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Motivic Galois representations valued in Spin
groups

par SHIANG TANG

Dedicated to the memory of my mother,
Que Ling Ping, 1954/07/08 — 2019/10/28

RESUME. Soit m un entier tel que m > 7et m = 0,1,7 mod 8. Nous construi-
sons des systemes strictement compatibles de repré- sentations l-adiques I'g —
Spin,,(Q;) 2% GLn(Q;) qui sont potentiellement automorphes et moti-
viques. Comme application, dans certains cas nous donnons une réponse po-
sitive au probleme de Galois inverse pour les groupes spinoriels sur F,,. Pour
m impair, nous comparons nos exemples avec le travail de A. Kret et S. W.
Shin ([18]), qui étudie les représentations galoisiennes automorphes & valeurs
dans GSpin,,.

ABSTRACT. Let m be an integer such that m > 7 and m = 0,1,7 mod 8. We
construct strictly compatible systems of representations of 'y — Spin,, (Q;)
P GL ~(Q;) that are potentially automorphic and motivic. As an applica-
tion, we prove instances of the inverse Galois problem for the F,—points of
the spin groups. For odd m, we compare our examples with the work of A.
Kret and S. W. Shin ([18]), which studies automorphic Galois representations
valued in GSpin,,.

1. Introduction

In [28, 8.4], Serre asks whether there are motives (over Q, say), whose
motivic Galois groups are equal to a given semisimple (or more generally,
reductive) algebraic group G. This question and its variants have been stud-
ied by many people, including N. Katz, M. Dettweiler, S. Reiter, Z. Yun, S.
Patrikis and others; see for example [32], [24] and [7]. Most of the results
in the literature concern exceptional algebraic groups. In this paper, we
study a weaker version of Serre’s question for spin groups. We find spin
groups interesting because their faithful representations have large dimen-
sions and they do not occur in the étale cohomology of smooth projective
varieties in any obvious way. In [18], Kret and Shin prove the existence of
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Galois representations into GSpin,,, ;| corresponding to suitable cuspidal
automorphic representations of GSp,,, over totally real fields. Their Galois
representations are motivic in the sense that they occur in the cohomology
of certain Shimura varieties. Studying Spiny,, ,;—valued Galois representa-
tions then appears to be a simple matter of passing from a reductive group
to its (semisimple) derived subgroup, but the distinction can indeed be
subtle: for example, when n = 1, GSping = GLg, it is well-known that
holomorphic modular forms (or elliptic curves) give rise to p-adic Galois
representations p : I'g — GL2(Q,) that are odd, i.e. detp(c) = —1; in
particular, they do not land in SLg, nor can they be twisted into SLo in
any obvious way. In fact, two-dimensional geometric Galois representations
that are even (i.e. det p(c) = 1) are expected to come from Maass forms by
the Fontaine-Mazur—Langlands conjectures.
Our main theorem is the following:

Theorem 1.1. (Proposition 4.1 and Theorem 4.2) Let m be an integer
such that m > 7 and m = 0,1,7 mod 8. There exists a strictly compatible
system
R)\ : F@ — GLN(M)\)

with distinct Hodge—Tate weights and with coefficients in a number field
M such that for a density one set of rational primes | and for M, Ry =
spin o ry, where v : Tg — Spin,, (M) is a homomorphism with Zariski-
dense image and spin : Spin,, — GLy is the spin representation. Moreover,
{Rx} is potentially automorphic and motivic in the following sense:

e There exist a totally real extension FT /Q and a reqular L—algebraic,
cuspidal automorphic representation II of GLy(Ap+) such that

Rilr,, &y,

where v : Q) = C is a fived field isomorphism.
o There is a smooth projective variety X/Q and integers i and j such
that Ry is a Ig-subrepresentation of H'(Xg, Qi(j))-

This is the spin-analog of the main result of [7]. As an application, we
prove new instances of the inverse Galois problem:

Theorem 1.2. (Corollary 4.3) For m > 7, m =0,1,7 mod 8, Spin,, (F,)
is the Galois group of a finite Galois extension of Q for p belonging to a
set of rational primes of positive density.

Let us explain the strange-looking congruence condition on m appeared
in Theorem 1.1. Let T" be a maximal split torus of Spin,, and let W =
N(T)/T be the Weyl group. Then the integer m satisfies the above con-
gruence condition if and only if the longest element w® € W acts as —1 on
X*(T) and w® has a representative in N(T) of order 2 ([1, Section 3]; see
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also Lemma 2.3). Having such an involution at hand is crucial in standard
Galois deformation theoretic arguments: one typically constructs an appro-
priate mod p representation 7 : 'y — Spin,, (F,) which is odd in the sense
of [14, Definition 1.2] (which will hold if the complex conjugation maps
into the conjugacy class of the above involution in Spin,,), then deform it
to a geometric (in the sense of Fontaine-Mazur) characteristic zero repre-
sentation using either Ramakrishna style techniques (originated in [26] and
sublimed in [14]) or Khare-Wintenberger style arguments ([16, Section 3]).
Oddness of 7 is crucial in both methods.

Due to the automorphic nature of our construction, the Hodge—Tate
weights of the compatible system in Theorem 1.1 are distinct. In con-
trast, suppose w® acts as —1 on X*(T) but it does not lift to an invo-
lution in N(T') (which happens if and only if m = 3,4,5 mod 8), then
we do not expect Galois representations r : I'g — Spin,,, (Q;) such that
spinor : g — GLx(Q;) comes from a pure motive with regular Hodge
structure. In fact, the spin representation spin : Spin,, — GLy is valued
in Spy for m = 3,4,5 mod 8 by Lemma 1.3. If there were such a motive,
let V' be its real Hodge structure such that V @r C = @,44—y, Vp,q with
Vpq = Vyp and w € Z. By symmetry of the symplectic torus and regular-
ity, we have dimV, , = dimV_, _, = 1 for all p, ¢ appearing in the direct
sum. In particular, w = 0 and the complex conjugation action corresponds
to the longest element in the Weyl group of Spy;, which lifts to an order 4
element in the normalizer of the torus of Spy, a contradiction.! Assuming
the Fontaine-Mazur conjecture, we can express this in purely Galois the-
oretic terms: for m = 3,4,5 mod 8, there should not exist f-adic Galois
representations
that are unramified everywhere, potentially semistable at [ with distinct
HodgeTate weights. For example, let m = 3, then Spins = SLy and the
spin representation is the canonical injection SLo — GLs. In this case, our
speculation follows from a theorem of Calegari ([9, Theorem 1.2]) under
some mild hypotheses.

Methods and organization of this paper. The method we use in prov-
ing Theorem 1.1 is very similar to that of [7]. In Section 2, we begin by
constructing a mod p representation 7 : I'g — Spin,,(F,) (for m satisfy-
ing the congruence condition in Theorem 1.1) related to the action of the
Weyl group of Spin,, on the weight space of the spin representation for
which spin o 7 satisfies the assumptions of the automorphic lifting theo-

rems in [3]. Succeeding in constructing such a representation requires, in

I This follows from Lemma 3.1 (with 6 = 1) and the proof of Lemma 4.12 of [1]. One can also
verify this directly.
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addition to the techniques used in [7, Section 2], a detailed calculation on
the structure of Spin,, and the crucial observation that a certain part of
the Weyl group acts transitively on the weight lattice of the spin repre-
sentation (Lemma 2.1). We then deform 7 to a geometric representation
r:Tg — Spinm(@p) that is Steinberg at a finite place using a version of
the Khare-Wintenberger argument: similar arguments have appeared in [7,
Section 3] and [25, Section 3|, we present an axiomatized version in Sec-
tion 3. Then [3, Theorem C] implies that spinor is potentially automorphic
and is part of a strictly compatible system {R)}. We wish to show that the
Zariski closure of the image of Ry equals Spin,, for all \. Following [7, Sec-
tion 4], we exploit the fact that the image of r contains a regular unipotent
element of Spin,, and use ideas of Larsen and Pink (]22]), where the key is
to show that R) is irreducible for all A. This is proven for Eg in [7] using
elementary combinatorial properties of the formal character of Eg, which
does not carry over to Spin,,, since the rank of the latter can get arbitrarily
large. Instead, we get away with a weaker statement by invoking [3, Theo-
rem D] (which relies on Larsen’s work [20]): this is where the density one
condition in Theorem 1.1 came from.? This is done in Section 4. In Sec-
tion 5, we show that { Ry} occurs in the cohomology of a smooth projective
variety following [7, Section 5]. In Section 6, we compare our construction
with the work of Kret and Shin ([18]): we explain how the main theorem
of [18] yields a stronger version of Theorem 1.1 for m = 1,7 mod 8.3 We
also observe that for m = 3,5 mod 8, [18] (in which the automorphic rep-
resentations are regular L—algebraic) does not yield Spin,,,—valued Galois
representations (Lemma 6.3).

