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Some explicit formulas for partial sums of
Möbius functions

par Shōta INOUE

Résumé. Le but de cet article est de donner quelques formules explicites fai-
sant intervenir des fonctions de Möbius. De telles formules explicites peuvent
être prouvées sous l’hypothèse de Riemann généralisée, mais dans cet article,
nous donnons des preuves inconditionnelles. Concrètement, nous prouvons des
formules explicites pour des sommes partielles de la fonction de Möbius dans
les progressions arithmétiques et pour des sommes partielles des fonctions de
Möbius des corps de nombres abéliens. De plus, pour obtenir ces formules ex-
plicites, nous étudions un produit eulérien fini provenant d’une relation entre
les caractères primitifs et non primitifs.

Abstract. The purpose of this paper is to give some explicit formulas in-
volving Möbius functions. Such explicit formulas may be known under the
generalized Riemann Hypothesis, but unconditional in this paper. Concretely,
we prove explicit formulas of partial sums of the Möbius function in arithmetic
progressions and partial sums of the Möbius functions on an Abelian number
field. In addition, to obtain these explicit formulas, we study a certain finite
Euler product appearing from a relation between primitive characters and
imprimitive characters.

1. Introduction

The classical explicit formula

M∗(x) = lim
ν→∞

∑
|γ|<Tν

xρ

ζ ′(ρ)ρ − 2 +
∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n+ 1)(1.1)

was shown by Titchmarsh [18] under the assumption of the Riemann Hy-
pothesis and the simplicity of zeros of the Riemann zeta-function ζ(s). Here,
the function M∗(x) is defined by

M∗(x) =
∑′

n≤x
µ(n),
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µ(n) is the Möbius function,
∑′ indicates that if x is an integer, then the last

term is to be counted with weight 1/2, and {Tν}∞ν=1 is a certain sequence
satisfying Tν ∈ [ν, ν + 1]. In addition, Bartz [1] unconditionally proved the
explicit formula

(1.2) M∗(x) = lim
ν→∞

∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ) xs

ζ(s)s

)

− 2 +
∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n+ 1) ,

where {Tν}∞ν=1 is a certain sequence satisfying Tν ∈ [ν, 2ν]. We in this paper
give a generalization of this explicit formula to

M∗(x; q, a) =
∑′

n≤x
n≡a mod q

µ(n),

which is the summatory function of the Möbius function in arithmetic pro-
gressions with (a, q) = 1. To state our main theorem, we define the function
L−1(s; q, a) by

L−1(s; q, a) := 1
ϕ(q)

∑
χ mod q

χ(a)L(s, χ)−1.(1.3)

Here, the sum runs over all Dirichlet characters modulo q, and ϕ(n) is the
Euler totient function. The following theorem is a generalization of Bartz’s
formula and a consequence of the main theorem in this paper.

Theorem 1. Let a, q ∈ Z>0 with (a, q) = 1. Then, there exist some numbers
Tν ∈ [T, 2T ], T∗ ∈ [Tν , Tν + 1] such that

(1.4) M∗(x; q, a)

= lim
T→+∞

{ ∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ)L−1(s; q, a)x

s

s

)

+
∑
|η|<T∗

Res
s=iη

(
L−1(s; q, a)x

s

s

)}
+
∞∑
l=1

Res
s=−l

(
L−1(s; q, a)x

s

s

)
.

Here, the first sum runs over non-trivial zeros ρ = β + iγ of all Dirichlet
L-functions modulo q, m(ρ) indicates the multiplicity of ρ, and the second
sum runs over zeros iη of all imprimitive Dirichlet L-functions modulo q
on the imaginary axis.

The proof of this theorem requires some estimates of Dirichlet L-function
in certain domains. Hence, we give a new estimate for Dirichlet L-functions.
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The estimate is a generalization of the result due to Ramachandra and
Sankaranarayanan [16, Theorem 2].

Unfortunately, it is at present difficult to apply these explicit formulas
to some problems because there are some inconvenient points. For exam-
ple, the main terms of formulas (1.2) and (1.4) are more complicated for
higher multiplicity zeros, and it is difficult to understand the behavior of
multiplicity of nontrivial zeros. We do not know even the boundedness of
multiplicity at present. Even if we assume the simplicity of zeros, there is
another problem, that is the behavior of ζ ′(ρ). This is also difficult because
this problem is related to the detailed information on the gaps between ze-
ros of the Riemann zeta-function. For this problem, Gonek [5] and Hejhal [7]
independently proposed the following conjecture.

Conjecture (The Gonek–Hejhal Conjecture). Assume the simple zero con-
jecture for the Riemann zeta-function. For λ > −3

2 ,∑
0<γ<T

∣∣ζ ′(ρ)
∣∣2λ � T (log T )(λ+1)2

.

Applying this conjecture and the Riemann Hypothesis to a certain trun-
cated form of (1.1), Ng [15] proved the following sharp estimate

M∗(x)� x1/2(log x)5/4.

This estimate is stronger than the result

M∗(x)� x1/2 exp
(
(log x)1/2(log log x)14

)
,

which Soundararajan [17] showed under the Riemann Hypothesis alone.
From the above background, it can be seen that the truncated explicit
formulas are important to obtain the exact upper bound for the summatory
functions of Möbius functions.

1.1. Outline of this paper. The rest of this paper is organized as follows:
In Section 2 we state our main theorem and its application. In Section 3 we
describe some auxiliary results needed in the proof of our main theorem.
In Section 4 we prove some estimates of Dirichlet L-functions associated
with primitive characters in the critical strip. In Section 5 we show some
properties of the finite Euler product appearing in the expression of Dirich-
let L-functions attached to imprimitive characters. In Section 6 we give a
proof of some explicit formulas involving the main theorem. In Section 7 we
evaluate the contribution from zeros of Dirichlet L-functions on the imagi-
nary axis and trivial zeros. In Section 8 we prove an approximate formula
for a sum of 1/L′(ρ, χ). In Section 9 we describe results for certain number
fields, and prove those in Section 10.
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2. Statement of the main theorem and its application

The present paper gives some truncated explicit formulas, which gener-
alize the truncated form of (1.2). Our main result is an explicit formula
for M∗(x; q, a), which is a truncated one of Theorem 1. Define 〈x〉 by the
distance from x to the nearest square-free integers coprime to q, other than
x itself. Then we show the following truncated formula for M∗(x; q, a).

Theorem 2. Let x > 0, T ≥ max
{
T0, exp

(
q1/3), 2/x} with T0 a sufficiently

large absolute constant, a, q ∈ Z>0 with (a, q) = 1. Then, there exist some
numbers Tν ∈ [T, 2T ], T ∗ ∈ [Tν , Tν + 1] such that

(2.1) M∗(x; q, a)

=
∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ)L−1(s; q, a)x

s

s

)

+
∑
|η|<T∗

Res
s=iη

(
L−1(s; q, a)x

s

s

)
+
∞∑
l=1

Res
s=−l

(
L−1(s; q, a)x

s

s

)
+R.

Here, the first sum runs over non-trivial zeros ρ = β + iγ of all Dirichlet
L-functions modulo q, m(ρ) indicates the multiplicity of ρ, and the second
sum runs over zeros iη of all imprimitive Dirichlet L-functions modulo q
on the imaginary axis. The error term R satisfies

R� x

T

(
log(x+ 3) + exp

(
C(log log T )2

))
+ min

{
1, x

T 〈x〉

}
,(2.2)

where this implicit constant is absolute, and C is an absolute positive con-
stant.

We evaluate the contribution from the residues of trivial zeros and of
zeros on the imaginary axis in Section 7.

Now we consider the upper bound of M∗(x; q, a) under some assump-
tions. One of those assumptions is a generalization of the Gonek–Hejhal
Conjecture, which is the following assertion.

Conjecture 1 (The Generalized Gonek–Hejhal Conjecture for Dirichlet
L-functions). Assume that the all zeros of all Dirichlet L-functions are
simple except for the zero at s = 1

2 . For any number T ≥ 3,

Jλ,χ(T ) :=
∑

0<|γ|≤T
|L′(ρ, χ)|2λ �λ,q T (log T )(λ+1)2(2.3)

hold for λ > −3
2 , where q is the modulus of χ.
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Remark 1. This conjecture is just a generalization of the case of the
Riemann zeta-function, and the author does not know any further evidence.

Now we obtain the following corollary under the generalized Riemann
Hypothesis and Conjecture 1.

Theorem 3. Let a, q ∈ Z>0 with (a, q) = 1. Assume that the generalized
Riemann Hypothesis for all Dirichlet L-functions modulo q is true, the all
zeros of all Dirichlet L-functions are simple except for the zero at s = 1

2 ,
and that J−1/2,χ(T )�q T (log T )1/4. Then, we have

M∗(x; q, a)�q x
1/2
(
(log x)5/4 + (log x)m(q)−1

)
,(2.4)

where m(q) is the maximum in multiplicities of the zero of Dirichlet L-
functions modulo q at s = 1

2 .

Presently, the best upper bound of M∗(x; q, a) assuming only the gener-
alized Riemann Hypothesis is the following estimate

M∗(x; q, a)�ε x
1/2 exp

(
(log(x/d))1/2(log log(x/d))3+ε

)
,(2.5)

which was shown by Ye [19]. Here the number d indicates gcd(a, q). Esti-
mate (2.4) is a result under the assumption of the generalized Gonek–Hejhal
Conjecture in addition to the generalized Riemann Hypothesis. However,
thanks to explicit formula (2.1) and estimate (2.4), we can grasp the more
accurate behavior of M∗(x; q, a).

3. Auxiliary results and their applications

The function M∗(x; q, a) can be expressed by

M∗(x; q, a) = 1
ϕ(q)

∑
χ mod q

χ(a)
∑′

n≤x
χ(n)µ(n)(3.1)

from the orthogonality of characters. Here the first sum runs over all Dirich-
let characters modulo q, and ϕ is the Euler totient function. Therefore, as
the first step, we show the explicit formulas for the summatory function

M∗(x, χ) =
∑′

n≤x
χ(n)µ(n).

3.1. Explicit formulas forM∗(x, χ). We give two explicit formulas for
M∗(x, χ) separately in the cases of primitive and imprimitive characters.
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Theorem 4. Let x > 0, q ≥ 2, T ≥ max
{
T0, exp

(
q1/3), 2/x} with T0

a sufficiently large absolute constant. Then, uniformly for any primitive
Dirichlet character χ modulo d with d ≤ q, there exists a number Tν ∈
[T, 2T ] such that

M∗(x, χ) =
∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ)

L(s, χ)
xs

s

)

+ Res
s=0

(
xs

L(s, χ)s

)
+
∞∑
l=1

Res
s=−l

(
xs

L(s, χ)s

)
+R,

where R is the error term satisfying the estimate (2.2). The first sum on
the right hand side runs over nontrivial zeros ρ = β + iγ of L(s, χ).

This explicit formula is the case of primitive characters. On the other
hand, for our purpose, we need an analogue of Theorem 4 for imprimi-
tive characters. Here we can associate an imprimitive character χ with a
primitive character χ∗ inducing χ by the formula

L(s, χ) = L(s, χ∗)
∏
p|q

(
1− χ∗(p)

ps

)
.

