ĝm(R)).

Define η′A/C := ηA/C ◦ λ−1, where

λ : Tp(A/C)⊗Zp Tp(A/C)∨ → TpA⊗Zp TpA
∨

is given by λ ⊗ (λ∨)−1. Similarly, define π = π ⊗ (π∨)−1. From the above
discussion, it follows that the following diagram is commutative:

TpA⊗Zp TpA
∨ η′

A/C // Ĝm(R)

Tp(A/C)⊗Zp Tp((A/C)∨)

λ

OO

ηA/C // Ĝm(R)

TpA⊗Zp TpA
∨ ηA //

π

OO

Ĝm(R)

Let {vi}i be the standard basis for TpA under our fixed isomorphism
TpA ∼= Zgp, and let {wi = µA(vi)}i be the corresponding basis for TpA

∨. Let
M(f−1) = (fij) ∈ GLg(Zp) be the matrix of inverse of the map induced by
f on TpA in this basis. Let f † = µ−1

A
fµA denote the image of f under the

Rosati involution associated to µA. Let M
∨(f∨) denote the matrix, with

respect to {wi}, of the map induced map by f∨ on TpA
∨. This matrix can

be calculated as follows. We have

f∨(wi) = µA(µ−1
A
f∨µA)(vi) = µA(f †(vi)),

which shows that M∨(f∨) = M(f †) = (gij)−1. There is an isomorphism
D ∼= Spf[[tij ]], where for any deformation A over any R ∈ Cκ we have
1 + tij(A) = ηA(vi⊗wj). To calculate f∗(tij), we use the above diagram to
write

η′A(vi ⊗ wj) = ηA(f−1(vi)⊗ f∨(wj))

= ηA

(∑
r

frivr ⊗
∑
s

gsjws

)
=
∏
r,s

ηA(vr ⊗ ws)frigsj

which proves the statement of the lemma. �
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4.2. Periodic points: canonical and quasi-canonical lifts. Let E be
an ordinary elliptic curve over Fp. Then End(E) is isomorphic to an order
of a prime-to-p conductor f(E) in a quadratic imaginary field K = Q(

√
d),

where d is a square-free negative integer. There is a unique (up to iso-
morphism) elliptic curve Ẽcan over W (Fp) lifting E such that the natural
reduction map

End(Ẽcan)→ End(E)
is an isomorphism. This elliptic curve is called the canonical lift of E. A
lift Ẽ of E/Fp is called quasi-canonical if the image of the reduction map
End(Ẽ)→ End(E) is an order in End(E); its conductor is necessarily of the
form paf(E) for some a ≥ 0. The case a = 0 corresponds to the canonical
lift.

Let E = (E,P ) consist of an ordinary elliptic curve E over Fp and a
point P of order N on E. We say Ẽ = (Ẽ, P̃ ) is a (quasi-) canonical lift
of E if Ẽ is a (quasi-) canonical lift of E. Since (p,N) = 1, the point
P can be uniquely lifted, and hence there is a unique canonical lift of E
which we denote by Ẽcan. We write D̃(E) ∼= Spf(W (Fp)[[t]]), where t is the
Serre–Tate coordinate on D̃(E). We prove the following.

Proposition 4.2.1. Let notation be as above.
(1) We have t(Ẽcan) = 0.
(2) Ẽ is a quasi-canonical lift of E of conductor paf(E) if and only if

1 + t(Ẽ) is a primitive pa-th root of unity.
In other words, D(E) is isomorphic to the open unit disc around 1, the
canonical lift corresponds to 1, and the other quasi-canonical lifts correspond
to the nontrivial p-power roots of unity.

Proof. We will use the Serre–Tate theory of local moduli of ordinary abelian
varieties. We refer to the proof of Lemma 4.1.3 for a summary of their
construction and for notation. First we recall the following fact (see [21]).
Let A1 and A2 be abelian varieties over Fp, and Ã1, Ã2, respective lifts
corresponding to pairings ηÃ1

, ηÃ2
. Let δ : A1 → A2 be a morphism. Then

δ lifts to a morphism δ̃ : Ã1 → Ã2 if and only if for all v ∈ TpA1, w ∈ TpA∨2
we have

ηÃ1
(δ(v), w) = ηÃ2

(v, δ∨(w)).
We will apply this with A1 = A2 = E. Consider E with its canonical po-
larization and hence a canonical isomorphism TpE

∼→ TpE
∨. Under this

identification, for any δ ∈ End(E), the dual isogeny δ∨∈ End(E∨) is iden-
tified with δ ∈ End(E). Let v be a basis element in TpE. This provides us
with the Serre–Tate isomorphism

D̃(E) ∼= D̃(E) ∼= Spf(W (Fp)[[t]]),
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where for any lift (Ẽ) of (E), we have 1 + t(Ẽ) = ηẼ(v, v).
In our notation, End0(E) = K = Q(

√
d), d square-free. If d ≡ 2, 3

(mod 4) let γ =
√
d, and if d ≡ 1 (mod 4) let γ = (1 +

√
d)/2. Thus,

OK = Z+γZ. The lift Ẽ is a quasi-canonical lift of E of conductor dividing
paf(E) in K if and only if α = paf(E)γ can be lifted from End(E) to
End(Ẽ). This is equivalent to having ηẼ(αv, v) = ηẼ(v, αv) = ηẼ(αv, v),
which is equivalent to

ηẼ(v, v)α−α = (1 + t(Ẽ))α−α = 1.

If d ≡ 2, 3 (mod 4), we have (1 + t(Ẽ))α−α = (1 + t(Ẽ))2paf(E)
√
d; if d ≡ 1

(mod 4), we have (1 + t(Ẽ))α−α = (1 + t(Ẽ))paf(E)
√
d.

If p 6= 2, taking into account that p splits in K, we find that 2f(E)
√

4d,
respectively f(E)

√
d, are p-adic units, and so (1 + t(Ẽ))α−α = 1 if and only

if (1 + t(Ẽ))pa = 1. If p = 2, then since p splits in K, we must have d ≡ 1
(mod 4) and, again, (1 + t(Ẽ))α−α = 1 if and only if (1 + t(Ẽ))pa = 1.

This proves the second part of the Proposition. For the first part, simply
put a = 0, to obtain 1 + t(Ẽcan) = 1. �

Let ord = ordp denote the p-adic valuation on Qp, normalized so that
ord(p) = 1.

Proposition 4.2.2. Let ω ∈ Ω(Λ`(E,N), [E]) be such that ω∗ ∈Aut(D(E))
is nontrivial. Consider the dynamics of {(ω∗)n}n≥1 on D(E). The following
hold:

(1) Every pre-periodic point in D(E) is periodic.
(2) Let m > 0 be an integer. The index [OK : Z[ω̃m]] < ∞ unless,

possibly, when K = Q(
√
−`). If K = Q(

√
−`) then ω̃ = ±(−`)b/2

for some odd positive integer b, and [OK : Z[ω̃m]] = ∞ if and only
if m is even.

(3) Assume that [OK : Z[ω̃m]] < ∞, then the periodic points in D(E)
of order dividing m are exactly the quasi-canonical points of D(E)
of conductor dividing [OK : Z[ω̃m]]. In terms of the Serre–Tate
coordinate t, these correspond to points Ẽ ∈ D(E) for which (1 +
t(Ẽ))pa = 1, where a = ordp([End(E) : Z[ω̃m]]).

(4) If [OK : Z[ω̃m]] = ∞ any point is a periodic point of order divid-
ing m.

Proof. First, note that all pre-periodic points are periodic simply because
ω∗ ∈ Aut(D(E)). To prove claim (2) note that ω̃ is a non-integer integral
element of K (thus generating K over Q) whose norm is `n for some n > 0.
If [OK : Z[ω̃m]] =∞ then ω̃m = ±`mn/2. This implies that the discriminant
of K divides −4`n and so the discriminant of K, which is not −3 or −4,
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must be equal to −` or −4` if ` is odd, and −8 if ` = 2. This implies that
K = Q(

√
−`). The rest of (2) is clear.

Let Ẽ = (Ẽ, P̃ ) ∈ D(E). It follows from the construction of ω∗ that
(ω∗)m(Ẽ) = Ẽ if and only if ω̃m ∈ End(E) can be lifted to an endo-
morphism of Ẽ. If ω̃m is not an integer, this is equivalent to Ẽ being a
quasi-canonical lift with endomorphism ring containing Z[ω̃m] ⊂ End(E),
i.e., Ẽ being a quasi-canonical lift of conductor dividing [OK : Z[ω̃m]]. In
terms of the Serre–Tate coordinate, we have already seen in the proof of
Proposition 4.2.1 that (1 + t(Ẽ))pa = 1 if and only if Ẽ is a quasi-canonical
lift of conductor dividing paf(E). If ω̃m is an integer then every point is
m-periodic. The rest follows immediately. �

Corollary 4.2.3. The T`-forward orbit of any CM point Ẽ with ordinary
reduction and conductor paf(Ẽ) is a discrete set, intersecting each residue
disc at a finite set contained in the pa-roots of unity (relative to the Serre–
Tate coordinate). The prime-to-` part of the conductor of the endomorphism
ring in such an orbit is an invariant.

4.3. Closure of orbits and CM.

Proposition 4.3.1. Let E = (E,P ) be an elliptic curve of ordinary reduc-
tion over Cp. Let K = End0(E).

(1) If K is a CM field, the orbit of E under T` is a discrete set consist-
ing only of elliptic curves with the same endomorphism algebra K.
Consequently, any point in the closure of the orbit of E has CM by
an order whose conductor differs from that of End(E) only at `.