1.1. Notation. Let F be a field. Fix an algebraic closure F of F and write
[ for the absolute Galois group Gal(F/F) of F. If F' is a number field, then
for each place v of F, we fix an embedding F' — F,, into an algebraic closure
of F,,, which gives rise to an injective group homomorphism I'r,, — I'. For
any finite place v, let k, be the residue field of v and let Fr, € I'y,, be the
arithmetic Frobenius. If H is a group (typically the points over a finite field
or a p-adic field of a reductive algebraic group), and there is a continuous
group homomorphism r : I'r — H, we will sometimes write 7|, for r|p, ,
the restriction of r to the decomposition group I'r,. If H acts on a finite-
dimensional vector space V, we write (V') for the I'r—module induced by
precomposing this action with r. (Typically H will be a reductive algebraic
group and V' will be its Lie algebra equipped with the adjoint action of H.)

20ne could conceivably impose additional local deformation conditions (for instance, those
corresponding to supercuspidal representations) to force Ry to be irreducible for all A, but I do
not know how to do this at present.

3We note that very recently Kret and Shin have extended their work to even orthogonal
groups in [19]. The main theorem of [19] yields a stronger version of Theorem 1.1 for m = 0
mod 8 in a similar way.
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Let x: I'r — Z, be the p-adic cyclotomic character and & be its reduction
modulo p. We will always assume p # 2, and our main theorems will make
stronger hypotheses on p.

We recall here some deformation-theoretic terminology. Given a topo-
logically finitely-generated profinite group I, a finite extension E/Q, with
ring of integers O and residue field k, a reductive algebraic group G de-
fined over O and a continuous homomorphism 7 : I' = G(k), let Rgi be
the universal lifting ring representing the functor sending a complete local
noetherian O-algebra R with residue field k to the set of lifts r : ' — G(R)
of 7. We will always leave the O implicit, writing only RY, and at various
points in the argument we enlarge O; see [3, Lemma 1.2.1] for a justification
of (the harmlessness of) this practice. We write RY ® Q, for R%i ®0 Q,

for any particular choice of O, and again by [3, Lemma 1.2.1], RZ' ® @p is
independent of the choice of E.

When K/Q, is a finite extension and I is I'x, we consider quotients of RY
having fixed inertial type and p-adic Hodge type. The fundamental analysis
here is due to Kisin ([17]), and the state of the art, and our point of refer-
ence, is [4], and we refer there for details. We will index p-adic Hodge types
of deformations r: I'x — G(O) by collections u(r) = {u(r,7)}, . KT, of

(conjugacy classes of) Hodge—Tate co-characters, and write RE A7) for the
Zyp-flat quotient of RE whose points in finite local E—algebras are precisely
those of R= that are moreover potentially semi-stable with p-adic Hodge
type u(r). We likewise consider the quotients with fixed inertial type o,

RE ’E(T)’U, referring to [4, Section 3.2] for details.

We recall some basic facts on spin groups and spin representations,
see [15, Lecture 20] for more details. Let m > 3 be an integer. Consider the
symmetric form

(z,y) = 21Ym + T2Ym—1 + - + Tmy1

on V = Q™ with associated quadratic form Q(x) = (x,x). Let C(Q) be
the Clifford algebra associated to (V, Q). It is equipped with an embedding
V C C(Q) which is universal for maps f : V — A into associative rings
A satisfying f(x)? = Q(z) for all x € V. The algebra C(Q) has a Z/27Z—
grading, C(Q) = C(Q)T @& C(Q)~, induced from the grading on the tensor
algebra. On the Clifford algebra C'(Q)) we have an unique anti-involution *
that is determined by (vy -+ -v,)* = (=1) v, - v for all vy,...,v, € V. We
define for all Q—algebras R,

GSpin,, (R) ={g € (C(Q)T ® R)* : gVg" C V}.

Let N : C(Q) — Q*, x — xx™* be the Clifford norm. It induces a character
N : GSpin,, = G,,. We define Spin,,, to be the kernel of N. The action
of the group GSpin,,, resp. Spin,, stabilizes V' C C(Q), which induces a

mo
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surjection GSpin,,, = SOy, resp. Spin,,, = SO,,,. Denote by us = {£1} the
kernel of Spin,,, = SO,,.

Now we turn to spin representations. We keep the notation in the para-
graph above with Q replaced by C. Let 50,,,(C) :=s0(Q) = {X € End(V) :
(Xv,w) + (v, Xw) =0,V v,w € V}. By [15, Lemma 20.7], there is a nat-
ural embedding of Lie algebras s0(Q) — C(Q)*". Let n = [m/2]. The
weight lattice of s0,,C may be described as the submodule of >, .,~,, Qx;
spanned by x1,...,xn and %(ZZ Xi)- Suppose m = 2n is even, write V =
W @ W', where W and W’ are isotropic subspaces of (V,Q). By [15,
Lemma 20.9], there is an isomorphism of algebras C(Q) = End(A*W).
We have A\*W = A“" W & A\°“ W, it follows that s0(Q) C C(Q)eve" =
End(A®" W)&End(A° W). Hence we have two representations of so,,C,
AW and A°YW. We let S = A" W for even n, and let S = AW
for odd n. By [15, Lemma 20.15], S is irreducible of dimension 2"~ whose
weights are %(Zl +x;) where the number of minus signs is even. We call S
the spin representation of so,,(C). Now suppose m = 2n + 1 is odd, write
V=WeaW a&U, where W and W’ are isotropic subspaces of (V,Q), and
U is a one-dimensional subspace perpendicular to them. In this case, we
have s0(Q) C C(Q)¢"*" = End(A\*W). We let S = A*W. By [15, Propo-
sition 20.20], S is an irreducible representation of so,,C of dimension 2"
whose weights are %(ZZ +x;). We again call S the spin representation of
50,,(C). The spin representation may be viewed as a group homomorphism
spin : Spin,, — GLgn, resp. spin : Spin,, — GLgn—1 for odd m, resp. even
m. The following fact is contained in [15, Exercise 20.38].

Lemma 1.3. There is nondegenerate bilinear form 5 on S such that if m =
2n+1, B is symmetric whenn = 0,3 mod 4 and skew-symmetric otherwise;
and if m = 2n with n even, B is symmetric when n =0 mod 4 and skew-
symmetric otherwise. Therefore, if m = 2n + 1, the spin representation is
valued in SO2nC for n = 0,3 mod 4 and valued in SpynC for n = 1,2
mod 4; and if m = 2n with n even, the spin representation is valued in
SO9n-1C for n =0 mod 4 and valued in Spyn-1C for n =2 mod 4.