Here we put

Fq,χ∗(s) :=
∏
p|q

(
1− χ∗(p)

ps

)
.(3.2)

In the following, we consider the case Fq,χ∗ 6≡ 1. Then this function Fq,χ∗
has zeros only on the imaginary axis. In addition, from the uniqueness of
the prime factorization, we can see that all zeros of Fq,χ∗ are simple except
the zero at s = 0. Now, by studying Fq,χ∗ , we obtain an explicit formula
for imprimitive characters as the following theorem.

Theorem 5. Let x > 0, q ≥ 2, T ≥ max
{
T0, exp

(
q1/3), 2/x} with T0 a

sufficiently large absolute constant, χ be an imprimitive Dirichlet char-
acter modulo q. Then, uniformly for any imprimitive Dirichlet character
χ modulo q with Fq,χ∗ 6≡ 1, there exist some numbers Tν ∈ [T, 2T ] and
T∗ ∈ [Tν , Tν + 1] such that

M∗(x, χ) =
∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ)

L(s, χ)
xs

s

)

+
∑
|η|<T∗

Res
s=iη

(
xs

L(s, χ)s

)
+
∞∑
l=1

Res
s=−l

(
xs

L(s, χ)s

)
+R,

where the second sum on the right hand side runs over zeros of L(s, χ) on
the imaginary axis, and R is the error term satisfying estimate (2.2).
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From the above two theorems and equation (3.1), we can obtain Theo-
rem 2.

3.2. Uniform upper bounds on certain horizontal lines. To prove
the above theorems, we need some upper bound of 1/L(s, χ) in certain
domains, which is embodied in the following two propositions.

Proposition 1. Let α ≥ 13, T ≥ T0(α) > 0, and 1 ≤ Q ≤ (log T )α/4,
where T0(α) is a sufficiently large constant depending only on α. Then, we
have

min
T≤t≤2T

 max
1
2≤σ≤2
χ∈S(Q)

|L(σ + it, χ)|−1

 ≤ exp
(
Cα(log log(QT ))2

)
,

where C is a positive absolute constant, and S(Q) is the set of all primitive
Dirichlet characters modulo q with q ≤ Q.

This proposition holds for primitive Dirichlet characters. On the other
hand, we need a similar result for imprimitive Dirichlet characters to prove
Theorem 5. Then we need the upper bound of 1/Fq,χ∗ , which is given by the
following proposition. Define ω(n) by the number of distinct prime factors
of n, and rad(n) =

∏
p|n p.

Proposition 2. Let q ≥ 2 be an integer, |T | ≥ ω(q), S1(q) be a nonempty
subset of the set of all imprimitive Dirichlet characters modulo q with
Fq,χ∗ 6≡ 1, and d be the smallest modulus of a primitive character χ∗ in-
ducing χ with χ ∈ S1(q). Then we have

min
t∈[T,T+1]

 max
|σ|≤h
χ∈S1(q)

|Fq,χ∗(σ + it)|−1


≤ exp

(
Cω(q′/d′) log

(
#S1(q)ω(q′/d′) + 2

)

×
(

1 +
√

log(q′/d′)/ω(q′/d′)
log(#S1(q)ω(q′/d′) + 2)

))
,

where C is a sufficiently large positive absolute constant, q′ = rad(q), d′ =

rad(d), and h �
√

ω(q′/d′)/ log(q′/d′)
log(#S1(q)ω(q′/d′)+2) .

We are going to prove some properties of Fq,χ∗ including this proposition
in Section 5.

Now, we remark that Proposition 1 is an extension to Dirichlet L-funct-
ions of the result in the case of the Riemann zeta-function by Ramachandra
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and Sankaranarayanan [16, Theorem 1.2]. This result is useful when we
prove some explicit formulas including the above formulas. For example,
Kühn, Robles and Roy showed an explicit formula involving the Möbius
function and a primitive Dirichlet character under the Riemann Hypothesis
and the simple zero conjecture for Dirichlet L-functions [9, Theorem 1.1(ii)].
The author expects that it is possible to prove their explicit formula without
the Riemann Hypothesis for Dirichlet L-functions. In fact, they use the
Riemann Hypothesis for Dirichlet L-functions only in the proof of their
Lemma 2.2, and in this paper, we are going to prove Proposition 1, which
is an unconditional alternative of their Lemma 2.2.

One more useful point of Proposition 1 is the uniformity for Dirichlet
characters modulo q with q ≤ Q. From this uniformity, there are some
applications. For example, one of the applications is that we can take Tν
not depending on the characters modulo q in Corollary 2. Thanks to this
fact, we can apply Proposition 1 to Abelian number fields. We describe this
application to number fields in Chapter 9.

3.3. An application to a sum over zeros of L(s, χ). As another appli-
cation of Proposition 1, we can prove the following theorem for the sum in-
volving derivative functions. The theorem is a generalization of the result in
the case of the Riemann zeta-function by Garaev and Sankaranarayanan [4].

Theorem 6. Let χ be a primitive Dirichlet character modulo q, and assume
the simplicity of all complex zeros of L(s, χ). Then, for T > exp

(
q1/3

)
,

there exist some Tν ∈ [T, 2T ] satisfying∑
0<γ<Tν

1
L′(ρ, χ) = Tν

2π +O
(
exp

(
C(log log T )2

)
+ C(χ)

)
,

where the sum on the left hand side runs over non-trivial zeros ρ = β + iγ
of L(s, χ), and C(χ) is a sufficiently large constant depending only on χ.
Moreover, for any T > T0(q) > 0 with a sufficiently large constant T0(q)
depending only on q, we have∑

0<γ≤T

1
|L′(ρ, χ)| � T.(3.3)

In particular, we also have
1

ϕ(q)
∑

χ mod q

∑
0<γ≤T

1
|L′(ρ, χ)| � T.(3.4)

Here we mention an application of estimate (3.4). This result is useful
when we consider the exact behavior of some partial sum of some Möbius
functions under the Linear Independence Conjecture. Here the Linear In-
dependence Conjecture is the following conjecture.
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Conjecture (Linear Independence Conjecture for Dirichlet L-functions
(cf. [3])). The positive imaginary parts of the zeros of all Dirichlet L-
functions are linearly independent over Q.

Now by estimate (3.4), as an extension of Ingham’s theorem [8], we can
obtain that, for (a, q) = 1,

lim
x→∞

M∗(x; q, a)
x1/2 = ±∞

under the Linear Independence Conjecture for Dirichlet L-functions. These
proofs are similar to the proof of Corollary 15.7 in [12].

Remark 2. We can generalize Theorem 6 to the statement which is anal-
ogous to the Landau–Gonek formula (cf. [2, Proposition 2] and [6, Theo-
rem 1]), i.e. for some Tν ∈ [T, 2T ],∑

0<γ<Tν

xρ

L′(ρ, χ)(3.5)

are estimated by a little modified asymptotic formula with the original
Landau–Gonek formula under the simple zero conjecture for the corre-
sponding function. Moreover, if the Riemann Hypothesis for Dirichlet L-
functions and |L′(ρ, χ)|−1 � |ρ|1−δ for some fixed constant δ > 0 are also
true, then we have an analogue of the Landau–Gonek formula for (3.5) for
any sufficiently large T > 0. We only mention this fact here because the
author cannot find some useful applications of these consequences.

Here the author raises the following conjecture suggested by the above
results.

Conjecture 2. Let χ be a primitive Dirichlet character, and K be an
Abelian number field. Then∑

0<γ≤T

1
L′(ρ, χ) ∼

T

2π (T →∞).

We can prove this conjecture in the case of the Riemann zeta-function
under some known conjectures that are the Riemann Hypothesis, the simple
zero conjecture and the conjectural estimate |ζ ′(ρ)|−1 � |ρ|1/3+ε. In fact,
we can obtain the following asymptotic formula∑

0<γ≤T

1
ζ ′(ρ) = T

2π +Oε
(
T 1/3+ε

)
under these conjectures. The present paper does not give the proof of this
estimate because it is almost similar to the proof of Theorem 15.6 in [12].
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4. On estimates of Dirichlet L-functions in certain domains

In this section, we are going to show some estimates of Dirichlet L-
functions including Proposition 1. Firstly, we refer to an important result
on the zero density theorem for Dirichlet L-functions by Montgomery.

Lemma 1 ([10, Theorem 1]). Let S(Q) denote the set of all primitive
Dirichlet characters modulo q with q ≤ Q. For Q ≥ 1, T ≥ 2, and 1

2 ≤ σ ≤
1, we have ∑

χ∈S(Q)
Nχ(σ, T )� (Q2T )

3(1−σ)
2−σ (log(QT ))13,

where Nχ(σ, T ) is the number of zeros ρ of L(s, χ) with Re(ρ) ≥ σ and
|Im(ρ)| ≤ T .

By using this lemma, we show the following proposition.

Proposition 3. Let α ≥ 13, T ≥ T0(α) > 0 with T0(α) a sufficiently large
number depending only on α, and 1 ≤ Q ≤ (log T )α/4. Then there exists a
closed interval J0 of length (log(QT ))α/3 contained in [T, 2T ] such that

max
σ≥1/2+14αr
t∈J0,χ∈S(Q)

|logL(σ + it, χ)| � α log log(QT ),

where r = (log log(QT ))2(log(Q2T ))−1.

Proof. Let D = α
3 and Ij =

[
T + 2(j − 1)(log(QT ))D, T + 2j(log(QT ))D

)
.

By Lemma 1, if σ ≥ 1
2 + α(log log(QT ))(log(Q2T ))−1, then∑

χ∈S(Q)
Nχ(σ, 2T )−

∑
χ∈S(Q)

Nχ(σ, T ) ≤ CQ2T (log(QT ))−α.(4.1)

Here C is a sufficiently large absolute constant. Now we consider the disjoint
rectangles

(σ, t) ∈ Rj =
[1

2 + α(log log(QT ))(log(Q2T ))−1, 2
]
× Ij ,

which we may regard as subsets in the complex plane. The number of these
rectangles is N =

[
1
2T (log(QT ))−D

]
. By inequality (4.1), if Q ≤ (log T )α/4,

then the number of zeros of Dirichlet L-functions attached to primitive
characters modulo q with q ≤ Q in the rectangle R =

⊔N
j=1Rj is less than

CT (log(QT ))−α/2. Therefore, if T ≥ T0(α) for a sufficiently large number
T0(α) depending only on α, then the number of rectangles Rj not having ze-
ros of the Dirichlet L-functions is greater thanN−CT (log(QT ))−α/2(≥N/2).

Let J be the set of all j such that Rj does not include zeros of those
Dirichlet L-functions. From the above observation, we see that N

2 ≤ #J ≤
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N . By using the Euler product for L(s, χ) and the Taylor expansion for log,
for σ > 1, we find that

logL(s, χ) =
∑
p

χ(p)p−s + 1
2
∑
p

χ(p)2p−2s +
∑
p

∞∑
n=3

χ(p)n

npns

=: P1(s, χ) + 1
2P2(s, χ) + Ψ(s, χ),(4.2)

and that P2(s, χ) is regular on σ > 1/2, and Ψ(s, χ) is regular on σ > 1/3
and bounded on σ ≥ 1/2. In addition, logL(s, χ) is regular on Rj(j ∈ J)
since L(s, χ) does not have a zero on the same domain. Hence P1(s, χ) is
analytically continued to Rj(j ∈ J).