(2) If K = Q, no point in the closure of the orbit of E under T` has
CM.

Proof. Corollary 4.2.3 contains (1), since p-power roots of unity form a
discrete set of the unit disc. Consider then the case K = Q. Suppose that
there is a CM point E0 in the closure of the orbit of E. Let F = End0(E0)
and let pa be the p-part of the conductor of End(E0) in F .

We claim that F = End0(E) where E is the reduction of E modulo the
maximal ideal of Cp. Indeed, since E0 is in the closure of the orbit of E
there is an `-isogeny, E → E1, where E1 is in the residue disc D(E0), and
so F = End0(E0) = End0(E1) = End0(E).

Let S be the set of all CM points that are quasi-canonical lifts of E, with
conductor whose p-part is pa. They and E belong to the same residue disc
D(E). Let

dist(E,S) = {dist(E, s) : s ∈ S},
where we view here the residue disc as a subset of Cp by means of a Serre–
Tate coordinate, E and s are elements of Cp, and the distance is the p-adic
metric. Note that dist(S) is a finite set of positive real numbers.
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Now, let f be an `-isogeny E → E′ such that E′ ∈ D(E0). The induced
isomorphism of residue discs f∗ : D(E) → D(E0) is an isometry.1 Thus,
dist(E,S) = dist(E′, f∗(S)). Moreover, by a counting argument, f∗(S) con-
sists of all quasi-canonical lifts in D(E0) with p part of the conductor being
pa. Thus, E0 ∈ f∗(S) and we find that dist(E′, E0) is bounded from below
regardless of f . This is a contradiction. �

4.4. Dynamics of t 7→ (1 + t)λ− 1. As we have seen, the action of the
Hecke operator T` on points of ordinary reduction reduces, essentially, to
the study of an automorphism of the open disc of radius 1, which is of the
form t 7→ ω∗(t) = (1 + t)f̄ω/fω − 1. Therefore, we now direct our attention
to automorphisms of the disc of the form

t 7→ h(t) := (1 + t)λ − 1, λ ∈ Z×p .

Recall that (1 + t)λ =
∑
n≥0

(λ
n

)
tn, where

(λ
n

)
= λ(λ−1)...(λ−n+1)

n! .
The nature of the orbit {hn(x) : n ∈ Z} is best understood through a

sequence of reductions that while providing a complete picture also convince
the reader that formulating a quantitive answer in the general case is too
messy.

Thus, let F be a finite extension of Qp with a residue field of degree pf
and ramification index e. Let mF be the maximal ideal of F . Define for
n ≥ 1,

Un = 1 + mn
F ⊂ O×F .

We have a decomposition:

O×F = µpf−1 × U1.

We change coordinate so that the centre is 1, and so our map in the new
coordinate (still called t) is simply

t 7→ h(t) = tλ.

Let x ∈ O×F ; since x should reduce to 1, we take x ∈ U1. The group U1 has
a non-canonical decomposition

U1 = µpa × U ′,

where U ′ is isomorphic as a Zp-module to Zgp, g = [F : Qp]. The action of h
respects this decomposition and we see that at the expense of passing from
λ to λpa (which will result in decomposing the orbit into a union of finitely
many translated-orbits for λpa),

• We may reduce to the case x ∈ U ′.

1Any automorphism of the open unit disc defined over a discretely valued field extension of
Qp is an isometry.
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Choose an n0 >
e

p−1 and a sufficiently large n1. The homomorphism

U ′ → Un0 , x 7→ xp
n1
,

is a homeomorphism from U ′ into an open subgroup of finite index of Un0
that commutes with h. To stress, it is injective. Thus, we accept the next
reduction:

• We may reduce to the case x ∈ Un0.
Now, the logarithm function, log(t) =

∑
n≥1(−1)n−1 tn

n , converges on U1. If
n > e

p−1 , then
log : Un

∼−→ mn
F

is an isometry whose inverse is given by exp(t) =
∑
n≥1

tn

n! . That explains
our interest in assuming that x ∈ Un0 . Thus, by applying the logarithm,
the orbit {xλn : n ∈ Z} is transformed into the orbit

{log(x) · λn : n ∈ Z} = log(x) · {λn : n ∈ Z}.
And so we accept the next reduction.

• The essential information about the orbit of h(x) is contained in
the properties of the subset of Z×p given by {λn : n ∈ Z}.

This last question is uniform. It doesn’t know about x or F . Unfortunately,
also here we run into similar book-keeping issues, and so once again we
satisfy ourselves with a reduction that comes from the decomposition Z×p =
µp−1 × (1 + pZp).

• We may reduce to the case λ ∈ (1 + pZp).
Finally, by applying the logarithm, we find that

• The set {λn : n ∈ Z} in 1 + pZp is mapped bijectively to the set
log(λ)·Z in pZp, whose closure is a disc in pZp of radius p− ord(λ−1),
centred at log(λ).

Without getting bogged down in the details, we can conclude the
following:

Proposition 4.4.1. Assume that x is not a root of unity.
(1) The closure of the orbit of any point x under ω∗ is equal to a finite

disjoint union of sets, each homeomorphic to Zp.
(2) In contrast to the case of a CM point, where the orbit is countable

and discrete, the closure of the orbit of x under iterations of T` is
of cardinality 2ℵ0.

5. The `-isogeny graph: the supersingular case

5.1. Some notation. Recall our choice of a fixed prime number p. In
the following, E,E1, and so on, will typically denote supersingular elliptic
curves in characteristic p. We denote FrobE : E → E(p) the Frobenius
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isogeny; occasionally we denote it ϕ for simplicity of notation. We denote
B = Bp,∞ the quaternion algebra over Q ramified precisely at p and ∞
and denote B its p-adic completion Bp,∞ ⊗Q Qp; R will denote a maximal
order of Bp,∞ and R its p-adic completion. The order R is not unique but
R is. Let q = p2 and Fq a field of cardinality q in a fixed algebraic closure
Fp. Denote Qq = W (Fq)[p−1]. When we talk about Qp we have in mind an
algebraic closure containing W (Fp) and Cp denotes its completion.

5.2. Definition of supersingular graphs. As in the ordinary case, in
addition to the fixed prime p, we now fix a prime `, and a positive integer
N , such that p 6= `, (N, p`) = 1. Although some of the results below apply
to the case ` = 2, some of the literature we are using necessitates assuming
` is odd and so we assume that from this point on. Recall that α(N) denotes
the order of ` in the group Z/NZ×.
Definition 5.2.1. A pair (N, p) is called rigid if for every supersingular
elliptic curve E, and P ∈ E[N ] of order N , we have Aut(E,P ) = {1}. It
is called solid if Aut(E,P ) ⊆ {±1}. If p is clear from the context, we shall
simply say N is rigid, or solid.

The classification of automorphism groups of elliptic curves (see [28, III,
Section 10]) implies:
Lemma 5.2.2. If (N, p) is rigid it is solid. Further:

(1) If N = 1, then (N, p) is never rigid and is solid iff p ≡ 1 (mod 12).
(2) If N = 2, then (N, p) is never rigid and is solid iff p ≡ 1 (mod 4).
(3) If N = 3, then (N, p) is solid iff p ≡ 1 (mod 3). If it is solid then

it is rigid.
(4) If N > 3, then (N, p) is rigid.

To define supersingular graphs in a very concrete way, we make use of
the following.
Lemma 5.2.3. Every supersingular elliptic curve has a model E over Fp2

such that Frob2
E = p, unique up to Fp2-isomorphisms.

Proof. 2 Let ϕ = FrobE . This Lemma is well-known for ϕ2 = −p; cf.
Serre [27, p. 284], [1, Lemma 3.20]. The variant ϕ2 = p is obtained for
p > 2 by a quadratic twist. Even for p = 2 we can pass from ϕ2 = −p to
ϕ2 = p, but this time by twisting by the element of H1(GalFp/Fq ,Aut(E))
that sends Frobenius to i, an automorphism of order 4 of E. �

We fix such elliptic curves as representatives for the Fp-isomorphism
classes of supersingular elliptic curves. Given N , we extend this choice to
a choice of representatives (E,P ) for the Fp-isomorphism classes of pairs

2We have learned of this nice fact from a post of Bjorn Poonen on Mathoverflow.



408 Eyal Z. Goren, Payman L Kassaei

(E1, P1), where E1 is supersingular and P1 is a point of E1 of orderN . There
is no canonical way to choose the points P , and so we make an arbitrary
choice once and for all, and call the set of representatives Rep(N). For a
representative E, the number of representatives (E,P ) ∈ Rep(N) is the
number of orbits of Aut(E) acting on the points of order N in E.

We now define the supersingular graph Λ`(N) of level N . The set of
vertices Λ`(N)V of Λ`(N) is the set Rep(N) we have fixed above. The
construction is such that Λ`(N) will be a directed graph, whose arrows are
labeled, and we describe its arrows in two equivalent ways.

(1) For every vertex (E,P ), and a cyclic subgroup C of E of order `,
draw an arrow from the vertex (E,P ) to the unique representative
(E1, P1) of (E/C,P mod C). Let πC : E → E/C be the canoni-
cal map, and let α : E/C → E1 be an isomorphism such that
α(πC(P )) = P1. Note the morphism λ = α◦πC : (E,P )→ (E1, P1).
It is unique up to composition with elements of Aut(E1, P1). An
arrow is marked with the set of labels

Aut(E1, P1) ◦ λ.
Every element of Aut(E1, P1) ◦λ will be called a label of the arrow.