2. Construction of residual Galois representations

Before we construct our mod p Galois representations into Spin,,, we
make some preliminary calculations. We follow the notation of Section 1.1.

We have the following explicit description of the two-fold covering 7 :
Spin,,, = SO,, (see the proof of [15, Proposition 20.28]). Let g € SO,, =
SO(Q), we may write g as a product of reflections ry,, - - - ry, for w; € V
with Q(w;) = —1 (7 is necessarily even), then the two elements in 771(g)
are +wj - - - w,. We fix the following ordered basis for V' = Q™: for m = 2n,
€1, --s€ny fn,. .., f1 satisfying (e;, fi) = 1 for 1 < i < n, (e, fj) = 0 for
1 <i#j<n,and (e,¢€j) = (fi,fj) =0for 1 <i,j <n;form=2n+1,
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€1,y €n, U0, fn, ..., f1 satisfying (e;, fi) = 1 for 1 < i < n, (e;, f;) =0
for 1 <i# 35 <mn, (e,¢) = (fi,f;) =0for 1 <i,j<n, (up,ug) = 1,
(uo,ei) = (ug, fi) = 0 for 1 < ¢ < n. With this basis, we have for any
Q-algebra R
SOm(R) = {g € SLw(R) : gJg' = J}

where J = [aij]1<ij<m Whose nonzero entries are exactly a;m41—; = 1
for 1 < ¢ < m. Then we have a standard maximal torus Tso defined by
Tso(R) = {diag(t1,...,tn, 1,t;1, ..., t7") : t; € R*} for any Q-algebra
R, where we omit the middle entry 1 when m = 2n is even. We let T =
7 1Ts0 be the corresponding maximal torus of Spin,,. The Weyl group W
is then isomorphic to N(Tso)/Tso, which is a semidirect product D x Sy,
where D is described in what follows. We let D be {£1}" when m =
2n 4 1, and the subgroup of {£1}" consisting of elements with an even
number of minus signs when m = 2n. It acts on Tso in the following way:
For any element ¢ = (¢;) € D and t = diag(ty,...,tn, 1,t,1,... ;") €
Tso, define t€ := diag(t{', ..., ts, 1t ...t ") € Tso. The symmetric
group S, acts on Tso by permuting the diagonal entries: V o € Sy, t9 =
diag(o(t1),...,0(tn), L, o(ty) "L, ... a(ty) ™).

Let w® be the longest element in W. When m = 2n + 1, w° acts as —1
on X*(Tso); when m = 2n, w® acts as —1 on X*(Tso) if and only if n is
even. In both cases, w’ = (—1,...,—1) € D.

Lemma 2.1. The group D < W acts simply transitively on Agpip =
{2(X1, £xi)}, the weights of the spin representation of Spin,,,.

Proof. This follows immediately from the explicit action of D on T de-
scribed above. O

Lemma 2.2. The group homomorphism N(Tso) — W admits a section
s: W — N(Tso). Indeed, for o € Sy, let M, be the corresponding standard

n X n permutation matriz, then s(o) = (Ag" ]\fgt), where M2 is the anti-
diagonal transpose of My; for € = (&) € D, s(€) = de, where de is the
m X m matriz obtained from the identity matriz I, by swapping the i-th
and the (m + 1 — i)-th columns whenever ¢, = —1 and leaving the rest of
the columns unchanged when m = 2n is even, and d¢ is the m X m matrix
obtained from the identity matriz I, by performing the column operations
above and replacing the (n + 1,n + 1)-entry with (—1){1Si=ma=—1} ypen
m = 2n + 1 is odd.

By the lemma above, we may identify D with its isomorphic image in
N(Ts0). With this identification, let D = 7~ 1D C Spin,,. We would like
to calculate the structure of D. Suppose m = 2n is even, for each i € [1,n],
let w; = %(ei — fi)- A straightforward calculation shows that Q(w;) = —1
and 7,, € Oy, equals the matrix obtained by swapping the i-th and the
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(m + 1 — i)-th columns of I,. It follows that D is generated by 7,7, for
1 <i < j <n, and hence D is generated by w;w; for 1 <7 < j < n. Note
that w? = —1 and w;w; = —w;w; for i # j, which imply that

(wy - - wg)? = (—1)kG+D/2

for 1 < k < n. Now suppose m = 2n + 1 is odd, define w; as above and
let wg := /—1ug, then ry,ry, € SO, equals the matrix obtained from I,
by swapping the i-th and the (m + 1 — i)-th columns and replacing the
(n + 1,n + 1)-entry with —1. It follows that ry,7rw,;, 1 < i < n generate
D and hence w; := wow;, 1 < i < n generate D. Note that wz-z = —1 and
wiwj = —wjw; for i # j, which imply that

(wi -+ wp)? = (—1)kk+D/2
for 1 < k < n. We thus obtain

Lemma 2.3. The sequence 1 — {+1} — D — D — 1 is nonsplit. More-
over, if m = 2n, w® acts as —1 on X*(T) if and only if n is even, in
which case it corresponds to the element wy - - - w, € Spin,,, under the map
N(T) — W. This element has order two if and only if n = 0 mod 4. If
m = 2n+1, w® always acts as —1 on X*(T), and the corresponding element
wi -+ - wy € Spin,,, has order two if and only if n = 0,3 mod 4.

For the rest of this section, we make the following parity assumption on
the integer m:
e If m = 2n is even, then n =0 mod 4;
o If m=2n+1isodd, thenn >3 and n =0,3 mod 4;
equivalently, m > 7 and m =0,1,7 mod 8.
By Lemma 2.3, w® € W then lifts to an order two element in N(T'); and
it follows from Lemma 1.3 that the spin representation is

spin : Spin,, — SOy

where N = 2" for odd m and N = 2"~! for even m.

We now begin to construct the mod p representation valued in Spin,,.
We do this by first realizing D as a Galois group of some finite extension
of Q, and then modify the corresponding homomorphism I'g — N(T')g, C
Spin,, (F,) so that after composing with spin, the resulting representation
satisfies the assumptions of the potential automorphy theorems of [3].

Lemma 2.4. There is a finite, totally real Galois extension L/Q whose
Galois group is isomorphic to D satisfying property (Sy) with N = 2 in
the sense of [30, Definition 2.1.2], i.e. every prime p which is ramified in

L/Q satisfies
e p=1 mod 4.
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e Ifv is a place of L above p, then the local extension L, /Q, is totally
ramified.

Proof. We have D = (Z/2Z)" or (Z/27Z)"~'. We pick a prime p; = 1
mod 4. We will construct inductively pi,...,p, such that p; = 1 mod 4
and p; € ((@ij)2 for i # j. Suppose we have pi,...,pr (k < n) already and
consider Q(v/—1,/p1, ..., /Pk)- Chebotarev implies that there are infin-
itely many p that splits in this field. In particular, —1,p1,...,px € (Q;)Q,
which is equivalent to

(3)-()-- ()

In particular, p =1 mod 4 and quadratic reciprocity implies that

(2)-e ()

which is equivalent to p € (Q;j)2 for 1 < j < k. Thus, if we take py41 to be
such a prime, the induction can proceed. Now we let L = Q(\/p1, - - -, /Pn)-
Then Gal(L/Q) = D and L,, = Qp,(\/pi), which is a totally ramified
extension of Qp,. O

Let s : I'g — Gal(L/Q) = D be the corresponding homomorphism pro-
duced by the above lemma. We need to lift s to a surjective homomorphism
s: g — D across the short exact sequence 1 — uo — D — D — 1. The
method we use is a minor modification of the argument in page 12 of [30].
Since the exact sequence of groups is nonsplit by Lemma 2.3, it suffices to
find a lift s : I'g — D of s, which will automatically be surjective. Suppose
that s has a lift to D everywhere locally (including co), then s has a lift to
D. In fact, s induces a map s* : H?(D, ug) — H?*(Tg, p2), and s lifts to D
if and only if s*(€) = 0, where ¢ is the class of the extension D — D. The
natural map

H?(Tg, p2) = ] H*(Tq,, p2)
p<oo
is injective because H?*(Ig, u2) = Br(Q)[2] and Br(Q) — [T,<o, Br(Qy).
It follows that if s lifts everywhere locally, then it lifts globally. It thus
remains to show that s lifts everywhere locally. For p < oo, s ]pr lifts to D
follows from property (S3) by the exact same argument as in the last two
paragraphs of page 12 of [30]; for p = oo, s|r, obviously lifts to D because
s(c) =1 (c is the complex conjugation). Therefore, we obtain a surjection

s:Tg— D C N(T)z.

