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Motivic Galois representations valued in Spin
groups

par Shiang TANG

Dedicated to the memory of my mother,
Que Ling Ping, 1954/07/08 – 2019/10/28

Résumé. Soitm un entier tel quem ≥ 7 etm ≡ 0, 1, 7 mod 8. Nous construi-
sons des systèmes strictement compatibles de repré- sentations l-adiques ΓQ →
Spinm(Ql)

spin−−→ GLN (Ql) qui sont potentiellement automorphes et moti-
viques. Comme application, dans certains cas nous donnons une réponse po-
sitive au problème de Galois inverse pour les groupes spinoriels sur Fp. Pour
m impair, nous comparons nos exemples avec le travail de A. Kret et S. W.
Shin ([18]), qui étudie les représentations galoisiennes automorphes à valeurs
dans GSpinm.

Abstract. Let m be an integer such that m ≥ 7 and m ≡ 0, 1, 7 mod 8. We
construct strictly compatible systems of representations of ΓQ → Spinm(Ql)
spin−−→ GLN (Ql) that are potentially automorphic and motivic. As an applica-
tion, we prove instances of the inverse Galois problem for the Fp–points of
the spin groups. For odd m, we compare our examples with the work of A.
Kret and S. W. Shin ([18]), which studies automorphic Galois representations
valued in GSpinm.

1. Introduction
In [28, 8.4], Serre asks whether there are motives (over Q, say), whose

motivic Galois groups are equal to a given semisimple (or more generally,
reductive) algebraic group G. This question and its variants have been stud-
ied by many people, including N. Katz, M. Dettweiler, S. Reiter, Z. Yun, S.
Patrikis and others; see for example [32], [24] and [7]. Most of the results
in the literature concern exceptional algebraic groups. In this paper, we
study a weaker version of Serre’s question for spin groups. We find spin
groups interesting because their faithful representations have large dimen-
sions and they do not occur in the étale cohomology of smooth projective
varieties in any obvious way. In [18], Kret and Shin prove the existence of
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Galois representations into GSpin2n+1 corresponding to suitable cuspidal
automorphic representations of GSp2n over totally real fields. Their Galois
representations are motivic in the sense that they occur in the cohomology
of certain Shimura varieties. Studying Spin2n+1–valued Galois representa-
tions then appears to be a simple matter of passing from a reductive group
to its (semisimple) derived subgroup, but the distinction can indeed be
subtle: for example, when n = 1, GSpin3 = GL2, it is well-known that
holomorphic modular forms (or elliptic curves) give rise to p-adic Galois
representations ρ : ΓQ → GL2(Qp) that are odd, i.e. det ρ(c) = −1; in
particular, they do not land in SL2, nor can they be twisted into SL2 in
any obvious way. In fact, two-dimensional geometric Galois representations
that are even (i.e. det ρ(c) = 1) are expected to come from Maass forms by
the Fontaine–Mazur–Langlands conjectures.

Our main theorem is the following:

Theorem 1.1. (Proposition 4.1 and Theorem 4.2) Let m be an integer
such that m ≥ 7 and m ≡ 0, 1, 7 mod 8. There exists a strictly compatible
system

Rλ : ΓQ → GLN (Mλ)
with distinct Hodge–Tate weights and with coefficients in a number field
M such that for a density one set of rational primes l and for λ|l, Rλ =
spin ◦ rλ, where rλ : ΓQ → Spinm(Mλ) is a homomorphism with Zariski-
dense image and spin : Spinm → GLN is the spin representation. Moreover,
{Rλ} is potentially automorphic and motivic in the following sense:

• There exist a totally real extension F+/Q and a regular L–algebraic,
cuspidal automorphic representation Π of GLN (AF+) such that

Rλ|ΓF+
∼= rΠ,ιl ,

where ιl : Ql
∼−→ C is a fixed field isomorphism.

• There is a smooth projective variety X/Q and integers i and j such
that Rλ is a ΓQ–subrepresentation of H i(XQ,Ql(j)).

This is the spin-analog of the main result of [7]. As an application, we
prove new instances of the inverse Galois problem:

Theorem 1.2. (Corollary 4.3) For m ≥ 7, m ≡ 0, 1, 7 mod 8, Spinm(Fp)
is the Galois group of a finite Galois extension of Q for p belonging to a
set of rational primes of positive density.

Let us explain the strange-looking congruence condition on m appeared
in Theorem 1.1. Let T be a maximal split torus of Spinm and let W =
N(T )/T be the Weyl group. Then the integer m satisfies the above con-
gruence condition if and only if the longest element w0 ∈W acts as −1 on
X•(T ) and w0 has a representative in N(T ) of order 2 ([1, Section 3]; see
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also Lemma 2.3). Having such an involution at hand is crucial in standard
Galois deformation theoretic arguments: one typically constructs an appro-
priate mod p representation r : ΓQ → Spinm(Fp) which is odd in the sense
of [14, Definition 1.2] (which will hold if the complex conjugation maps
into the conjugacy class of the above involution in Spinm), then deform it
to a geometric (in the sense of Fontaine–Mazur) characteristic zero repre-
sentation using either Ramakrishna style techniques (originated in [26] and
sublimed in [14]) or Khare–Wintenberger style arguments ([16, Section 3]).
Oddness of r is crucial in both methods.

Due to the automorphic nature of our construction, the Hodge–Tate
weights of the compatible system in Theorem 1.1 are distinct. In con-
trast, suppose w0 acts as −1 on X•(T ) but it does not lift to an invo-
lution in N(T ) (which happens if and only if m ≡ 3, 4, 5 mod 8), then
we do not expect Galois representations r : ΓQ → Spinm(Ql) such that
spin ◦ r : ΓQ → GLN (Ql) comes from a pure motive with regular Hodge
structure. In fact, the spin representation spin : Spinm → GLN is valued
in SpN for m ≡ 3, 4, 5 mod 8 by Lemma 1.3. If there were such a motive,
let V be its real Hodge structure such that V ⊗R C =

⊕
p+q=w Vp,q with

V p,q = Vq,p and w ∈ Z. By symmetry of the symplectic torus and regular-
ity, we have dimVp,q = dimV−p,−q = 1 for all p, q appearing in the direct
sum. In particular, w = 0 and the complex conjugation action corresponds
to the longest element in the Weyl group of SpN , which lifts to an order 4
element in the normalizer of the torus of SpN , a contradiction.1 Assuming
the Fontaine–Mazur conjecture, we can express this in purely Galois the-
oretic terms: for m ≡ 3, 4, 5 mod 8, there should not exist `-adic Galois
representations

ΓQ → Spinm(Ql)
spin−−→ GLN (Ql)

that are unramified everywhere, potentially semistable at l with distinct
Hodge–Tate weights. For example, let m = 3, then Spin3

∼= SL2 and the
spin representation is the canonical injection SL2 → GL2. In this case, our
speculation follows from a theorem of Calegari ([9, Theorem 1.2]) under
some mild hypotheses.

Methods and organization of this paper. The method we use in prov-
ing Theorem 1.1 is very similar to that of [7]. In Section 2, we begin by
constructing a mod p representation r : ΓQ → Spinm(Fp) (for m satisfy-
ing the congruence condition in Theorem 1.1) related to the action of the
Weyl group of Spinm on the weight space of the spin representation for
which spin ◦ r satisfies the assumptions of the automorphic lifting theo-
rems in [3]. Succeeding in constructing such a representation requires, in

1This follows from Lemma 3.1 (with δ = 1) and the proof of Lemma 4.12 of [1]. One can also
verify this directly.
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addition to the techniques used in [7, Section 2], a detailed calculation on
the structure of Spinm and the crucial observation that a certain part of
the Weyl group acts transitively on the weight lattice of the spin repre-
sentation (Lemma 2.1). We then deform r to a geometric representation
r : ΓQ → Spinm(Qp) that is Steinberg at a finite place using a version of
the Khare–Wintenberger argument: similar arguments have appeared in [7,
Section 3] and [25, Section 3], we present an axiomatized version in Sec-
tion 3. Then [3, Theorem C] implies that spin◦r is potentially automorphic
and is part of a strictly compatible system {Rλ}. We wish to show that the
Zariski closure of the image of Rλ equals Spinm for all λ. Following [7, Sec-
tion 4], we exploit the fact that the image of r contains a regular unipotent
element of Spinm and use ideas of Larsen and Pink ([22]), where the key is
to show that Rλ is irreducible for all λ. This is proven for E6 in [7] using
elementary combinatorial properties of the formal character of E6, which
does not carry over to Spinm since the rank of the latter can get arbitrarily
large. Instead, we get away with a weaker statement by invoking [3, Theo-
rem D] (which relies on Larsen’s work [20]): this is where the density one
condition in Theorem 1.1 came from.2 This is done in Section 4. In Sec-
tion 5, we show that {Rλ} occurs in the cohomology of a smooth projective
variety following [7, Section 5]. In Section 6, we compare our construction
with the work of Kret and Shin ([18]): we explain how the main theorem
of [18] yields a stronger version of Theorem 1.1 for m ≡ 1, 7 mod 8.3 We
also observe that for m ≡ 3, 5 mod 8, [18] (in which the automorphic rep-
resentations are regular L–algebraic) does not yield Spinm–valued Galois
representations (Lemma 6.3).