(2) Let (E,P ) and (E1, P1) be representatives in Rep(N), i.e., vertices
of Λ`(N). The set of degree ` isogenies λ : (E,P ) → (E1, P1), if
non-empty, has a natural action of Aut(E1, P1), and we associate
to every orbit Aut(E1, P1) ◦ λ of this action an arrow from (E,P )
to (E1, P1), together with the set of labels Aut(E1, P1) ◦ λ.

In our second definition, every arrow corresponds to a unique subgroup
C of E of order `, which is the kernel of any isogeny in its set of labels
Aut(E1, P1) ◦ λ. Note that there is a unique isomorphism α : E/C → E1
making the diagram below commutative:

E
λ //

πC

!!

E1

E/C

α
<<

It follows that the point P1 = λ(P ) is equal to α(πC(P )) and so the two
constructions of the arrows in the graph are the same.

Remark 5.2.4. Note that there is no obvious way to make the graphs
Λ`(N) undirected; the natural idea of identifying an isogeny λ with its dual
λ∨ fails in general because λ∨ and λ−1 differ by multiplication by `, which
acts non-trivially on points of order N (unless ` ≡ 1 (mod N)).

Even in the case N = 1 there is a problem as the graphs are typically
non-symmetric. The number of arrows from E1 to E2 is Aut(E1)/Aut(E2)
times the number of arrows from E2 to E1. The adjacency matrix of Λ`(1)
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is the `-th Brandt matrix. See [15], in particular Proposition 2.7. Finally, we
remark that in general the graphs may contain loops and multiple arrows.

5.3. Properties of supersingular graphs. The graphs Λ`(N) need not
be simple in general, however we do have the following proposition.

Proposition 5.3.1. If N > 4`2 the graph Λ`(N) is simple, i.e., contains
no loops or multiple edges; moreover, every arrow has a unique label in this
case. The girth of the graph Λ`(N) is at least log`(N/4).

Proof. The statement about the girth implies the one about the loops.
Suppose that the girth is r. Then, we can find a representative (E,P )
and a γ ∈ End(E) such that the deg(γ) = `r and γ(P ) = P . Therefore,
N |]Ker(γ − 1) = deg(γ − 1). Thinking about γ as a complex number of
modulus `r/2 we have deg(γ − 1) = |γ − 1|2 ≤ (|γ| + 1)2 ≤ (2|γ|)2 = 4`r,
which gives N ≤ 4`r.

Suppose we have two distinct arrows f, g : (E1, P1) → (E2, P2). Then
g−1 ◦f is a rational endomorphism of (E1, P1), and γ := `g−1 ◦f = g∨ ◦f is
an endomorphism of E1 of degree `2 such that γ(P1) = `P1. Consequently,
N |]Ker(γ − `) = |γ − `|2 ≤ 4`2. Thus, if N > 4`2 there are no multiple
edges, and by Lemma 5.2.2 no multiple labels. �

We note that there is a natural map

πN : Λ`(N)→ Λ`(1), (E,P ) 7→ E,

taking an arrow with label λ : (E1, P1)→ (E2, P2) to the arrow λ : E1 → E2.
The construction of the graphs Λ`(N) is motivated by the study of the

Hecke operator T`; the directed walks of length r in Λ`(N) that begin
at (E,P ) describe the image of the point (E,P ) ∈ X1(N)(Fp) under T r` ,
including multiplicities. With this in mind, we make a further study of
these graphs. We first prove a technical lemma about translating isogenies
to walks.

Lemma 5.3.2. Let E = (E,P ) be a vertex of Λ`(N). Let λ : E → E′

be an isogeny of degree `r. Let E′′ ∈ Rep(N), and ε : E′ → E′′ be an
isomorphism. Then there is a walk of length r in Λ`(N),

E = E0
λ1−→ E1

λ2−→ · · · λr−1−→ Er−1
λr−→ Er = E′′,

where each λi is a label for the corresponding arrow, and ε−1λr . . . λ2λ1 = λ.

Proof. Let Cr = Ker(λ). Factorize λ as (E,P )→ (E/Cr, P mod Cr)
δ∼= E′,

and let
0 = C0 ( C1 ( C2 ( · · · ( Cr = Ker(λ)
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be a filtration by subgroups with cyclic quotients of order `. For each 0 <
i < r, let εi be an isomorphism

εi : (E/Ci, P mod Ci) ∼= Ei,

where Ei ∈ Rep(N), such that ε0 = id, Er = E′′, and εr = εδ. Let
ρi : E/Ci−1 → E/Ci be the canonical morphism. Since Cr is the kernel
of λ, we have λ = δρn . . . ρ1. This yields a factorization

ελ = (εr ◦ ρr ◦ ε−1
r−1) ◦ · · · ◦ (ε2 ◦ ρ2 ◦ ε−1

1 ) ◦ (ε1 ◦ ρ1 ◦ ε−1
0 ).

Note that each λi := εi ◦ρn ◦ ε−1
i−1 is a label for an arrow in the graph Λ`(N)

from Ei−1 to Ei. This provides a walk of length r starting at E, ending at
E′′, such that ε−1λr . . . λ2λ1 = λ. �

Theorem 5.3.3. The graphs Λ`(N) have the following properties.
(1) Λ`(N) is a connected, directed graph of fixed out-degree `+ 1.
(2) The graph Λ`(N) is not bipartite.
(3) If N is rigid, every vertex in Λ`(N) has in-degree `+ 1 as well.

Proof. The fact that Λ`(N) is a directed graph and every vertex has out-
degree `+ 1 follows from the construction and the description of arrows by
means of cyclic subgroups of order `.

Let G be the algebraic group over Q whose Q-points are
B1
p,∞ = {x ∈ Bp,∞ : Nm(x) = 1};

it is a form of SL2 and hence G is semi-simple, almost simple, and simply
connected. Fix two pairs (E,P1), (E,P2) in Rep(N). We identify Bp,∞ with
End0(E) and that gives us a maximal order R that corresponds to End(E).
The group G(Q) is then the group of rational endomorphisms of E of norm
1. We choose a symplectic basis for the Tate modules Tu(E) for every prime
u 6= p. The action of G(Zu) on Tu(E) induces an isomorphism G(Zu) ∼=
SL2(Zu).

Using strong approximation for G relative to the place `, we can find an
element y of G(Q) that is very close, except possibly at `, to the element

x ∈ G(AfQ), x = (xu)u =
{

1 u - N,
xu u|N,

where the elements xu, u|N , are chosen to be in SL2(Zu) and such that∏
u|N xu (mod N) ∈ SL2(Z/NZ) takes P1 to P2.
The element y is thus integral, except possibly at `, and Nm(y) = 1.

Replacing y by `α(N)my for a suitable positive integerm, we have proven the
existence of an isogeny f : (E,P1)→ (E,P2) of degree a power of `. Using
Lemma 5.3.2, we can factor f as a composition of cyclic isogenies of degree `
and we thus find that (E,P1) is connected to (E,P2) in Λ`(N). Combined
with the well-known fact that Λ`(1) is connected (namely, between any two
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supersingular elliptic curves over Fp there is some isogeny of degree a power
of ` – see below), one concludes that Λ`(N) is connected as well. In fact,
we have proven that for all E, and for all P1, P2 of order N on E, there is
a walk of even length from (E,P1) to (E,P2).

We now prove that Λ`(N) is not bipartite. We first consider the case
N = 1. It is enough to prove that there is a closed walk of odd length in
Λ(1). By Lemma 5.3.2, this is equivalent to proving that there is an elliptic
curve E with an endomorphism of degree `r, where r is a positive odd
integer. Let E be an arbitrary supersingular elliptic curve, and consider
the quadratic form in 4 variables and discriminant p2,

deg : End(E) ∼= R → Z.

We need to prove that deg represents an integer of the form `r, for some
r a positive odd integer. We show that it represents every large enough
positive integer prime to p. We will use the fact that the Integral Hasse
Principle for a quadratic form on a rank 4 lattice holds for large enough
integers that are relatively prime to the discriminant of the quadratic form
of the lattice. Since ` is prime to p, our desired result follows if we prove
that the quadratic form deg represents every integer locally. The quadratic
form deg is positive definite at infinity. At a finite place v 6= p, we have
an isomorphism R ⊗Z Zv ∼= M2(Zv) via which norm corresponds to the
determinant, and every v-adic integer can be represented as a determinant.
At prime p, we have R⊗Z Zp ∼= R which has a model{(

a pbσ

b aσ

)
: a, b ∈W (Fp2)

}
,

and where the degree map associates to the above matrix its determinant
aaσ − pbbσ. By local class field theory, the norm map W (Fp2)× → Z×p is
surjective. Therefore, all elements of Zp of even valuation are norms of the
form aaσ, and all those with odd valuations are norms of the form −pbbσ.
This ends the proof that Λ`(1) is not bipartite.

Next we prove the result for general N . We show again that Λ`(N)
has a closed walk of odd length. Let (E,P ) be a vertex. Let γ : E → E
be an isogeny of degree `r with r odd as in the previous paragraph. By
Lemma 5.3.2, this isogeny provides us with a walk of odd length from
(E,P ) to (E,P ′), where (E,P ′) ∈ Rep(N) is isomorphic to (E, γ(P )). In
proving the connectivity of the graph, we have shown that there is a walk
of even length from (E,P ′) to (E,P ). Composing these walks, we obtain a
closed walk of odd length starting and ending at (E,P ). This proves that
Λ`(N) is not bipartite.