We would like to modify s so that s(c) belongs to 7" and is “sufficiently
odd” in the sense that dim(so,,)*4%(¢) = |®|/2, where ® is the root system



206 Shiang TANG

of s0,,. When s(c) € Spin,, satifies this equality, we call it a split Cartan
involution, or a Chevalley involution in Spin,,.

Let us fix a Borel subgroup B D T of Spin,,. It corresponds to a set of
simple roots A C ® := ®(Spin,,,T). Let p¥ be the half sum of positive
coroots in ®V. By examining the Plates in [6], if ® is of type By, p" has
coefficients in Z if and only if n = 0,3 mod 4; and if ® is of type D, p"
has coefficients in Z if and only if » = 0,1 mod 4. In particular, p¥ has
coefficients in Z for m = 2n or 2n + 1 satisfying the parity assumption we
made before. It follows that for those m, p¥ € Xo(T), i.e. it is a well-defined
cocharacter of T

Let k be a field and G be an algebraic group defined over k, we denote
by Gy or G(k) the k-points of G. Observe that if s : I'g — N(T)j is a
group homomorphism and ¢ € H!(I'g,T)), where T'g acts on T}, via the
composite Ad o s, then ¢ - s:T'g — N(T'); is a group homomorphism.

Recall that we have an isomorphism G?, = Ts0,

(t1,. .. tn) > diag(ty, ... to, Lttt )
(where we omit the middle 1 when m is even). We also have an isomorphism
T = {(z,t1,. . tn) €G22 =ty -t}

Let T'[2] be the group of Z—points of T'. It consists of elements of the form
(z,€1,...,€), where z = £1, ¢, = +1 and the number of —1 among ¢; is
even. The group I'p acts on T'[2] via Ad o s. This action factors through
Gal(L/Q) = D. Then T'[2] is a direct sum of two irreducible D-modules,
Vi ={(l,e1,...,€) 1 ¢ = £1} and Vo = {(—1,€e1,...,€,) : € = £1}.
Letting S = ¢s(L/Q) U {00, 2} (cs(L/Q) denotes the set of places of Q that
split completely in L), [23, Theorem 9.2.3 (v)] implies that for i = 1,2, the
natural maps
H'(Tgs, Vi) = H' (T, Vi)
are surjective, and hence we have a surjection
H'(To,s,T[2]) — H'(Tr, T[2]) = Hom(I'g, T[2])

(recall that s(c) € p2). Let ¢ € H'(Igs,T[2]) be a class that maps to
¢+ s(c)pY(—1) in Hom(Tg, T[2]). We now replace s by ¢ - s. Then having
made this replacement, s(c) = p¥(—1), which is a split Cartan involution
by [32, Lemma 2.3]. Let E be the fixed field of ker s.

Now we are going to further modify s by an element in H*(Tg, Tr,) (for a
prime p) so that the resulting homomorphism I'g — N(T')r, C Spin,, (IF,)
satisfies favorable conditions so that we can use the results of [3] to deform
it to a geometric representation. The method we use here is extremely close
to the proof of [7, Proposition 2.8]. We first establish some notation. For a
fixed prime p, we write x for the p-adic cyclotomic character and & for its
mod p reduction. For a prime ! dividing p — 1 such that 1% does not divide
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p — 1, let pr(l) be the canonical projection from F onto the [-torsion
subgroup F[I]. Let K[l] = pr(l) ok : I'qg — F[I].

Proposition 2.5. Consider pairs of primes (I, p) such that p splits in E/Q
and p—1 is divisible by | but not 2. Then there exist infinitely many primes
[ such that there exist infinitely many pairs (I,p) such that there exists a
homomorphism N
T FQ — TIFp[l] -D C N(T)]Fp
safisfying
(1) () = p(-1).
(2) Atp, fix any choice of integers ng for a € A, 7y = [[pen @V oR[l]™.
(3) There is a prime q of order I mod p such that 7|, is unramified with
Frobenius mapping to p¥(q) € T, [1].
Moreover, in addition to the above, we can choose p > 2(N + 1),
I > hspin,, (Pspin,, is the Cozeter number of Spin,, ), {na} and 7
such that
(4) spin o 7|, is a direct sum of distinct powers of K|[l].
(5) For any Borel B > T, H°(Tg,,7(g/b)) vanishes (where g = soy,
and T acts on g/b via the adjoint action).
(6) spin o7y, | is absolutely irreducible.

Proof. Let [ be any odd prime such that E (the fixed field of kers) and
Q(py2) are linearly disjoint over Q (e.g. take [ split in F/Q). Later in the
argument we will require [ to be larger than some constant depending only
on the group Spin,,. Now we take p to be any prime split in E(y;) but
nonsplit in E(u;2) (such a prime exists by Chebotarev). In other words, p
splits in £/Q and p—1 is divisible by [ but not [2. In particular, E and Q(u,)
are linearly disjoint over Q. By Chebotarev, there exists a prime ¢ that splits
in £ and has order [ in ). Let r be a prime that splits in (). The Galois
group I'g acts on Tk, [l] via Ad o s, which factors through D = Gal(L/Q).
Then TF,[l] decomposes into a direct sum of irreducible F;[D]-modules:
Ty, [l] = @W;. Let ¥ = cs(L/Q) U {oo,l} and T = {p,q,r}. Then [23,
Theorem 9.2.3(v)] implies that the canonical homomorphisms
H'(Tgx, Wi) — D H' (Tg,, Ws)
veT
are surjective, from which it follows that the canonical homomorphism
H'(Tox, Tr,[I]) — P H' (Ta,, Tr,[1)
veT

is surjective as well. We let ¢ € H'(Tgyx,Tr,[l]) be a class such that
Blp = Tlaea @ o B[], ¢|q is unramified with ¢(Fry) = pY(q), and ¢|,
is unramified with ¢(Fr,) = ¢, where ¢ is any element in TF, [/] such that
A(t) for A € Agpin are all distinct (such ¢ exists provided that [ is sufficiently
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large). We set 7 = ¢ - s. It follows immediately from the choice of ¢ that (2)
and (3) hold. Since s(c) = pY(—1) and [ is odd, (1) holds. It remains to
address (4) through (6). We have

Spln o f‘p — @ R[Z]ZQEA na<)\,a\/>;
)\eAsp'Ln

since Agpin, is multiplicity-free, choosing {n,} to be sufficiently general will
make the exponents distinct. This proves (4). For (5), note that

Tlp(g/b) = @ R[Z]ZaeA"a<B,av>.

