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On torsion of superelliptic Jacobians

parWojciech WAWRÓW

Résumé. Nous démontrons un résultat décrivant la structure d’un sous-
groupe de m-torsion spécifique de la jacobienne d’une courbe superelliptique
générale de la forme ym = F (x), généralisant ainsi le théorème de structure
pour la 2-torsion d’une courbe hyperelliptique. Nous étudions l’existence de
points de torsion sur les courbes de la forme yq = xp−x+a sur les corps finis
de caractéristique p. Nous appliquons ces résultats à la minoration du rank
de Mordell–Weil des jacobiennes de certaines courbes superelliptiques sur Q.

Abstract. We prove a result describing the structure of a specific subgroup
of the m-torsion of the Jacobian of a general superelliptic curve ym = F (x),
generalizing the structure theorem for the 2-torsion of a hyperelliptic curve.
We study existence of torsion on curves of the form yq = xp − x + a over
finite fields of characteristic p. We apply those results to bound from below
the Mordell–Weil ranks of Jacobians of certain superelliptic curves over Q.

1. Introduction

Our objects of study are superelliptic curves, defined by equations of the
form

C : ym = F (x)
for separable polynomials F andm ≥ 2 not divisible by the characteristic of
the base field. This family generalizes hyperelliptic curves, which are curves
of the above form for m = 2, degF > 4, as well as Picard curves, which
are the case m = 3, degF = 4.

We are specifically interested in the points of the form (α, 0), where α is
a root of F . The line x = α intersects C at this point with multiplicity m.
This lets us find certain divisor classes on the Jacobian J(C), formed by
such points and the points at infinity, which are m-torsion.

In particular, suppose that F factors as (x−α1) . . . (x−αr) inK. Consider
the group ∆ consisting of classes of divisors of the form

r∑
i=1

aiRi −
1
d

(
r∑
i=1

ai

)
∞,
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where d = gcd(m, r), ai are integers whose sum is divisible by d, Ri is the
point (αi, 0), and ∞ is the formal sum of points at infinity of C. It is easy
to see those classes are m-torsion in J(C).

It appears to be a folklore result that for m = 2, ∆ is the entire 2-torsion
subgroup of J(C). In particular, it is isomorphic to (Z/2Z)2g, where g is
the genus of C, equal to either r−1

2 or r−2
2 according to the parity of r. This

statement follows for instance from the results of [14], discussed below,
when specialized to the case m = 2.

For m > 2, those points cannot form all of m-torsion for cardinality
reasons. For instance, when gcd(m, r) = 1, ∆ has order at most mr−1,
while the theory of abelian varieties tells us that over the algebraic closure
of the base field the m-torsion consists of m2g points, and 2g > r − 1 as
soon as m > 2.

Describing the entire m-torsion of a superelliptic Jacobian is an interest-
ing problem. We provide a result in this direction, showing that ∆ always
has the maximal possible size, subject to some obvious relations its points
satisfy. Specifically, we have

Proposition 1. ∆ is a subgroup of J(C) isomorphic to (Z/mZ)r−2 ×(
Z/md Z

)
.

This result, which does not seem to have appeared in this form in the
literature before, can be seen as a generalization of the above mentioned
structure theorem for hyperelliptic curves. Ifm is a prime number the above
proposition can be deduced from [14, Proposition 6.2], which furthermore
describes the resulting subgroup as the kernel of a certain endomorphism
on the Jacobian of the curve.

We can use the proposition above to find families of curves whose Ja-
cobians have high Mordell–Weil ranks over number fields. As a sample
application, we show the following.

Theorem 2. Suppose p is an odd prime, q is a prime factor of p−1 and k
is an integer divisible by some prime larger than p but not by p. Then the
Jacobian of the curve

yq = x(x− 1) . . . (x− (p− 1)) + kq

has the Mordell–Weil rank at least p− 1 over Q.

The proof of this result follows the methodology of [8], where we use
the proposition as a substitute for results about hyperelliptic curves, along
with some calculations using Gauss sums over finite fields, similar to ones
presented in [6, §11].