We now prove part (3). Suppose that (N, p) is rigid. By counting, it
is enough to show that every vertex (E,P ) has in-degree at least ` + 1.
Let C1, . . . , C`+1 be the subgroups of order ` of E and πi : E → E/Ci the
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canonical morphism. Consider the diagrams

(E, `α(N)−1P ) πi // (E/Ci, `α(N)−1P mod Ci)
π∨i // (E, `α(N)P ) = (E,P ).

Then, replacing (E/Ci, `α(N)−1P mod Ci) by the corresponding represen-
tative (E/Ci, `α(N)−1P mod Ci)r and adjusting π∨i by the unique implied
`-isogeny π∨,ri , we find `+ 1 arrows leading into (E,P ):

(E/Ci, `α(N)−1P mod Ci)r
π∨,ri // (E,P ).

We claim that these are distinct arrows. If for some i, j we get the same
arrow then we have (E/Ci, `α(N)−1P mod Ci) ∼= (E/Cj , `α(N)−1P mod Cj)
and, under this (unique) isomorphism, π∨i = π∨j . But then πi = πj and so
Ci = Cj . �

5.4. From walks to endomorphisms. We now introduce some addi-
tional constructions. In addition to fixing p, `, N , fix now an object E =
(E,P ), where E is a supersingular elliptic curve, and P is a point on E of
order N . Let R = EndFp(E).

Recall that if h is an arrow from E1 = (E1, P1) to E2 = (E2, P2) in
Λ`(N), then h is an orbit under the action of Aut(E2) on the set of degree
` isogenies from E1 to E2 that take P1 to P2. Elements in this orbit were
called labels for h. By a labeled walk in the graph Λ`(N) we mean a walk
with a choice of label for each arrow in the walk. For two closed labeled
walks ω1 and ω2 based at E, their composition ω2 ◦ ω1 is the labeled walk
obtained by traversing ω1 followed by ω2. We allow the empty walk and its
set of labels is, per definition, Aut(E). We introduce the following notation:

• Ω(Λ`(N), E) denotes the monoid of closed labeled walks in Λ`(N)
starting at E.
• Given ω ∈ Ω(Λ`(N), E), by composing the labels of the arrows
occurring in ω, we get an endomorphism ω̃ ∈ R; as ω̃ has norm a
power of `, we have ω̃ ∈ R×.
• We denote by H +

N (E) the monoid in R× obtained as the im-
age of Ω(Λ`(N), E). By Lemma 5.3.2, H +

N (E) consists of those
endomorphisms f of E of degree a non-negative power of ` such
that f(P ) = P . Let HN (E) be the subgroup of R× generated by
H +
N (E). Note that `α(N) ∈HN (E).

• We denote by GN (E) the subgroup of PGL2(Qq) that is the image
of HN (E) under the composition B× → GL2(Qq) → PGL2(Qq).
The map B× → GL2(Qq) is chosen so that the image of R is{(

a pbσ

b aσ

)
: a, b ∈W (Fq)

}
,
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where σ is the Frobenius automorphism. For ω ∈ Ω(Λ`(N), E), we
denote the image of ω̃ in GN (E) by ω̃ again.

Lemma 5.4.1. HN (E) is the group of rational endomorphisms of E of
the form f = f1/`

t such that f1 ∈ End(E),deg(f1) = `r, r, t ∈ N, and
f(P ) = P .

Proof. One inclusion is clear: using that for any isogeny g, we have g−1 =
g∨/deg(g), it follows that the elements of HN (E) have the desired property.
For the other, note that for f with the above property, g := `α(N)tf is an
endomorphism satisfying g(P ) = P and thus belongs to H +

N (E). The result
now follows since `α(N) is in H +

N (E). �

From this point on, we fix E = (E,P ) in Rep(N) and simplify the
notation by dropping E from the notation: HN = HN (E), GN = GN (E),
Ω(Λ`(N)) = Ω(Λ`(N), E).

It follows easily from the definitions that the following diagram is com-
mutative and its arrows are homomorphisms that have the indicated prop-
erties.

Ω(Λ`(N))

πN
��

// HN
// //

� _

��

GN� _

��
Ω(Λ`(1)) // H1 // // G1

If p ≡ 1 (mod 12), then the pair (1, p) is solid, in the sense of Defini-
tion 5.2.1. In particular, f 7→ f∨ defines a one-one correspondence between
Hom(E,E′) and Hom(E′,E), for any two supersingular elliptic curves E,E′.
Therefore, we can, just as in the ordinary case, define an undirected graph
Λud
` (1) by identifying an arrow corresponding to f with the reverse arrow

corresponding to f∨. Note that when f is an endomorphism of E of de-
gree `, and f 6= ±f∨, the corresponding loop in Λud

` (1) is considered with
multiplicity 2.

Let H(4`) denote the Hurwitz class number of positive definite primitive
quadratic forms of discriminant −4`, see [15].

Proposition 5.4.2. The following hold:
(1) The group HN (resp., GN ) is a finitely-generated finite-index sub-

group of H1 (resp., G1).
(2) The groups GN are highly non-commutative. To be precise:

(a) The groups HN and GN have arbitrarily large subsets of pair-
wise non-commuting elements.

(b) Let p ≡ 1 (mod 12). Let γ(`) = 1
2H(4`). Then the fundamental

group π1(Λ`(1), E) is a free group of rank 1 + γ(`)
2 + (`−1)·(p−1)

24 .



414 Eyal Z. Goren, Payman L Kassaei

Furthermore, there are elements C1, . . . ,Cγ(`) that are part of
a basis of π1(Λ`(1), E) such that

G1 ∼= π1(Λ`(1), E)/〈〈C 2
1 , . . . ,C

2
γ(`)〉〉,

where 〈〈C 2
1 , . . . ,C

2
γ(`)〉〉 denotes the minimal normal subgroup

containing C 2
1 , . . . ,C

2
γ(`). Consequently, G1 has a quotient that

is a free group of rank 1− γ(`)
2 + (`−1)·(p−1)

24 .

Proof. To show that the groups GN are finitely generated, we will produce
a finite set of generators. First, we prove a lemma.

Lemma 5.4.3. Let E1 = (E1, P1) and E2 = (E2, P2) be vertices of Λ`(N).
Let λ : E1 → E2 be an isogeny of degree `m for some m > 0. There is an
isogeny

ηλ : E2 → E1
of degree `a ≤ `m+2(α(N)−1) such that λ ◦ ηλ is multiplication by a power of
`. In particular, for every labeled walk ω from E1 to E2 of length m, there
is a labeled walk ηω from E2 to E1 of length a ≤ m+ 2(α(N)−1) such that
ω̃ ◦ η̃ω ∈ GN is the identity.

Proof. Define ηλ := `xλ∨, where x is the smallest non-negative integer for
which we have α(N)|(m + x). We have deg(ηλ) = `m+2x ≤ `m+2(α(N)−1).
We also have ηλ ◦ λ = `x+m, and ηλ(P2) = `x(λ∨(P2)) = `m+xP1 = P1, as
desired. �

We now prove the finite generation of GN = HG(E), and deduce the
finite generation of HN . Let v(N) denote the number of vertices in Λ`(N).
We prove that the finite set

Gen = {ω̃ : ω ∈ Ω(Λ`(N), E) of length ≤ 2α(N) + 2v(N)− 3}
generates GN . Let ω ∈ Ω(Λ`(N), E) be a closed labeled walk comprised
of vertices E1 = E,E2, . . . , En, En+1 = E, with labeled arrows hi from Ei
to Ei+1. For each 2 ≤ i ≤ n, let ωi denote a labeled walk from E1 to Ei
of length at most v(N) − 1 (these exist since Λ`(N) is connected). Then,
ω̃ = h̃n . . . h̃1 can be written as a product

ω̃ = (h̃nωn)( ˜ηωnhn−1ωn−1) . . . ( ˜ηω3h2ω2)(η̃ω2h1),
in which each factor is in Gen. This proves that GN is finitely generated. As
the kernel of HN → GN is finitely generated, also HN is finitely generated.
(The kernel is generated by `α(N) and −`β(N), where β(N) is the least non-
negative integer such that `β(N) ≡ −1 (mod N); if no such β(N) exists,
the kernel is generated by `α(N) alone.)

Denote by H 1
N the subgroup of H1 composed of elements whose action

on the N -torsion points of E is trivial. Then, H1 ⊇ HN ⊇ H 1
N , and to
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prove HN is of finite index in H1, it is enough to show that H 1
N is of finite

index in H1. But, H1/H 1
N ↪→ GL2(Z/NZ) and the assertion follows.

Next, we prove that HN has an arbitrarily large subset of pairwise non-
commuting elements. Let n be a positive integer. Let R = End(E), and
let d1, . . . , dn be large enough distinct primes such that ` is split and p is
inert in each of the fields Ki = Q(

√
−di). By [13, Theorem 1.4] and the

discussion preceding it, each field Ki has an optimal embedding Ki → Bp,∞
relative to R; that is, the image of OKi is contained in R. The images of
the fields Ki do not commute.

As ` is split, in each field Ki, we have a decomposition into primes ideals
`OKi = Li,1Li,2. Let r be an integer divisible by the class numbers of
K1, . . . ,Kn and let sN = ]GL2(Z/NZ). Then, L r

i = (ti), and τi := tsNi
have the following properties:

(i) τi ∈ R;
(ii) Ki = Q(τi), and hence τi and τj do not commute for i 6= j;
(iii) τi ∈ HN as ti ∈ H1 and ti acts by an element of GL2(Z/NZ) on

E[N ].
This provides us with n pairwise non-commuting elements of HN . In addi-
tion, since commutators have trace 0 and the kernel of HN → GN consists
of non-zero scalars, the images of the τi do not commute in GN either.