Bed—

By choosing [ to be sufficiently large and {n,} to be sufficiently general,
we can ensure that the absolute values of the exponents are in (0,1); in
particular, H°(T'g,,7(g/b)) vanishes. Finally, D acts transitively on Agpin
by Lemma 2.1, so any nonzero submodule of spin o7 has nonzero projection
to each of the weight spaces; since E and Q(pu,) are linearly disjoint over
Q, the same is true for spin o F|FQ(W)>. On the other hand, 7#(Fr,) =t €
Tr, [I] acts via distinct characters on the different weight spaces of the spin
representation by the choice of ¢. It follows that spin o F|FQ(H1)) is absolutely

irreducible, which shows (6). O

3. Lifting Galois representations

In this section, we prove a lifting theorem using a version of the Khare—
Wintenberger argument ([16]), similar to the arguments in [7, Section 3]
and [25, Section 3]. We axiomatize their arguments and state our lifting
theorem as general as we can. On the other hand, the main theorem of [14]
allows one to deform a much larger class of G—valued mod p Galois rep-
resentations to geometric representations in characteristic zero, yet it does
not establish potential automorphy of the lifts.

Let G be a split connected semisimple group over Q. Let T be a maximal
split torus of G and let ® = ®(G,T') be the root system of G. We assume
that G satisfies the following:

e (G contains a split Cartan involution, i.e. there is an element 7 € G
of order two such that dim g7 = |®|/2.

e (G admits an irreducible faithful representation R : G — GLy fac-
toring through SOy (the orthogonal group preserving the pairing
(x,y) = x1y1 + 22Yy2 + - - + TNYN OD QN this is different from the
pairing used in Section 1.1) such that the formal character of R is
multiplicity-free.*

4This is a very restrictive assumption.
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Let F™ be a totally real field. Let ¥ : ['p+ — G(F,) be a continuous
representation. Let S be the union of all the archimedean places of F'T,
the places of '™ dividing p and the places of F™ at which 7 is ramified.
Suppose that 7 satisfies the following;:

e 7 is odd in the sense that for v|co with ¢, € I'p+ the complex
conjugation, 7(c,) is a split Cartan involution.

e For v not above p, 7|, has a characteristic zero lift r, : FFJ —
G(Zp). B

e For v|p, 7|, has a characteristic zero lift r, : I'p+ — G(Zp) with
some fixed Hodge type pu(ry,) and inertial type o, such that Ror,
is potentially diagonalizable in the sense of [3] with regular Hodge—
Tate weights.®

e Ro7|p+ (up) 1s absolutely irreducible.

e p is sufficiently large relative to G.

We let O be the ring of integers in a finite extension F of ), enlarged
if necessary so that all of the above data are defined over O.

We recall the definition of the Clozel-Harris—Taylor group scheme G,
over Z which is defined as the semidirect product (GL,, x GL;) x {1, 3}
where 7(g,a)7 = (a(*g)~!,a), and the similitude character v : G, — GLy
given by v(g,a) = a and v(j) = —1. Suppose we have a homomorphism
r: I'p+ — G(A) for some ring A. Let F/F* be a quadratic extension of F,
and define p(r): I'p+ — Gn(R) as the composite

R(r)xresp

FF+ SON(A) X Gal(F/F+) — QN(A),

where the last map sends g € SOy (A) to its image in GLy(A) and sends
the nontrivial element of Gal(F/FT) to 7. By our choice of the pairing
defining SOy, p(r) is a well-defined homomorphism.

We choose a quadratic CM extension '/ FT such that F does not contain
Cp» R 0 7|p(,,) remains irreducible, and all the finite places in S split in
F/F*. We will define global deformation conditions for ¥ and p(7) with
respect to F//F*. Then we will show that there are natural finite maps
between the corresponding deformation rings and use the O—finiteness of
the deformation ring for the group Gy to conclude that the deformation ring
for the group G is O—finite; this, combined with a standard calculation of its
Krull dimension (as in [4]), will imply that it has a Q,~point. For the Gy—
deformation problems, we will fix the multiplier: Let dp/p+ : T'p+ — {£1}
be the quadratic character associated with F//F*; we require that any local
or global deformation of p(7) composed with v equals §p/p+. In particular,
since all the finite places v € S split in F/F*, p(7)|, and all its local

5For the regularity to hold, it is necessary that the formal character of R is multiplicity-free.
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deformations are valued in the group GLy. Thus we will omit 05/ p+ from
our notation when we discuss about local deformations.

Recall from the discussion in Section 1.1 that for each v € S we can
consider the lifting rings R%v and RE(f)\v' For v € S not above p, choose an

irreducible component C(ry,), resp. C(p(ry)) of REM ® Q,, resp. RE(F)\U ®Q,
containing 7, resp. p(r,). such that under the natural map

Spec RE@ ® @p — Spec RE(F)IU ® @p,

C(ry) maps to C(p(ry))-

Similarly, for v|p, the fixed inertial type and fixed p-adic Hodge type of
ry induces corresponding data for p(r,). Choose C(r,) to be a potentially
crystalline component mapping into a potentially crystalline component
C(p(ry)) containing the potentially diagonalizable point p(r,) under the
natural map
F‘];ﬁ("‘v)vffv ® @p - Spec RS(’;%(‘Z)(M)LP(UU) ® Qp-

We now define the global deformation rings, for 7 and p(7), by considering
lifts that locally lie on the irreducible components we have just specified.
More precisely, following the formalism of [4, Section 4.2], we let R&"Y be
the quotient of the universal, unramified outside S deformation ring for
7 corresponding to the fixed set of components {C(ry)}yes. We similarly
define RE}™ corresponding to the local components {C(p(r,))} (and fixed
polarization 65, r+). These rings all exist by absolute irreducibility of the
respective residual representations, and by the discussion in [4, Section 4.2]
([4, Lemma 3.4.1] plays a key role here). By construction, there is a natural
O-algebra map

Spec R,

7

univ

univ
oL, — Ra.

univ

Lemma 3.1. The map R&TY — Rgni" is surjective.

univ

Proof. The tangent space of RE" is a subspace of H'(Ip+ g, p(F)(gly))
and the tangent space of REM is a subspace of H'(I'z+ g,7(g)). For p
large enough, gly is by [29, Proposition 2] a semisimple G—module, so a
fortiori 7(g) is a I'p+ g—direct summand of p(7)(gly). It follows that the
natural map H'(I'p+ g,7(g)) = H'(Tp+ 5, p(F)(gly)) is injective; the dual
map is surjective, and we conclude by Nakayama’s lemma that the map on
universal deformation rings without local conditions is surjective. It then
follows immediately that R&I}jv — Réniv is surjective as well. U

By the proof of [3, Theorem 4.3.1], RE}Y is O—finite. Lemma 3.1 then
implies that Rgni" is O—finite. We claim that R?;ni" has Krull dimension
at least one. Indeed, this follows from [4, Theorem B]: the assumptions
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there are satisfied since we have assumed that 7 is odd, Ro7|p+(,,) is irre-

ducible (which, under our assumption on p, implies that H%(T' p+,7(g)(1))
vanishes), and the Hodge-Tate cocharacters are regular. Thus Rgﬁ" has a
Q,—point, say 7 : 'p+ — G(Q,). Then R o r satisfies the hypotheses in [3,
Theorem CJ: (1) is clear; (2) holds since R is valued in SOy by assumption;
(3) holds because for v|p, R o r|, lies on the same (potentially crystalline)
component as the potentially diagonalizable point R o r, = p(r,); since

potentially crystalline deformation rings are regular, there is a unique po-
0,u(p(rv)).p(0w)
p(7)]v

p(ry). It follows that R or|, is potentially diagonalizable. (4) holds by our

assumption on 7. Therefore, Theorem C of loc.cit. implies that R o r is
potentially automorphic and belongs to a strictly compatible system of ¢-
adic representations. Let us denote this compatible system by { Ry}, where
Ry : Tp+ — GLN(M)) is a continuous representation with M a number
field and A primes of M. Suppose that for v|p, the Hodge-Tate weights of
Ror, (and hence Ror|,) are extremely regular in the sense of [3, Section 2.1],
then [3, Theorem D] (which ultimately relies on Larsen’s work [20]) and the
standard Brauer induction argument (see [3, Theorem 5.5.1]) imply that
for a density one set of rational primes [, R) is irreducible for A|l.
We summarize the above discussion in the following:

tentially crystalline component of Spec R ®@p passing through

Theorem 3.2. Retain the assumptions on G and 7 : Tp+ g — G(Fp)

imposed at the beginning of this section. Then 7 has a lift r : T'p+ — G(Q,)
unramified outside S such that

(1) For each v € S not lying above p, r|, := 7"|pF+ and r, lie on the

same irreducible component of Spec(RE‘v ® @p).
(2) For each v|p, 7|y and r, lie on the same irreducible component of

Spec Rg‘;ﬁ(mm ®Q,. Moreover, Ror|, is potentially diagonalizable
in the sense of [3] with reqular Hodge—Tate weights.

