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Some unlikely intersections between the Torelli
locus and Newton strata in Ag

par Joe KRAMER-MILLER

Résumé. Soit p un nombre premier impair. Quels sont les polygones de New-
ton possibles pour les courbes en caractéristique p ? Autrement dit, quelles
sont les strates de Newton qui s’intersectent avec le lieu de Torelli dans Ag?
Nous étudions les polygones de Newton de certaines courbes équipées d’une
action du groupe fini Z/pZ. Plusieurs de ces courbes fournissent des exemples
d’intersections improbables entre le lieu de Torelli et la stratification de New-
ton dans Ag. Voici un exemple qui présente un intérêt particulier : en fixant un
genre g > 1, nous montrons que pour tout k tel que 2g

3 −
2p(p−1)

3 ≥ 2k(p− 1),
il existe une courbe C de genre g telle que les pentes de Newton de C sont
{0, 1}g−k(p−1)t{ 1

2}
2k(p−1). Cela confirme une conjecture d’Oort selon laquelle

l’amalgamation des polygones de Newton de deux courbes est aussi le poly-
gone de Newton d’une courbe. Nous construisons aussi quelques familles de
courbes {Cg}g≥1 de genre g, dont les polygones asymptotiques de Newton
sont intéressants. Par exemple, nous construisons une famille de courbes dont
le polygone asymptotique de Newton est minoré par y = x2

4g . Les outils prin-
cipaux de l’article sont un résultat « polygone de Newton est situé au-dessus
du polygone de Hodge » pour les courbes équipées d’une action de Z/pZ, dû
à l’auteur, et un travail récent de Booher–Pries qui montre que cette borne
de Hodge est atteinte.

Abstract. Let p be an odd prime. What are the possible Newton polygons
for a curve in characteristic p? Equivalently, which Newton strata intersect
the Torelli locus in Ag? In this note, we study the Newton polygons of certain
curves with Z/pZ-actions. Many of these curves exhibit unlikely intersections
between the Torelli locus and the Newton stratification in Ag. Here is one
example of particular interest: fix a genus g. We show that for any k with 2g

3 −
2p(p−1)

3 ≥ 2k(p−1), there exists a curve of genus g whose Newton polygon has
slopes {0, 1}g−k(p−1)t{ 1

2}
2k(p−1). This provides evidence for Oort’s conjecture

that the amalgamation of the Newton polygons of two curves is again the
Newton polygon of a curve. We also construct families of curves {Cg}g≥1,
where Cg is a curve of genus g, whose Newton polygons have interesting
asymptotic properties. For example, we construct a family of curves whose
Newton polygons are asymptotically bounded below by the graph y = x2

4g .

Manuscrit reçu le 1er juillet 2020, révisé le 4 octobre 2020, accepté le 13 décembre 2020.
Mathematics Subject Classification. 11G20, 11M38, 14K10.
Mots-clefs. Newton polygons of curves, Artin–Schreier curves, Torelli locus.



238 Joe Kramer-Miller

The proof uses a Newton-over-Hodge result for Z/pZ-covers of curves due to
the author, in addition to recent work of Booher–Pries on the realization of
this Hodge bound.

1. Introduction

Let p be an odd prime. By a curve, we will always mean a smooth proper
irreducible curve. What are the possible Newton polygons for a curve of
genus g in characteristic p? In general, it seems difficult to answer this
question for all g. However, the following conjecture of Oort offers some
guidance on what to expect.

Conjecture 1.1 (Oort, see [5, Conjecture 8.5.7]). Let C (resp. C ′) be
a curve of genus g (resp. g′) with Newton polygon P (resp. P ′). Then
there exists a curve C ′′ of genus g + g′ whose Newton polygon P ′′ is the
amalgamation of P and P ′ (i.e. the slopes of P ′′ are the disjoint union of
the slopes of P and P ′).

This conjecture implies, for example, that there exists irreducible super-
singular curves of every genus. This is currently only know in characteristic
2, due to a theorem of van der Geer and van der Vlugt (see [8]). Another
approach to studying Newton polygons of curves is to ask if there are curves
Cg of every genus g ∈ Z≥0 whose Newton polygons approach some limit
asymptotically. This motivates the following questions.