One of the earliest works where Jacobians of high rank depending on
the genus of curves are shown to exist is [11] where, among other things,
Néron shows that for any g there are infinitely many curves of genus g
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with Mordell–Weil rank at least 3g + 7. This work is, however, ineffective.
For g = 2 those bounds have been improved and made effective by Shioda
in [16] where families with Mordell–Weil rank at least 15 are constructed
using a trick introduced by Mestre in [10].

The first completely effective result of this kind for curves of arbitrary
genus appears be due to Coleman [1], where the effective Chabauty method
is applied to find families of hyperelliptic curves with Jacobians of high
ranks. In [8] Coleman’s examples are improved, and using a different, more
elementary approach the Jacobians are shown to have even higher ranks
under additional assumptions. The present work further extends this ap-
proach to special families of superelliptic curves, culminating in the explicit
examples of Theorem 2 above.

It should be noted that the results mentioned thus far require the gen-
era of the curves, and hence the dimensions of their Jacobians, to grow
unboundedly for the ranks to get arbitrarily large. It is a well-known open
problem whether the ranks can be arbitrarily large for abelian varieties of
a fixed dimension over a fixed number field. For the specific case of ellip-
tic curves over Q, the example with the highest known rank was found by
Elkies [3] and has rank at least 28 (exactly 28 assuming some standard
conjectures, see [9]). For a recent heuristic argument for boundedness and
a brief history of the problem, see [12].

All this is in stark contrast to the situation over function fields, where
curves of arbitrarily high rank have been known for a long time, see [18] for
the first construction and [19] for the first construction with nonisotrivial
curves. Ulmer has further treated related problems for Jacobians of hyper-
elliptic curves over function fields. For instance in [20] he provides examples
of families of hyperelliptic Jacobians with arbitrarily high rank, and further
verifies the Birch–Swinnerton–Dyer conjecture for them. See [21] and [22]
for general surveys on elliptic curves and general Jacobians over function
fields respectively, including constructions of families with high ranks.

1.1. Structure of the paper. Below we recall all the notation, defini-
tions and basic facts used in the following sections. Section 2 is devoted to
the proof of Proposition 1. In Section 3 we look at the curves of the form
yq = xp − x + a over a field of characteristic p. We show under suitable
conditions they have no q-torsion over Fp using methods similar to ones
used in [7], involving Gauss sums and Hasse–Weil zeta functions. Lastly, in
Section 4, we use those results and methods based on those in [8] to finish
the proof of Theorem 2.

1.2. Notation and preliminaries. Let K be an arbitrary perfect field.
We define a superelliptic curve over K to be a smooth projective model of
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an affine curve given by an equation of the form

C : ym = F (x),

where m ≥ 2 is an integer not divisible by the characteristic of K and F ∈
K[x] is separable, i.e. with no repeated factors over K. We set r = degF
and d = gcd(m, r).

We observe that the affine curve above is smooth, therefore it can be
identified with an open subset of its smooth projective model (see [4, I.6]).
We refer to the points not included in this open subset as the points at
infinity. Unless necessary, we shall not distinguish between the projective
and the affine model of the curve.

Considering the function field of C, from [17, Proposition 3.7.3] we can
show its genus is equal to

g = 1
2
(
(m− 1)(r − 1)− (d− 1)

)
and it has exactly d points at infinity over K. We denote their formal sum
by ∞, which is a divisor of degree d defined over K.

We refer to [5] for basic facts about Jacobians of curves. We shall iden-
tify degree zero divisors with their classes in the Jacobian. We denote the
Jacobian of a curve C by J(C), and with J(C)(K) we denote the group of
its K-rational points.

Acknowledgments. I thank Prof. Wojciech Gajda for suggesting the
topic, Bartosz Naskręcki for help with computational aspects of my re-
search, and Jędrzej Garnek for providing many useful references. I also
thank all three of them for many invaluable discussions. Further I would
like to thank Sebastian Petersen for his comments on an older version of
this paper, as well as Royce Peng for proof-reading the final version. Ad-
ditional thanks to the anonymous referee for their valuable comments and
for pointing me towards additional references.