1.1. Notation. Let F be a field. Fix an algebraic closure F of F and write
ΓF for the absolute Galois group Gal(F/F ) of F . If F is a number field, then
for each place v of F , we fix an embedding F → Fv into an algebraic closure
of Fv, which gives rise to an injective group homomorphism ΓFv → ΓF . For
any finite place v, let kv be the residue field of v and let Frv ∈ Γkv be the
arithmetic Frobenius. If H is a group (typically the points over a finite field
or a p-adic field of a reductive algebraic group), and there is a continuous
group homomorphism r : ΓF → H, we will sometimes write r|v for r|ΓFv ,
the restriction of r to the decomposition group ΓFv . If H acts on a finite-
dimensional vector space V , we write r(V ) for the ΓF –module induced by
precomposing this action with r. (Typically H will be a reductive algebraic
group and V will be its Lie algebra equipped with the adjoint action of H.)

2One could conceivably impose additional local deformation conditions (for instance, those
corresponding to supercuspidal representations) to force Rλ to be irreducible for all λ, but I do
not know how to do this at present.

3We note that very recently Kret and Shin have extended their work to even orthogonal
groups in [19]. The main theorem of [19] yields a stronger version of Theorem 1.1 for m ≡ 0
mod 8 in a similar way.
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Let κ : ΓF → Z×p be the p-adic cyclotomic character and κ be its reduction
modulo p. We will always assume p 6= 2, and our main theorems will make
stronger hypotheses on p.

We recall here some deformation-theoretic terminology. Given a topo-
logically finitely-generated profinite group Γ, a finite extension E/Qp with
ring of integers O and residue field k, a reductive algebraic group G de-
fined over O and a continuous homomorphism r : Γ → G(k), let R�

O,r̄ be
the universal lifting ring representing the functor sending a complete local
noetherian O–algebra R with residue field k to the set of lifts r : Γ→ G(R)
of r. We will always leave the O implicit, writing only R�

r̄ , and at various
points in the argument we enlarge O; see [3, Lemma 1.2.1] for a justification
of (the harmlessness of) this practice. We write R�

r̄ ⊗ Qp for R�
O,r̄ ⊗O Qp

for any particular choice of O, and again by [3, Lemma 1.2.1], R�
r̄ ⊗Qp is

independent of the choice of E.
WhenK/Qp is a finite extension and Γ is ΓK , we consider quotients of R�

r̄

having fixed inertial type and p-adic Hodge type. The fundamental analysis
here is due to Kisin ([17]), and the state of the art, and our point of refer-
ence, is [4], and we refer there for details. We will index p-adic Hodge types
of deformations r : ΓK → G(O) by collections µ(r) = {µ(r, τ)}τ : K→Qp

of

(conjugacy classes of) Hodge–Tate co-characters, and write R�,µ(r)
r̄ for the

Zp-flat quotient of R�
r̄ whose points in finite local E–algebras are precisely

those of R�
r̄ that are moreover potentially semi-stable with p-adic Hodge

type µ(r). We likewise consider the quotients with fixed inertial type σ,
R

�,µ(r),σ
r̄ , referring to [4, Section 3.2] for details.
We recall some basic facts on spin groups and spin representations,

see [15, Lecture 20] for more details. Let m ≥ 3 be an integer. Consider the
symmetric form

(x, y) = x1ym + x2ym−1 + · · ·+ xmy1

on V = Qm with associated quadratic form Q(x) = (x, x). Let C(Q) be
the Clifford algebra associated to (V,Q). It is equipped with an embedding
V ⊂ C(Q) which is universal for maps f : V → A into associative rings
A satisfying f(x)2 = Q(x) for all x ∈ V . The algebra C(Q) has a Z/2Z–
grading, C(Q) = C(Q)+ ⊕C(Q)−, induced from the grading on the tensor
algebra. On the Clifford algebra C(Q) we have an unique anti-involution *
that is determined by (v1 · · · vr)∗ = (−1)rvr · · · v1 for all v1, . . . , vr ∈ V . We
define for all Q–algebras R,

GSpinm(R) = {g ∈ (C(Q)+ ⊗R)× : gV g∗ ⊂ V }.
Let N : C(Q)→ Q×, x→ xx∗ be the Clifford norm. It induces a character
N : GSpinm → Gm. We define Spinm to be the kernel of N . The action
of the group GSpinm, resp. Spinm stabilizes V ⊂ C(Q), which induces a
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surjection GSpinm � SOm, resp. Spinm � SOm. Denote by µ2 = {±1} the
kernel of Spinm � SOm.

Now we turn to spin representations. We keep the notation in the para-
graph above with Q replaced by C. Let som(C) := so(Q) = {X ∈ End(V ) :
(Xv,w) + (v,Xw) = 0,∀ v, w ∈ V }. By [15, Lemma 20.7], there is a nat-
ural embedding of Lie algebras so(Q) → C(Q)even. Let n = [m/2]. The
weight lattice of somC may be described as the submodule of

∑
1≤i≤nQχi

spanned by χ1, . . . , χn and 1
2(
∑
i χi). Suppose m = 2n is even, write V =

W ⊕ W ′, where W and W ′ are isotropic subspaces of (V,Q). By [15,
Lemma 20.9], there is an isomorphism of algebras C(Q) ∼= End(

∧∗W ).
We have

∧∗W =
∧evenW ⊕ ∧oddW , it follows that so(Q) ⊂ C(Q)even ∼=

End(
∧evenW )⊕End(

∧oddW ). Hence we have two representations of somC,∧evenW and
∧oddW . We let S =

∧evenW for even n, and let S =
∧oddW

for odd n. By [15, Lemma 20.15], S is irreducible of dimension 2n−1 whose
weights are 1

2(
∑
i±χi) where the number of minus signs is even. We call S

the spin representation of som(C). Now suppose m = 2n + 1 is odd, write
V = W ⊕W ′ ⊕U , where W and W ′ are isotropic subspaces of (V,Q), and
U is a one-dimensional subspace perpendicular to them. In this case, we
have so(Q) ⊂ C(Q)even ∼= End(

∧∗W ). We let S =
∧∗W . By [15, Propo-

sition 20.20], S is an irreducible representation of somC of dimension 2n
whose weights are 1

2(
∑
i±χi). We again call S the spin representation of

som(C). The spin representation may be viewed as a group homomorphism
spin : Spinm → GL2n , resp. spin : Spinm → GL2n−1 for odd m, resp. even
m. The following fact is contained in [15, Exercise 20.38].
Lemma 1.3. There is nondegenerate bilinear form β on S such that if m =
2n+1, β is symmetric when n ≡ 0, 3 mod 4 and skew-symmetric otherwise;
and if m = 2n with n even, β is symmetric when n ≡ 0 mod 4 and skew-
symmetric otherwise. Therefore, if m = 2n + 1, the spin representation is
valued in SO2nC for n ≡ 0, 3 mod 4 and valued in Sp2nC for n ≡ 1, 2
mod 4; and if m = 2n with n even, the spin representation is valued in
SO2n−1C for n ≡ 0 mod 4 and valued in Sp2n−1C for n ≡ 2 mod 4.