Question 1.2. Let m1, . . . ,m2r ∈ Q ∩ [0, 1] such that mk = 1 − m2r−k.
Does there exist a family of curves {Cg}g∈Z≥0 , where Cg has genus g, such
that the Newton polygon of Cg consists only of the slopes m1, . . . ,m2r and
each mi occurs with multiplicity close to 2g

2r ?

Question 1.3. Let P be the graph of a continuous function f : [0, 2] →
[0, 1]. Does there exist a family of curves {Cg}g∈Z≥0 , where Cg has genus
g, such that the Newton polygon of Cg, scaled by a factor of 1

g , approaches
or lies above P as g →∞?

In this article we study Conjecture 1.1, Question 1.2, and Question 1.3
by considering Z/pZ-covers of curves.

1.1. Some previous results. There are two main approaches when try-
ing to find curves with certain Newton polygons. The first is to consider
Z/nZ-covers f : X → P1. When n is a power of p and f is ramified at
a single point, the Newton polygon of X has been studied extensively by
Robba, Zhu, Blache–Ferard, and Liu–Wei, using p-adic methods pioneered
by Dwork (see [2, 13, 16, 17]). Also, the work of van der Geer and van der
Vlugt (see [8]) studies Z/pZ-covers with additional structure when p = 2 by
analyzing their Jacobians. When n is coprime to p, the number of slope zero
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segments (i.e. the p-rank) was determined in many cases by Bouw (see [4]).
Determining the larger slopes appears to be more difficult and is the subject
of work by Li–Mantovan–Pries–Tang (see [11, 12]). The second approach is
to use clutching morphisms between moduli spaces of curves. This technique
was used by Achter–Pries in [1] to show that for g ≥ 4, there exists a genus
g curve whose Newton polygon has slopes {0, 1}g−4t{1

4 ,
3
4}

4. More recently,
these two techniques were combined in work of Li–Mantovan–Pries–Tang
by studying clutching morphisms for tame covers of P1. Their work con-
structs many interesting families of curves whose Newton polygons are far
from ordinary and follow certain patterns. However, most of these families
do not include curves of every genus. Instead these families include curves
whose genera satisfy certain congruence conditions. We describe some of
these families in Remark 2.17 and Examples 4.5–4.6.

1.2. Z/pZ-covers with many branch points. In Section 4 we study
Z/pZ-covers of curves with many branch points of fixed Swan conductor.
Let us state a specific case of our result (see Theorem 4.1 for the general
statement).

Theorem 1.4. For any g ≥ 0 and k with 2g
3 −

2p(p−1)
3 ≥ 2k(p − 1),

there exists a curve Cg,k of genus g whose Newton polygon has slopes
{0, 1}g−k(p−1) t {1

2}
2k(p−1).

From Theorem 1.4 we may deduce many interesting examples of Con-
jecture 1.1. Indeed, if C = Cg,k and C ′ = Cg′,k′ , then the Newton polygon
of C ′′ = Cg+g′,k+k′ is the amalgamation of the Newton polygons of C and
C ′. When k is not small relative to g, we see that Cg,k demonstrates an
unlikely intersection between a Newton stratum and the Torelli locus in
the Siegel modular variety (see Corollary 4.4). Furthermore, we may use
Theorem 1.4 to study Question 1.2. By letting k be as large as possible, we
see that there are curves of every genus consisting of slopes 0, 1

2 , 1, where
each slope occurs with multiplicity approximately 2g

3 . This was previously
only known under the assumption of p ≡ 2 mod 3 (see [11, Corollary 9.4]).

1.3. Z/pZ-covers of curves with large Swan conductor. In Section 5
we study curves with a small number of branch points and large Swan
conductors. We construct a family of curves {Cg}g∈Z≥0 , where Cg has genus
g, such that their Newton polygons asymptotically lie on or above the graph
y = x2

4g (see Definition 2.10 and Theorem 5.1 for a precise statement). To the
best of our knowledge, it is unknown if there is a family of curves containing
a curve of every genus whose Newton polygons asymptotically lie strictly
above y = x2

4g . This would certainly follow from Conjecture 1.1. However, all
of the families constructed in Section 4 and the families constructed in [11]
lie well below y = x2

4g when the genus is large.
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Remark 1.5. It is natural to ask if x2