2. Proof of Proposition 1

We may assume that the base field K is algebraically closed. We have
the following equalities of divisors on C:

div(x− αi) = mRi −
m

d
∞,

div(y) =
r∑
i=1

Ri −
r

d
∞,



On torsion of superelliptic Jacobians 227

From there it is not hard to see that ∆ is generated as a subgroup of J(C)
by the following points:

Di = Ri −Rr−1 for i = 1, . . . , r − 2,
Dr−1 = dRr−1 −∞.

and that those points satisfy equalities mDi = 0 for i = 1, . . . , r − 2 and
m
d Dr−1 = 0 in J(C). This gives a surjection from (Z/mZ)r−2×

(
Z/md Z

)
to

∆ given by

(a1, . . . , ar−1) 7→ −
r−1∑
i=1

aiDi.

We wish to show it is also injective.
If the kernel of this map is nontrivial, then, by adding suitable multiples

of divisors div(x− αi), we can find a principal divisor of the form

D = −
r−1∑
i=1

aiRi + 1
d

(
r−1∑
i=1

ai

)
∞

with 0 ≤ ai < m not all zero. We shall prove this is impossible.
Consider the auxiliary divisor

E = −∞+
r−1∑
i=1

(m− 1)Ri.

Observe that degE = (r−1)(m−1)−d = 2g−1, therefore Riemann–Roch
theorem gives us `(E) = deg(E) − g + 1 = g, where, as usual, `(E) is the
dimension of the K-vector space L(E) of functions f ∈ K(C) satisfying
E + div(f) ≥ 0. With this in mind, we can find an explicit basis of L(E).

For any 0 < i < r, 0 < j < m let fij ∈ K(C) be given by

fij = yj∏
k≤i(x− αk)

.

We have

div(fij) =
i∑

k=1
(j −m)Rk +

r∑
k=i+1

jRk + 1
d

(im− jr)∞.

It is clear that fij ∈ L(E) iff im− jr > 0. Let

A = {(i, j) : 0 < i < r, 0 < j < m, im− jr > 0},
B = {(i, j) : 0 < i < r, 0 < j < m, im− jr < 0}.

The equation im− jr = 0 has exactly d− 1 solutions in the range 0 < i <
r, 0 < j < m, which implies that the set A∪B has (m−1)(r−1)−(d−1) =
2g elements. Further, since (r − i)m − (m − j)r = −(im − jr), the map
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(i, j) 7→ (r− i,m− j) gives a bijection from A to B, showing A has exactly
1
2 |A ∪B| = g elements.
It follows that {fij : (i, j) ∈ A} is a set of g = `(E) elements of L(E), so

to show it is a basis it is enough to show their linear independence. Assume
there exist bij ∈ K, not all zero, such that∑

(i,j)∈A
bijfij = 0.

Take the largest index k such that bkj 6= 0 for some j. Observe fij for
i < k are all regular at Rk, while fkj has a pole of order m−j at this point.
Thus, letting l be the least index such that bkl 6= 0, the left-hand side above
has a pole of order m − l at Rk, so clearly is not zero. This contradiction
establishes linear independence, and hence that the set above is a basis.

Consider again our divisor D. Suppose it is principal, that is, there is a
nonzero f ∈ K(C) such that div(f) = D. We have

E + div(f) = E +D =
r−1∑
i=1

(m− 1− ai)Ri +
(
−1 +

r−1∑
i=1

ai

)
∞ ≥ 0

since the ai are all at most m − 1 and their sum is positive. This means
f ∈ L(E), so that it can be written in terms of the basis we have found:

f =
∑

(i,j)∈A
cijfij

with cij ∈ K. But each fij has a zero at Rr, hence so does f , which is
clearly not the case since the coefficient of Rr in D = div(f) is zero. We
conclude D is not a principal divisor, as we wanted. �

Remark 3. When d = 1 we have that ∞ is just a single point, and ∆ is
generated by the points D′i = Ri −∞ for i = 1, . . . , r − 1. The proposition
then shows that an integer linear combination of those D′i is zero in J(C)
if and only if all of its coefficients are divisible by m.

3. Curves of the form yq = xp − x + a

We move on to study superelliptic curves C with equations of the form

C : yq = xp − x+ a

over finite fields of characteristic p, where p, q are distinct primes and a ∈
F×p . Observe that the polynomial on the right-hand side is always separable,
since its derivative −1 doesn’t vanish. We denote the Jacobian of C by J .