2. Construction of residual Galois representations
Before we construct our mod p Galois representations into Spinm, we

make some preliminary calculations. We follow the notation of Section 1.1.
We have the following explicit description of the two-fold covering π :

Spinm � SOm (see the proof of [15, Proposition 20.28]). Let g ∈ SOm =
SO(Q), we may write g as a product of reflections rw1 · · · rwr for wi ∈ V
with Q(wi) = −1 (r is necessarily even), then the two elements in π−1(g)
are ±w1 · · ·wr. We fix the following ordered basis for V = Qm: for m = 2n,
e1, . . . , en, fn, . . . , f1 satisfying (ei, fi) = 1 for 1 ≤ i ≤ n, (ei, fj) = 0 for
1 ≤ i 6= j ≤ n, and (ei, ej) = (fi, fj) = 0 for 1 ≤ i, j ≤ n; for m = 2n + 1,
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e1, . . . , en, u0, fn, . . . , f1 satisfying (ei, fi) = 1 for 1 ≤ i ≤ n, (ei, fj) = 0
for 1 ≤ i 6= j ≤ n, (ei, ej) = (fi, fj) = 0 for 1 ≤ i, j ≤ n, (u0, u0) = 1,
(u0, ei) = (u0, fi) = 0 for 1 ≤ i ≤ n. With this basis, we have for any
Q–algebra R

SOm(R) = {g ∈ SLm(R) : gJgt = J}
where J = [aij ]1≤i,j≤m whose nonzero entries are exactly ai,m+1−i = 1
for 1 ≤ i ≤ m. Then we have a standard maximal torus TSO defined by
TSO(R) = {diag(t1, . . . , tn, 1, t−1

n , . . . , t−1
1 ) : ti ∈ R×} for any Q–algebra

R, where we omit the middle entry 1 when m = 2n is even. We let T =
π−1TSO be the corresponding maximal torus of Spinm. The Weyl group W
is then isomorphic to N(TSO)/TSO, which is a semidirect product Do Sn,
where D is described in what follows. We let D be {±1}n when m =
2n + 1, and the subgroup of {±1}n consisting of elements with an even
number of minus signs when m = 2n. It acts on TSO in the following way:
For any element ε = (εi) ∈ D and t = diag(t1, . . . , tn, 1, t−1

n , . . . , t−1
1 ) ∈

TSO, define tε := diag(tε11 , . . . , tεnn , 1, t−εnn , . . . , t−ε11 ) ∈ TSO. The symmetric
group Sn acts on TSO by permuting the diagonal entries: ∀ σ ∈ Sn, tσ :=
diag(σ(t1), . . . , σ(tn), 1, σ(tn)−1, . . . , σ(t1)−1).

Let w0 be the longest element in W . When m = 2n + 1, w0 acts as −1
on X•(TSO); when m = 2n, w0 acts as −1 on X•(TSO) if and only if n is
even. In both cases, w0 = (−1, . . . ,−1) ∈ D.

Lemma 2.1. The group D ≤ W acts simply transitively on Λspin :=
{1

2(
∑n
i=1±χi)}, the weights of the spin representation of Spinm.

Proof. This follows immediately from the explicit action of D on T de-
scribed above. �

Lemma 2.2. The group homomorphism N(TSO) � W admits a section
s : W → N(TSO). Indeed, for σ ∈ Sn, let Mσ be the corresponding standard
n × n permutation matrix, then s(σ) =

(
Mσ 0
0 Mat

σ

)
, where Mat

σ is the anti-
diagonal transpose of Mσ; for ε = (εi) ∈ D, s(ε) = dε, where dε is the
m × m matrix obtained from the identity matrix Im by swapping the i-th
and the (m + 1 − i)-th columns whenever εi = −1 and leaving the rest of
the columns unchanged when m = 2n is even, and dε is the m×m matrix
obtained from the identity matrix Im by performing the column operations
above and replacing the (n+ 1, n+ 1)–entry with (−1)|{1≤i≤n:εi=−1}| when
m = 2n+ 1 is odd.

By the lemma above, we may identify D with its isomorphic image in
N(TSO). With this identification, let D̃ = π−1D ⊂ Spinm. We would like
to calculate the structure of D̃. Suppose m = 2n is even, for each i ∈ [1, n],
let wi = 1√

2(ei − fi). A straightforward calculation shows that Q(wi) = −1
and rwi ∈ Om equals the matrix obtained by swapping the i-th and the
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(m+ 1− i)-th columns of Im. It follows that D is generated by rwirwj for
1 ≤ i < j ≤ n, and hence D̃ is generated by wiwj for 1 ≤ i < j ≤ n. Note
that w2

i = −1 and wiwj = −wjwi for i 6= j, which imply that

(w1 · · ·wk)2 = (−1)k(k+1)/2

for 1 ≤ k ≤ n. Now suppose m = 2n + 1 is odd, define wi as above and
let w0 :=

√
−1u0, then rw0rwi ∈ SOm equals the matrix obtained from Im

by swapping the i-th and the (m + 1 − i)-th columns and replacing the
(n + 1, n + 1)–entry with −1. It follows that rw0rwi , 1 ≤ i ≤ n generate
D and hence ωi := w0wi, 1 ≤ i ≤ n generate D̃. Note that ω2

i = −1 and
ωiωj = −ωjωi for i 6= j, which imply that

(ω1 · · ·ωk)2 = (−1)k(k+1)/2

for 1 ≤ k ≤ n. We thus obtain

Lemma 2.3. The sequence 1 → {±1} → D̃ → D → 1 is nonsplit. More-
over, if m = 2n, w0 acts as −1 on X•(T ) if and only if n is even, in
which case it corresponds to the element w1 · · ·wn ∈ Spinm under the map
N(T ) � W . This element has order two if and only if n ≡ 0 mod 4. If
m = 2n+1, w0 always acts as −1 on X•(T ), and the corresponding element
ω1 · · ·ωn ∈ Spinm has order two if and only if n ≡ 0, 3 mod 4.

For the rest of this section, we make the following parity assumption on
the integer m:

• If m = 2n is even, then n ≡ 0 mod 4;
• If m = 2n+ 1 is odd, then n ≥ 3 and n ≡ 0, 3 mod 4;

equivalently, m ≥ 7 and m ≡ 0, 1, 7 mod 8.
By Lemma 2.3, w0 ∈W then lifts to an order two element in N(T ); and

it follows from Lemma 1.3 that the spin representation is

spin : Spinm → SON

where N = 2n for odd m and N = 2n−1 for even m.
We now begin to construct the mod p representation valued in Spinm.

We do this by first realizing D̃ as a Galois group of some finite extension
of Q, and then modify the corresponding homomorphism ΓQ → N(T )Fp ⊂
Spinm(Fp) so that after composing with spin, the resulting representation
satisfies the assumptions of the potential automorphy theorems of [3].

Lemma 2.4. There is a finite, totally real Galois extension L/Q whose
Galois group is isomorphic to D satisfying property (SN ) with N = 2 in
the sense of [30, Definition 2.1.2], i.e. every prime p which is ramified in
L/Q satisfies

• p ≡ 1 mod 4.
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• If v is a place of L above p, then the local extension Lv/Qp is totally
ramified.

Proof. We have D ∼= (Z/2Z)n or (Z/2Z)n−1. We pick a prime p1 ≡ 1
mod 4. We will construct inductively p1, . . . , pn such that pi ≡ 1 mod 4
and pi ∈ (Q×pj )

2 for i 6= j. Suppose we have p1, . . . , pk (k < n) already and
consider Q(

√
−1,√p1, . . . ,

√
pk). Chebotarev implies that there are infin-

itely many p that splits in this field. In particular, −1, p1, . . . , pk ∈ (Q×p )2,
which is equivalent to(−1

p

)
=
(
p1
p

)
= · · · =

(
pk
p

)
= 1.

In particular, p ≡ 1 mod 4 and quadratic reciprocity implies that(
p

p1

)
= · · · =

(
p

pk

)
= 1,

which is equivalent to p ∈ (Q×pj )
2 for 1 ≤ j ≤ k. Thus, if we take pk+1 to be

such a prime, the induction can proceed. Now we let L = Q(√p1, . . . ,
√
pn).

Then Gal(L/Q) = D and Lvi = Qpi(
√
pi), which is a totally ramified

extension of Qpi . �

Let s : ΓQ � Gal(L/Q) = D be the corresponding homomorphism pro-
duced by the above lemma. We need to lift s to a surjective homomorphism
s : ΓQ → D̃ across the short exact sequence 1 → µ2 → D̃ → D → 1. The
method we use is a minor modification of the argument in page 12 of [30].
Since the exact sequence of groups is nonsplit by Lemma 2.3, it suffices to
find a lift s : ΓQ → D̃ of s, which will automatically be surjective. Suppose
that s has a lift to D̃ everywhere locally (including ∞), then s has a lift to
D̃. In fact, s induces a map s∗ : H2(D,µ2)→ H2(ΓQ, µ2), and s lifts to D̃
if and only if s∗(ξ) = 0, where ξ is the class of the extension D̃ � D. The
natural map

H2(ΓQ, µ2)→
∏
p≤∞

H2(ΓQp , µ2)

is injective because H2(ΓQ, µ2) = Br(Q)[2] and Br(Q) →
∏
p≤∞Br(Qp).