4 has any particular significance.
In this article, the lower bound in Theorem 3.1 comes from the irregular
Hodge filtration defined by Deligne (see [7]). In the work of Li–Mantovan–
Pries–Tang, they use the µ-ordinary lower bound, which is essentially a
Hodge bound averaged over Frobenius orbits (see [11, Section 2.6.1]). In
both cases, the graph y = x2

4g appears to be a natural limit for these Hodge
bounds.
1.4. Method of proof. To prove Theorem 1.4 and Theorem 5.1, we use
a Newton-over-Hodge result due to the author (see [10] or Theorem 3.1).
This theorem gives a lower bound for the Newton polygon of a Z/pZ-cover
C → X in terms of local Swan conductors. By considering covers of an
arbitrary curve X instead of only P1, we are able to obtain curves of any
genus (e.g. if X has genus i, the genus of C is of the form i + k p−1

2 by
Riemann–Hurwitz). This is a clear advantage over earlier techniques. For
the general statement of Theorem 4.1, we also need to use recent work of
Booher–Pries (see [3]). This work shows the lower bound in [10] is realized
when certain congruence conditions between p and the Swan conductors
hold.

Acknowledgments. We would like to thank Jeremy Booher, Raju Krish-
namoorthy, Rachel Pries, and Vlad Matei for some helpful discussions.

2. Newton polygons and unlikely intersections in Ag

2.1. Conventions on Newton polygons. Let α ∈ Z≥0 ∪ ∞ and let
f : [0, α]→ R be a continuous convex function. We let P = P (f, α) refer to
the graph of f in the xy-plane. We refer to the points (0, f(0)) and (α, f(α))
as the endpoints of P . We say that P is a symmetric if f(α−x) = f(α)−f(x)
for all x ∈ [0, α]. The following two types of graphs are of particular interest.
Definition 2.1. A graph P = P (f, 2) is called basic if P is symmetric and
the endpoints of P are (0, 0) and (2, 1).
Definition 2.2. We say P (f, 2g) is a Newton polygon of height 2g if f
satisfies the following:

(1) f is symmetric and the endpoints are (0, 0) and (2g, g).
(2) For any integer i ∈ (0, 2g], the function f(x) is linear on the domain

x ∈ [i− 1, i] with slope mi ≥ 0.
We will refer to the multiset {mi}1≤i≤2g as the slope-set of P and its el-
ements as the slopes of P . Note that the slope-set completely determines
the Newton polygon.
Remark 2.3. It is often required that the vertices of a Newton polygon
have integer coordinates. We drop this requirement, since some of our lower
bounds (see e.g. Theorem 3.1) will have non-integer vertices.
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For i = 1, 2, consider graphs Pi = P (fi, α). We write P1 � P2 if f1(x) ≥
f2(x) for all 0 ≤ x ≤ α. When P1 � P2, we say that P1 lies above P2. If P2
is a Newton polygon with slope-set N , we will occasionally write P1 � N
instead of P1 � P2. Finally, for any c ≥ 0, we define the scaled graph
cPi = {(cx, cy)|(x, y) ∈ Pi}.

2.2. The Newton stratification of Ag. Let Ag denote the moduli space
of principally polarized abelian varieties of dimension g and let X → Ag be
the universal abelian scheme. For each closed x ∈ Ag, we obtain an Abelian
variety Xx. Let NPx denote the Newton polygon of height 2g associated
to Xx (see [14, (1.2)]). We remark that the vertices of NPx have integer
coordinates. This greatly restricts the possibilities for NPx.
Definition 2.4. Let P be a Newton polygon of height 2g. Let WP ⊂ Ag
(resp. W 0

P ) denote the locus of principally polarized abelian varieties Xx
with NPx � P (resp. NPx = P ). Note that WP is closed in Ag and W 0

P is
open in WP (see [14, Section 4]).
Theorem 2.5. The codimension of WP in Ag is at least #Ω(P ), where
Ω(P ) = {(x, y) ∈ Z≥0 × Z≥0 | 0 ≤ x ≤ g and (x, y) lies strictly below P}.
Furthermore, if P has integer vertices, the codimension of WP in Ag is
exactly #Ω(P ).
Proof. This follows from a theorem of Oort (see [14, Theorem 4.1]), by
noting that WP = ∪P ′WP ′ , where the union runs over all Newton polygons
of height 2g with integer vertices lying above P . We warn the reader that
the ordering we put on Newton polygons differs from the ordering found in
Oort’s article. �

2.3. The Torelli locus. The Torelli map ι : Mg → Ag sends a curve C
of genus g to its Jacobian. Let Tg denote the image of the Torelli map. It is
a closed subscheme of dimension 3g− 3. The Newton polygon NP (C) of C
is defined to be the Newton polygon of the corresponding point in Ag. If C
is defined over a finite field Fq, then NP (C) is equal to the q-adic Newton
polygon of the numerator of its zeta function. We define the scaled Newton
polygon to be

sNP (C) = 1
g
NP (C).

Note that sNP (C) is a basic graph (see Definition 2.1). We are interested
in the following questions.
Question 2.6. How does the Torelli locus interact with the Newton strat-
ification? More specifically, let P be a Newton polygon of height 2g. Does
there exist a curve C of genus g with NP (C) = P (resp. NP (C) � P ).
Equivalently, is W 0

P ∩ Tg (resp. WP ∩ Tg) nonempty?
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This question appears to be very difficult in general. Instead, one may ask
for asymptotic behavior as g gets large. One way to do this is to study the
behavior of sNP (C) as C varies over a collection of curves. This prompts
the following definitions.

Definition 2.7. A family of curves is a collection C = {Cg}g∈S where
S ⊂ Z≥0 and Cg is a curve of genus g. We say that C is full if S = Z≥0
and we say that C is arithmetic if S is the union of finitely many arithmetic
progressions.

Definition 2.8. A family of Newton polygons (resp. basic graphs) is a
collection P = {Pg}g∈S (resp. sP = {sPg}g∈S) where S ⊂ Z≥0 and Pg
(resp. sPg) is a Newton polygon of height 2g (resp. a basic graph). If
C = {Cg}g∈S is a family of curves, we may associate a family of Newton
polygons (resp. basic graphs) by NP(C) = {NP (Cg)}g∈S (resp. sNP(C) =
{sNP (Cg)}g∈S).

Definition 2.9. Let sP = {sPg}g∈S be a family of basic graphs with
sPg = (fg, 2) and let P = (f, 2) be a basic graph. We say that sP converges
uniformly to P if the fg converge uniformly to f .

Definition 2.10. Let C = {Cg}g∈S be a family of curves and let P =
P (f, 2) be a basic graph. For each g ∈ S, let fg be the piecewise linear
function such that sNP (Cg) = P (fg, 2). We write sNP(C) � P if

lim inf
g∈S

min
x∈[0,2]

{fg(x)− f(x)} ≥ 0.

Question 2.11. Let P be a basic graph. Does there exist a family of curves
C such that sNP(C) � P? Can we take this family to be arithmetic or full?

The following lemma will be helpful when studying Question 2.11.

Lemma 2.12. Let C = {Cg}g∈S be a family of curves and let sP =
{sPg}g∈S be a family of basic graphs sPg = P (hg, 2) such that sNP (Cg) �
sPg. If sP converges to P = P (f, 2), then sNP(C) � P .

Proof. Let fg be the piecewise linear function such that sNP (Cg)=P (fg, 2),
so that fg(x) ≥ hg(x) for all x ∈ [0, 2]. Then we have

lim inf
g∈S

min
x∈[0,2]

{fg(x)− f(x)} ≥ lim inf
g∈S

min
x∈[0,2]

{hg(x)− f(x)} = 0. �

Another natural question is to ask for families of curves where certain
slopes occur with some specified frequency. For example, we may ask for a
family of curves {Cg}g∈S where NP (Cg) only has slopes 0, 1

2 , 1, and each
slope occurs with approximately equal frequency. This prompts the follow-
ing definition.
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Definition 2.13. Let P = {Pg}g∈S be a family of Newton polygons. Let
N = {mi}2ri=1 be the slope-set of a Newton polygon with mi ∈ [0, 1] ∩ Q.
We write P ∼ N if there exists ε > 0 such that

Pg =
2r⊔
i=1

{
mi
} g
r

+ei(g)
,

with |ei(g)| < ε for all g ∈ S. Informally, this means that Pg has slopes
m1, . . . ,m2r, each occurring with approximately the same frequency.