Let k be a positive integer. We define ak,χ by(
P1(s, χ) + 1

2P2(s, χ)
)k

=
∞∑
n=1

ak,χ(n)
ns

.

We can estimate |ak,χ(n)| by the following way. If ak,χ(n) 6= 0, then n can
be written in the form n = pl11 · · · p

lk
k (li ∈ {1, 2}). The number of ways

which one can express n by ordering pl11 , . . . , p
lk
k in different ways is at most

k!. This means that we have the inequality

|ak,χ(n)| ≤ k! ≤ kk.

Hence, by the boundedness of ak,χ(n) with respect to n,

∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)

is an entire function for any X > 0. Here, as our first step, we show that if
X =

(
Q2T

)1/4, and k = [α log log(QT )], then we have(
P1(s, χ) + 1

2P2(s, χ)
)k

=
∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)
+O(1)(4.3)

for any j ∈ J and (σ, t) ∈ R′j , where

R′j =
[1

2 + 14k(log log(QT ))(log(Q2T ))−1, 2
]
× I ′j

with

I ′j =
[
T+2(j−1)(log(QT ))D+(log(QT ))2, T+2j(log(QT ))D−(log(QT ))2

]
.
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The proof is as follows. Using a formula for Abelian weight (cf. [12,
(5.25)]), we have

∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)

= 1
2πi

∫ 2+i∞

2−i∞

(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw.

Moreover, we see that |P1(s + w,χ) + 1
2P2(s + w,χ)| ≤ log ζ(2) ≤ 1, and

that |Γ(2 + iu)| � |u|
3
2 exp

(
−π

2 |u|
)
for |u| ≥ 1 from the Stirling formula.

These estimates yield that if K = (log(QT ))2,

∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)

= 1
2πi

∫ 2+iK

2−iK

(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw

+O
(
(log(QT ))3e−π(log(QT ))2/2X2

)
.

Here we consider the estimate of the integral on the right-hand side. By
the Borel–Carathéodory lemma, we can find that the inequality

|logL(s, χ)| ≤ 2|s− a|
R− |s− a|

max
|s−a|=R

Re(logL(s, χ)) + R+ |s− a|
R− |s− a|

|logL(a, χ)|

holds for |s−a| < R withR = 2, a = 5
2+k(log log(QT ))(log(Q2T ))−1+it, t ∈

Ij
′. Hence we have

|logL(s, χ)| � (log(QT ))2(log log(QT ))−2

for σ ≥ 1
2 + 2αk(log log(QT ))(log(Q2T ))−1, t ∈ Ij

′ since L(s, χ) � Q|t|
holds for σ ≥ 1/2.

By this estimate and the boundedness of Ψ(s, χ) for σ ≥ 1/2, we have

∣∣∣∣P1(s, χ) + 1
2P2(s, χ)

∣∣∣∣k = |logL(s, χ)−Ψ(s, χ)|k

≤ Ck(log(QT ))2k(log log(QT ))−2k(4.4)
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for σ ≥ 1
2 + 2αk(log log(QT ))(log(Q2T ))−1, t ∈ Ij

′. In addition, by the
residue theorem, if β = 12k(log log(QT ))(log(Q2T ))−1, then

1
2πi

∫ 2+iK

2−iK

(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw

= 1
2πi

(∫ 2+iK

−β+iK
+
∫ −β+iK

−β−iK
+
∫ −β−iK

2−iK

)
(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw

+
(
P1(s, χ) + 1

2P2(s, χ)
)k

holds for σ ≥ 1
2 +14k(log log(QT ))(log(Q2T ))−1, t ∈ I ′j . By inequality (4.4)

and the Stirling formula, we have

1
2πi

∫ 2±iK

−β±iK

(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw

� Ck(log(QT ))2k+3(log log(QT ))−2ke−
π
2 (log(QT ))2

X2,

and

1
2πi

∫ −β+iK

−β−iK

(
P1(s+ w,χ) + 1

2P2(s+ w,χ)
)k

Γ(w)Xwdw

� β−1X−βCk(log(QT ))2k(log log(QT ))−2k.

From the above estimates, if X = (Q2T )1/4, and k = [α log log(QT )], then
we obtain the formula (4.3).

Next we consider the function

F2k(T, χ) :=
∑
j∈J

max
s∈Rj ′

|logL(s, χ)|2k.

By (4.2) and (4.3), we have

|logL(s, χ)|2k ≤ 22k
(
|P1(s, χ) + 1

2P2(s, χ)|2k + |Ψ(s, χ)|2k
)

= 22k
∣∣∣∣∣
∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)
+O(1)

∣∣∣∣∣
2

+ |2Ψ(s, χ)|2k

≤ 42k
∣∣∣∣∣
∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣
2

+ Ck.
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Therefore, if r =
(
log log(QT ))2(log(Q2T )

)−1, and sj is an element of R′j
satisfying

max
s∈R′j

|logL(s, χ)|2k = |logL(sj , χ)|2k,

then we have

|logL(sj , χ)|2k � 42k
∣∣∣∣∣
∞∑
n=1

ak,χ(n)
nsj

exp
(
− n
X

)∣∣∣∣∣
2

+ C2k

= 42k

πr2

∣∣∣∣∣∣
∫∫
|s−sj |≤r

( ∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

))2

dσdt

∣∣∣∣∣∣+ C2k

� 42k

r2

∫∫
|s−sj |≤r

∣∣∣∣∣
∞∑
n=1

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣
2

dσdt+ C2k

by the mean value theorem on analytic functions. By the disjointness of the
domains |s− sj | ≤ r for each j and the estimate

∣∣∣∣∣∣
∑
n>X2

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣∣ ≤ kk
∑
n>X2

1
n1/2 exp

(
− n
X

)

= kk
∞∑
m=0

∑
2mX2<n≤2m+1X2

1
n1/2 exp

(
− n
X

)
≤ kk

∞∑
m=0

2
m
2 X exp (−2mX)

≤ kkX
(

exp(−X) +
∞∑
m=1

(
21/2e−X

)m)
� kkX exp(−X),

we have

F2k(T, χ)� 42k

r2

∫∫
E

∣∣∣∣∣∣
∑
n≤X2

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣∣
2

dσdt

+
(
C2k + r−2(4k)2kX2 exp(−2X)

)
N,

where E is the domain with 1
2 ≤ σ ≤ 2, T ≤ t ≤ 2T . We used the inequality

#J ≤ N in the above estimation. Recall that N =
[

1
2T (log(QT ))−D

]
. As



Some explicit formulas for partial sums of Möbius functions 287

for the remaining integral, we have∣∣∣∣∣∣
∑
n≤X2

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣∣
2

=
∑

m,n≤X2

ak,χ(m)ak,χ(n)
mσ+itnσ−it

exp
(
−m+ n

X

)

=

 ∑
m,n≤X2

m 6=n

+
∑

m,n≤X2
m=n

 ak,χ(m)ak,χ(n)
mσ+itnσ−it

exp
(
−m+ n

X

)

=
∑

m,n≤X2

m6=n

ak,χ(m)ak,χ(n)
mσ+itnσ−it

exp
(
−m+ n

X

)
+O

k2k ∑
n≤X2

1
n2σ

 ,
and∫∫

E

∣∣∣∣∣∣
∑
n≤X2

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣∣
2

ds

=
∑

m,n≤X2

m 6=n

ak,χ(m)ak,χ(n) exp
(
−m+ n

X

)(∫ 2

1
2

dσ
(mn)σ

)(∫ 2T

T

(
n

m

)it
dt
)

+O
(
k2kT logX

)
� k2k ∑

m,n≤X2

m 6=n

∣∣∣∣log
(
n

m

)∣∣∣∣−1 1
(mn)1/2 + k2kT logX � k2kX4 + k2kT logX.

Hence we find that∫∫
E

∣∣∣∣∣∣
∑
n≤X2

ak,χ(n)
ns

exp
(
− n
X

)∣∣∣∣∣∣
2

ds� k2kQ2T logX

by X =
(
Q2T

)1/4. Thus we have

F2k(T, χ)� r−2(4k)2kQ2T logX +
(
C2k + r−2(4k)2kX2 exp(−2X)

)
N,

and there exists a j0 ∈ J satisfying

max
s∈R′j0

|logL(s, χ)|2k � r−2(4k)2kQ2(logX)(log(QT ))α/3

+ C2k + r−2(4k)2kX2 exp(−2X)

by the definition of F and the inequality #J ≥ N
2 .
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From the above discussion, the inequality
max
s∈R′j0

|logL(s, χ)| � k � α log log(QT )

holds uniformly for χ ∈ S(Q), which completes the proof. �

The following corollary is an immediate consequence of Proposition 3.
Corollary 1. We have

max
σ≥1/2+14αr
t∈J0,χ∈S(Q)

|L(s, χ)|±1 ≤ exp (Cα log log(QT )) = (log(QT ))Cα,(4.5)

where C is a positive absolute constant, and the meaning of the other letters
appearing in the formula is the same as in Proposition 3.
Lemma 2. Let χ be a primitive Dirichlet character modulo q. If |t| ≥ 1
and σ ≤ 1

2 , then

|L(s, χ)| �
(2πe
q|s|

)σ
(q|s|)1/2 exp

(
|t| tan−1

(1− σ
|t|

))
|L(1− s, χ)|.(4.6)

If |t| ≤ 1, σ = −(m+ 1/2) with m a positive integer, then

|L(s, χ)| �
(2πe
q|s|

)σ
(q|σ|)1/2|L(1− s, χ)|.(4.7)

Proof. By the functional equation for Dirichlet L-functions and the Stirling
formula, we obtain this lemma. �

Lemma 3. Let J1 = [y1, y2] be the closed interval that is obtained by re-
moving intervals of length log(QT ) from both ends of J0. Then we have

max
σ≥1/2−26αr
t∈J1,χ∈S(Q)

|L(s, χ)| ≤ exp
(
Cα(log log(QT ))2

)
,

where C is a positive absolute constant, and the meaning of the letters
appearing in the formula is the same as in Proposition 3.
Proof. For σ ≥ 1/2 + 14αr, t ∈ J0, we have

|logL(s, χ)| ≥ log |L(s, χ)| � log
∣∣∣(qt)1/2−σL(1− s, χ)

∣∣∣
≥ log |L(1− s, χ)| −

(
σ − 1

2

)
log(qt)

since |L(s, χ)| � (qt)1/2−σ|L(1 − s, χ)| by Lemma 2. In addition, if χ is
a primitive character, then χ is also a primitive character. Therefore, for
t ∈ J0, we have

log
∣∣∣∣L(1

2 − 26αr + it, χ

)∣∣∣∣� αr log(QT ) +
∣∣∣∣log

(
L

(1
2 + 26αr + it, χ

))∣∣∣∣
� α(log log(QT ))2
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by Proposition 3. Hence, if t ∈ J0, then