It follows that if s lifts everywhere locally, then it lifts globally. It thus
remains to show that s lifts everywhere locally. For p <∞, s|ΓQp lifts to D̃
follows from property (S2) by the exact same argument as in the last two
paragraphs of page 12 of [30]; for p =∞, s|ΓR obviously lifts to D̃ because
s(c) = 1 (c is the complex conjugation). Therefore, we obtain a surjection

s : ΓQ � D̃ ⊂ N(T )Z.
We would like to modify s so that s(c) belongs to T and is “sufficiently

odd” in the sense that dim(som)Ads(c) = |Φ|/2, where Φ is the root system



206 Shiang Tang

of som. When s(c) ∈ Spinm satifies this equality, we call it a split Cartan
involution, or a Chevalley involution in Spinm.

Let us fix a Borel subgroup B ⊃ T of Spinm. It corresponds to a set of
simple roots ∆ ⊂ Φ := Φ(Spinm, T ). Let ρ∨ be the half sum of positive
coroots in Φ∨. By examining the Plates in [6], if Φ is of type Bn, ρ∨ has
coefficients in Z if and only if n ≡ 0, 3 mod 4; and if Φ is of type Dn, ρ∨
has coefficients in Z if and only if n ≡ 0, 1 mod 4. In particular, ρ∨ has
coefficients in Z for m = 2n or 2n+ 1 satisfying the parity assumption we
made before. It follows that for those m, ρ∨ ∈ X•(T ), i.e. it is a well-defined
cocharacter of T .

Let k be a field and G be an algebraic group defined over k, we denote
by Gk or G(k) the k–points of G. Observe that if s : ΓQ → N(T )k is a
group homomorphism and φ ∈ H1(ΓQ, Tk), where ΓQ acts on Tk via the
composite Ad ◦ s, then φ · s : ΓQ → N(T )k is a group homomorphism.

Recall that we have an isomorphism Gn
m
∼−→ TSO,

(t1, . . . , tn) 7→ diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 )
(where we omit the middle 1 whenm is even). We also have an isomorphism

T
∼−→ {(z, t1, . . . , tn) ∈ Gn+1

m : z2 = t1 · · · tn}.
Let T [2] be the group of Z–points of T . It consists of elements of the form
(z, ε1, . . . , εn), where z = ±1, εi = ±1 and the number of −1 among εi is
even. The group ΓQ acts on T [2] via Ad ◦ s. This action factors through
Gal(L/Q) ∼= D. Then T [2] is a direct sum of two irreducible D–modules,
V1 = {(1, ε1, . . . , εn) : εi = ±1} and V2 = {(−1, ε1, . . . , εn) : εi = ±1}.
Letting S = cs(L/Q)∪{∞, 2} (cs(L/Q) denotes the set of places of Q that
split completely in L), [23, Theorem 9.2.3(v)] implies that for i = 1, 2, the
natural maps

H1(ΓQ,S , Vi)→ H1(ΓR, Vi)
are surjective, and hence we have a surjection

H1(ΓQ,S , T [2]) � H1(ΓR, T [2]) = Hom(ΓR, T [2])
(recall that s(c) ∈ µ2). Let φ ∈ H1(ΓQ,S , T [2]) be a class that maps to
c 7→ s(c)ρ∨(−1) in Hom(ΓR, T [2]). We now replace s by φ · s. Then having
made this replacement, s(c) = ρ∨(−1), which is a split Cartan involution
by [32, Lemma 2.3]. Let E be the fixed field of ker s.

Now we are going to further modify s by an element in H1(ΓQ, TFp) (for a
prime p) so that the resulting homomorphism ΓQ → N(T )Fp ⊂ Spinm(Fp)
satisfies favorable conditions so that we can use the results of [3] to deform
it to a geometric representation. The method we use here is extremely close
to the proof of [7, Proposition 2.8]. We first establish some notation. For a
fixed prime p, we write κ for the p-adic cyclotomic character and κ for its
mod p reduction. For a prime l dividing p− 1 such that l2 does not divide
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p − 1, let pr(l) be the canonical projection from F×p onto the l–torsion
subgroup F×p [l]. Let κ[l] = pr(l) ◦ κ : ΓQ → F×p [l].

Proposition 2.5. Consider pairs of primes (l, p) such that p splits in E/Q
and p−1 is divisible by l but not l2. Then there exist infinitely many primes
l such that there exist infinitely many pairs (l, p) such that there exists a
homomorphism

r : ΓQ → TFp [l] · D̃ ⊂ N(T )Fp
safisfying

(1) r(c) = ρ∨(−1).
(2) At p, fix any choice of integers nα for α ∈ ∆, r|p =

∏
α∈∆ α

∨◦κ[l]nα.
(3) There is a prime q of order l mod p such that r|q is unramified with

Frobenius mapping to ρ∨(q) ∈ TFp [l].
Moreover, in addition to the above, we can choose p > 2(N + 1),

l ≥ hSpinm (hSpinm is the Coxeter number of Spinm), {nα} and r
such that

(4) spin ◦ r|p is a direct sum of distinct powers of κ[l].
(5) For any Borel B ⊃ T , H0(ΓQp , r(g/b)) vanishes (where g = som

and r acts on g/b via the adjoint action).
(6) spin ◦ r|ΓQ(µp) is absolutely irreducible.

Proof. Let l be any odd prime such that E (the fixed field of ker s) and
Q(µl2) are linearly disjoint over Q (e.g. take l split in E/Q). Later in the
argument we will require l to be larger than some constant depending only
on the group Spinm. Now we take p to be any prime split in E(µl) but
nonsplit in E(µl2) (such a prime exists by Chebotarev). In other words, p
splits in E/Q and p−1 is divisible by l but not l2. In particular, E and Q(µp)
are linearly disjoint overQ. By Chebotarev, there exists a prime q that splits
in E and has order l in F×p . Let r be a prime that splits in E(µp). The Galois
group ΓQ acts on TFp [l] via Ad ◦ s, which factors through D ∼= Gal(L/Q).
Then TFp [l] decomposes into a direct sum of irreducible Fl[D]–modules:
TFp [l] =

⊕
Wi. Let Σ = cs(L/Q) ∪ {∞, l} and T = {p, q, r}. Then [23,

Theorem 9.2.3(v)] implies that the canonical homomorphisms

H1(ΓQ,Σ,Wi)→
⊕
v∈T

H1(ΓQv ,Wi)

are surjective, from which it follows that the canonical homomorphism
H1(ΓQ,Σ, TFp [l])→

⊕
v∈T

H1(ΓQv , TFp [l])

is surjective as well. We let φ ∈ H1(ΓQ,Σ, TFp [l]) be a class such that
φ|p =

∏
α∈∆ α

∨ ◦ κ[l]nα , φ|q is unramified with φ(Frq) = ρ∨(q), and φ|r
is unramified with φ(Frr) = t, where t is any element in TFp [l] such that
λ(t) for λ ∈ Λspin are all distinct (such t exists provided that l is sufficiently
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large). We set r = φ ·s. It follows immediately from the choice of φ that (2)
and (3) hold. Since s(c) = ρ∨(−1) and l is odd, (1) holds. It remains to
address (4) through (6). We have

spin ◦ r|p =
⊕

λ∈Λspin

κ[l]
∑

α∈∆ nα<λ,α∨>;

since Λspin is multiplicity-free, choosing {nα} to be sufficiently general will
make the exponents distinct. This proves (4). For (5), note that

r|p(g/b) =
⊕
β∈Φ−

κ[l]
∑

α∈∆ nα<β,α∨>.

By choosing l to be sufficiently large and {nα} to be sufficiently general,
we can ensure that the absolute values of the exponents are in (0, l); in
particular, H0(ΓQp , r(g/b)) vanishes. Finally, D acts transitively on Λspin
by Lemma 2.1, so any nonzero submodule of spin◦r has nonzero projection
to each of the weight spaces; since E and Q(µp) are linearly disjoint over
Q, the same is true for spin ◦ r|ΓQ(µp) . On the other hand, r(Frr) = t ∈
TFp [l] acts via distinct characters on the different weight spaces of the spin
representation by the choice of t. It follows that spin ◦ r|ΓQ(µp) is absolutely
irreducible, which shows (6). �

3. Lifting Galois representations
In this section, we prove a lifting theorem using a version of the Khare–

Wintenberger argument ([16]), similar to the arguments in [7, Section 3]
and [25, Section 3]. We axiomatize their arguments and state our lifting
theorem as general as we can. On the other hand, the main theorem of [14]
allows one to deform a much larger class of G–valued mod p Galois rep-
resentations to geometric representations in characteristic zero, yet it does
not establish potential automorphy of the lifts.