Assume first q | p− 1. We shall compute the zeta function of this curve
using Gauss sums of additive and multiplicative characters.
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For any additive character ψ : Fp → C× we define a character ψn : Fpn →
C× by

ψn(α) = ψ(TrFpn/Fp
(α)),

where TrFpn/Fp
denotes the field-theoretic trace map from Fpn to Fp. Simi-

larly, for a multiplicative character χ : Fp → C, we define χn : Fpn → C by

χn(α) = χ(NFpn/Fp
(α)),

where NFpn/Fp
is the field-theoretic norm.

Remark 4. We adopt the convention for multiplicative characters χ that
χ(0) = 0 for nontrivial characters χ, but χ(0) = 1 for χ the trivial character.

Since gcd(p, q) = 1, C has exactly one point at infinity, so we just need
to count the points on its affine part.

Lemma 5. C has exactly∑
w−z=a

∑
ψ

∑
χ

ψn(z)χn(w)

affine points over Fpn, where the first sum ranges over all pairs w, z ∈ Fpn

satisfying w − z = a, the second over all additive characters of Fp and the
third one over multiplicative characters of Fp of order dividing q.

Proof. For each z, w ∈ Fpn we count the number of points on C satisfying
xp−x = z and yq = w. For such a solution to exist we need to have w−z = a,
so we only need to consider pairs z, w satisfying this. For each such pair it
is sufficient to count the number of solutions x, y to xp − x = z, yq = w.

It is standard that for any z, w the number of solutions to yq = w in Fpn

is equal to ∑
χ

χn(w),

while the number of solutions to xp − x = z is equal to∑
ψ

ψn(z),

where the ranges of the sums are as in the statement of the lemma. Com-
bining all of those observations we get the formula for the number of points
in C(Fpn). �

We consider modified Gauss sums defined by

Ga(ψn, χn) =
∑

w−z=a
ψn(z)χn(w)
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with the sum over z, w ∈ Fpn satisfying z − w = a. The previous lemma
gives

|C(Fpn)| = 1 +
∑
ψ

∑
χ

Ga(ψn, χn).

The sums Ga have the following properties:

Lemma 6. Let ψ be an additive character of Fp and χ a multiplicative
character of Fp.

• If ψ, χ are both trivial, then Ga(ψn, χn) = pn.
• If exactly one of ψ, χ is trivial, then Ga(ψn, χn) = 0.
• If both ψ, χ are nontrivial, then −Ga(ψn, χn) = (−Ga(ψ, χ))n.

Proof. The first two claims are immediate. Observe

Ga(ψn, χn) =
∑

w−z=a
ψn(z)χn(w) =

∑
w

ψn(w − a)χn(w)

= ψn(−a)
∑
w

ψn(w)χn(w) = ψ(−a)nG(ψn, χn),

where G(ψn, χn) is the usual Gauss sum. The last statement now follows
from the usual Hasse–Davenport relations for Gauss sums, see [6, §11.4]. �

We therefore have

|C(Fpn)| = 1 + pn −
∑
ψ 6=1

∑
χ 6=1

(−Ga(ψ, χ))n,

where with 1 we denote the trivial character (both additive and multiplica-
tive). This gives us an explicit formula for the zeta function of C:

Z(C, T ) =
∏
ψ 6=1

∏
χ 6=1(1 +Ga(ψ, χ)T )

(1− T )(1− pT ) .

By [13, §5.4], evaluating the numerator at T = 1 gives us the number of
points on the Jacobian of C over Fp, i.e.

|J(Fp)| =
∏
ψ 6=1

∏
χ 6=1

(1 +Ga(ψ, χ)),

With this formula we can now establish

Proposition 7. If q | p− 1, the Jacobian of C has no q-torsion over Fp.