Finally, we assume p ≡ 1 (mod 12), and consider the graph Λud
` (1),

which has (p − 1)/12 vertices. The fundamental group π1(Λud
` (1), E) can

be described the following way. Let Λen
` (1) be the (“enlarged”) graph with

the same vertices as Λud
` (1), but for every edge e in Λud

` (1) introduce two
corresponding edges eε, ε ∈ {+,−} in Λen

` (1), thereby getting a directed
connected graph. Introduce an equivalence relation on the set Ω(Λen

` (1), E)
of closed directed walks as the one generated by basic equivalences

ω1ω2 ∼ ω1e
εe−εω2.

The corresponding set of equivalence classes forms a group, naturally iso-
morphic to π1(Λud

` (1), E). Note that we have graph morphisms

Λen
` (1)→ Λ`(1)→ Λud

` (1).

In fact, the morphism Λen
` (1) → Λ`(1) is a bijection on vertices and all

edges except for self-dual edges, namely, edges that correspond to loops
with labels ±λ such that ±λ = ±λ∨ (i.e., the loops of multiplicity 1 in
Λud
` (1)). There is a natural map

Ω(Λen
` (1), E)→ G1.

Indeed, each edge eε inherits a set of labels ±λ from Λ`(1), and so for each
walk we can associate the composition of the labels that gives a well defined
element in G1. Equivalent elements of Ω(Λen

` (1), E) have the same image.
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We note that if eε corresponds to a self-dual loop in Λ`(1) then we get
(eε)2 = 1 in G1.

To every loop ci of multiplicity 1 in Λ`(1), we associate an element Ci of
π1(Λud

` (1), E) by taking a path ωi from E to the vertex of the loop ci, and
letting Ci = ω∨i ciωi. We get a well-defined homomorphism

π1(Λ`(1), E)/〈〈C 2
1 , . . . ,C

2
γ(`)〉〉 → G1.

It is easy to check using Lemma 5.3.2 that this is a surjective homomor-
phism. The injectivity is equivalent to checking that a composition of `-
isogenies fn ◦ · · · ◦ f1 is, up to a sign, multiplication by a power of ` if and
only if it is composed of nested pairs of `-isogenies ±λ ◦λ∨. To see this last
statement, consider a composition of `-isogenies fn ◦ · · · ◦ f1 which is equal
to `n/2, say

E = E0
f1 // E1

f2 // · · ·
fn // En .

Let i+ 1 be the minimal integer such that ` divides fi+1 ◦ · · · ◦ f1. That is,
Ker(fi+1 ◦ · · · ◦ f1) ∼= Z/`iZ× Z/`Z and, under this isomorphism, Ker(fj ◦
· · · ◦ f1) = Z/`jZ× {0} for j ≤ i. It follows that Ker(fi+1 ◦ fi) ∼= (Z/`Z)2,
which implies that Ei+1 ∼= Ei−1 and fi+1 ◦ fi is equal to the multiplication-
by-` map up to an automorphism of Ei+1, namely, up to ±1 due to our
assumption on p. Therefore, fi+1 = ±f∨i .

A label of a self-dual loop at a vertex E′ corresponds to an embedding
Z[
√
−`] ↪→ End(E′). By [15, Section 1], there are H(4`) such embeddings.

Therefore the number of self-dual loops of Λud
` (1) is γ(`). Hence, the group

π1(Λud
` (1), E) is a free group of rank 1 + γ(`)

2 + (`−1)·(p−1)
24 and so G1 has a

quotient that is a free group of rank 1− γ(`)
2 + (`−1)·(p−1)

24 . �

5.5. The closure of H +
N , HN and GN . Our purpose is to determine

the p-adic and Zariski closures of the monoid H +
N in R×, and the same

for GN . We will use H,G, etc. to denote p-adic closures and H,G, etc. to
denote Zariski closures.

We introduce the following submonoid of H +
N :

H 1,+
N = {f ∈ End(E) : f ≡ 1 (mod N),deg(f) ∈ 〈`α(N)〉},

and let H 1
N be the minimal group containing H 1,+

N (it already appeared in
the proof of Proposition 5.4.2). Denote by H+

N ,H
1,+
N the p-adic closure of

H +
N and H 1,+

N in R×, respectively. Let LN be the p-adic closure of 〈`α(N)〉
in R×. Note that LN is also the p-adic closure of {`rα(N) : r = 1, 2, 3, . . .}

Proposition 5.5.1. H1,+
N = {x ∈ R× : Nm(x) ∈ LN}.

Proof. Let A = {x ∈ R× : Nm(x) ∈ LN}. Clearly, H 1,+
N ⊂ A. Since A is a

compact group, also H1,+
N ⊆ A.
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For the reverse inclusion we will use Theorem 1.2 of [25]. Write R =
End(E) ⊂ Bp,∞ and identify R with Z4 so that 1 = (1, 0, 0, 0); let Q be the
positive definite quadratic form corresponding to the norm of Bp,∞. Then
R = Z4

p. Let α = (α1, . . . , α4) ∈ A. We need to show that for all M ≥ 0,
∃ (β1, . . . , β4) ∈ Z4 such that:

• Q(β1, . . . , β4) = `rα(N) for r>0 such that `rα(N)≡Nm(α) (mod pM ),
• (β1, . . . , β4) ≡ (1, 0, 0, 0) (mod N), and
• (β1, . . . , β4) ≡ (α1, . . . , α4) (mod pM ).

Note that there are always arbitrary large r satisfying the congruence in
the first condition. For convenience we take M ≥ 2.

Let m = NpM and let (λ1, . . . , λ4) ∈ (Z/mZ)4 correspond to the above
last two congruence conditions. By the result cited above, to get a so-
lution (for r �M 0), it suffices to show that for every prime u there is
a (x1, . . . , x4) ∈ Z4

u such that Q(x1, . . . , x4) = `rα(N) and (x1, . . . , x4) ≡
(λ1, . . . , λ4) (mod uordu(m)).

For u - m, there is no congruence condition, (Z4
u, Q) ∼= (M2(Zu),det),

and the matrix
( 1

`rα(N)
)
is a solution. For u|N , we still have (Z4

u, Q) ∼=
(M2(Zu), det), and the matrix

( 1
`rα(N)

)
is still a solution because it satisfies

the congruence condition
( 1

`rα(N)
)
≡ ( 1

1 ) mod uordu(m).
For u = p we want a solution in Z4

p that is congruent to (α1, . . . , α4)
(mod pM ). We have now (R, Q) ∼=

({(
a pbσ

b aσ
)

: a, b ∈ W (Fq)
}
,det

)
. The

element α satisfies the congruence condition, is represented by a matrix( a1 pbσ1
b1 aσ1

)
, and has determinant Nm(α) that is congruent to `rα(N) modulo

pM . We want to find ã1 such that ã1 ≡ a1 (mod pM ) and det
( ã1 pbσ1
b1 ãσ1

)
=

`rα(N).
We claim that the norm map

a1 + pMW (Fq)→ Nm(a1) + pMZp
is surjective. As a1 is a unit, a1 + pMW (Fq) = a1(1 + pMW (Fq)) and it is
enough to prove that Nm is a surjection 1 + pMW (Fq)→ 1 + pMZp.

Applying the logarithm to both sides, we reduce to showing that the
trace map tr = trW (Fq)/Zp : pM+1W (Fq) → pM+1Zp is surjective; this is
easily verified. Finally, since `rα(N) + pb1b

σ
1 ∈ Nm(a1) + pMZp, there is an

ã1 ∈ a1 + pMW (Fq) whose norm is `rα(N) + pb1b
σ
1 . �

Corollary 5.5.2. H1,+
N is a group, equal to the p-adic closure of H 1

N . De-
note it henceforth by H1

N . The quotient group R×/H1
N is a finite group

isomorphic to Z×p /LN .

We have inclusions H1 = H1
1 ⊇ H+

N ⊇ H1
N , and so H+

N/H1
N is a finite

monoid contained in the group H1/H1
N , hence a group itself.
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Corollary 5.5.3. H+
N is a group, equal to the p-adic closure of HN . Denote

it henceforth by HN . We have that HN/H1
N is a cyclic subgroup of the group

L1/LN
∼= Z/α(N)Z.

Let Π: GL2(Qq) → PGL2(Qq) be the natural projection map. We are
interested in the image of HN under Π. Denote

sat(HN ) = Z×p HN = Π−1Π(HN ) ∩R×.

The group sat(HN ) is closed, hence Π(HN ) is closed in PGL2(Qq) and equal
to GN .

Proposition 5.5.4. We have

sat(HN ) = R×� :=
{(

a pbσ

b aσ

)
∈ R× : aaσ − pbbσ ∈ (Z×p )2 · 〈`〉

}
.

Thus, sat(HN ) has index at most 2 in R× if p is odd, and index at most
4 if p = 2; further, sat(HN ) = R× if and only if p is odd and ` is not a
square modulo p.

Proof. We first examine sat(H1
N ). As R×/H1

N
∼= Z×p /LN via the determi-

nant map, we find that R×/ sat(H1
N ) is isomorphic to Z×p /(Z×p )2〈`α(N)〉.

Since the graph Λ`(N) is not bipartite (Theorem 5.3.3), there is an element
in H +

N whose degree is an odd power of `. Consequently, R×/ sat(HN ) ∼=
Z×p /(Z×p )2〈`〉 and, in fact, sat(HN ) is precisely the elements in R× whose
determinant lies in (Z×p )2〈`〉. �

Corollary 5.5.5. We have GN = Π(R×� ), which is independent of N .