Question 2.14. Let N = {mi}2ri=1 be as in Definition 2.13. Is there a full
or arithmetic family C with NP(C) ∼ N ?

By the following lemma, Question 2.14 and Question 2.11 are closely
related.

Lemma 2.15. Let P = {Pg}g∈S be a family of Newton polygons and define
the family of basic graphs by sP = {1

gPg}g∈S. If P ∼ N , where N =
{mi}2ri=1, then sP converges uniformly to 1

rN .

Proof. Without loss of generality assume that mi+1 ≥ mi. Let ε be as in
Definition 2.13. Take Rg (resp. Sg) to be the graph g

rN shifted down (resp.
up) by 2rε. That is, each Rg (resp. Sg) is the lower convex hull of the
points (ngr ,

∑n
i=1

g
rmi−2rε) (resp. (ngr ,

∑n
i=1

g
rmi+2rε)). By definition, we

know Sg � NP (Cg) � Rg, and thus 1
gSg �

1
gNP (Cg) � 1

gRg. The lemma
follows by observing that both 1

gRg and 1
gSg converge uniformly on [0, 2]

to 1
rN . �

Remark 2.16. If one does not require the family of curves to be arithmetic
or full, it is much easier to find families with interesting asymptotic prop-
erties. For example, in [15, Corollary 2.6] the authors construct an infinite
family of supersingular curves. However, this family is much too sparse to
be arithmetic.

Remark 2.17. The work of [11] proves the existence of many families C
and many interesting slope-sets N satisfying NP(C) ∼ N . Most of these
families are arithmetic, although a few special cases are full. Here is one
particularly interesting example: assume that p ≡ 4 mod 5. They prove
the existence of a family C = {Cg}g∈S where S = {10n− 4}n≥1 and

NP(C) ∼ {0}3 t {1
2}

4 t {1}3.

The key technical aspect of their work is an analysis of clutching morphisms
for moduli of tame cyclic covers of P1. Using this analysis, they give an
inductive process to construct arithmetic families of curves with prescribed
Newton polygons. Combining this with their previous results on special
subvarieties of Shimura varieties (see [12]) gives many interesting examples.
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2.4. Unlikely intersections on Ag. Let X be a variety of dimension
d. Let V1 and V2 be subvarieties of X with codimensions c1 and c2. If
c1 + c2 ≤ d, then we expect the intersection V1 ∩ V2 to be a k-cycle, where
k = d−c1−c2. However, if c1 +c2 > d, then V1∩V2 will typically be empty.
We say that V1 and V2 have an unlikely intersection if V1 ∩ V2 is nonempty
and c1 +c2 > d. For example, let As.s.g ⊂ Ag denote the supersingular locus.
We know that dim(As.s.g ) = bg

2

4 c and dim(Tg) = 3g−3. Thus, the existence
of a supersingular curve of genus g > 3 implies As.s.g and Tg have an unlikely
intersection. More generally, a high genus curve that is sufficiently far from
being ordinary implies an unlikely intersection between the Torelli locus
and a Newton stratum. We point the reader to Oort’s article in [5] for more
background.

Definition 2.18. Let C be a curve of genus g and let P = NP (C). We
say that C has an unlikely Newton polygon if W 0

P and Tg have an unlikely
intersection. We say a family of curves C = {Cg}g∈S is unlikely if for g � 0
the curve Cg has an unlikely Newton polygon.

Lemma 2.19. Let C = {Cg}g∈S be a family of curves and let P = P (f, 2)
be a basic graph. If f(1) > 0 and sNP(C) � P , then C is an unlikely family.

Proof. We may replace P with a slightly lower basic graph so that
sNP (Cg) � P for large g. By lowering P more we may assume that P
consists of three line segments with slopes 0, 1

2 , and 1. The codimension of
Tg in Ag is g(g+1)

2 − 3g + 3, so it suffices to show that the codimension of
WgP in Ag grows quadratically in g. Define Rg = {(x, y) ∈ R × R | 0 ≤
x ≤ g and 0 ≤ y < gf(xg )}. By Theorem 2.5, it suffices to show that
#((Z × Z) ∩ Rg) grows quadratically in g. This follows by observing that
the Rg are similar triangles whose side lengths grow linearly in g. �

Corollary 2.20. Let C be a family of curves and let N be a Newton polygon
of height 2g that is non-ordinary. If NP(C) ∼ N , then C is an unlikely
family.