Proof. Let ζpq be a primitive pq-th root of unity. Note thatGa(ψ, χ) ∈ Z[ζpq]
for all a, ψ, χ, and that Z[ζpq] is a Dedekind domain. Take any prime ideal
factor q of q in this ring.
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We have a classical equality of ideals (q) = (1 − ζq)q−1 in any ring con-
taining ζq, so that necessarily 1 − ζq ∈ q. It follows we have χn(w) ≡ 1
(mod q) for all w ∈ F×pn , hence for ψ, χ 6= 1 we get

Ga(ψ, χ) ≡
∑
z 6=−a

ψ(z) = −ψ(−a) +
∑
z

ψ(z) = −ψ(−a) (mod q),

thus
|J(Fp)| ≡

∏
ψ 6=1

∏
χ 6=1

(1− ψ(−a)) (mod q).

Observe that since −a ∈ F×p , ψ(−a) is a primitive p-th root of unity for
every ψ 6= 1, so 1−ψ(−a) is a factor of p in Z[ζpq]. It follows that 1−ψ(−a) 6∈
q, as otherwise we would find p ∈ q, which cannot hold as p, q are distinct
rational primes. It follows 1 − ψ(−a) is not in q, hence neither is |J(Fp)|.
Consequently q - |J(Fp)|, so J(Fp) has no q-torsion. �

If we now drop the condition that q divides p− 1 and merely assert that
it is different from p, we can instead reason using a field extension Fpk for
k such that q | pk − 1. This way we can give an exact condition for when
q-torsion exists in Fp:
Theorem 8. Let p, q be distinct primes and let k = ordq p be the least k
such that q | pk − 1. Then the Jacobian of C has no q-torsion over Fp iff
p - k.
Proof. We can repeat the reasoning preceding Theorem 7 and in the proof
of the theorem to find
|J(Fpk)| =

∏
ψ 6=1

∏
χ 6=1

(1− (−Ga(ψk, χ))) ≡
∏
ψ 6=1

∏
χ 6=1

(1− ψk(−a)) (mod q),

where this time ψ ranges over all additive characters of Fp, while χ ranges
over all multiplicative characters of Fpk of order dividing q. It is clear that
ψk(−a) = ψ(−a)k, so as long as p - k it is again a primitive root of unity.
Hence J(Fpk) has no q-torsion, thus neither does its subgroup J(Fp).

When p | k we have ψk(−a) = ψ(−a)k = 1, so that |J(Fpk)| ≡ 0 (mod q),
hence q | |J(Fpk)|. From the following lemma we also have q | |J(Fp)|, so
J(Fp) contains a q-torsion point. �

Lemma 9. For p, q, k as above we have
|J(Fpk)| = |J(Fp)|k.

Proof. From the Weil conjectures it follows there is a unique (up to order-
ing) collection of 2g numbers α1, . . . , α2g such that, for all n,

pn + 1− C(Fpn) =
2g∑
i=1

αni .
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But for k - n we have q and pn − 1 relatively prime, so that y 7→ yq is a
bijection on Fpn . It follows that C(Fpn) = pn + 1, hence

2g∑
i=1

αni = 0.(3.1)

Note that if we multiply each of α1, . . . , α2g by ζjk, where ζk is a primitive
k-th root of unity and j is arbitrary, we get

2g∑
i=1

(ζjkαi)
n = ζnjk

2g∑
i=1

αni =
2g∑
i=1

αni

for all n—if k - n this follows from (3.1), while if k | n it is immediate. The
uniqueness statement above leads us to a conclusion that αi 7→ ζjkαi is a
permutation for any j. Using again [13, §5.4],

|J(Fp)|k =

 2g∏
i=1

(1−αi)

k=
2g∏
i=1

k−1∏
j=0

(1−ζjkαi) =
2g∏
i=1

(1−αki ) = |J(Fpk)|. �

Remark 10. As pointed out by a referee, essentially the same argument
shows that |J(Fpk′ )| = |J(Fp)|k

′ for any k′ | k. The lemma holds more
generally for any superelliptic curve yq = F (x) with F ∈ Fp[x] of degree
not divisible by q. Further, numerical evidence suggests that the following
holds:

Conjecture. Consider a superelliptic curve C given by yq = F (x) with
q prime, F ∈ Fp[x] of degree not divisible by q and set k = ordq p. There
exists an isomorphism

J(Fpk) ∼= J(Fp)k

of abstract groups.