Let G be a split connected semisimple group over Q. Let T be a maximal
split torus of G and let Φ = Φ(G,T ) be the root system of G. We assume
that G satisfies the following:

• G contains a split Cartan involution, i.e. there is an element τ ∈ G
of order two such that dim gAdτ = |Φ|/2.
• G admits an irreducible faithful representation R : G → GLN fac-
toring through SON (the orthogonal group preserving the pairing
(x, y) = x1y1 + x2y2 + · · ·+ xNyN on QN ; this is different from the
pairing used in Section 1.1) such that the formal character of R is
multiplicity-free.4

4This is a very restrictive assumption.
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Let F+ be a totally real field. Let r : ΓF+ → G(Fp) be a continuous
representation. Let S be the union of all the archimedean places of F+,
the places of F+ dividing p and the places of F+ at which r is ramified.
Suppose that r satisfies the following:

• r is odd in the sense that for v|∞ with cv ∈ ΓF+
v

the complex
conjugation, r(cv) is a split Cartan involution.
• For v not above p, r|v has a characteristic zero lift rv : ΓF+

v
→

G(Zp).
• For v|p, r|v has a characteristic zero lift rv : ΓF+

v
→ G(Zp) with

some fixed Hodge type µ(rv) and inertial type σv such that R ◦ rv
is potentially diagonalizable in the sense of [3] with regular Hodge–
Tate weights.5
• R ◦ r|F+(µp) is absolutely irreducible.
• p is sufficiently large relative to G.

We let O be the ring of integers in a finite extension E of Qp, enlarged
if necessary so that all of the above data are defined over O.

We recall the definition of the Clozel–Harris–Taylor group scheme Gn
over Z which is defined as the semidirect product (GLn × GL1) o {1, }
where (g, a) = (a(tg)−1, a), and the similitude character ν : Gn → GL1
given by ν(g, a) = a and ν() = −1. Suppose we have a homomorphism
r : ΓF+ → G(A) for some ring A. Let F/F+ be a quadratic extension of F ,
and define ρ(r) : ΓF+ → GN (R) as the composite

ΓF+
R(r)×resF−−−−−−→ SON (A)×Gal(F/F+) −→ GN (A),

where the last map sends g ∈ SON (A) to its image in GLN (A) and sends
the nontrivial element of Gal(F/F+) to . By our choice of the pairing
defining SON , ρ(r) is a well-defined homomorphism.

We choose a quadratic CM extension F/F+ such that F does not contain
ζp, R ◦ r|F (µp) remains irreducible, and all the finite places in S split in
F/F+. We will define global deformation conditions for r and ρ(r) with
respect to F/F+. Then we will show that there are natural finite maps
between the corresponding deformation rings and use the O–finiteness of
the deformation ring for the group GN to conclude that the deformation ring
for the group G is O–finite; this, combined with a standard calculation of its
Krull dimension (as in [4]), will imply that it has a Qp–point. For the GN–
deformation problems, we will fix the multiplier: Let δF/F+ : ΓF+ → {±1}
be the quadratic character associated with F/F+; we require that any local
or global deformation of ρ(r) composed with ν equals δF/F+ . In particular,
since all the finite places v ∈ S split in F/F+, ρ(r)|v and all its local

5For the regularity to hold, it is necessary that the formal character of R is multiplicity-free.
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deformations are valued in the group GLN . Thus we will omit δF/F+ from
our notation when we discuss about local deformations.

Recall from the discussion in Section 1.1 that for each v ∈ S we can
consider the lifting rings R�

r̄|v and R�
ρ(r̄)|v . For v ∈ S not above p, choose an

irreducible component C(rv), resp. C(ρ(rv)) of R�
r̄|v ⊗Qp, resp. R�

ρ(r̄)|v ⊗Qp

containing rv, resp. ρ(rv). such that under the natural map

SpecR�
r̄|v ⊗Qp → SpecR�

ρ(r̄)|v ⊗Qp,

C(rv) maps to C(ρ(rv)).
Similarly, for v|p, the fixed inertial type and fixed p-adic Hodge type of

rv induces corresponding data for ρ(rv). Choose C(rv) to be a potentially
crystalline component mapping into a potentially crystalline component
C(ρ(rv)) containing the potentially diagonalizable point ρ(rv) under the
natural map

SpecR�,µ(rv),σv
r̄|v ⊗Qp → SpecR�,µ(ρ(rv)),ρ(σv)

ρ(r̄)|v ⊗Qp.

We now define the global deformation rings, for r and ρ(r), by considering
lifts that locally lie on the irreducible components we have just specified.
More precisely, following the formalism of [4, Section 4.2], we let Runiv

G be
the quotient of the universal, unramified outside S deformation ring for
r corresponding to the fixed set of components {C(rv)}v∈S . We similarly
define Runiv

GL corresponding to the local components {C(ρ(rv))} (and fixed
polarization δF/F+). These rings all exist by absolute irreducibility of the
respective residual representations, and by the discussion in [4, Section 4.2]
([4, Lemma 3.4.1] plays a key role here). By construction, there is a natural
O–algebra map

Runiv
GL → Runiv

G .

Lemma 3.1. The map Runiv
GL → Runiv

G is surjective.

Proof. The tangent space of Runiv
GL is a subspace of H1(ΓF+,S , ρ(r)(glN ))

and the tangent space of Runiv
G is a subspace of H1(ΓF+,S , r(g)). For p

large enough, glN is by [29, Proposition 2] a semisimple G–module, so a
fortiori r(g) is a ΓF+,S–direct summand of ρ(r)(glN ). It follows that the
natural map H1(ΓF+,S , r(g))→ H1(ΓF+,S , ρ(r)(glN )) is injective; the dual
map is surjective, and we conclude by Nakayama’s lemma that the map on
universal deformation rings without local conditions is surjective. It then
follows immediately that Runiv

GL → Runiv
G is surjective as well. �

By the proof of [3, Theorem 4.3.1], Runiv
GL is O–finite. Lemma 3.1 then

implies that Runiv
G is O–finite. We claim that Runiv

G has Krull dimension
at least one. Indeed, this follows from [4, Theorem B]: the assumptions
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there are satisfied since we have assumed that r is odd, R ◦ r|F+(µp) is irre-
ducible (which, under our assumption on p, implies that H0(ΓF+ , r(g)(1))
vanishes), and the Hodge–Tate cocharacters are regular. Thus Runiv

G has a
Qp–point, say r : ΓF+ → G(Qp). Then R ◦ r satisfies the hypotheses in [3,
Theorem C]: (1) is clear; (2) holds since R is valued in SON by assumption;
(3) holds because for v|p, R ◦ r|v lies on the same (potentially crystalline)
component as the potentially diagonalizable point R ◦ rv = ρ(rv); since
potentially crystalline deformation rings are regular, there is a unique po-
tentially crystalline component of SpecR�,µ(ρ(rv)),ρ(σv)

ρ(r̄)|v ⊗Qp passing through
ρ(rv). It follows that R ◦ r|v is potentially diagonalizable. (4) holds by our
assumption on r. Therefore, Theorem C of loc. cit. implies that R ◦ r is
potentially automorphic and belongs to a strictly compatible system of `-
adic representations. Let us denote this compatible system by {Rλ}, where
Rλ : ΓF+ → GLN (Mλ) is a continuous representation with M a number
field and λ primes of M . Suppose that for v|p, the Hodge–Tate weights of
R◦rv (and hence R◦r|v) are extremely regular in the sense of [3, Section 2.1],
then [3, Theorem D] (which ultimately relies on Larsen’s work [20]) and the
standard Brauer induction argument (see [3, Theorem 5.5.1]) imply that
for a density one set of rational primes l, Rλ is irreducible for λ|l.