Proposition 5.5.6. Let HN , GN be, respectively, the Zariski closures
of HN , GN in GL2(Qq), PGL2(Qq). Then HN = GL2(Qq) and GN =
PGL2(Qq).

Proof. As HN ⊇ HN , GN ⊇ GN , our assertion is quite clear from the de-
scription of algebraic subgroups of GL2 and PGL2 over an algebraic closure.
For example, the proof of Proposition 5.4.2 shows that we can find arbi-
trarily large subsets of pairwise non-commuting elements of HN lying in
the connected component H0

N of HN . Indeed, if h = [HN : H0
N ], we may re-

place in the proof the elements τi by τhi that are mutually non-commuting,
semi-simple, and have semi-simple commutators (every element of B× is
semi-simple). It is also easy to arrange for a commutator to be non-central.
From this it is easy to deduce that H0

N = GL2 or SL2. On the other hand,
we have elements of determinant `α(N)m,m ∈ Z, in HN . It follows that
HN = GL2 and GN = PGL2(Qq). �
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5.6. Dynamics implications - I. At this point we want to explain the
implication of our results thus far for the study of the dynamics of the
Hecke operator T`. Let E = (E,P ) be an elliptic curve over Cp with good
supersingular reduction, thought of as a point on X1(N)(Cp) for N rigid.
Let D(E) be its residue disc. As we have seen (the arguments proving
Lemma 3.2.1 apply), the correspondence Tn` |D(E) decomposes into a sum
of rigid-analytic isomorphisms between residue discs. If Tn` (E) =

∑
i[Ei]

(with repetitions allowed) then

Tn` |D(E) =
∑
i

fi,

where each fi : D(E)→ D(Ei) is an isometry. Further, the discs D(Ei) are
recognized by the mod p reductions Ei, which are supersingular curves too.
Thus, as in the ordinary case, the movement of the residue discs follows the
dynamics of the Hecke orbit of E, which is described by walks in the finite
supersingular graph Λ`(N).

Enumerate the vertices of the (` + 1)-regular directed graph Λ`(N) as
{v1, . . . , vν(N)}, and let T denote the normalized adjacency matrix, so that
(`+1)Tij is the number of edges from vi to vj . By Theorem 5.3.3, the matrix
T is bi-stochastic and can be viewed as a time-homogenous irreducible
Markov chain. As Λ`(N) is not bipartite, every eigenvalue of T , besides 1,
has modulus smaller than 1. Thus, any initial probability distribution on
Λ`(N)V converges exponentially fast to the unique probability distribution

1
ν(N)

∑
i δvi , where δvi is the Dirac distribution supported on vi. (For N = 2

everything goes through the same; for N = 1 most of the considerations
go through, but the limit measure need not be the one we have specified.
For example, if p = 11 and ` = 5, then T is 1

6 · ( 3 3
2 4 ) and the stationary

distribution is
( 2/5

3/5
)
.)

With these considerations, to understand further the action of Tn` we
may restrict our attention to a single disc. That is, we need to study the
action of the monoid H +

N (E) on the residue disc D(E). This residue disc
may be viewed as the generic rigid-analytic fibre (D̃(E))rig of the formal
scheme D̃(E) that is the formal deformation space of the elliptic curve E;
equivalently, by Serre–Tate and étaleness, of the p-divisible group E[p∞];
equivalently, by Tate, of the formal group Ê. The group R×, and hence
HN , can thus be interpreted as automorphism groups of Ê. The work of
Gross–Hopkins, which is our next topic, will allow us to consider instead the
action of HN , that factors through GN , on P1

Qq . The methods we shall use
will rely on the p-adic and Zariski closures of GN . As the groups GN , GN are
well-understood by Corollary 5.5.5 and Proposition 5.5.6, this will prove to
be a powerful technique.
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We can view the formal deformation space D̃(E) as representing the
functor F on complete local Noetherian W (Fq)-algebras R with residue
field k,
(5.1) F : R 7→ F (R) = {(E , ϕ)}/isom.,
where E is a p-divisible group over Spec(R), and ϕ : E ⊗R k → E[p∞]⊗Fq k
is an isomorphism. The group Aut(E[p∞]), of which HN is a subgroup,
acts on the universal deformation space via its action on the functor: γ ∈
Aut(E[p∞]) acts by

(E , ϕ) 7→ (E , γ ◦ ϕ).
Since the p-divisible group of E is connected, by a result of Tate, the functor
of deformations of the formal group of E is equivalent to the function F .

For N = 1 one uses the following diagram. Choose an auxiliary rigid N ,
and use the diagram:

D(E)

��

= (D̃(E))rig
∼=H +

N −equivar. ��
D(E)

��

= (D̃(E))rig

��

D(E)/Aut(E) = (D̃(E))rig/Aut(E)

We remark that the action of Aut(E) is non-trivial only when Aut(E) %
{±1}, and this only happens at j = 0, 1728, if these are supersingular at all.

5.7. The work of Gross and Hopkins. In this section we review some
of the work of Gross and Hopkins [20], specializing to cases of particular
interest to us.

5.7.1. The ideal disc. Gross and Hopkins study one-dimensional con-
nected p-divisible groups through one dimensional formal groups. In [20,
p. 31] they construct a very particular universal typical formal group F of
height n over the ring Zp[[u1, . . . , un−1]]. The case that would interest us
most is n = 2. Let F 0 denote the reduction of F modulo the maximal ideal
of Zp[[u1, . . . , un−1]]; it is a formal group of dimension 1 and height n over
Fp, and, as in [20], we let F0 be the specialization of F to a formal group
over Zp obtained by specializing all the ui to 0. We denote F = F 0⊗Fp Fpn .
(Note that our notation differs a little from [20].)

Consider the functor F ? on the category of complete local noetherian
W (Fpn)-algebras (R,mR) with p ∈ mR, kR : = R/mR, given by

(5.2) R 7→ F ?(R)
= {G/R a formal group law G⊗R kR =F ⊗Fpn kR}/?-isom.
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Here, we say that G/R and G′/R are ?-isomorphic if there is an isomor-
phism G

∼→ G′ over R, which reduces to the identity modulo mR. This
functor is representable by W (Fpn)[[u1, . . . , un−1]], and F ⊗Zp W (Fpn) is a
universal object over it [20, p. 45].

Let An = W (Fpn); it is an unramified extension of Qp of degree n that
contains all pn − 1 roots of unity. From the specific definition of F given
in [20], it follows that F0⊗ZpAn has an action of An such that [ζ](x) = ζ ·x
for ζ ∈ µpn−1. This induces an action of An on F , making it into a formal
An-module of height 1, with an induced embedding jn : An → End(F ). The
image of jn along with the Frobenius morphism ϕ generate End(F ). Indeed,
we have

End(F ⊗Fpn Fp) = End(F ) = An ⊕Anϕ⊕ · · · ⊕Anϕn−1,

with ϕn = p, and ϕa = aσϕ, for a ∈ An, where σ denotes the Frobenius
automorphism of An. The centre of End(F ) is Zp. Note that every element
b of End(F ), being an endomorphism of a 1-dimensional formal group, is
given by a power series b(x) ∈ Fpn [[x]].

5.7.2. The action of Aut(F̄ ) on Spf An[[u1, . . . , un−1]]. From the
above discussion it follows that

An := Aut(F ) = A×n ⊕Anϕ⊕ · · · ⊕Anϕn−1,

and its center is Z×p . The action of An on Spf An[[u1, . . . , un−1]] is already
described in [22] as follows: Given b ∈ An, represented by the power
series b(x) ∈ Fpn [[x]], let b−1(x) be the inverse of b(x) relative to com-
position (so that b(b−1(x)) = x, etc.) and lift b−1(x) to a power series
h(x) ∈ An[[x]] in an arbitrary way. Given the universal formal group law F
over An[[u1, . . . , un−1]], there is a unique group law F ′ over An[[u1, . . . , un−1]]
such that

F ′(h(x), h(y)) = h(F (x, y)).
Note that F ∼−→ F ′ over the ring An[[u1, . . . , un−1]] via the map h, but this
isomorphism is not a ?-isomorphism. By the universal property of F , there
exists a unique automorphism β(b) of An[[u1, . . . , un−1]] over An such that

β(b)F '
?
F ′.

(The notation β(b)F means specializing F by applying the β(b) to its coef-
ficients.) The automorphism β(b) depends only on b and not on the choice
of h, since for varying h the formal group laws F ′ are all ?-isomorphic.

Here we have described the global action, but the action on points on the
universal deformation space An[[u1, . . . , un−1]], namely on specializations of
F through homomorphisms An[[u1, . . . , un−1]]→ R, is virtually the same.

This describes the action of An via the ?-isomorphism model. If we con-
sider the equivalent functor classifying (G/R,ψ) a formal group law with
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ψ : G ⊗R kR
∼=−→ F ⊗Fp kR, up to isomorphism, we have a natural action

of An, where b ∈ An acts on (G/R,ψ) by taking it to (G/R, b ◦ ψ). The
following proposition is an easy exercise.

Proposition 5.7.1. The two actions of An on the universal deformation
space An[[u1, . . . , un−1]] are the same.

We thus get a homomorphism β, with kernel Z×p ,

β : An −→ AutAn(An[[u1, . . . , un−1]]).

It induces an action of An on the formal scheme X̃ = Spf(An[[u1, . . . , un−1]])
and on the associated rigid space

X = X̃rig = (Spf(An[[u1, . . . , un−1]]))rig .

In [20, Proposition 14.13] we find that if R is a complete local noetherian
An-algebra, and x ∈ X̃(R) with corresponding formal group law Fx, then
the orbit of x under An is

Orb(x) = {y ∈ X̃(R) : Fx ∼= Fy over R}

(note that this is, of course, an isomorphism and not a ?-isomorphism) and

Stab(x) = Aut(Fx).