L

(1
2 − 26αr + it, χ

)
� exp(Cα(log log(QT ))2).(4.8)

Next we consider the function
gl(w) = L(sl + w,χ)ew2 (l = 1, 2),

where sl = 1
2 + iyl. By a basic upper bound L(s, χ)� q(|t|+1) for σ ≥ 1/4,

we have
gl (x± i log(QT ))� ex

2−(log(QT ))2 |L(sl + x± i log(QT ), χ)|

� ex
2−(log(QT ))2

QT � 1
for −26αr ≤ x ≤ 26αr, T ≥ T0(α). Moreover, by estimates (4.5) and (4.8),
we also have

gl (±26αr + iy) = L (sl ± 26αr + iy, χ) e( 1
2±26αr+iy)2

� exp(Cα(log log(QT ))2)
for − log(QT ) ≤ y ≤ log(QT ). Hence, by the maximum modulus principle,
we obtain

gl(x+ iy)� exp(Cα(log log(QT ))2)
for −26αr ≤ x ≤ 26αr and − log(QT ) ≤ y ≤ log(QT ). In particular, if
y = 0, then

L(sl + x, χ) = gl(x)ex2 � exp(Cα(log log(QT ))2 + x2)
� exp(Cα(log log(QT ))2)

holds for −26αr ≤ x ≤ 26αr. Again by using the maximum modulus
principle, we can find that

L(s, χ)� exp(Cα(log log(QT ))2)

in the compact set 1
2 − 26αr ≤ σ ≤ 1

2 + 26αr, t ∈ J1. �

Lemma 4. If f is a regular function and∣∣∣∣ f(s)
f(s0)

∣∣∣∣ < eM , (M > 1)

in |s− s0| ≤ r, then for any constant 0 < ε < 1
2 ,

f ′

f
(s) =

∑
|ρ−s0|≤ 1

2 r

1
s− ρ

+Oε

(
M

r

)

in |s− s0| ≤
(

1
2 − ε

)
r, where ρ is a zero of f .

Proof. This is Lemma 3 in [16]. �
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Proposition 4. Let J2 be the closed interval that is obtained by removing
intervals of length 40αr from both ends of J1. If s0 = 1

2 +14αr+it0, t0 ∈ J2,
then we have

L′(s, χ)
L(s, χ) =

∑
|ρ−s0|≤20αr

1
s− ρ

+O (log(QT ))(4.9)

for |s − s0| ≤ 15αr, where the meaning of the letters appearing in the
following formula is the same as the above situations.

Proof. By Corollary 1, we have

|L(s, χ)| ≥ exp (−Cα log log(QT ))

for σ ≥ 1
2 + 14αr, t ∈ J0. By this inequality and Lemma 3, we find that∣∣∣∣ L(s, χ)

L(s0, χ)

∣∣∣∣ ≤ exp
(
Cα(log log(QT ))2

)
for |s− s0| ≤ 40αr. Hence, by Lemma 4 with ε = 1

8 , we obtain

L′(s, χ)
L(s, χ) =

∑
|ρ−s0|≤20αr

1
s− ρ

+O
(
(40αr)−1Cα(log log(QT ))2

)
=

∑
|ρ−s0|≤20αr

1
s− ρ

+O (log(QT ))

for |s− s0| ≤ 15αr. �

Lemma 5. Let t0 ∈ J2. If s0 = 1
2 + 14αr + it0, then

logL(σ + it0, χ) =
∑

|ρ−s0|≤20αr
(log(σ + it0 − ρ)− log (s0 − ρ))

+O
(
α(log log(QT ))2

)
for 1

2 − αr ≤ σ ≤ 1
2 + 29αr. In particular, by taking the real parts on the

both sides, we find that

(4.10) log |L(σ + it0, χ)|

=
∑

|ρ−σ0|≤20αr
log

∣∣∣∣σ + it0 − ρ
s0 − ρ

∣∣∣∣+O
(
α(log log(QT ))2

)
.
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Proof. Let t0 ∈ J2. Then by formula (4.9) for 1
2 ≤ σ ≤ 1

2 + 3
2αr, we find

that∫ σ

1
2 +14αr

L′(x+ it0, χ)
L(x+ it0, χ) dx

=
∑

|ρ−s0|≤20αr

∫ σ

1
2 +14αr

dx
x+ it0 − ρ

+O
(
α(log log(QT ))2

)
,

and that
logL(σ + it0, χ)− logL (s0, χ)

=
∑

|ρ−s0|≤20αr
(log(σ + it0 − ρ)− log(s0 − ρ)) +O

(
α(log log(QT ))2

)
.

Hence, by Proposition 3, we obtain

logL(σ + it0, χ) =
∑

|ρ−s0|≤20αr
(log(σ + it0 − ρ)− log(s0 − ρ))

+O
(
α(log log(QT ))2

)
.

This completes the proof of Lemma 5. �

Now, let us start the proof of Proposition 1.

Proof of Proposition 1. If 1
2 + 14αr ≤ σ ≤ 2, then Proposition 1 is implied

by Proposition 3. Hence we consider the case 1
2 ≤ σ ≤ 1

2 + 14αr. We find
that∑
|ρ−s0|≤20αr

log
∣∣∣∣σ + it0 − ρ

s0 − ρ

∣∣∣∣ ≥ ∑
|ρ−s0|≤20αr

log
∣∣∣∣ t0 − γ20αr

∣∣∣∣ ≥ ∑
|t0−γ|≤20αr

log
∣∣∣∣ t0 − γ20αr

∣∣∣∣
hold uniformly for 1

2 ≤ σ ≤ 1
2 + 14αr. Here, the above sums runs over

nontrivial zeros ρ of L(s, χ). In addition, if [t1, t1 + 1] ⊂ J1, then for T ≥
T0(α), we see that∫ t1+1

t1

∑
|t−γ|≤20αr

log
∣∣∣∣ t− γ20αr

∣∣∣∣ dt
=

∑
t1−20αr≤γ≤t1+1+20αr

∫ min{t1+1,γ+20αr}

max{t1,γ−20αr}
log

∣∣∣∣ t− γ20αr

∣∣∣∣ dt
≥

∑
t1−20αr≤γ≤t1+1+20αr

∫ γ+20αr

γ−20αr
log

∣∣∣∣ t− γ20αr

∣∣∣∣ dt
= 20αr

∑
t1−20αr≤γ≤t1+1+20αr

∫ 1

−1
log |x|dx

≥ −Cαr log(QT ) ≥ −Cα(log log(QT ))2,
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uniformly for χ ∈ S(Q). Remark that the above second inequality is ob-
tained by the negativity of the integrand, and the last inequality is ob-
tained by the estimate of the number of nontrivial zeros

∑
|t−γ|≤1+20αr 1�

log(Qt), which is a consequence the Riemann-von Mangoldt formula for
L(s, χ) (see [12, Corollary 14.7]). Hence, there exists a t2 ∈ [t1, t1 + 1]
satisfying

∑
|ρ−s0|≤20αr

log
∣∣∣∣∣ σ + it2 − ρ

1
2 + αr + it2 − ρ

∣∣∣∣∣
−1

� α(log log(QT ))2,

uniformly for 1
2 ≤ σ ≤ 2 and χ ∈ S(Q). Thus this estimate implies Propo-

sition 1 by formula (4.10). �

5. The finite Euler product appearing in the expression of
Dirichlet L-functions attached to imprimitive characters

In this section, we are going to show some estimates on the function

Fq,χ∗(s) =
∏
p|q

(
1− χ∗(p)

ps

)

including Proposition 2. In the following, we consider the case Fq,χ∗ 6≡ 1.
In other words, we assume that χ∗ is a primitive character modulo d such
that there exists a prime factor p of q with p - d.

Lemma 6. Let q ≥ 2. Then Fq,χ∗ is an entire function of order 1.

Proof. By the definition of Fq,χ∗ , if σ < 0, then we have

|Fq,χ∗(s)| =
∏
p|q

∣∣∣∣1− χ∗(p)
ps

∣∣∣∣ ≤∏
p|q

(
1 + 1

pσ

)
= exp

∑
p|q

log
(

1 + 1
pσ

)
≤ exp

−2σ
∑
p|q

log p

 ≤ exp (2(log q)|s|) .

On the other hand, if σ ≥ 0, then we have

|Fq,χ∗(s)| =
∏
p|q

∣∣∣∣1− χ∗(p)
ps

∣∣∣∣ ≤ 2ω(q) �q 1.

Therefore, the order of Fq,χ∗ is less than or equal to 1. In addition, order
of Fq,χ∗ is greater than or equal to 1 since we can get the following lower
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bound

|Fq,χ∗(s)| =
∏
p|q

∣∣∣∣1− χ∗(p)
ps

∣∣∣∣ ≥∏
p|q
p-d

( 1
pσ
− 1

)
= exp

 ∑
p|q, p-d

log
( 1
pσ
− 1

)

≥ exp

−1
2σ

∑
p|q, p-d

log p

 ≥ exp
(1

2(log 2)|σ|
)

for σ ≤ −2. Hence we obtain Lemma 6. �

The next lemma is an immediate consequence of this lemma.
Lemma 7. Let q ≥ 2 be an integer, d be a proper divisor of q, and χ∗ be
a primitive Dirichlet character modulo d. Then we have

Fq,χ∗(s) = srea+bs∏
η

(
1− s

iη

)
es/iη,(5.1)

where the above infinite product runs over all the zeros of Fq,χ∗ removing
zero at s = 0, and r is the multiplicity of zero of Fq,χ∗ at s = 0. In par-
ticular, r equals the number of prime factors of q satisfying χ∗(p) = 1.
Moreover, by taking the logarithmic derivative of both sides, we find that

F ′q,χ∗
Fq,χ∗

(s) = r

s
+ b+

∑
η

( 1
s− iη

+ 1
iη

)
.(5.2)

Lemma 8. If b is the number appearing in (5.1), then

b = −1
2 log

(
q′/d′

)
+ i

∑
p|q, p-d
χ∗(p) 6=1

Im(χ∗(p))
2− 2 Re(χ∗(p)) log p,(5.3)

where q′ = rad(q), d′ = rad(d).
Proof. By formula (5.2), b can be expressed by

lim
σ↓0

(
F ′q,χ∗

Fq,χ∗
(σ)− r

σ

)
= b.

On the other hand, by taking logarithmic derivatives in (3.2), we have
F ′q,χ∗
Fq,χ∗

(s) =
∑
p|q

χ∗(p) log p
ps − χ∗(p) =

r∑
i=1

log pi
psi − 1 +

∑
p|q

χ∗(p) 6=1

χ∗(p) log p
ps − χ∗(p) ,

where pi are prime factors of q with χ∗(p) = 1. By the Taylor expansion of
exp, we also see that

lim
σ↓0

(
log pi
pσi − 1 −

1
σ

)
= lim

σ↓0

(
1

σ + 1
2σ

2 log pi +O(σ3)
− 1
σ

)
= −1

2 log pi.
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Therefore, we obtain

lim
σ↓0

(
F ′q,χ∗

Fq,χ∗
(σ)− r

σ

)
= −1

2

r∑
i=1

log pi +
∑
p|q

χ∗(p)6=1

χ∗(p) log p
1− χ∗(p) .