Proof. Let P (f, 2) be the basic graph 1
gN . By Lemma 2.12 and Lemma 2.15

we know that sNP(C) � P (f, 2). The non-ordinary condition implies f(1)>
0, so the result follows from Lemma 2.19. �

3. Z/pZ-covers of curves

Let X be a curve of genus g over a finite field Fq and let r : C → X be
a Z/pZ-cover. Let τ1, . . . , τm ∈ X be the points where r is ramified. Let di
be the Swan conductor of r at τi. We may describe di as follows. Let ti be
a local parameter at τi. Locally the cover r is given by an Artin–Schreier
equation Y p − Y = gi, where gi ∈ Fq((ti)). We may assume that gi has a
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pole whose order is coprime to p. The order of this pole is equal to the Swan
conductor. That is, gi =

∑
n≥−di ant

n
i and a−di 6= 0. Now, let f be a rational

function on X and assume that C is given by the equation Y p − Y = f .
Then −ordτi(f) ≥ di with equality if and only if gcd(ordτi(f), p) = 1.
Theorem 3.1. We have

NP (C) �
{
0, 1
}pg+m(p−1)⊔{ 1

d1
, . . . ,

d1 − 1
d1

, . . . ,
1
dm

, . . . ,
dm − 1
dm

}p−1
.

Proof. This is an earlier theorem of the author. See [10, Corollary 1.3]. The
proof uses the Monsky trace formula and some delicate p-adic analysis. �

Corollary 3.2. Assume X is ordinary and each Swan conductor is equal
to 2. Then

NP (C) =
{
0, 1
}pg+m(p−1)⊔{1

2

}m(p−1)
.(3.1)

Proof. From Theorem 3.1 we knowNP (C)�{0,1}pg+m(p−1)t{1
2}
m(p−1). By

the Deuring–Shafarevich formula (see e.g. [6]), we see that {0, 1}pg+m(p−1)t
{1

2}
m(p−1) has the correct number of slope zero segments and slope one seg-

ments. As the remaining slopes are 1/2, the two Newton polygons must be
equal. �

In general, the bound in Theorem 3.1 will not be attained. However, if
p ≡ 1 mod di for each i, recent work of Booher–Pries shows this bound is
optimal.
Theorem 3.3 (Booher–Pries). Assume X is ordinary and let d1, . . . , dm ∈
Z≥1 such that p ≡ 1 mod di for each i. There exists a Z/pZ-cover of X,
which is ramified at the points τ1, . . . , τm with Swan conductor di, such that

(3.2) NP (C) =
{
0, 1
}pg+m(p−1)⊔{ 1

d1
, ...,

d1−1
d1

, ...,
1
dm

, ...,
dm−1
dm

}p−1
.

Proof. See [3, Corollary 4.3]. The main idea is as follows: work of Blache–
Ferard computes the Newton polygon of a generic Z/pZ-cover of P1 ramified
only at ∞ when the Swan conductor is less than 3p. Booher and Pries use
this to construct a Z/pZ-cover of singular curves C0 → X0 and calculate the
Newton polygon of C0. Using a formal patching argument, they show that
C0 → X0 deforms to a family of Z/pZ-covers C0 → X0 that generically gives
a cover of X. By Grothendieck’s specialization theorem (see [9]), this gives
an upper bound for the Newton polygon of a generic cover in this family.
This upper bound is precisely the lower bound of Theorem 3.1 when p ≡ 1
mod di. �

Remark 3.4. In forthcoming work of James Upton and the author, we
prove that all (3.2) holds for all such Z/pZ-covers of X.
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4. Letting the number of branch points tend to infinity

Theorem 4.1. Let d ≥ 2 with p - d. Set δ to be 1 if d is odd and 2 if d is
even. For g ≥ 1 and k satisfying

2g
d+ 1 −

2p(p− 1)
d+ 1 ≥ kδ(p− 1),(4.1)

there exists a curve Cg,k of genus g such that

NP (Cg,k) �
{
0, 1
}g− kδ(p−1)(d−1)

2
⊔{1

d
, . . . ,

d− 1
d

}kδ(p−1)
.(4.2)

If p ≡ 1 mod d, then we may choose Cg,k so that (4.2) is an equality of
Newton polygons.