5.8. Canonical and quasi-canonical lifts: the supersingular case.
Now, we consider the case n = 2. Our main interest in this section is in
points x ∈ X that have a large endomorphism ring. They are tightly linked
to dynamical aspects of the action of Aut(F ) on X, and a fortiori to the
action of HN on X, as we shall see. But we initially consider the larger
picture, which is the action of Aut(F ). We consider points x ∈ X such that

End(Fx) % Zp.

In this case, End(Fx) is an order in a quadratic field extension of Qp. Up to
isomorphism there are finitely many such fields; they are in bijection with
the non-identity elements of Q×p /(Q×p )2 ∼= Z/2Z × Z×p /(Z×p )2. Fix models
{Ki} = {K1, . . . ,Kr} for these fields, and for K ∈ {Ki} denote the ring of
integers by OK . Let {1, γK} be the automorphism group of K/Qp.

5.8.1. We first classify x ∈ X according to the isomorphism class Ki of
the field Kx := End0(Fx).

Fix then K ∈ {Ki} and consider points x such that Kx
∼= K. We have

then
End(Fx) ∼= OK,sx := Zp + psxOK ,

and we call the non-negative integer sx the level, or conductor, of x. Choose
an isomorphism ιx : OK,sx → End(Fx). It is unique up to composition with
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γK ; when we want to refer to the pair of embeddings we shall write ι±x . The
map ιx induces an embedding

ιx : OK,sx ↪→ End(F ) ∼= R.

As the order R consists of all integral elements of B, the embedding ιx
extends uniquely to an embedding ι : OK ↪→ End(F ). Thus, any embedding
ιx comes from an “optimal embedding”.

Given d ∈ R× \ Z×p , it will be convenient to denote OK,s(d) the order
isomorphic to Zp[d], and denote ιd its embedding into End(F ).

5.8.2. Fix an embedding ι : OK → End(F ). Let QC(ι,K, s) be the set of
points x of X such that Kx

∼= K, sx = s and ιx extends to ι. These are the
quasi-canonical lifts relative to ι of level s. Let qc(K, s) = ]QC(ι,K, s) (it
is independent of ι). Gross [16] gives the following formula:

(5.3) qc(K, s) =


1 if s = 0,
(p+ 1)ps−1 s > 0,K unramified,
ps s > 0,K ramified.

Caution. Note that what Gross calls a quasi-canonical lift x of level s is
a point of QC(ι,K, s) if s is even, and a point of QC(ϕιϕ−1,K, s) if s is
odd, where ϕ : F → F is Frobenius. Nonetheless, the result about qc(K, s)
quoted from [16] is valid, as ϕιϕ−1 is an embedding OK → R as well.

5.8.3. The sets of points we have defined enjoy an action of B× coming
from conjugating the embedding ι. An element γ ∈ B× induces, for any K
and s, a bijection

QC(ι,K, s) ∼−→ QC(γιγ−1,K, s).
We are interested in the action of R× = Aut(F ). Consider the surjective
homomorphism ν := ord ◦Nm : B× → Z, where Nm is the reduced norm
and ord is p-adic valuation. In the model

{(
a pbσ

b aσ
)}
, ν = ord ◦ det and

so we see that R× = Ker(ν) and B×/R× ∼= Z. As by Skolem–Noether
B× acts transitively on the set of embeddings ι : K → B (they are all
optimal), the orbits of R× on the set of these embeddings are in bijection
with B×/R× · CentB×(ι(K)) = B×/R× · ι(K×). As ν|K = ord ◦NmK/Qp
we find that the R×-orbits in the set of optimal embeddings OK → R are
in bijection with Z/ ord(Nm(K×)). Therefore:

• If K/Qp is ramified, Aut(F ) acts transitively on the set of embed-
dings ι : OK → R. In this action, the centralizer Cent(ι) is ι(K×)
and the normalizer satisfies Norm(ι)/Cent(ι) ∼= {1, γK}, where the
non-trivial class indeed induces γK by its conjugation action. We
remark that this persists also when we take the normalizer and
centralizer in R×.
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• If K/Qp is unramified, there are two orbits for the action of R×

on the set of embeddings ι : OK → R. Again, we have Norm(ι)/
Cent(ι) ∼= {1, γK}, but if we take the normalizer and centralizer
in R×, we have Norm(ι) ∩R×/Cent(ι) ∩R× ∼= {1}. To see that,
consider the standard inclusion K → B given by a 7→ ( a 0

0 aσ ), where
the normalizer is generated over the centralizer by ϕ =

( 0 p
1 0
)
(a non-

integral element). The two R× orbits are thus distinguished by the
induced action on the tangent space of F . Note, however, that even
in this case, Aut(F ) acts transitively on the subrings of B that are
isomorphic to OK .

5.8.4. Consider now b ∈ R× and the automorphism β(b) of X induced
by it. If b ∈ Z×p then β(b) is the identity map, and conversely. We are
interested in the periodic points Per(b) of β(b) (in particular in the fixed
points Fix(b)), and so we may assume b 6∈ Z×p .

• If b has finite order in R×/Z×p , then Per(b) = X.
• If b has infinite order in R×/Z×p and x ∈ X is a periodic point of
length r, say, then x is a fixed point of β(br). Note that there are
two embeddings associated to br,

ι±br : OK,s → B,

where K ∈ {Ki} is the unique field isomorphic to Qp(br) = Qp(b)
and s = s(br) is the level. We therefore next direct our attention to
fixed points.

5.8.5. Let d ∈ R×, d 6∈ Z×p . As noted Fix(β(d)) = {x : d ∈ End(Fx)}.
If so, End(Fx) is an order of conductor sx ≤ s(d). Furthermore, the asso-
ciated pair of embeddings ι±x : OKx,sx → End(F ) extend ι±d . Let K be the
representative isomorphic to Qp[d]. Then,

Fix(d) =
⋃

s≤s(d)
QC(ι±d ,K, s)

=
⋃

s≤s(d)
{x ∈ X : Kx

∼= Qp[d], sx = s, ι±x = ι±d }.
(5.4)

We return to periodic points for β(b), assuming b is of infinite order in
R×/Z×p . It’s an easy exercise that sup{s(br) : r ≥ 1} = ∞. Let K be the
representative isomorphic to Qp[b]. Then,

Per(b) =
⋃
r≥1

Fix(br)

=
⋃
s≥0

QC(ι±b ,K, s)

= {x ∈ X : Kx
∼= K, ι±x = ι±b }

(5.5)
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(the abuse of notation ιb = ιbr is justified). Some information about the
location of the periodic points can be found in [16, 20].

5.8.6. We can draw some immediate conclusions concerning the action
of HN on X. For one, for every element b of HN , viewed as a branch of
the Hecke operator Tn` for some n, the fixed and periodic points of β(b) are
given by Sections 5.8.4–5.8.5. In addition, in contrast to the ordinary case:

Corollary 5.8.1. The elements of A2 = R× do not have a common fixed
point. In fact there is no finite subset of X that is stable under HN .

Proof. The first statement follows easily, since we may pick integral el-
ements b1, b2, generating distinct quadratic extensions inside B. Then
Fix(b1) ∩ Fix(b2) = ∅. In fact, as in the proof of Proposition 5.4.2, we
can choose bi ∈HN such that bnii 6∈ Z×p , for all ni > 0.

As to the second statement, if S is a finite set stable under HN , then,
for suitable ni > 0, we have S ⊆ Fix(bnii ), i = 1, 2. But, we still have
Fix(bn1

1 ) ∩ Fix(bn2
2 ) = ∅. Thus, S = ∅. �

5.9. The Gross–Hopkins period map. We specialize the results of
Gross–Hopkins to the case n = 2. Recall our notation from Section 5.1:
q = p2, Qq is the quadratic unramified extension of Qp.

In their paper [20] Gross and Hopkins construct a period map

Φ: X → P1

of rigid-analytic spaces over Qp with the following properties ([20, in par-
ticular Lemma 19.3 and Corollary 23.15]):

(1) Φ is a morphism of rigid spaces that is étale and surjective.
(2) Φ is equivariant for the action of A2, where A2 = {

(
a pbσ

b aσ
)
: a ∈

W (Fq)×, b ∈ W (Fq)} ⊂ GL2(Qq), acting through Möbius transfor-
mations on P1.

(3) Furthermore, Φ restricts to a rigid-analytic isomorphism

J : = {x ∈ X : ord(x) ≥ 1/2} ∼−→ U : = {w : ord(w) ≥ 1/2} ⊂ P1
(w0 : w1)

In particular, the map Φ induces a bijection between the Qp2 points
of J and U . Under this map the point 0, corresponding to the formal
group F0, is mapped to the point w = 0 = (1 : 0) (sic!), where
w = w1/w0. Furthermore, both J and U are A2-invariant.

5.9.1. Reduction to the ideal disc. Above we have discussed the work
of Gross–Hopkins that relates to the deformation of a very particular for-
mal group that we denoted F . To connect it with our main subject, let
E be a supersingular elliptic curve defined over a finite extension k of Fq,
and P a point of order N on E. Then E has a unique model E1 over
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Fq whose Frobenius endomorphism ϕ satisfies ϕ2 = p (Lemma 5.2.3). Us-
ing [17, Proposition 24.2.9], we find that the formal group Ê1 is isomorphic
to F over Fq, as the property ϕ2 = p holds for F as well. Fix such an
isomorphism. Then the universal deformation spaces of E = (E,P ) and F
become isomorphic after base change to W (k). We remark that the functor
F ? in (5.2) (in the case n = 2) is naturally equivalent to F in (5.1) (see [22,
Proposition 3.3] and that allows us to use [20, 22]).