(3) Ror is potentially automorphic in the sense of [3].

(4) Ror is part of a strictly compatible system Ry : Tpy — GLN(M))
indexed by finite places A of some number field M. If in addition,
the Hodge—Tate weights of Ror|, are extremely reqular in the sense

of [3, Section 2.1], then for a density one set of rational primes I,
Ry, is irreducible for A|l.

4. Compatible systems of Spin Galois representations

In this section, we use the lifting method of Section 3 to deform the
representation 7 : I'g — Spin,,(F,) in Proposition 2.5 to a characteristic
zero representation satisfying favorable local conditions. Moreover, we will
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show that the associated compatible system of Galois representations { Ry}
has Spin,, monodromy for a density one set of rational primes [ below A.

For the rest of this paper, we assume that m satisfies the parity assump-
tion in Section 2.

We need to specify the local deformations of 7, following the notation
in Section 3. Let S be the union of oo, p,q and the places of Q at which
7 is ramified. We choose a quadratic field F' such that F' does not contain
(p, spin o 7| F(u,) Temains irreducible, and all the finite places in S split
in F'/Q. Suppose that we have a homomorphism r : I'g — Spin,,(A) for
some ring A; as in Section 3, we define p(r): I'g — Gn(A) as the composite
(recall that the spin representation lands in SOy for m satisfying the parity
assumption)

T PRXIE, 90y (A) x Gal(F/Q) — G (A),
where the last map sends g € SOy (A) to its image in GLy(A) and sends
the nontrivial element of Gal(F/Q) to 7.

Deformation condition at p. Recall that 7|, = [[,en ¥ o K[l]™. Fix

wr = T a0 (s - [&] 7" - [&[l]]"™)
aEA
lifting 7, where [], resp. [R[l]] denotes the Teichmuller lift of &, resp. [R[l]],
and 1, = n, mod [—1 are greater than one and sufficiently general (1, > 1
ensures that our characteristic zero lifts are potentially crystalline, cf. [24,
Lemma 4.8]). We take r, to be xr. Let C(r,) be an ordinary potentially

crystalline component of Spec RE": ()0 ()

® @p containing r, determined
by the ordinary deformation condition of [24, Definition 4.1] with respect
to the Borel B D T associated to A (Proposition 2.5, (5) ensures that this
deformation condition is well-defined). Note that the genericity of {n,}
for & € A and the fact that Agp;, is multiplicity-free imply that spin o r,
has regular Hodge-Tate weights. We may and do assume that the integers
Ne are chosen so that the Hodge-Tate weights of spin o r, are extremely
regular in the sense of [3, Section 2.1]. Let C(p(rp)) (p(rp) = spinor,) be the

D.p(rp))p(o(rp)) o

corresponding potentially crystalline component of Spec Rp(f)lp

Q-

Deformation condition at q. Define p, : T'g, — SL2(Z,) by py(0,) =
(¢ %) and pg(rg) = ((1)11’), where 7, is a topological generator of
Gal(Q¢/Qy™) and o, € Gal(Q)"/Q,) is a lift of the Frobenius ele-
ment in Gal(QU""/Q,) satisfying oqrqo,t = 7. We set rq = ¢ o py, where
¢ : SLe — Spin,, is the principal SLy homomorphism with respect to T'
and a Borel B D T of Spin,,,. Then r, lifts 7|,. Suppose that [ is greater
than hgpin,, (see Proposition 2.5), then the Steinberg deformation condition
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in [24, Section 4.3] (with respect to B) is well-defined, which corresponds
to an irreducible component C(r,) of Spec R ®Qp passing through r,. Let

C(p(rq)) be the corresponding irreducible component of SpecR M, © Q.

Deformation conditions at other primes. Let v be a prime of Q out-
side {p,q} at which 7 is ramified. We have 7(I,) C Tf, - D, which implies
(since we are assuming p is sufficiently large) that |7(I,)| is not divisi-
ble by p. We take the minimal prime to p deformation condition of [24,
Section 4.4] at v, which determines irreducible components of the local
deformation rings as before.

Proposition 4.1. Let 7 : g — Spin,, (F,) be the mod p representation in
Proposition 2.5 (recall that m > 7 and m = 0,1,7 mod 8). Then 7 admits
a characteristic zero lift r : Tg — Spin,,(Z,) unramified outside a finite set
of primes such that

(1) r|p is ordinary in the sense of [24, Section 4.1] with Hodge-Tate
cocharacter [ en (o)™ and Ror|, is potentially diagonalizable in
the sense of [3] with extremely reqular Hodge—Tate weights (in the
sense of [3, Section 2.1]).

(2) r|q is Steinberg in the sense of [24, Section 4.3], which is moreover
ramified.

(3) The Zariski closure of the image of r equals Spin,,,

(4) Ror is potentially automorphic, i.e. there exist a totally real exten-
sion FT/Q and a reqular L-algebraic, cuspidal automorphic rep-
resentation 11 of GLy(Ap+) such that spinorlp . = rm,, where
L @p = C is a fized field isomorphism.

Proof. By Proposition 2.5, 7 satisfies the hypotheses at the beginning of
Section 3 with F* = Q, G = Spin,, and R = spin. (1) and (4) then
follow immediately from Theorem 3.2. By the same theorem, r|, lies on
C(rq), and hence it is Steinberg. We will show that r|, is ramified. Since
IT is cuspidal, IL,, is generic for all places w of F'™, and therefore local-
global compatibility ([10]) and [3, Lemma 1.3.2] imply that spin o r\pF N

is a smooth point on its (generic fiber) local lifting ring. Let w|q be anugf
place of F'* above g. Since r|r - lies on the same irreducible component

as the restriction 'rq]p + of the Stemberg—type lift constructed above, so do
spinor|p ot and spmorq]p ot The latter is visibly a smooth point, so by [3,

Lemma 1.3. 4(2)] (due to Cho1) the inertial restrictions spin o r|; rt and
spinory|r py 3T€ isomorphic. In particular, r|, is ramified, which proves (2).

It remains to prove (3). Let G, be the Zariski closure of , which is reductive
since r is irreducible. Moreover, (2) implies that G, contains a regular
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unipotent element of Spin,,,. It then follows from a theorem of Dynkin ([27,
Theorem A]) that the Lie algebra of G, is one of slz, go and s09,+1 when
m = 2n + 1 (where go may occur only when m = 7); one of sly, g2, 502,_1
and §09, when m = 2n (where go may occur only when m = 8). The
argument of [24, Lemma 7.8] then implies that G, = Spin,, if the integers
{Na}acna are taken to be sufficiently general. O

Theorem 4.2. Let r be as in Proposition 4.1. Then spin o r is part of a
strictly compatible system Ry : Tg — GLx(M)) indezed by finite places A
of some number field M with regular Hodge—Tate weights such that for a
density one set of rational primes [, the Zariski closure of the image of R),
equals Spin,,, for A|l.