We summarize the above discussion in the following:

Theorem 3.2. Retain the assumptions on G and r : ΓF+,S → G(Fp)
imposed at the beginning of this section. Then r has a lift r : ΓF+ → G(Qp)
unramified outside S such that

(1) For each v ∈ S not lying above p, r|v := r|Γ
F+
v

and rv lie on the
same irreducible component of Spec(R�

r̄|v ⊗Qp).
(2) For each v|p, r|v and rv lie on the same irreducible component of

SpecR�,µ(rv),σv
r̄|v ⊗Qp. Moreover, R◦r|v is potentially diagonalizable

in the sense of [3] with regular Hodge–Tate weights.
(3) R ◦ r is potentially automorphic in the sense of [3].
(4) R ◦ r is part of a strictly compatible system Rλ : ΓF+ → GLN (Mλ)

indexed by finite places λ of some number field M . If in addition,
the Hodge–Tate weights of R◦r|v are extremely regular in the sense
of [3, Section 2.1], then for a density one set of rational primes l,
Rλ is irreducible for λ|l.

4. Compatible systems of Spin Galois representations
In this section, we use the lifting method of Section 3 to deform the

representation r : ΓQ → Spinm(Fp) in Proposition 2.5 to a characteristic
zero representation satisfying favorable local conditions. Moreover, we will
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show that the associated compatible system of Galois representations {Rλ}
has Spinm monodromy for a density one set of rational primes l below λ.

For the rest of this paper, we assume that m satisfies the parity assump-
tion in Section 2.

We need to specify the local deformations of r, following the notation
in Section 3. Let S be the union of ∞, p, q and the places of Q at which
r is ramified. We choose a quadratic field F such that F does not contain
ζp, spin ◦ r|F (µp) remains irreducible, and all the finite places in S split
in F/Q. Suppose that we have a homomorphism r : ΓQ → Spinm(A) for
some ring A; as in Section 3, we define ρ(r) : ΓQ → GN (A) as the composite
(recall that the spin representation lands in SON form satisfying the parity
assumption)

ΓQ
spin(r)×resF−−−−−−−−→ SON (A)×Gal(F/Q) −→ GN (A),

where the last map sends g ∈ SON (A) to its image in GLN (A) and sends
the nontrivial element of Gal(F/Q) to .

Deformation condition at p. Recall that r|p =
∏
α∈∆ α

∨ ◦ κ[l]nα . Fix

χT =
∏
α∈∆

α∨ ◦ (κñα · [κ]−nα · [κ[l]]nα)

lifting r|p, where [κ], resp. [κ[l]] denotes the Teichmuller lift of κ, resp. [κ[l]],
and ñα ≡ nα mod l−1 are greater than one and sufficiently general (ñα > 1
ensures that our characteristic zero lifts are potentially crystalline, cf. [24,
Lemma 4.8]). We take rp to be χT . Let C(rp) be an ordinary potentially
crystalline component of SpecR�,µ(rp),σ(rp)

r̄|p ⊗Qp containing rp determined
by the ordinary deformation condition of [24, Definition 4.1] with respect
to the Borel B ⊃ T associated to ∆ (Proposition 2.5, (5) ensures that this
deformation condition is well-defined). Note that the genericity of {ñα}
for α ∈ ∆ and the fact that Λspin is multiplicity-free imply that spin ◦ rp
has regular Hodge–Tate weights. We may and do assume that the integers
ñα are chosen so that the Hodge–Tate weights of spin ◦ rp are extremely
regular in the sense of [3, Section 2.1]. Let C(ρ(rp)) (ρ(rp) = spin◦rp) be the
corresponding potentially crystalline component of SpecR�,µ(ρ(rp)),ρ(σ(rp))

ρ(r̄)|p ⊗
Qp.

Deformation condition at q. Define ρq : ΓQq → SL2(Zp) by ρq(σq) =(
q 0
0 1
)

and ρq(τq) =
( 1 p

0 1
)
, where τq is a topological generator of

Gal(Qtame
q /Qunr

q ) and σq ∈ Gal(Qtame
q /Qq) is a lift of the Frobenius ele-

ment in Gal(Qunr
q /Qq) satisfying σqτqσ−1

q = τ qq . We set rq = ϕ ◦ ρq, where
ϕ : SL2 → Spinm is the principal SL2 homomorphism with respect to T
and a Borel B ⊃ T of Spinm. Then rq lifts r|q. Suppose that l is greater
than hSpinm (see Proposition 2.5), then the Steinberg deformation condition
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in [24, Section 4.3] (with respect to B) is well-defined, which corresponds
to an irreducible component C(rq) of SpecR�

r̄|q⊗Qp passing through rq. Let
C(ρ(rq)) be the corresponding irreducible component of SpecR�

ρ(r̄)|q ⊗Qp.

Deformation conditions at other primes. Let v be a prime of Q out-
side {p, q} at which r is ramified. We have r(Iv) ⊂ TFp · D̃, which implies
(since we are assuming p is sufficiently large) that |r(Iv)| is not divisi-
ble by p. We take the minimal prime to p deformation condition of [24,
Section 4.4] at v, which determines irreducible components of the local
deformation rings as before.

Proposition 4.1. Let r : ΓQ → Spinm(Fp) be the mod p representation in
Proposition 2.5 (recall that m ≥ 7 and m ≡ 0, 1, 7 mod 8). Then r admits
a characteristic zero lift r : ΓQ → Spinm(Zp) unramified outside a finite set
of primes such that

(1) r|p is ordinary in the sense of [24, Section 4.1] with Hodge–Tate
cocharacter

∏
α∈∆(α∨)ñα and R◦r|p is potentially diagonalizable in

the sense of [3] with extremely regular Hodge–Tate weights (in the
sense of [3, Section 2.1]).

(2) r|q is Steinberg in the sense of [24, Section 4.3], which is moreover
ramified.

(3) The Zariski closure of the image of r equals Spinm.
(4) R◦ r is potentially automorphic, i.e. there exist a totally real exten-

sion F+/Q and a regular L–algebraic, cuspidal automorphic rep-
resentation Π of GLN (AF+) such that spin ◦ r|ΓF+

∼= rΠ,ι, where
ι : Qp

∼−→ C is a fixed field isomorphism.

Proof. By Proposition 2.5, r satisfies the hypotheses at the beginning of
Section 3 with F+ = Q, G = Spinm and R = spin. (1) and (4) then
follow immediately from Theorem 3.2. By the same theorem, r|q lies on
C(rq), and hence it is Steinberg. We will show that r|q is ramified. Since
Π is cuspidal, Πw is generic for all places w of F+, and therefore local–
global compatibility ([10]) and [3, Lemma 1.3.2] imply that spin ◦ r|Γ

F+
w

is a smooth point on its (generic fiber) local lifting ring. Let w|q be any
place of F+ above q. Since r|Γ

F+
w

lies on the same irreducible component
as the restriction rq|Γ

F+
w

of the Steinberg-type lift constructed above, so do
spin◦r|Γ

F+
w

and spin◦rq|Γ
F+
w

. The latter is visibly a smooth point, so by [3,
Lemma 1.3.4(2)] (due to Choi) the inertial restrictions spin ◦ r|I

F+
w

and
spin◦ rq|I

F+
w

are isomorphic. In particular, r|q is ramified, which proves (2).
It remains to prove (3). Let Gr be the Zariski closure of r, which is reductive
since r is irreducible. Moreover, (2) implies that Gr contains a regular
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unipotent element of Spinm. It then follows from a theorem of Dynkin ([27,
Theorem A]) that the Lie algebra of Gr is one of sl2, g2 and so2n+1 when
m = 2n+ 1 (where g2 may occur only when m = 7); one of sl2, g2, so2n−1
and so2n when m = 2n (where g2 may occur only when m = 8). The
argument of [24, Lemma 7.8] then implies that Gr = Spinm if the integers
{ñα}α∈∆ are taken to be sufficiently general. �

Theorem 4.2. Let r be as in Proposition 4.1. Then spin ◦ r is part of a
strictly compatible system Rλ : ΓQ → GLN (Mλ) indexed by finite places λ
of some number field M with regular Hodge–Tate weights such that for a
density one set of rational primes l, the Zariski closure of the image of Rλ
equals Spinm for λ|l.