Moreover, if χ∗(p) 6= 0, 1, then we can find that the identity

χ∗(p)
1− χ∗(p) = −1

2 + i
Im(χ∗(p))

2− 2 Re(χ∗(p))
holds by easy calculations. Thus we obtain Lemma 8. �

Lemma 9. Let h > 0, and Nq,χ∗(t, h) be the number of zeros iη of Fq,χ∗
with t ≤ η ≤ t+ h. For any t ∈ R, we have

Nq,χ∗(t, h) ≤ 2ω
(
q′/d′

)
+ h log

(
q′/d′

)
+ 2h2

h2 + t2
r,

where q′ = rad(q) and d′ = rad(d).

Proof. By formula (5.2), we have

F ′q,χ∗
Fq,χ∗

(h+ it) = r

h+ it
+ b+

∑
η

( 1
h+ it− iη

+ 1
iη

)
.(5.4)

On the other hand, by taking logarithmic derivatives in (3.2), we find that

(5.5)
∣∣∣∣∣F ′q,χ∗Fq,χ∗

(h+ it)
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p|q

χ∗(p) log p
ph+it − χ∗(p)

∣∣∣∣∣∣ ≤
∑
p|q
p-d

log p
ph − 1 ≤

∑
p|q
p-d

1
h

= h−1ω
(
q′/d′

)
.

Now, we take the real parts of the both sides of (5.4). Then, by
Re
∑
η(iη)−1 = 0 and (5.3), we have∑

η

h

h2 + (t− η)2 ≤
ω (q′/d′)

h
+ 1

2 log
(
q′/d′

)
+ h

h2 + t2
r.(5.6)

Hence, we have

ω (q′/d′)
h

+ 1
2 log

(
q′/d′

)
+ h

h2 + t2
r ≥

∑
η

h

h2 + (t− η)2

≥
∑

|t−η+h/2|≤h/2

h

h2 + (t− η)2 ≥
∑

|t−η+h/2|≤h/2

1
2h = 1

2hNq,χ∗(t, h),

which completes the proof of Lemma 9. �
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Proposition 5. Let h > 0. If |σ| ≤ h, then we have

F ′q,χ∗
Fq,χ∗

(s) = r

s
+

∑
|t−η|≤h

1
s− iη

+O

(
h−1ω

(
q′/d′

)
+ log

(
q′/d′

)
+ r

|t|+ h

)
.

Proof. By (5.2) and (5.5), we find that

F ′q,χ∗
Fq,χ∗

(σ + it)−
F ′q,χ∗
Fq,χ∗

(h+ it)

= r

σ + it
− r

h+ it
+
∑
η

( 1
σ + it− iη

− 1
h+ it− iη

)
,

and that
∣∣∣F ′q,χ∗Fq,χ∗

(h+ it)
∣∣∣ ≤ h−1ω (q′/d′). Therefore, we have

F ′q,χ∗
Fq,χ∗

(σ + it) = r

σ + it
+

 ∑
|t−η|≤h

+
∑
|t−η|>h

( 1
σ + it− iη

− 1
h+ it− iη

)

+O

(
r

|t|+ h
+ h−1ω

(
q′/d′

))
.

In addition, we can obtain that

∑
|t−η|>h

( 1
σ + it− iη

− 1
h+ it− iη

)

=
∑
|t−η|>h

h− σ
(σ + it− iη)(h+ it− iη) �

∑
|t−η|>h

h

|t− η|2
�
∑
η

h

h2 + (t− η)2

≤ h−1ω
(
q′/d′

)
+ 1

2 log
(
q′/d′

)
+ h

h2 + t2
r

by (5.6), and that∑
|t−η|≤h

1
h+ it− iη

�
∑
|t−η|≤h

h−1 � h−1ω
(
q′/d′

)
+ log

(
q′/d′

)
+ h

h2 + t2
r

by Lemma 9. Hence we obtain Proposition 5. �

Proposition 6. Let h > 0. For |σ| ≤ h, |t| ≥ h, we have

(5.7) logFq,χ∗(σ + it) = 1
2

∑
|t−η|≤h

log
(
σ2 + (t− η)2

h2 + (t− η)2

)

+O

(
h−1ω

(
q′/d′

)
+ h log

(
q′/d′

)
+ h

|t|
r

)
.
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Proof. By Lemma 9 and Proposition 5, we can find that

logFq,χ∗(σ + it) =
∫ σ

h

F ′q,χ∗

Fq,χ∗
(α+ it)dα+ logFq,χ∗(h+ it)

= 1
2

∑
|t−η|≤h

log
(
σ2 + (t− η)2

h2 + (t− η)2

)
+ logFq,χ∗(h+ it)

+O

(
ω(q′/d′) + h log(q′/d′) + h

|t|
r

)
.

In addition, we see that

|logFq,χ∗(h+ it)| =

∣∣∣∣∣∣∣∣∣
∑
p|q
p-d

∞∑
n=1

1
n

(
χ∗(p)
ph+it

)n∣∣∣∣∣∣∣∣∣ ≤
∑
p|q
p-d

∞∑
n=1

1
phn

=
∑
p|q
p-d

1
ph − 1

≤
∑
p|q
p-d

1
h log p � h−1ω

(
q′/d′

)

by the definition of Fq,χ∗ and the Taylor expansion of the logarithmic func-
tion. Hence we obtain Proposition 6. �

Now, let us start the proof of Proposition 2.

Proof of Proposition 2. Let T ≥ ω(q), and d be the smallest modulus of
χ ∈ S1(q). Then, by Lemma 9, the number of zeros iη of the all Fq,χ∗ with
χ ∈ S1(q) with η ∈ [T, T + 1] is less than C#S1(q) log (q′/d′), where C
is an absolute positive constant. Therefore, there exists a t0 ∈ [T, T + 1]
such that |t0 − η| ≥ 1

2C#S1(q) log(q′/d′) holds for all zeros iη. Now we apply

Proposition 6 with h �
√

ω(q′/d′)/ log(q′/d′)
log(#S1(q)ω(q′/d′)+2) . By taking real parts on the

both sides of equation (5.7), we obtain

log |Fq,χ∗(σ + it0)| ≥ −1
2

∑
|t0−η|≤h

log
(
8C2h2#S1(q)2(log

(
q′/d′

)
)2
)

− C ′
(
h−1ω

(
q′/d′

)
+ h log(q′/d′)

)
≥ −C ′′ω

(
q′/d′

)
log

(
#S1(q)ω

(
q′/d′

)
+ 2

)
×
(

1 +
√

log (q′/d′) /ω (q′/d′)
log (#S1(q)ω (q′/d′) + 2)

)
,
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uniformly for χ ∈ S1(q) and |σ| ≤ h with C ′, C ′′ > 0 sufficiently large
positive absolute constants. Hence, we have

|Fq,χ∗(σ + it0)|−1 ≤ exp
(
C ′′ω(q′/d′) log

(
#S1(q)ω

(
q′/d′

)
+ 2

)
×
(

1 +
√

log (q′/d′) /ω (q′/d′)
log (#S1(q)ω (q′/d′) + 2)

))
,

which completes the proof of Proposition 2. �

6. Proofs of Theorems 2, 4, and 5

It suffices to prove Theorems 4, 5 since Theorem 2 is an immediate
consequence of these by equation (1.3).

Proof of Theorem 4. Let x > 0, T ≥ max
{
T0, exp

(
q1/3), 2/x}, and σ0 =

1 + 1/ log(x + 3). First, using Perron’s formula (cf. [12, Theorem 5.2 and
Corollary 5.3]), we have

(6.1) M∗(x, χ) = 1
2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)sds

+O

(
x log(x+ 3)

T
+ min

{
1, x

T 〈x〉

})
,

where Tν satisfies the inequality

|L(σ + iTν , χ)|−1 ≤ exp
(
C(log log T )2

)
(6.2)

for any 1
2 ≤ σ ≤ 2 and χ ∈ S(q) with Tν ∈ [T, 2T ]. Note that we can take

the above Tν by Proposition 1. Here, we remark that T ≥ exp
(
q1/3)� q.

Let M = m + 1
2 with a positive integer m satisfying m > T . By the

residue theorem, we have

1
2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)sds

= 1
2πi

(∫ σ0+iTν

−M+iTν
+
∫ −M+iTν

−M−iTν
+
∫ −M−iTν
σ0−iTν

)
xs

L(s, χ)sds

+
∑
|γ|<T∗

Res
s=ρ

(
xs

L(s, χ)s

)
+

∑
0≤l<M

Res
s=−l

(
xs

L(s, χ)s

)

=: J1 + J2 + J3 +
∑
|γ|<Tν

Res
s=ρ

(
xs

L(s, χ)s

)
+

∑
0≤l<M

Res
s=−l

(
xs

L(s, χ)s

)
.
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Here, by the basic formula for residues, we find that

Res
s=ρ

(
xs

L(s, χ)s

)
= 1

(m(ρ)− 1)! lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ) xs

L(s, χ)s

)
.

Now we estimate the integrals J1, J2 and J3. By Lemma 2, J2 is evaluated
by

|J2| =
∣∣∣∣∣
∫
|t|≤Tν

x−M+it

L(−M + it, χ)(−M + it)dt
∣∣∣∣∣

� x−M
∫
|t|≤Tν

(2πe
M

)M
M−3/2dt�

(
x

2πe

)−M
M−M−3/2T.

Therefore, we have

lim
M→∞

J2 = 0.

Next we estimate J1. We put

J1 = 1
2πi

(∫ σ0+iTν

1/2+iTν
+
∫ 1/2+iTν

−1+iTν
+
∫ −1+iTν

−M+iTν

)
xs

L(s, χ)sds =: J ′1 + J ′′1 + J ′′′1 .

By Lemma 2 and estimate (6.2), we find that

|J ′1| �
∫ σ0

1/2
xT−1

ν exp
(
C(log log T )2

)
dσ � x exp

(
C(log log T )2)
T

,

|J1
′′| � exp

(
C(log log T )2)
T 3/2

∫ 1/2

−1
(xTν)σdσ � x1/2 exp

(
C(log log T )2)

T log(xT ) ,

and that

|J1
′′′| � 1

T 3/2

∫ −1

−M
(xTν)σdσ � (xT )−1

T 3/2 log(xT )
.

Hence we have

J1 �
x exp

(
C(log log T )2)
T

.

Similarly, we have

J3 �
x exp

(
C(log log T )2)
T

since L(s, χ) = L(s, χ) and χ is also a primitive character. From the above
estimates, we obtain Theorem 4. �

Proof of Theorem 5. First, we find that

M∗(x, χ) = 1
2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)sds+O

(
x log(x+ 3)

T
+ min

{
1, x

T 〈x〉

})
,
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similarly to (6.1), where we use the same notation as in the proof of The-
orem 4. Here, by the proof of Proposition 1, Tν ∈ J1 ⊂ J0 holds, where J0
and J1 are intervals appearing in Corollary 1 and Lemma 3, respectively.
We also consider a uniform estimate of Fq,χ∗(s) for χ ∈ S∗(q). Here S∗(q)
denotes the set of all imprimitive characters modulo q. If h := 1

log q ≤ σ ≤ 2,
then we have

(6.3)
∏
p|q

∣∣∣∣1− χ∗(p)
ps

∣∣∣∣−1
≤
∏
p|q

(
1 + 1

ph − 1

)
≤
∏
p|q

(
1 + 1

h log p

)

≤ exp

∑
p|q

1
h log p

 ≤ exp(Cω(q) log q).