Proof. Write g = i+m(p− 1), where 0 ≤ i < p− 1, and define

A = g − ip+ (p− 1)− kδ(p− 1)(d+ 1)
2 .

By (4.1) we know A ≥ 0. Also, we see that (p − 1)|A. Let j ≥ 0 with
A = j(p − 1). Choose an ordinary curve Xi with genus i. Then choose
an Artin–Schreier cover Cg,k → Xi ramified at j + δk points, such that j
points have Swan conductor 1 and δk points have Swan conductor d. By
Riemann–Hurwitz we know Cg,k has genus g. We then apply Theorem 3.1
to obtain the bound (4.2). If p ≡ 1 mod d we can use Theorem 3.3 (or
Corollary 3.2 when d = 2) to make sure the Newton polygons in (4.2) are
equal. �

Corollary 4.2. Let d ≥ 2 with p - d. Let N be the Newton polygon with
slopes {0, 1}u t {1

d , . . . ,
d−1
d }

v where u ≥ v and let P = 1
2u+(d−1)vN be

the scaled Newton polygon. There exists a full family of curves C such that
sNP(C) � P. In particular, C is an unlikely family. If p ≡ 1 mod d, we
may choose C so that NP(C) ∼ N .

Proof. By replacing u and v with 2u and 2v, we may assume they are even.
In particular, N has 2r = 2u + (d − 1)v slopes for a whole number r. Use
the Euclidean algorithm to write

2g = 2rδ(p− 1)l + αg, where(4.3)
2p(p− 1) ≤ αg ≤ 2p(p− 1) + 2rδ(p− 1).(4.4)

Dividing (4.3) by d+ 1 and rearranging gives

lvδ(p− 1) = 2g
d+ 1 −

αg + 2(u− v)δ(p− 1)l
d+ 1 .

By (4.4) and our assumption that u ≥ v, we see that k = lv satis-
fies (4.1). We then take Cg to be the curve Cg,lv from Theorem 4.1 and
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let C = {Cg}g∈Z≥0 . We claim that C is the desired family of curves. By
rearranging (4.3) we obtain two identities

δ(p− 1)l = g

r
− αg

2r ,

g − vδ(p− 1)l(d− 1)
2 = uδ(p− 1)l + αg

2 .
(4.5)

Then (4.2) and (4.5) give

NP (Cg) �
{

0, 1
} g
r
u−αg2r u+αg

2 ⊔{1
d
, . . . ,

d− 1
d

} g
r
v−αg2r v

,(4.6)

with equality when p ≡ 1 mod d. Let Pg be the Newton polygon on the
right side of (4.6) and set P = {Pg}g∈Z≥0 . Since

αg
2r v and αg

2r u −
αg
2 are

bounded independently from g, we see that P ∼ N . Then by Lemma 2.12
and Lemma 2.15 we have sNP(C) � P. Furthermore, by Lemma 2.19 and
Corollary 2.20 we know C is an unlikely family. �

Corollary 4.3. Let d ≥ 2 and assume p ≡ 1 mod d. Let g, g′ ≥ 1. Let
Cg,k and Cg′,k′ be curves as in Theorem 4.1. Then Oort’s conjecture (see
Conjecture 1.1) holds for Cg,k and Cg′k′. That is, there exists a curve C of
genus g + g′ whose Newton polygon is NP (Cg,k) tNP (Cg′,k′).

Proof. Take C to be Cg+g′,k+k′ . �

Corollary 4.4. Set d = 2. Let g and k be as in Theorem 4.1. Define
m = p−1

2 . Let Ng,k denote the Newton polygon with slopes {0, 1}g−k(p−1) t
{1

2}
2k(p−1). If km(km − 1) > 3g − g, then WNg,k and Tg have an unlikely

intersection.