Proof. By Proposition 4.1(1) and Theorem 3.2(4), for a density one set Σ of
rational primes l, Rλ is irreducible for λ|l. Then [21, Theorem 4] implies that
for l ∈ Σ and λ|l, Rλ factors through Spinm. In fact, let Gλ be the Zariski
closure of the image of Rλ. By Proposition 4.1(3), Gλ = Spinm for some
λ|l, so (Gλ, stdλ) (where stdλ denotes the canonical inclusion Gλ ⊂ GLN ) is
similar to (Spinm, spin) in the sense of [21], i.e. they have the same formal
characters (since the group of connected components and the formal char-
acter of the connected component of the monodromy group are independent
of l; see [22, Propositions 6.12 and 6.14]). If m is even, then [21, Theorem 4]
implies that Gλ = Spinm; if m = 2n + 1 is odd, the only “basic similarity
classes” in the sense of loc. cit. relevant to (Spin2n+1, spin) are products
(
∏k
i=1 Spin2ni+1,�i spin2ni+1) for some decomposition n1 + · · · + nk = n,

where spin2ni+1 denotes the appropriate spin representation. This external
product is simply the restriction of the 2n-dimensional spin representation
to
∏

Spin2ni+1 ⊂ Spin2n+1, so in any case Gλ ⊂ GL2n factors (up to con-
jugacy) through Spin2n+1 ⊂ GL2n . It follows that Rλ factors as spin(rλ)
for some rλ : ΓQ → Spinm(Mλ). It remains to show that when m is odd,
Gλ = Spinm for λ|l with l belonging to a density one set of rational primes.
By Proposition 4.1(2) and (4) and local–global compatibility ([10]), Gλ
contains (up to conjugacy) the image under the spin representation of a
regular unipotent element of Spinm as long as λ is not above q. By [7,
Lemma 3.5], rλ (for λ above some l ∈ Σ − {q}) then has image contain-
ing a regular unipotent element. We deduce from Dynkin’s theorem ([27,
Theorem A]) that the Zariski closure of the image of rλ equals Spinm. �

Using some results of Larsen ([20]), we give an application of the above
to the inverse Galois problem for the Fp–points of spin groups.

Corollary 4.3. For m ≥ 7, m ≡ 0, 1, 7 mod 8, Spinm(Fp) is the Galois
group of a finite Galois extension of Q for p belonging to a set of rational
primes of positive density.
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Proof. Let {Rλ} be as in Theorem 4.2. By [3, Lemma 5.3.1,(3)], after re-
placing M by a finite extension if necessary, we may assume that Rλ is
valued in GLN (Mλ). Let cs(M/Q) be the set of rational primes l that split
completely in M/Q. Then [20, Theorem 3.17] implies that there is a subset
T of cs(M/Q) of relative density one, such that for l ∈ T and λ|l, Rλ(ΓQ)
is a hyperspecial maximal compact subgroup of Gλ(Ql). By Theorem 4.2,
Gλ(Ql) equals Spinm(Ql) for a density one set of rational primes l. It follows
that Rλ(ΓQ) = Spinm(Zl) � Spinm(Fl) for l belonging to a set of rational
primes of positive density. �

Remark 4.4. Using a completely analogous argument, one can show that
for n ≥ 2, SO2n+1(Fp), resp. SO4n(Fp) is the Galois group of a finite Galois
extension of Q for p belonging to a set of rational primes of positive density.
We compare this with the main result in [33], which shows that the finite
simple groups Ω2n+1(p) and PΩ+

4n(p) both occur as the Galois group of a
Galois extension of Q for all integers n ≥ 2 and all primes p ≥ 5.

5. Realization of Rλ in the cohomology of algebraic varieties
Theorem 5.1. The compatible system of Galois representations {Rλ} in
Theorem 4.2 is motivic in the following sense: there is a smooth projective
variety X/Q and integers i and j such that Rλ is a ΓQ–subrepresentation
of H i(XQ,Ql(j)).

The proof of this theorem is almost identical to the argument in [7,
Section 5], except for a few minor modifications. However, for the reader’s
convenience, we reproduce here part of their argument. The main reference
for this argument is [31]. In [7, Section 5], the dimension of {Rλ} is odd,
which falls into (Case ST) of [31]; in our case, the dimension of {Rλ} (being
a power of 2) is even, which falls into (Case END) of [31]. This is why we
need to modify the argument of [7, Section 5] to prove Theorem 5.1. Fix an
isomorphism ιl : Ql

∼−→ C; it is implicit in all of the constructions of [31].
The compatible system {Rλ} is by construction potentially automorphic,
i.e. there is a totally real field F+/Q such that Rλ|ΓF+

∼= rl,ιl(Π0) for some
cuspidal automorphic representation Π0 of GLN (AF+) (in the notation of [3,
Theorem 2.1.1]). Let F/F+ be a quadratic CM extension. Replacing Π0

by its base change to F , we may assume that Rλ|ΓF ∼= rl,ιl(Π0) for a
conjugate self-dual cuspidal automorphic representation Π0 of GLN (AF ).
Then Rλ|ΓF ∼= Rl(Π0,∨) in the notation of [31, Theorem 7.5] (note that the
normalizations for the local Langlands correspondence used in [3] and [31]
differ by a dual: see [3, Theorem 2.1.1] and [31, Section 2.3]). Replacing Π0

by its dual, we may write

Rλ|ΓF ∼= Rl(Π0).
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We may further adjust the integers {ñα} in Proposition 4.1 so that the
associated automorphic representation Π0 is slightly regular (a.k.a. Shin
regular) in the sense of [31] (this is necessary in Case END).

Let n = N+1 (N is “m” in [31]). 6 We recall the construction of Rl(Π0).
Let E be an imaginary quadratic field not contained in F satisfying the four
bulleted conditions in Step (II) of the proof of [31, Theorem 7.5]. Replace
F by FE and Π0 by BCFE/F (Π0). Then the triple (E,F,Π0) satsfies the
six bulleted conditions at the beginning of Step (I) of the proof of loc. cit.
Let F ′ be an imaginary quadratic extension of F+ satisfying the three
bulleted conditions in Step (I) of loc. cit. Then replace F by FF ′ and Π0 by
BCFF ′/F (Π0) so that [31, Proposition 7.4] applies to the triple (E,F,Π0).
There is a Hecke character ψ of A×E/E× such that, setting Π = ψ�Π1 (which
is an automorphic representation of the group GL1(AE)×GLn(AF ); Π1 is
constructed from Π0 in [31, Section 7.1]), we have (in the notation of [31,
Corollary 6.10] 7)

Rl(Π0) := R′′l (Π) := R′l(Π)⊗ recl,ιl
(
($ ◦NF/E)⊗ |.|1/2

)
, 8

where R′l(Π) := R̃′l(Π)⊗ recl,ιl(ψc)|ΓF and

CG · R̃′l(Π) =
∑

π∞∈Rl(Π)
Rn−1
ξ,l (π∞)ss

(see [31, (5.5), (6.23)]; G the unitary similitude group defined in [31, Sec-
tion 5.1]). The rest of the argument is identical to that of [7, Section 5]: one
shows that R̃′l(Π) is a subrepresentation of the cohomology of a smooth pro-
jective variety over F , which implies that Rλ|ΓF (which is a twist of R̃′l(Π))
is a subrepresentation of a smooth projective variety over F after possibly
replacing F by a finite extension (using [13, IV. Proposition D.1]). It then
follows from Frobenius reciprocity and the irreducibility of Rλ that Rλ is a
subrepresentation of a smooth projective variety over Q. This finishes the
proof of Theorem 5.1.

6. Comparison with the work of Kret and Shin
In this section, we explain how the main theorem of [18] implies a stronger

version of Theorem 1.1 in the case when m = 2n+ 1 is odd. Moreover, the
very recent preprint [19] implies a stronger version of Theorem 1.1 in the
case when m = 2n is even in a similar way.

6To keep our notation consistent with that of [31], we borrow the same letter n from the
preceding sections which was used to denote the rank of the spin group. We hope this does not
cause any confusion.

7In our case, i = 1, mi = n− 1.
8$ : A×E/E

× → C× is the Hecke character defined in [31, Section 3.1].
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The maximal torus T of Spin2n+1 may be described as

T
∼−→ {(z, t1, . . . , tn) ∈ Gn+1

m : z2 = t1 · · · tn}.

For 1 ≤ i ≤ n, let χi ∈ X•(T ) be the character defined by χi(z, t1, . . . , tn) =
ti, and let λi ∈ 1

2X•(T ) be the cocharacter defined by

(2λi)(t) = (t, 1, . . . , 1, t2, 1, . . . , 1),

where t2 is located at the (i+1)-th entry. Then the character latticeX•(T ) is
generated by χ1, . . . , χn and 1

2(
∑
i χi), where 1

2(
∑
i χi) sends (z, t1, . . . , tn) to

z; and the cocharacter latticeX•(T ) equals {
∑
imiλi : mi ∈ Z,

∑
mi ∈ 2Z}.