Remark 11. The previous two theorems still hold when we take C to be
defined by an equation yq

l = xp − x + a. The proofs are analogous using
the fact 1 − ζql ∈ q for any prime q of Z[ζpql ] containing q. We get that
q | |J(Fp)| iff p | ordq p.

4. Applications to bounding ranks

We now apply the established results to reductions of certain curves over
the rationals to bound their Mordell–Weil ranks from below. Specifically,
consider curves defined by

C : ym = (x− a1) . . . (x− ar) + km,

where a1, . . . , ar and k are integers and m, r are relatively prime. We take
the points Pi = (ai, k) ∈ C, their images Di = Pi −∞ ∈ J(C) under the
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Albanese map and the subgroup Γ those images generate. It is clearly a
subgroup of J(C)(Q). The following result is implicit in [8] for m = 2.

Proposition 12. Assume there is a prime p such that:
(1) m is not divisible by p,
(2) k is divisible by p,
(3) the ai are pairwise incongruent modulo p.

Suppose further Γ contains no nontrivial m-torsion. Then Γ is free of rank
r − 1.

Proof. The sum of all Di is equal to div(y − k), so Γ is generated by
D1, . . . , Dr−1. It is enough to show there is no relation between those points.

Since p | k, the reduction of the equation of C modulo p is

C̃ : ym = (x− a1) . . . (x− ar).

We have p - m by the first assumption, and the right-hand side is separable
by the third, from which we deduce C has good reduction modulo p. It
follows J(C) also has good reduction (see [2, Corollary VII.12.3]), which
induces a reduction homomorphism J(C)(Q)→ J(C̃)(Fp).

Suppose there is a nontrivial relation between the points D1, . . . , Dr−1,
say

r−1∑
i=1

aiDi = 0

with not all ai zero. Reordering the points and changing the sign if neces-
sary, we may assume a1 > 0 and a1 is the smallest possible among all such
relations. The relation is preserved by the reduction homomorphism, so

r−1∑
i=1

aiD̃i = 0,

where D̃i is the image of Di under reduction. But the reduction of the point
Pi = (ai, k) is (ãi, 0) (as we assumed p | k), so the points D̃i coincide with
the points D′i considered in Remark 3. This gives rise to a vanishing linear
combination of the D′i, which by the remark implies the coefficients are all
divisible by m. Writing ai = mbi we have b1 < a1, so, by minimality of
a1, the point D =

∑r−1
i=1 biDi ∈ J(C)(Q) is nonzero. However, the original

relation gives us mD = 0, which contradicts the assumption that Γ has no
m-torsion. �

Remark 13. Suitable versions of this proposition also hold for curves sat-
isfying gcd(m, r) > 1, as well as for curves over arbitrary number fields in
place of Q, and lead to more general variants of Theorem 2
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Proof of Theorem 2. Let C be a curve as in the statement of the theorem.
First we show C has no q-torsion over Q. The reduction of the equation of
this curve modulo p is

C̃ : yq = xp − x+ kq

and, as we have noted before, the right-hand side is separable, so as before
the curve and its Jacobian have good reduction and we get a reduction
homomorphism J(C)(Qp)→ J(C̃)(Fp).

The kernel of this reduction homomorphism is isomorphic to a group as-
sociated to a g-parameter formal group over Zp (see [5, §C.2]). By [15, The-
orems II.9.3 and II.9.4] this group has no torsion, so all torsion of J(C)(Qp)
survives into J(C̃)(Fp). But Theorem 7 tells us this last group has no q-
torsion, therefore neither does J(C)(Qp) nor J(C)(Q). We are now done
by the previous proposition. �

Using Dirichlet’s theorem on primes in arithmetic progressions, this gives
us, for any fixed q, families of superelliptic curves whose Jacobians have
Mordell–Weil ranks that grow at least linearly with the genus of the curve.

Remark 14. The methods described above can be applied to curves which
have the form yq = xp + a after reduction modulo some prime ` ≡ 1
(mod pq). Torsion on Jacobians of such curves is studied at length in [7],
see for instance Lemma 4 of that paper, where one can find a different proof
of the analogue of Theorem 7 for the case q = 3.
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