The associated rigid space XE = D(E) inherits an action of A2 and an
equivariant period map Φ: XE → P1 over W (k)[p−1], as well as a base
point 0 corresponding to the unique A2-formal module (none other than
F0) lifting Ê.

Lemma 5.9.1. Let K be a quadratic imaginary field in which p is either
inert or ramified. Let E/Qp be an elliptic curve with CM by an order of
K of conductor prime to p. Then Qp(j(E)) is a finite extension of Qp of
ramification index at most 2. In fact, if p is inert in K, Qp(j(E)) is at
most a quadratic unramified extension of Qp, while if p is ramified in K,
Qp(j(E)) has degree dividing 4 over Qp.

Proof. Assume that E has CM by Rf, the order of conductor f ∈ Z≥1 in
OK . LetK(f) denote the ring class field of conductor f overK. Let V denote
the set of all finite places of K, and for v ∈ V , denote by Ov (resp., Kv) the
completion of OK (resp., K) at v. Let πv : O×v → (Ov/fOv)× be the natural
projection. Under the isomorphism of class field theory, K(f) corresponds
to the subgroup K×W ⊂ A×K , where W is given by W = Πv∈VWv, and Wv

is defined as

Wv =
{
π−1
v ((Z/fZ)×) v|f,
O×K,v v6 |f.

Let p denote the unique prime of K above p, and choose a prime p̃ of
K(f) above p. By class field theory, the local field K(f)p̃ corresponds to the
subgroup K×W ∩Kp ⊂ K×p . Let us denote by Pic(Rf) the ideal class group
of Rf. Let a denote the order of [p] in Pic(Rf). Then

K×W ∩Kp = O×p $aZ
p ,

where$p is a choice of a uniformizer in Op. In particular, we find thatK(f)p̃
is an unramified extension of degree a over Kp. By the theory of complex
multiplication we have K(j(E)) = K(f). Hence, it is enough to show that
K(f)p̃ satisfies the conditions stated in the lemma. If p is inert in K, then
Kp = Qp2 and a = 1. If p is ramified in K, then Kp is a quadratic ramified
extension of Qp and a ≤ 2. This proves the lemma. �

Corollary 5.9.2. All CM points of conductor prime to p in the residue
disc D(E) lie in J(Qq).



p-adic Dynamics of Hecke Operators on Modular Curves 427

5.10. Dynamics implications - II: Ideas from ergodic theory. By
Corollary 5.9.2, all CM points of discriminant prime to p in D(E) lie in the
set J defined above. Clearly, if we wish to understand the action of A2 on
J (and in particular on such CM points) we may as well study the action
of A2 on U . More precisely, we are interested in the action of HN on J and
we may reduce it to the very explicitly described action of GN on U (see
Corollary 5.5.5).

This is a fortunate setting, achieved at the price of restricting our at-
tention to “mildly ramified” CM points that lie in a particular small disc
within D(E). The general case is more complex and indeed the map Φ
is given by a complex formula ([20, (25.6), (25.7)]) that makes it hard to
translate results for P1 to results for D(E).

5.10.1. Minimal sets. Let K be a field extension of Qq. We denote by
J(K), U(K), etc., points of J, U, etc., with coordinates in K. Recall that HN

is the closure of HN and of H +
N in R× = A2. The groups HN , sat(HN ), GN

are the same in their action on P1(K), and in fact act by isometries on U(K).
This follows from the identity γx− γy = (x−y)(aaσ−pbbσ)

(bx+aσ)(by+aσ) , for γ =
(
a pbσ

b aσ
)
.

An HN -minimal set of P1(K) is an HN -invariant non-empty closed set
that is minimal relative to these properties.

Proposition 5.10.1. The HN -minimal sets S are the sets of the form
HN · f , for some f ∈ P1(K). Furthermore, HN · f = H +

N · f .

Proof. First note that for any f we have that HN · f is closed (in fact,
compact) because HN is compact and the action of GL2(K) on P1(K) is
continuous. If S is minimal, pick any f ∈ S, then HN · f ⊆ S is closed
and HN -invariant, hence equal to S. Conversely, consider a set HN · f for
some f ∈ P1(K). As an HN -minimal subset contained in HN ·f contains an
element of the form γf for some γ ∈ HN and so it also contains HN · γf =
HN · f .

To prove the rest, one proves that H +
N · f = H +

N · f = HN · f : On the
one hand, H +

N · f is closed and contains H +
N · f , hence also its closure. On

the other hand, let γi ∈ H +
N , γi → γ, then also γi · f → γ · f . This shows

that H +
N · f ⊆H +

N · f . �

5.10.2. Measures. Our proof in Proposition 5.4.2 that GN is finitely gen-
erated in fact supplied us with a set of t = t(N) elements,

Γ = {γ1, . . . , γt},

in H +
N that generate the image of H +

N in PGL2(Qq) as a monoid. We
include the identity among them. Note that there is no canonical choice of
such elements, though we chose the generators to be the set of all elements
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of H +
N obtained from closed labeled walks of explicitly bounded length. Let

µ = µ(N,Γ) be the atomic measure of GL2(Qq) supported on Γ. Namely,

µ = 1
t

t∑
i=1

δγi .

The following lemma is clear.
Lemma 5.10.2. The group HN is the minimal closed monoid of GL2(Qq)
(in the p-adic topology) containing the support of µ. To underline that,
denote it in the sequel HN,µ.

We use the work of Benoist and Quint [2]; see also the references [3, 12]
for general background material. In particular, [2] implies the following:
Theorem 5.10.3. The map ν 7→ Supp(ν) is a bijection

{µ-ergodic probability measures on U(K)}
⇔ {HN,µ-minimal subsets of U(K)}.

Corollary 5.10.4. There is a unique HN,µ-ergodic measure ν(µ) on U(Qq),
hence a unique HN,µ-stationary probability measure. Its support is U(Qq).
Proof. The µ-ergodic measures on U(Qq) are in one-one correspondence
with HN,µ-minimal sets. We claim that R×� acts transitively on U(Qq):
given x ∈ U(Qq), for any a ∈ W (Fq)× the matrix

(
a p (xa)σ
xa aσ

)
takes (1, 0)

to x and has determinant aaσ(1−pxxσ) which for an appropriate choice of
a lies in (Z×p )2〈`〉. That is, it belongs to R×� .

As R×� acts transitively on U(Qq) we can write U(Qq) = R×�/B, where
B is the stabilizer of (1, 0) in R×� and it contains Z×p . Thus, by Proposi-
tion 5.10.1, the minimal orbits are in bijection with

HN,µ\R×�/B = sat(HN,µ)\R×�/B,
which is a singleton. The ergodic measures are the extremal points of the
convex closed set of probability measures on the compact metric space
U(Qq) and the Krein–Milman theorem (see e.g., [29, Chapter 8]) then pro-
vides the uniqueness of the HN,µ-stationary probability measure. �

By Proposition 5.5.6 the Zariski closure HN of H +
N is GL2(Qq), and is

in particular reductive. We may therefore apply the results of Benoist and
Quint [2] and conclude the following.
Theorem 5.10.5. For every x ∈ U(K) the measure

(5.6) νx = lim
n→∞

1
n+ 1

n∑
k=0

µ∗k ∗ δx

exists and is a µ-stationary measure, depending continuously on x. Thus,
if x ∈ U(Qq), νx = ν(µ) and is independent of x.
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Note that
∑n
k=0 µ

∗k ∗ δx is nothing but the images of x (counted with
multiplicities) under the composition of up to n automorphisms of the form
γ−1

1 , . . . , γ−1
t . This theorem is the measure-theoretic manifestation that the

orbit of x is “well-distributed” in the closure of its orbit. Note that while
the measure depends on Γ, the support of the measure, i.e. HN,µ · x, does
not. Thus, whatever “branches” of the Hecke operator T` we choose, the
orbit is well-distributed in its closure that is independent of N .

While the theorem above can viewed as a non-commutative analogue of
the weak law of large numbers, the next result is the analogue of the strong
law of large numbers.

Theorem 5.10.6. For every x ∈ U(K), for almost all sequences γ =
(γin)∞n=1, γin ∈ {γ1, . . . , γt}, the measure

(5.7) νx,γ = lim
n→∞

1
n

n∑
k=1

δγ−1
in
...γ−1

i1
x

exists and is a µ-stationary µ-ergodic probability measure. Furthermore,

νx =
∫
νx,γ dγ.

In particular, if x ∈ U(Qq)

νx,γ = νx = ν(µ).

Finally, we recall the implications for CM points.

Theorem 5.10.7. Let x = E = (E,P ) be a CM point of supersingular
reduction on X1(N), N ≥ 3, such that End(E) has discriminant prime to
p. Let H +

N = H +
N (E) denote the set of branches of the iterations of the

Hecke operator T` returning to the residue disc D = D(E). Let HN,µ be
its p-adic closure equipped with the probability measure µ relative to the
generators {γ1, . . . , γt} as defined above.

There is a unique HN,µ-invariant (ergodic) probability measure ν(µ) on
J(Qq), and we have

ν(µ) = lim
n→∞

1
n+ 1

n∑
k=0

µ∗k ∗ δx

= lim
n→∞

1
n

n∑
k=1

δγ−1
in
...γ−1

i1
x,

(5.8)

for almost all sequences γ = (γin)∞n=1, γin ∈ {γ1, . . . , γt}.
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