Note that Sp∨2n = SO2n+1, PSp∨2n = Spin2n+1 and GSp∨2n = GSpin2n+1.
Let π∞ be a discrete series representation of Sp2n(R) with a regular and

tempered L–parameter φ∞ : WR → SO2n+1(C) defined by

φ∞(z) = diag(zm1z−m1 , . . . , zmnz−mn , 1, z−mnzmn , . . . , z−m1zm1)

for z ∈ C×, mi ∈ Z and φ∞(j) = J , where J = [aij ] is the (2n + 1) by
(2n + 1) matrix with an+1,n+1 = (−1)n, ai,2n−i+2 = 1 for i 6= n + 1, and
aij = 0 otherwise. We want to lift φ∞ to Spin2n+1(C). Note that φ∞|C×
has a unique lift

z 7→
(∑

2miλi
)( z

|z|

)
.

In particular, −1 7→ (−1)
∑

mi (we use −1 to also denote the nontrivial
element in the center of Spin2n+1 by abuse of notation). The element j
necessarily maps to a lift of J ∈ SO2n+1(C) in Spin2n+1(C), which is either
ω1 · · ·ωn or −ω1 · · ·ωn (in the notation of Lemma 2.3 and the paragraph
preceding it). We have (ω1 · · ·ωn)2 = (−1)n(n+1)/2. To have a well-defined
homomorphism φ̃∞ : WR → Spin2n+1(C) lifting φ∞, we must ensure that
φ̃∞(j)φ̃∞(z)φ̃∞(j)−1 = φ̃∞(z) and φ̃∞(j)2 = φ̃∞(−1). The first equality is
automatic. The second equality is by the above equivalent to (−1)n(n+1)/2 =
(−1)

∑
mi . Therefore, φ∞ lifts to Spin2n+1(C) if and only if

∑
mi has the

same parity as n(n+ 1)/2. On the automorphic side, this says π∞ descends
to a discrete series representation of PSp2n(R) if and only if the integers
mi appearing in its L–parameter satisfies

∑
mi ≡ n(n+1)

2 mod 2.
Now we ask: Of the discrete series that descends to PSp2n(R), are any

of them L–algebraic in the sense of [8]? Consider their L–parameter φ̃∞|C,
z 7→ (

∑
2miλi)( z

|z|) = z
∑

miλiz−
∑

miλi , we have
∑
miλi ∈ X•(T ) if and

only if
∑
mi ∈ 2Z. Therefore we have

Lemma 6.1. Let π∞ and φ∞ be as before. Then
(1) π∞ descends to a discrete series representation of PSp2n(R) if and

only if
∑
mi ≡ n(n+1)

2 mod 2.
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(2) π∞ descends to an L–algebraic discrete series representation of
PSp2n(R) if and only if n ≡ 0, 3 mod 4 and

∑
mi ∈ 2Z.

A trace formula argument shows that there are infinitely many cuspidal
automorphic representations π of PSp2n(AQ) such that its archimedean
component π∞ satisfies Lemma 6.1, (2) and π is Steinberg at a finite place of
Q (cf. [11]). Let π̃ be the cuspidal automorphic representation of GSp2n(AQ)
associated to π via the natural map pr : GSp2n � PSp2n. We want to
use the main theorem of [18] to associate to π̃ GSpin2n+1–valued Galois
representations.

Lemma 6.2. The infinity component π̃∞ of π̃ is L–cohomological in the
sense of [18], i.e. π̃∞ · |λ0|

n(n+1)
4 is cohomological in the sense of [18, Defi-

nition 1.12] (λ0 corresponds to the similitude character of GSp2n).

Proof. Since π∞ is a discrete series representation of Sp2n(R) with infini-
tesimal character µ(π∞) (where µ(π∞) is determined by writing φ∞(z) =
zµ(π∞)zν(π∞)), it is ξ∨µ(π∞)−ρ–cohomological ([5, Theorem V.3.3]), where
ξµ(π∞)−ρ is the highest-weight µ(π∞)− ρ representation of Sp2n(C), and ρ
is the half-sum of positive roots for the choice of root basis used also to pa-
rametrize highest weights. We need an extension ξ̃ of ξµ(π∞)−ρ to GSp2n(C)
such that (letting K be a maximal compact subgroup of Sp2n(R))

H∗(gsp2n(C),K · ZGSp2n(R); π̃∞ · |λ0|
n(n+1)

4 ⊗ ξ̃∨) 6= 0.

From the definition of this cohomology group, and the fact that π∞ ⊗
ξ∨µ(π∞)−ρ has non-zero (sp2n(C),K)–cohomology, this reduces to checking

that we can find an extension ξ̃∨ of ξ∨µ(π∞)−ρ such that ξ̃ and π̃∞ · |λ0|
n(n+1)

4

have the same central character; note that we will only have to check this
on R×>0 ⊂ ZGSp2n(R) since −1 ∈ K. We choose ξ̃ to be the representation
with highest weight µ(π̃∞) − ρ + n(n+1)

4 λ0 ∈ X•(TGSp2n), where µ(π̃∞) =∑
miλi, which (since

∑
imi is even) lies in X•(TSpin2n+1) = X•(TPSp2n) ⊂

X•(TGSp2n), and both ρ and n(n+1)
4 λ0 are integral since n ≡ 0, 3 mod 4.

The lemma is now proven, since this highest weight representation has the
same central character as π̃∞ · |λ0|

n(n+1)
4 . �

Therefore, by [18, Theorem A], the cuspidal automorphic representation
π̃ of GSp2n(AQ) (for n ≡ 0, 3 mod 4) has an associated weakly compatible
system of Galois representations

ρπ̃,l : ΓQ → GSpin2n+1(Ql)
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satisfying the conclusions of loc. cit. 9 In particular, since the central char-
acter of π̃ is trivial, [18, Theorem A(i)] implies that ρπ̃,l is in fact valued
in Spin2n+1(Ql). Moreover, for sufficiently general {mi}1≤i≤n, π̃∞ is spin-
regular in the sense of [18], i.e. the L–parameter of π̃∞ maps to a regular
parameter for GL2n by the spin representation. In this case, the Zariski-
closure of ρπ̃,l equals Spin2n+1, and thus we obtain a Spin2n+1–compatible
system of motivic Galois representations with full monodromy.

In contrast, the following lemma shows that for the remaining n, we do
not expect the Galois representations associated to cuspidal automorphic
representations of PSp2n(AQ) that are regular algebraic at infinity to land
in Spin2n+1 by [8, Conjecture 5.3.4].

Lemma 6.3. Suppose n ≡ 1, 2 mod 4 (equivalently, n(n+1)
2 is odd) and π

is a cuspidal automorphic representation of Sp2n(AQ) with trivial central
character. Denote by π[ the associated representation of PSp2n(AQ). If π
is regular algebraic, 10 then π[ is C–algebraic but not L–algebraic.

Proof. We can write the L–parameter φ∞ of π∞ as
φ∞(z) = diag(zm1zl1 , . . . , zmnzln , 1, z−mnz−ln , . . . , z−m1z−l1)

with all mi, li ∈ Z and z ∈ C×. Arthur’s classification of automorphic rep-
resentations of classical groups ([2]) implies that π has a functorial trans-
fer to a cuspidal automorphic representation of GL2n+1(AQ), so Clozel’s
archimedean purity theorem ([12, Lemme 4.9]) implies that mi + li = 0 for
all i. Since the integers mi are distinct and nonzero, it is then easy to see
that φ∞ is isomorphic to the L–parameter under the same name defined
before Lemma 6.1. Since the L–parameter φ̃∞ of π[∞ lifts φ∞, the calcu-
lations preceding Lemma 6.1 imply that

∑
mi ≡ n(n+1)

2 ≡ 1 mod 2. A
easy calculation shows that ρ∨ (the half-sum of coroots of Spin2n+1) equals
nλ1 + (n − 1)λ2 + · · · + 1λn (which does not lie in X•(T ) since n(n+1)

2 is
odd). It follows that

∑
miλi ∈ ρ∨ + X•(T ) and hence π[∞ is C–algebraic

but not L–algebraic (φ̃∞(z) = z
∑

miλiz−
∑

miλi). �

However, if π is not assumed to be regular at infinity, then π[ can be
L–algebraic, in which case the expected Galois representations associated
to it lands in Spin2n+1 ([8, Conjecture 3.2.1]).
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