Proof. By Theorem 4.1 we know WNg,k and Tg have a nonempty intersec-
tion. We will compute the codimension of WNg,k in Ag using Theorem 2.5.
Let Tg,k be the triangle whose vertices are (g − k(p − 1), 0), (g, 0) and
(g, k(p−1)

2 ). We compute #(Tg,k ∩ Z× Z) = (km)2. Also, there are km lat-
tice points on the hypotenuse of Tg,k. The codimension of WNg,k in Ag is
thus km(km − 1). The codimension of Tg in Ag is g(g−1)

2 − 3g − 3, which
proves the corollary. �

Example 4.5. Consider the case where d = 2 and let N = {0, 1
2 , 1}.

Corollary 4.2 tells us there exists a full family of curves C = {Cg}, where
NP (Cg) only has slopes 0,1, and 1

2 , and each occurs about a third of the
time (with a constant error term). This was previously only known under
the assumption p ≡ 2 mod 3 (see [11, Corollary 9.4]). More generally, let
ε ≤ 1

3 be a rational number. There exists a full family C = {Cg}, such
that the Newton polygon of Cg consists only of slopes 0, 1, and 1

2 and the
multiplicity of 1

2 is approximately 2gε (with a constant error term).
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Example 4.6. Consider the case where d = 3 and p ≡ 1 mod 3. Let
N = {0, 1

3 ,
2
3 , 1}. Corollary 4.2 gives a full family of curves C = {Cg}, where

NP (Cg) only has slopes 0,1
3 ,

2
3 , and 1. Furthermore, each slope occurs with

approximately equal frequency. To the best of our knowledge, there were no
previous examples of full or arithmetic families of curves with this property.
There were, however, examples of arithmetic families of curves where the
slopes 1

3 ,
2
3 occurred with smaller frequencies (see [11, Section 9.2]).

5. Letting the ramification break tend to infinity

Theorem 5.1. There exists a full family C = {Cg} such that

sNP(C) � P
(x2

4 , 2
)
.

In particular C is an unlikely family.

Proof. Let m = p−1
2 and for each i = 0, . . . ,m− 1, choose ui, vi such that

pui − (p− 1) = i+mvi.

Let Xi be a smooth ordinary curve of genus ui. Let g = i+ km. For g � 0
we define a genus g curve Cg as follows:

(a) If dg = k+1−vi is relatively prime to p, we choose a rational function
fg on Xi that has exactly one pole of order d (since g and hence d
is sufficiently large, this is possible by Riemann–Roch). We let Cg
be the curve defined by the Artin–Schreier equation yp − y = fg.
By the Riemann–Hurwitz formula we know Cg has genus g.

(b) If dg = k+ 1− vi is divisible by p, we choose a rational function fg
that has exactly two poles: one pole of of order d− 2 and one pole
of order 2 (again, this is possible by Riemann–Roch). We let Cg be
the curve defined by the Artin–Schreier equation yp − y = fg. By
the Riemann–Hurwitz formula we know Cg has genus g.

Let C′i (resp. C′′i ) be the subfamily of C consisting of curves Cg with g ≡
i mod m defined in case (a) (resp. (b)). It suffices to show sNP(C′i) �
P (x2

4 , 2) and sNP(C′′i ) � P (x2

4 , 2) for each i. We will prove the result for
C′i, as the proof for C′′i is almost identical.

Let Cg ∈ C′i. Let Qg be the Newton polygon with slope-set {0, 1}pui+p−1t
{ 1
dg
, . . . ,

dg−1
dg
}p−1. By Theorem 3.1 we know NP (Cg) � Qg. Since the num-

ber of slope zero and one segments in Qg is independent of g, we see that
1
gQg converges uniformly to x2

4 on the interval [0, 2]. The theorem follows
from Lemma 2.12. �

Question 5.2. Theorem 5.1 allows for the possibility that sNP (Cg) lies
well above P (x2

4 , 2). Does there exist a full family of curves C = {Cg}g∈Z≥0

such that sNP (Cg) converges uniformly to P (x2

4 , 2)?
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Question 5.3. Does there exist a full or arithmetic family of curves C and
a basic graph P0 that lies strictly above P (x2

4 , 2) such that sNP(C) � P0?

To the best of our knowledge, both questions are unknown even for arith-
metic families. The arithmetic families constructed in [11] have scaled New-
ton polygons whose limits are well below P (x2

4 , 2). Similarly, the bounds in
Theorem 4.2 are well below P (x2

4 , 2).
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