Therefore, by this estimate, (6.2) and Lemma 2, we obtain

(6.4) |L(σ + iTν , χ)|−1 = |L (σ + iTν , χ
∗)|−1∏

p|q

∣∣∣∣1− χ∗(p)
ps

∣∣∣∣−1

≤ exp
(
C
(
(log log T )2 + ω(q) log q

))
≤ exp

(
C(log log T )2

)
for h ≤ σ ≤ 2.

Here, let M = m + 1
2 , with a positive integer m satisfying m > T .

By Proposition 2 and ω(q) � log q
log log(q+5) , we can also take some T∗ ∈

[Tν , Tν + 1] ⊂ J0 such that

|Fq,χ∗(σ + iT∗)|−1 =

∣∣∣∣∣∣
∏
p|q

(
1− χ∗(p)

pσ+iT∗

)∣∣∣∣∣∣
−1

≤ exp
(

C(log q)2

log log(q + 5)

)
(6.5)

holds for |σ| ≤ h, uniformly χ ∈ S∗(q). Then, by using the residue theorem,
we have

1
2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)sds

= 1
2πi ×

(∫ σ0+iTν

1/4+iTν
+
∫ 1/4+iTν

1/4+iT∗
+
∫ 1/4+iT∗

−M+iT∗
+
∫ −M+iT∗

−M−iT∗

+
∫ −M−iT∗

1/4−iT∗
+
∫ 1/4−iT∗

1/4−iTν
+
∫ 1/4+iTν

σ0+iTν

)
xs

L(s, χ)sds

+
∑
|γ|<Tν

Res
s=ρ

(
xs

L(s, χ)s

)
+
∑
|γ|<T∗

Res
s=iη

(
xs

L(s, χ)s

)
+

∑
0≤l<M

Res
s=−l

(
xs

L(s, χ)s

)
.

Now, we can obtain the residues for non-positive integer in a similar manner
as in Theorem 4 since the all trivial zeros of L(s, χ∗) are simple.
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We estimate the integrals. As for the first integral, by inequality (6.4),
we find that ∣∣∣∣∣

∫ σ0+iTν

1/4+iTν

xs

L(s, χ)sds
∣∣∣∣∣ ≤ x

T
exp

(
C(log log T )2

)
.

Next we consider the fourth integral. Now, Fq,χ∗(s) is estimated by

|Fq,χ∗(σ + it)| =
∏
p|q
p-b

∣∣∣∣1− χ∗(p)
pσ+it

∣∣∣∣ ≥∏
p|q
p-b

(
p−σ − 1

)
≥ (|σ| log 2)ω(q)(6.6)

for σ ≤ −h. Here b is the modulus of χ∗. Therefore, by Lemma 2 and (6.6),
the fourth integral is estimated by∫

|t|≤T∗

x−M+it

L(−M + it, χ)(−M + it)dt�q x
−M

∫
|t|≤T∗

(2πe
M

)M
M−3/2dt

�
(
x

2πe

)−M
M−M−3/2T.

The last term tends to zero as M → +∞. That is,

lim
M→∞

∫
|t|≤T∗

x−M+it

L(−M + it, χ)(−M + it)dt = 0.

Next we consider the second integral. Now, we can see [Tν , T∗] ⊂ J0 since
Tν ∈ J1, and so we can apply Corollary 1 to the second integral. Hence, by
Corollary 1, (4.6) and (6.3), we have∫ 1/4+iTν

1/4+iT∗

xs

L(s, χ)sds� x1/4

T
(qω(q) log T )C � x1/4

T
exp

(
C(log log T )2

)
.

Next we consider the third integral. We put∫ 1/4+iT∗

−M+iT∗

xs

L(s, χ)sds =
(∫ 1/4+iT∗

−1+iT∗
+
∫ −1+iT∗

−M+iT∗

)
xs

L(s, χ)sds.

Here, we can also apply Corollary 1 to this case by T∗ ∈ J0. By Corollary 1,
(4.6), (6.3), (6.5) and (6.6), we can find that∫ 1/4+iT∗

−1+iT∗

xs

L(s, χ)sds�
exp

(
C
(

(log q)2

log log(q+5) + log log T
))

T 3/2

∫ 1/4

−1
(xT )σdσ

� x1/4 exp
(
C(log log T )2)

T 5/4 log(xT )
,

and that∫ −1+iT∗

−M+iT∗

xs

L(s, χ)sds� 1
T 3/2

∫ −1

−M
(xT∗)σdσ � 1

xT 5/2 log(xT )
.
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From the above discussion, the first four integrals are estimated by

� x exp
(
C(log log T )2)
T

.(6.7)

The remaining integrals also have the same upper bound since L(s, χ) =
L(s, χ) holds, and estimate (6.7) is uniform for χ ∈ S∗(q). Thus, we obtain
estimate (2.2) for Theorem 5. �

7. Estimates of residues and proof of Theorem 3

Lemma 10. Let x ≥ 2. Let χ be a primitive character modulo d ≥ 1. Then,
we have

Res
s=0

(
xs

L(s, χ)s

)
�
{

1 if χ(−1) = −1 or χ is principal,
log x otherwise.

(7.1)

Moreover, we have
∞∑
l=1

Res
s=−l

(
xs

L(s, χ)s

)
�
{
x−1 if χ(−1) = −1,
x−2 if χ(−1) = 1.

(7.2)

The above implicit constants are absolute.

Proof. We have the formula by the functional equation

L(s, χ) = ε(χ)L(1− s, χ)2sπs−1d1/2−sΓ(1− s) sin
(
π

2 (s+ κ)
)
,

where κ = 1 if χ(−1) = −1 and κ = 0 otherwise. Here ε(χ) is a number
with |ε(χ)| = 1. When d = 1, estimate (7.1) is clear. When d ≥ 2, we
obtain, using this functional equation, that

Res
s=0

(
xs

L(s, χ)s

)

=


π

ε(χ)L(1, χ)d1/2 if χ(−1) = −1,

2
ε(χ)L(1, χ)d1/2

(
log

(
dx
2π

)
+ L′(1,χ)

L(1,χ) + Γ′
Γ (1)

)
if χ(−1) = 1.

Hence, by Siegel’s theorem L(1, χ) �ε q−ε and the standard estimate
L′(1, χ)� (log q)2, we have (7.1).

We see that if χ(−1) = −1,

Res
s=−l

(
xs

L(s, χ)s

)

=


(−1)k2(dx/2π)−(2k−1)

ε(χ)d1/2L(2k, χ)(2k − 1)(2k − 1)!
if l is odd with l = 2k − 1,

0 if l is even,
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and that if χ(−1) = 1,

Res
s=−l

(
xs

L(s, χ)s

)
=


(−1)k(dx/2π)−2k

ε(χ)d1/2L(2k + 1, χ)k(2k)!
if l is even with l = 2k,

0 if l is odd.

Hence, we also obtain (7.2) �

Lemma 11. Let q ≥ 2, χ be an imprimitive Dirichlet character modulo q,
and χ∗ be the primitive character modulo b inducing χ. Let T ≥ 3 + log q.
Put q′ = rad(q), b′ = rad(b). Let κ be the same number as in the proof
of Lemma 10. If x ≥ qc exp

(
c(log T )

2
3 (log log T )

1
3
)
holds for a sufficiently

large constant c, then we have

(7.3)
∑
|η|<T

Res
s=iη

(
xs

L(s, χ)s

)
= (log x)r+1−κ

L(r+1−κ)(0, χ)
+Oq((log x)r−κ)

+O

(
(log x)ω(q′/b′) exp

(
C
√
ω (q′/b′) log (q′/b′) log log x

))
,

where C is a positive absolute constant, and r indicates the number of the
prime factors p of q with χ∗(p) = 1.

Proof. We separate the sum in three parts such that
∑
|η|<T∗

Res
s=iη

(
xs

L(s, χ)s

)
= Res

s=0

(
xs

L(s, χ)s

)
+

∑
0<|η|≤T0(q)

Res
s=iη

(
xs

L(s, χ)s

)

+
∑

T0(q)<|η|<T∗

Res
s=iη

(
xs

L(s, χ)s

)
.

By estimates (6.3), (6.5), and (6.6), we can find a constant T0(q), depending
only on q, with T0(q) ∈ [ω(q) + 5, ω(q) + 6] and

|Fq,χ∗(σ + iT0(q))|−1 ≤ exp
(

C(log q)2

log log(q + 5)

)
for |σ| ≤ 2. By the Leibniz rule, the first sum is estimated by

Res
s=0

(
xs

L(s, χ)s

)

= 1
(r + 1− κ)! lim

s→0

r+1−κ∑
j=0

(
r + 1− κ

j

)
xs(log x)r+1−κ−j dj

dsj

(
sr+2−κ

L(s, χ)s

)

= (log x)r+1−κ

L(r+1−κ)(0, χ)
+Oq

(
(log x)r−κ

)
.
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On the second sum, by the simplicity of zeros of Fq,χ∗ , we have

∑
0<|η|≤T0(q)

Res
s=iη

(
xs

L(s, χ)s

)
=

∑
0<|η|≤T0(q)

xiη

L′(iη, χ)iη = Oq(1).

As for the third sum, we use the result that

1
L(s, χ) � log(q|t|)(7.4)

for

σ ≥ 1− c

log q + (log(|t|))2/3(log log(|t|))1/3 and |t| ≥ 5,(7.5)

where c is a positive absolute constant. On the region (7.5), we refer
to [11, Section 9.5]. The author cannot find the above upper bound (7.4)
in this region in references, but we can obtain it by the standard
method (cf. [12, Section 11.1]). Here, we put ε(x) = 1

log x with x ≥

qC exp
(
C(log T )2/3(log log T )1/3

)
. Then, by the residue theorem, the third

sum can be written as∑
T0(q)<η<T∗

Res
s=iη

(
xs

L(s, χ)s

)

= 1
2πi

(∫ ε(x)+iT∗

ε(x)+iT0(q)
+
∫ −ε(x)+iT∗

ε(x)+iT∗
+
∫ −ε(x)+iT0(q)

−ε(x)+iT∗
+
∫ ε(x)+iT0(q)

−ε(x)+iT0(q)

)
xs

L(s, χ)sds.

From the definitions of T0(q) and T∗, we find that(∫ −ε(x)+iT∗

ε(x)+iT∗
+
∫ ε(x)+iT0(q)

−ε(x)+iT0(q)

)
xs

L(s, χ)sds = Oq(1).