Proof. By Proposition 4.1(1) and Theorem 3.2 (4), for a density one set ¥ of
rational primes [, R) is irreducible for A|l. Then [21, Theorem 4] implies that
for [ € ¥ and A|l, Ry factors through Spin,,. In fact, let G be the Zariski
closure of the image of Ry. By Proposition 4.1(3), G) = Spin,, for some
All, s0 (G, stdy) (where stdy denotes the canonical inclusion G C GLy) is
similar to (Spin,,,spin) in the sense of [21], i.e. they have the same formal
characters (since the group of connected components and the formal char-
acter of the connected component of the monodromy group are independent
of [; see [22, Propositions 6.12 and 6.14]). If m is even, then [21, Theorem 4]
implies that G\ = Spin,,; if m = 2n + 1 is odd, the only “basic similarity
classes” in the sense of loc. cit. relevant to (Spiny, ,;,spin) are products
(TTE, Sping,,, 1, X; spiny,,. 1) for some decomposition ny + --- + ng = n,
where spiny,, 1, denotes the appropriate spin representation. This external
product is simply the restriction of the 2"-dimensional spin representation
to []Spiny, 11 C Sping, ., so in any case G C GL2n factors (up to con-
jugacy) through Spin,, ; C GLon. It follows that Ry factors as spin(ry)
for some ry: I'g — Spin,,(M,). It remains to show that when m is odd,
G = Spin,, for A|l with [ belonging to a density one set of rational primes.
By Proposition 4.1(2) and (4) and local-global compatibility ([10]), G
contains (up to conjugacy) the image under the spin representation of a
regular unipotent element of Spin,, as long as A is not above ¢. By [7,
Lemma 3.5], r) (for A\ above some | € ¥ — {q}) then has image contain-
ing a regular unipotent element. We deduce from Dynkin’s theorem ([27,
Theorem A]) that the Zariski closure of the image of r) equals Spin,,. O

Using some results of Larsen ([20]), we give an application of the above
to the inverse Galois problem for the F,—points of spin groups.

Corollary 4.3. For m > 7, m = 0,1,7 mod 8, Spin,,(F,) is the Galois
group of a finite Galois extension of Q for p belonging to a set of rational
primes of positive density.
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Proof. Let {Ry} be as in Theorem 4.2. By [3, Lemma 5.3.1,(3)], after re-
placing M by a finite extension if necessary, we may assume that R) is
valued in GLy (M)). Let c¢s(M/Q) be the set of rational primes [ that split
completely in M/Q. Then [20, Theorem 3.17] implies that there is a subset
T of cs(M/Q) of relative density one, such that for [ € T and M|, R)\(I'g)
is a hyperspecial maximal compact subgroup of G»(Q;). By Theorem 4.2,
G (Q;) equals Spin,,, (Q;) for a density one set of rational primes . It follows
that R)(I'g) = Spin,,(Z;) — Spin,, (IF;) for I belonging to a set of rational
primes of positive density. O

Remark 4.4. Using a completely analogous argument, one can show that
for n > 2, SO2p,41(Fp), resp. SO4,(FF,) is the Galois group of a finite Galois
extension of Q for p belonging to a set of rational primes of positive density.
We compare this with the main result in [33], which shows that the finite
simple groups Qa,,+1(p) and P (p) both occur as the Galois group of a
Galois extension of Q for all integers n > 2 and all primes p > 5.

5. Realization of R, in the cohomology of algebraic varieties

Theorem 5.1. The compatible system of Galois representations {Ry\} in
Theorem 4.2 is motivic in the following sense: there is a smooth projective
variety X/Q and integers i and j such that Ry is a I'g-subrepresentation

of H (X5.Qu(j)-

The proof of this theorem is almost identical to the argument in [7,
Section 5], except for a few minor modifications. However, for the reader’s
convenience, we reproduce here part of their argument. The main reference
for this argument is [31]. In [7, Section 5], the dimension of {R)} is odd,
which falls into (Case ST) of [31]; in our case, the dimension of { Ry} (being
a power of 2) is even, which falls into (Case END) of [31]. This is why we
need to modify the argument of [7, Section 5] to prove Theorem 5.1. Fix an
isomorphism ¢; : Q; = C; it is implicit in all of the constructions of [31].
The compatible system {R,} is by construction potentially automorphic,
i.e. there is a totally real field F/Q such that Ry|r , =7, (I1°) for some
cuspidal automorphic representation I of GLy (A z+ ) (in the notation of [3,
Theorem 2.1.1]). Let F/F* be a quadratic CM extension. Replacing I1°
by its base change to F, we may assume that Ry|p, = ry,(II°) for a
conjugate self-dual cuspidal automorphic representation IT1° of GLy(Af).
Then Ry|r, = R;(II") in the notation of [31, Theorem 7.5] (note that the
normalizations for the local Langlands correspondence used in [3] and [31]
differ by a dual: see [3, Theorem 2.1.1] and [31, Section 2.3]). Replacing I1°
by its dual, we may write

Ry|r, = R)(T1°).
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We may further adjust the integers {74} in Proposition 4.1 so that the
associated automorphic representation I1° is slightly reqular (a.k.a. Shin
regular) in the sense of [31] (this is necessary in Case END).

Let n = N+1 (N is “m” in [31]).  We recall the construction of R;(II").
Let F be an imaginary quadratic field not contained in F’ satisfying the four
bulleted conditions in Step (II) of the proof of [31, Theorem 7.5]. Replace
F by FE and II° by BCFE/F(HO). Then the triple (E, F,11°) satsfies the
six bulleted conditions at the beginning of Step (I) of the proof of loc. cit.
Let F’ be an imaginary quadratic extension of F'* satisfying the three
bulleted conditions in Step (I) of loc. cit. Then replace F by FF’ and I1° by
BCpp/r(11°) so that [31, Proposition 7.4] applies to the triple (£, F,II").
There is a Hecke character ¢ of A% /E> such that, setting IT = XII' (which
is an automorphic representation of the group GL;(Ag) x GL,(Ap); II* is
constructed from I1° in [31, Section 7.1]), we have (in the notation of [31,
Corollary 6.10] 7)

R/(T1°) := R/(T1) := R)(T]) ® rec, ((wo Np/p) ® "|1/2)78
where RE(H) = R;(H) ® recy, (¢C)’FF and

Co R = 3 Ry'(x>)”
o eR(II)

(see [31, (5.5), (6.23)]; G the unitary similitude group defined in [31, Sec-
tion 5.1]). The rest of the argument is identical to that of [7, Section 5]: one
shows that E;(H) is a subrepresentation of the cohomology of a smooth pro-
jective variety over F, which implies that Ry|r, (which is a twist of Rj(TI))
is a subrepresentation of a smooth projective variety over F' after possibly
replacing F' by a finite extension (using [13, IV. Proposition D.1]). It then
follows from Frobenius reciprocity and the irreducibility of Ry that R) is a
subrepresentation of a smooth projective variety over Q. This finishes the
proof of Theorem 5.1.

6. Comparison with the work of Kret and Shin

In this section, we explain how the main theorem of [18] implies a stronger
version of Theorem 1.1 in the case when m = 2n + 1 is odd. Moreover, the
very recent preprint [19] implies a stronger version of Theorem 1.1 in the
case when m = 2n is even in a similar way.

6To keep our notation consistent with that of [31], we borrow the same letter n from the
preceding sections which was used to denote the rank of the spin group. We hope this does not
cause any confusion.

"In our case, i = 1, m; =n — 1.