On the other hand, by using Lemma 9 and Proposition 6 with h′

=
√

ω(q′/b′)
log(q′/b′) log log x , we have

|Fq,χ∗(σ + it)|

≥ exp
(
−C1

√
ω (q′/b′) log (q′/b′) log log x

) ∏
|t−η|≤h′

|σ + i(t− η)|

≥ exp
(
−C2

√
ω (q′/b′) log (q′/b′) log log x

)( 1
log x

)ω(q′/b′)
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on the lines |σ| = (log x)−1, |t| ≥ 2. Now b denotes the modulus of χ∗.
Therefore, for |σ| = (log x)−1, |t| ≥ log q

log log(q+2)) + 5, we have

1
L(σ + it, χ)

� exp
(
C2

√
ω (q′/b′) log (q′/b′) log log x

) (log x)ω(q′/b′)

b|t||L(1 + σ + it, χ∗)|

� exp
(
C2

√
ω (q′/b′) log (q′/b′) log log x

)
(log x)ω(q′/b′) log(b|t|)

b|t|
by Lemma 2. Hence we have∫ ±ε(x)+iT∗

±ε(x)+iT0(q)

xs

L(s, χ)sds

� exp
(
C2

√
ω (q′/b′) log (q′/b′) log log x

)
(log x)ω(q′/b′)

∫ T∗

T0(q)

log(bt)
bt2

dt

� exp
(
C2

√
ω (q′/b′) log (q′/b′) log log x

)
(log x)ω(q′/b′).

Thus we have∑
T0(q)<η<T∗

Res
s=iη

(
xs

L(s, χ)s

)

� exp
(
C
√
ω (q′/b′) log (q′/b′) log log x

)
(log x)ω(q′/b′),

where C is a positive absolute constant. Similarly, we have∑
−T∗<η<−T0(q)

Res
s=iη

(
xs

L(s, χ)s

)

� exp
(
C
√
ω (q′/b′) log (q′/b′) log log x

)
(log x)ω(q′/b′).

From the above estimates, we obtain (7.3). �

Proof of Theorem 3. Let x ≥ 3. If x ≤ exp(q1/3), estimate (2.4) holds since
the implicit constant may depend on q. Suppose that x is half integer with
x ≥ exp(q1/3). By Lemmas 10, 11, we have

∑
|η|<T∗

Res
s=iη

(
L−1(s; q, a)x

s

s

)
+
∞∑
l=1

Res
s=−l

(
L−1(s; q, a)x

s

s

)

�q (log x)ω(q) exp
(
C
√
ω(q) log(q) log log x

)
.
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This estimate, Theorem 2 with T = x, and our assumptions of the gener-
alized Riemann Hypothesis and multiplicities of zeros yield that

M∗(x; q, a) = x1/2 ∑
0<|γ|<Tν

xiγ

ρ
lim
s→ρ

(s− ρ)L−1(s; q, a)

+ Res
s= 1

2

(
L−1(s; q, a)x

s

s

)
+Oε (xε)

for some Tν ∈ [x, 2x].
Let m(q) be the maximum in the multiplicities of the zeros of Dirichlet

L-functions modulo q at s = 1
2 . We then find that

Res
s= 1

2

(
L−1(s; q, a)x

s

s

)
�q x

1/2(log x)m(q)−1.

By the definition of L−1(s; q, a), we can write∑
0<|γ|<Tν

xiγ

ρ
lim
s→ρ

(s− ρ)L−1(s; q, a) = 1
ϕ(q)

∑
χ mod q

χ(a)
∑

0<|γ|<Tν

xiγ

L′(ρ, χ)ρ

� 1
ϕ(q)

∑
χ mod q

∑
0<|γ|≤2x

1
|γL′(ρ, χ)| .

Using estimate (2.3) with λ = −1
2 and partial summation, we find that

∑
0<|γ|≤2x

1
|γL′(ρ, χ)| =

J−1/2,χ(2x)
2x +

∫ 2x

|γ1|

J−1/2,χ(ξ)
2ξ2 dξ �q (log x)5/4.

Here, γ1 indicates the imaginary part of the nearest zero from the real axis.
Thus, we obtain Theorem 3. �

8. Proof of Theorem 6

Proof of Theorem 6. Let χ be a primitive Dirichlet character modulo q.
Assume the simple zero conjecture for L(s, χ). Now, there exists the domain
−3/4 ≤ σ ≤ 2, 0 < t ≤ 2δ(χ) with δ(χ) ≤ 5 such that this domain does
not have zeros of L(s, χ) since L(s, χ) is entire function. In addition, by the
compactness of the line segment −3/4 ≤ σ ≤ 2, t = δ, and the continuity
of L(s, χ), we have

1
|L(s, χ)| ≤ C(χ)

on the same domain, where C(χ) is a sufficiently large constant depending
only on χ.
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Let T ≥ exp
(
q1/3). Here, by Proposition 1 and Lemma 2, there exist

some Tν ∈ [T, 2T ] satisfying

|L(σ + iTν , χ)|−1 ≤ exp(C(log log T )2)(8.1)

for −1 ≤ σ ≤ 2.
Now, by the residue theorem, we have

∑
0<γ<Tν

1
L′(ρ, χ)

= 1
2πi

(∫ 2+iTν

2+iδ(χ)
+
∫ −3/4+iTν

2+iTν
+
∫ −3/4+iδ(χ)

−3/4+iTν
+
∫ 2+iδ(χ)

−3/4+iδ(χ)

)
ds

L(s, χ) .

From the way of taking δ(χ) and Tν , the integrals on the horizontal line
parts are estimated by∣∣∣∣∣

∫ 2±iTν

−3/4+iTν

ds
L(s, χ)

∣∣∣∣∣� exp(C(log log T )2),

and ∣∣∣∣∣
∫ 2+iδ(χ)

−3/4+iδ(χ)

ds
L(s, χ)

∣∣∣∣∣ ≤ 3C(χ).

In addition, we have ∣∣∣∣∣
∫ −3/4+iTν

−3/4+iδ(χ)

ds
L(s, χ)

∣∣∣∣∣� 1

since |L(−3/4 + it, χ)|−1 � (|t|+ 1)−5/4 by Lemma 2. On the first integral
term, by the Dirichlet series expression, we have

1
2πi

∫ 2+iTν

2+iδ(χ)

ds
L(s, χ) = 1

2π

∫ Tν

δ(χ)

∞∑
n=1

µ(n)χ(n)
n2+it dt

= Tν
2π + 1

2π

∞∑
n=2

µ(n)χ(n)
n2

∫ Tν

δ(χ)
n−itdt+O(1)

= Tν
2π +O

( ∞∑
n=2

1
n2 logn

)
= Tν

2π +O(1).

Hence we have∑
0<γ<Tν

1
L′(ρ, χ) = Tν

2π +O
(
exp

(
C(log log T )2

)
+ C(χ)

)
.
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In particular, for T ≥ T0(q) with sufficiently large constant T0(q) depending
only on q, we obtain

∑
0<γ≤2T

1
|L′(ρ, χ)| ≥

∑
0<γ<Tν

1
|L′(ρ, χ)| ≥

∣∣∣∣∣∣
∑

0<γ<Tν

1
L′(ρ, χ)

∣∣∣∣∣∣� T,

which completes the proof of Theorem 6. �

9. Results for number fields

In this section, we describe the results for number fields. It is well known,
by the Kronecker-Weber theorem, that if K/Q is an abelian extension of
number field, then there exists a positive integer q and a subset X(K) of
Dirichlet characters modulo q such that

ζK(s) =
∏

χ∈X(K)
L(s, χ∗),(9.1)

where χ∗ is the primitive Dirichlet character inducing χ. This formula is
written in for example [14, Theorem 8.2].

The following corollary is an immediate consequence of Proposition 1
and equation (9.1).

Corollary 2. Let α ≥ 13 and T ≥ T0(α) > 0 with T0(α) a sufficiently large
constant depending only on α. If K is an Abelian number field, and Km is
the smallest cyclotomic field satisfying K ⊂ Km, we have

min
T≤t≤2T

(
max

1
2≤σ≤2

|ζK(σ + it)|−1
)
≤ exp(Cα(#X(K))(log log(mT ))2)

for m ≤ (log T )α/4, where C is a positive absolute constant.

Remark 3. Corollary 2 holds for an Abelian number field. On the other
hand, it is difficult to extend Corollary 2 to any number field. The reason is
that a zero density theorem for Dirichlet L-functions in the region close to
critical line plays an important role in the proof of Proposition 1, but it is
difficult to obtain the zero density theorem of the same type for Dedekind
zeta-functions.

By Corollary 2, we can obtain the explicit formula for the summatory
function of the Möbius function µK on an Abelian number field K. This
Möbius function µK is defined by

µK(a) =


1 if a = OK ,

(−1)k if a is the product of k distinct prime ideals,
0 otherwise.
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Here, we define the summatory function M∗K(x) by

M∗K(x) =
∑′

N(a)≤x
µK(a),

where the sum on the right hand side runs over integral ideals a of the
ring OK , and N(a) is the absolute norm of a, and

∑′ indicates that if x
is an integer, then

∑′
N(a)≤x =

∑
N(a)<x +1

2
∑
N(a)=x. Let nx denote one of

the nearest positive integer from x other than x itself such that there exist
ideals a ⊂ OK with N(a) = nx and µK(a) 6= 0. If there exist several such
integers, then we understand that nx is the one for which anx is biggest.
Here, an means the number of ideals such that N(a) = n. Then we obtain
the following theorem.

Theorem 7. Let K be an Abelian number field, Km be the smallest cy-
clotomic field satisfying K ⊂ Km, x > 0, T ≥ max

{
T0, exp

(
m1/3

)
, 2/x

}
with T0 a sufficiently large absolute constant. Then, there exists some Tν ∈
[T, 2T ] such that

(9.2) M∗K(x) =
∑
|γ|<Tν

1
(m(ρ)− 1)! lim

s→ρ
dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ) xs

ζK(s)s

)

+
∞∑
l=0

Res
s=−l

(
xs

ζK(s)s

)
+R′.

Here, R′ satisfies the estimate

R′ � x

T
min

{
enK/x(log(x+ 2))nK , κK log(x+ 2) + Φ0(K)

(log(x+2))−1+1/nK

}(9.3)

+ x

T
exp

(
CnK(#X(K))(log log T )2

)
+ anx min

{
1, x

T |x− nx|

}
,

where nK is the degree of K, κK is the residue of ζK at s = 1, and Φ0(K)
is a constant depending only on K.

Remark 4. The constant Φ0(K) comes from the inequality∣∣∣∣∣∣
∑

N(a)≤x
1− κKx

∣∣∣∣∣∣ ≤ Φ0(K)x1−1/nK .(9.4)

We do not consider refined upper bounds of Φ0(K) in this paper, but it
was studied by Murty and Order in [13].

Remark 5. We can remove the condition “Abelian” in this theorem by
assuming the zero density estimate for Dedekind zeta-functions.
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Similarly to Theorem 3, we can apply a generalization of the Gonek–
Hejhal Conjecture to Theorem 7.

Conjecture 3 (The Generalized Gonek–Hejhal Conjecture for Dedekind
zeta-functions). Assume that the all nontrivial zeros of Dedekind zeta-
functions are simple except for the zero at s = 1

2 . For sufficiently large
number T > 0,

Jλ,K(T ) :=
∑

0<|γ|≤T
|ζ ′K(ρ)|2λ �λ,K T (log T )(λ+1)2

holds for λ > −3
2 .

Using this, we can obtain the following theorem.

Theorem 8. Let K/Q be a number field. Assume that the Riemann Hy-
pothesis for ζK(s) is true, the all nontrivial zeros of ζK(s) are simple, and
that J−1/2,K(T ) :=

∑
0<|γ|≤T |ζ ′K(ρ)|−1 �K T (log T )1/4. Then, we have

M∗K(x)�K x1/2
(
(log x)5/4 + (log x)m(K)−1

)
,(9.5)

where m(K) is the multiplicity of the zero of the Dedekind zeta-function
ζK(s) at s = 1

2 .

We can also obtain a theorem for ζK(s) with an Abelian number field
K, similar to Theorem 6. It is the following result.

Theorem 9. Let K be an Abelian number field, Km be the smallest cyclo-
tomic field satisfying K ⊂ Km, and assume the simplicity of all complex
zeros of ζK(s). Then, for T > exp

(
m1/3

)
, there exist some Tν ∈ [T, 2T ]

satisfying∑
0<γ<Tν

1
ζ ′K(ρ) = Tν

2π +O
(
exp

(
C(#X(K))(log log T )2

)
+ C(K)

)
,

where X(K) is the same as in equation (9.1), the sum on the left hand side
runs over non-trivial zeros ρ = β + iγ of ζK(s), and C(K) is a sufficiently
large constant depending only on K. In particular, for any T ≥ T0(K) > 0
with a sufficiently large constant T0(K) depending only on K, we have∑

0<γ≤T

1
|ζ ′K(ρ)| � T.(9.6)

We omit the proof of Theorem 9 because the proof is almost the same
as the proof of Theorem 6 by using Corollary 2 instead of Proposition 1.

Similarly to the case of Dirichlet L-functions, estimate (9.6) is use-
ful when we consider the exact behavior of some partial sum of some
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Möbius functions under the Linear Independence Conjecture. Actually, ap-
plying (9.6), we can show that

lim
x→∞

M∗K(x)
x1/2 = ±∞(9.7)

for any Abelian number field K under the following conjecture.

Conjecture (Linear Independence Conjecture for Dedekind zeta-functions
(cf. [3])). The positive imaginary parts of the zeros of any Dedekind zeta-
function are linearly independent over Q.

The proof of (9.7) is also similar to the proof of Corollary 15.7 in [12].

10. Proofs of Theorems 7, 8

Firstly, we prepare some lemmas.

Lemma 12. Let K be any number field, nK be the degree of K, and κK be
the residue of ζK(s) at s = 1. Then, for σ > 1, we have

|ζK(σ + it)| ≤ min
{
ζ(σ)nK , σ

σ − 1κK + σΦ0(K)
σ − 1 + 1/nK

}
=: ΦK(σ),(10.1)

where Φ0(K) is the constant coming from inequality (9.4).

Proof. By the Euler product for Dedekind zeta-functions, we find that

|ζK(σ + it)| ≤
∏
p

(
1− 1

N(p)σ
)−1

=
∏
p

∏
p|p

(
1− 1

pdeg(p)σ

)−1

≤
∏
p

(
1− 1

pσ

)−nK
= ζ(σ)nK .

On the other hand, using the partial summation and inequality (9.4), we
have

|ζK(σ + it)| ≤ σ
∫ ∞

1

A(x)
xσ+1 dx ≤ σ

∫ ∞
1

κKx+ Φ0(K)x1−1/nK

xσ+1 dσ

= σ

σ − 1κK + σΦ0(K)
σ − 1 + 1/nK

,

where A(x) =
∑
N(a)≤x 1. Hence we obtain Lemma 12. �

Lemma 13. Let K be a number field. Let dK be the discriminant of K. If
|t| ≥ 1 and σ ≤ 1

2 , then

|ζK(s)| � 1
CnK

( (2πe)nK
|dK ||s|nK

)σ
(|dK ||s|nK )1/2

× exp
(
nK |t| tan−1

(1− σ
|t|

))
|ζK(1− s)|.
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If |t| ≤ 1, σ = −(r + 1/2) with r a positive integer, then

|ζK(s)| � 1
CnK

( (2πe)nK
|dK ||s|nK

)σ
(|dK ||σ|nK )1/2 |ζK(1− s)|.

The above C is an absolute constant.

Proof. By the functional equation for ζK(s) which is

ζK(s) = 2nK (2π)nK(s−1)|dK |1/2−s(Γ(1− s))nK

×
(

sin πs2

)r1+r2 (
cos πs2

)r2

ζK(1− s),

and the Stirling formula, we obtain this lemma. �

Proof of Theorem 7. Let x > 0, T ≥ max
{

9, exp
(
m1/3

)
, 2/x

}
and σ0 =

1 + 1/ log(x+ 3). First, using Perron’s formula, we have

(10.2) M∗K(x) = 1
2πi

∫ σ0+iTν

σ0−iTν

xs

ζK(s)sds+O

(
x

T
ΦK(σ0) + min

{
1, x

T 〈x〉

})
,

where Tν satisfies the inequality

|ζK(σ + iTν)|−1 ≤ exp
(
CnK(#X(K))(log log T )2

)
(10.3)

for any −1 ≤ σ ≤ 2 with Tν ∈ [T, 2T ] by Corollary 2 and Lemma 13. Here
we remark that T ≥ exp

(
m1/3

)
� m.

Let R = r + 1
2 with positive integer r satisfying r > T . By the residue

theorem, we have

1
2πi

∫ σ0+iTν

σ0−iTν

xs

ζK(s)sds

= 1
2πi

(∫ σ0+iTν

−R+iT
+
∫ −R+iTν

−R−iTν
+
∫ −R−iTν
σ0−iTν

)
xs

ζK(s)sds

+
∑
|γ|<T∗

Res
s=ρ

(
xs

ζK(s)s

)
+

∑
0≤l<R

Res
s=−l

(
xs

ζK(s)s

)

=: J1 + J2 + J3 +
∑
|γ|<Tν

Res
s=ρ

(
xs

ζK(s)s

)
+

∑
0≤l<R

Res
s=−l

(
xs

ζK(s)s

)
.

Here, by the basic formula for residues, we find that

Res
s=ρ

(
xs

ζK(s)s

)
= 1

(m(ρ)− 1)! lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(
(s− ρ)m(ρ) xs

ζK(s)s

)
.

Hence, we have (9.2)
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Next, we show (9.3). By Lemma 13, J2 is evaluated by

|J2| =
∣∣∣∣∣
∫
|t|≤Tν

x−R+it

ζK(−R+ it)(−R+ it)dt
∣∣∣∣∣

� x−RCnK
∫
|t|≤Tν

((2πe)nK
RnK

)R
R−nK/2−1dt

� CnK
(

x

(2πe)nK

)−R
R−(R+1/2)nK−1T.

Therefore, we have
lim
R→∞

J2 = 0.

Next, we estimate J1. Now, we put

J1 = 1
2πi

(∫ σ0+iTν

−1+iTν
+
∫ −1+iTν

−R+iTν

)
xs

ζK(s)sds =: J ′1 + J ′′1 .

By Lemma 12, Lemma 13 and estimate (10.3), we find that

|J ′1| �
∫ σ0

−1
xT−1

ν exp
(
CnK(#X(K))(log log T )2

)
dσ

� x exp
(
CnK(#X(K))(log log T )2)

T
,

and that

|J ′′1 | �
CnK

T 3/2

∫ −1

−R
(xTν)σdσ � CnK (xT )−1

T 3/2 log(xT )
.

Hence we have

J1 �
x exp

(
CnK(#X(K))(log log T )2)

T
.

Similarly, by the Schwarz reflection principle, we have

J3 �
x exp

(
CnK(#X(K))(log log T )2)

T
.

Thus we obtain estimate (9.3), and complete the proof of Theorem 7. �

Next, we show Theorem 8. To do it, we evaluate the contribution from
residues of trivial zeros. Let r1 = r1(K) be the number of real embeddings
of K, and let 2r2 = 2r2(K) be the number of imaginary embeddings of K.

Lemma 14. Let K be a number field. We have
∞∑
l=0

Res
s=−l

(
xs

ζK(s)s

)
∼ −2r1+r2πr2(log x)r1+r2−1

|dK |1/2κK
as x→ +∞.
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Proof. We put r = r1 + r2 − 1. Then, by the Leibniz rule, we find that

Res
s=0

(
xs

ζK(s)s

)
= 1
r! lim

s→0

dr

dsr

(
sr+1

ζK(s)sx
s

)

= 1
r! (log x)r lim

s→0

sr

ζK(s) + (1− δ0,r)
r!

r∑
j=1

(
r
j

)
(log x)r−j lim

s→0

dj

dsj
(

sr

ζK(s)

)

= −(2π)nK (log x)r(2/π)r1+r2

2nK |dK |1/2κK
+OK

(
(1− δ0,r)|log x|r−1

)
.

On the other hand, for l ≥ 1, we have

Res
s=−l

(
xs

ζK(s)s

)
= 1

2πi

∫
|s+l|= 1

log(x+3)

xs

ζK(s)sds

= 1
2π log(x+ 3)

∫ 2π

0

x
−l+ eiθ

log(x+3) eiθ

ζK
(
−l + eiθ

log(x+3)

)(
−l + eiθ

log(x+3)

)dθ

� x−l

l log(x+ 3)

∫ 2π

0

dθ∣∣∣ζK(−l + eiθ

log(x+3)

)∣∣∣
by the Cauchy formula. Now, by the functional equation and the Stirling
formula, we can find that if l is even, then∣∣∣∣∣ζK

(
−l + eiθ

log(x+ 3)

)∣∣∣∣∣
−1

� CnK
(2πe

l

)nK l
l−nK/2(log(x+ 3))r1+r2 ,

and that if l is odd, then∣∣∣∣∣ζK
(
−l + eiθ

log(x+ 3)

)∣∣∣∣∣
−1

� CnK
(2πe

l

)nK l
l−nK/2(log(x+ 3))r2 .

Hence, for l ≥ 1, we obtain

Res
s=−l

(
xs

ζK(s)s

)

�


CnKx−l

lnK/2+1

(2πe
l

)nK l
(log(x+ 3))r1+r2−1 if l is even,

(1− δ0,r2)C
nKx−l

lnK/2+1

(2πe
l

)nK l
(log(x+ 3))r2−1 if l is odd.

From the above estimates, we obtain this lemma. �

Proof of Theorem 8. Note that we can prove Theorem 7 for ζK(s) under the
Riemann Hypothesis for ζK(s). Hence, assuming the Riemann Hypothesis
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and simplicity for nontrivial zeros and using Theorem 7 with T = x and
Lemma 14, we have

M∗K(x) = x1/2 ∑
0<|γ|<Tν

xiγ

ζ ′K(ρ)ρ + Res
s= 1

2

(
xs

ζK(s)s

)
+OK,ε(xε)

for any ε > 0 and for some Tν ∈ [x, 2x]. Evaluating the contribution from
nontrivial zeros and the residue at s = 1

2 similarly to the proof of Theorem 3,
we can obtain Theorem 8. �
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