8w : A, /E* — C* is the Hecke character defined in [31, Section 3.1].
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The maximal torus 1" of Spiny,,; may be described as
T = {(z,t1,. . tn) €G22 =ty -1, )

For 1 <i <m,let x; € X*(T') be the character defined by x;(z,t1,...,tn) =
t;, and let \; € %X. (T') be the cocharacter defined by

2N () = (t,1,...,1,¢%,1,...,1),

where t2 is located at the (i41)-th entry. Then the character lattice X*(7) is
generated by X1, ..., xn and £(32; x;), where (3, x;) sends (z,t1, ..., &) to
z; and the cocharacter lattice Xo(T) equals {>°;, mi\; : m; € Z,Y m; € 2Z}.
Note that Spy, = SOg;,4+1, PSpy,, = Spiny,,; and GSpy, = GSpiny,, ;.
Let 7o be a discrete series representation of Spy, (R) with a regular and
tempered L-parameter ¢ : Wr — SO2,41(C) defined by

boo(z) = diag(zM™z™ ™ L. Mz Mn ] T Mng M T ET)

for = € C*, m; € Z and ¢oo(j) = J, where J = [a;;] is the (2n + 1) by
(2n + 1) matrix with ap41p041 = (—1)", ai2n—iy2 = 1 for i # n+ 1, and
a;j = 0 otherwise. We want to lift ¢, to Sping,,;(C). Note that ¢u|cx

has a unique lift
z

In particular, —1 — (—1)2"” (we use —1 to also denote the nontrivial
element in the center of Spiny,,; by abuse of notation). The element j
necessarily maps to a lift of J € SOg,41(C) in Sping,, (C), which is either
W1 Wy OF —wi -+ -wy (in the notation of Lemma 2.3 and the paragraph
preceding it). We have (w; - --wy,)? = (=1)""*1D/2, To have a well-defined
homomorphism ¢o : Wg — Spiny,, +1(C) lifting ¢oo, we must ensure that
¢oo(])¢oo(z)¢oo(])il = ¢oo(2) and ¢m(])2 = d)oo(_l)' The first equality is
automatic. The second equality is by the above equivalent to (—1)”(”+1)/ 2 —
(—1)2””. Therefore, ¢ lifts to Spin,, 1 (C) if and only if )~ m; has the
same parity as n(n+1)/2. On the automorphic side, this says 7. descends
to a discrete series representation of PSp,, (R) if and only if the integers
m; appearing in its L-parameter satisfies > m; = % mod 2.

Now we ask: Of the discrete series that descends to PSp,,(R), are any
of them L-algebraic in the sense of [8]7 Consider their L-parameter &OO]C,
z = (X 2ml)\,)(ﬁ) =z midiz= 2 midi e have 3\ m\; € Xo(T) if and
only if >~ m; € 2Z. Therefore we have

Lemma 6.1. Let w1y and ¢o be as before. Then

(1) meo descends to a discrete series representation of PSpy, (R) if and
only if Y m; = "("TH) mod 2.
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(2) moo descends to an L-algebraic discrete series representation of
PSp,,,(R) if and only if n = 0,3 mod 4 and Y. m; € 27Z.

A trace formula argument shows that there are infinitely many cuspidal
automorphic representations m of PSpy,(Ag) such that its archimedean
component T, satisfies Lemma 6.1, (2) and 7 is Steinberg at a finite place of
Q (cf. [11]). Let 7 be the cuspidal automorphic representation of GSps,, (Ag)
associated to 7 via the natural map pr : GSpy, — PSpy,. We want to
use the main theorem of [18] to associate to © GSpin,, ,;—valued Galois
representations.

Lemma 6.2. The infinity component 7o, of © is L—cohomological in the
n(n + )

sense of [18], i.e. Too - |Ao] is cohomological in the sense of [18, Defi-
nition 1.12] (Ao corresponds to the similitude character of GSpsy,, ).

Proof. Since Ty is a discrete series representation of Sp,,, (R) with infini-
tesimal character pu(my) (Where p(mso) is determined by writing ¢ (2) =
2M(Teo) 2V (To0)) it s 5;:(%0)_ ,~cohomological ([5, Theorem V.3.3]), where
§u(roo)—p 18 the highest-weight (7o) — p representation of Sp,,,(C), and p
is the half-sum of positive roots for the choice of root basis used also to pa-
rametrize highest weights. We need an extension & of ¢ p(mee)—p £0 GSPay, (C)
such that (letting K be a maximal compact subgroup of Spy,(R))

H*(g5p5,(C), K - Zasp,, (R); Too - Dol ©EY) £0.

From the definition of this cohomology group, and the fact that m. ®
fl\:(woo)_p has non-zero (sp,,,(C), K')—cohomology, this reduces to checking

~ n(n+1)
that we can find an extension ¥ of {X(W )—p such that € and Tog - | Ao|

have the same central character; note that we will only have to check this
on RZ, C Zasp,, (R) since —1 € K. We choose & to be the representation
with highest weight (7o) — p + %)\o € X*(Tasp,, ), where (7o) =
>-miA;, which (since 3=, m; is even) lies in Xo(Tspin,,,,) = X*(Thsp,,) C
X*(Tasp,, ), and both p and n( )/\0 are integral since n = 0,3 mod 4.

The lemma is now proven, since thls highest weight representation has the
n(n+1)
same central character as T - |Ao| . O

Therefore, by [18, Theorem A], the cuspidal automorphic representation
7 of GSpy,(Ag) (for n = 0,3 mod 4) has an associated weakly compatible
system of Galois representations

pz1: g — GSpiny, (Q))
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satisfying the conclusions of loc. cit. ? In particular, since the central char-
acter of 7 is trivial, [18, Theorem A (i)] implies that pz; is in fact valued
in Spiny,, . 1(Q;). Moreover, for sufficiently general {m;}1<i<n, Too is spin-
regular in the sense of [18], i.e. the L-parameter of o, maps to a regular
parameter for GLon by the spin representation. In this case, the Zariski-
closure of pz; equals Spiny, ,, and thus we obtain a Spins,, , ;-compatible
system of motivic Galois representations with full monodromy.

In contrast, the following lemma shows that for the remaining n, we do
not expect the Galois representations associated to cuspidal automorphic
representations of PSp,, (Ag) that are regular algebraic at infinity to land
in Spin,,, . by [8, Conjecture 5.3.4].

Lemma 6.3. Suppose n = 1,2 mod 4 (equivalently, n(n;l) is odd) and T
is a cuspidal automorphic representation of Sp,,(Aqg) with trivial central
character. Denote by 7 the associated representation of PSpy,(Ag). If m
is regular algebraic, 1° then 7 is C-algebraic but not L—algebraic.

Proof. We can write the L—parameter ¢, of 7 as
boo(2) = diag(z™z1, ... zMngln 1, a7zl ammiz—h)

with all m;,l; € Z and z € C*. Arthur’s classification of automorphic rep-
resentations of classical groups ([2]) implies that 7 has a functorial trans-
fer to a cuspidal automorphic representation of GLgp41(Ag), so Clozel’s
archimedean purity theorem ([12, Lemme 4.9]) implies that m; 4+ [; = 0 for
all 4. Since the integers m; are distinct and nonzero, it is then easy to see
that ¢ is isomorphic to the L—parameter under the same name defined
before Lemma 6.1. Since the L—parameter 500 of ﬂgo lifts ¢o0, the calcu-
lations preceding Lemma 6.1 imply that > m; = "(";1) =1 mod2 A

easy calculation shows that p¥ (the half-sum of coroots of Spin,, ;) equals
nA1 + (n — 1)A2 + -+ + 1\, (which does not lie in X4(7") since % is
odd). Tt follows that Y m;)\; € p¥ + Xo(T) and hence 7%, is C-algebraic

but not L-algebraic (500(2’) — 2 mmg—me>_ 0
b

However, if 7 is not assumed to be regular at infinity, then 7” can be
L—algebraic, in which case the expected Galois representations associated
to it lands in Spin,,, | ([8, Conjecture 3.2.1]).
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