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Serre weights and the Breuil–Mézard conjecture
for modular forms

par Hanneke WIERSEMA

Résumé. La forme forte de la conjecture de Serre, démontrée par Khare et
Wintenberger, assure que toute représentation galoisienne ρ modulo p, de
dimension 2, continue, irréductible et impaire provient d’une forme modulaire
de poids minimal k(ρ), de niveau N(ρ) et de caractère ε(ρ) prescrits. Dans ce
court article, nous démontrons que le poids minimal k(ρ) coïncide avec une
autre notion de poids minimal, qui est inspirée par la recette pour les poids
de ρ introduite par Buzzard, Diamond et Jarvis dans [4]. De plus, en utilisant
la conjecture de Breuil–Mézard, nous démontrons que le poids défini par ces
recettes équivalentes est égal au plus petit entier k ≥ 2 tel que ρ possède un
relèvement cristallin de type de Hodge–Tate (0, k − 1).

Abstract. Serre’s strong conjecture, now a theorem of Khare and Winten-
berger, states that every two-dimensional continuous, odd, irreducible mod
p Galois representation ρ arises from a modular form of a specific minimal
weight k(ρ), level N(ρ) and character ε(ρ). In this short paper we show that
the minimal weight k(ρ) is equal to a notion of minimal weight inspired by the
recipe for weights introduced by Buzzard, Diamond and Jarvis in [4]. More-
over, using the Breuil–Mézard conjecture we show that both weight recipes
are equal to the smallest k ≥ 2 such that ρ has a crystalline lift of Hodge–Tate
type (0, k − 1).

1. Introduction

In 1973, Serre conjectured that all continuous, odd, irreducible mod p
representations ρ of the absolute Galois group GQ of the rationals arise from
modular forms. In 1987, Serre published a paper [20] in which he specified
the minimal weight k(ρ), minimal level N(ρ) and character ε(ρ) for each
ρ, such that there should be a form f with these invariants that give rise
to ρ. The conjecture has since been proven by Khare and Wintenberger,
building on work of many others [13].
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There has been substantial interest in generalising Serre’s original con-
jectures. One of the directions this can take is by replacing GQ by GK ,
where K is a totally real field. It is a folklore conjecture, stated by Buz-
zard, Diamond and Jarvis ([4, Conjecture 1.1]), that representations

ρ : GK → GL2(Fp),
which are continuous, irreducible and totally odd, arise from Hilbert mod-
ular forms. This setting is beyond the scope of Serre’s original conjectures,
and in particular there is no explicit description for the weights such forms
should have. However, there exists a recipe for a generalised Serre’s conjec-
ture for something called algebraic modularity. This involves a reformula-
tion of modularity in terms of representation theory, first suggested in work
of Ash and Stevens in [1]. For K a totally real field with p unramified and
ρ as above, Buzzard, Diamond and Jarvis define what it means for ρ to
be modular in this sense [4, Definition 2.1]. The weights we are interested
in in this context are irreducible Fp-representations of GL2(OK/p) and are
called Serre weights.

Moreover, given a representation ρ as above, in the same paper, Buz-
zard, Diamond and Jarvis give an explicit recipe for all possible weights
belonging to ρ. The conjecture that is presented in [4] predicts the set of
Serre weights σ for which ρ is modular in this sense, assuming the folk-
lore conjecture. This Serre weight conjecture has now been proven in [10],
[11] and in [15], building on [11], under some hypotheses. However, for the
case relevant to us, K = Q, the conjecture follows from results on Serre’s
original conjectures.

Given this compatibility, it should not be a surprise that the recipe in [4]
for K = Q is in some way compatible with the minimal weight k(ρ) as
given by Serre. However, a priori, the weights in the recipe in [4] cannot
be directly compared to the weight of a modular form. We resolve this by
associating an integer to each Serre weight σ, and then take the minimum
of all of these, denoted by kmin(W (ρ)), for each σ in the Serre weight set
W (ρ) as given in [4]. Using modular representation theory, we are then able
to show that this minimum is equal to the minimal weight as suggested by
Serre.

We will be able to show more than this, using the Breuil–Mézard con-
jecture. In [3], Breuil and Mézard conjectured that the deformations of
representations ρ (in a local setting) of a fixed inertial type τ with Hodge–
Tate weights (0, k − 1) are parameterised by a quotient R(k, τ, ρ) of the
universal deformation ring R(ρ). They also gave a conjectural formula for
the Hilbert–Samuel multiplicity of this quotient in terms of representa-
tion theoretic information associated to (k, τ, ρ). This conjecture has been
rephrased in many settings and we use the version given and proved by
Kisin in [14] in many cases. We note here we do not need the actual value
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µn,m(ρ) appearing in the conjecture, but only need to know when it is non-
zero. We will carefully describe Kisin’s recipe helping us to determine when
µn,m(ρ) 6= 0. This allows us to connect modularity of ρ of a given weight to
the existence of a crystalline lift with given weights, following an explicit
recipe given by Kisin in the same paper. It is known that if ρ is modular
of weight k and level N prime to p, then ρ|GQp

has a crystalline lift with
Hodge–Tate weights (0, k − 1). This leads us to define a third notion of
minimal weight, namely the minimal k for which ρ has a crystalline lift
with Hodge–Tate weights (0, k − 1), which we will denote as kcris(ρ).

We emphasise here that all three notions of minimal weight will be com-
pletely determined by the restriction ρ|GQp

, and the main result will be a
purely local statement. The main theorem is as follows.
Theorem (Main Theorem). Let ρ : GQ → GL2(Fp) be an continuous, odd
and irreducible Galois representation for p an odd prime. Then

k(ρ) = kmin(W (ρ)) = kcris(ρ).
The equality k(ρ) = kmin(W (ρ)) should follow from the weight part of

Serre’s conjecture. The main contribution of this paper is to give a direct
proof using modular representation theory. The next equality kcris(ρ) =
kmin(W (ρ)) is a corollary of the Breuil–Mézard conjecture for which there
is also a purely local proof.

The set-up of this paper is as follows. First we introduce some background
and notation, after which we will start introducing each of the minimal
weight invariants involved in Section 3. We take care with the details of
each recipe, and start with Serre’s classical recipe before introducing the
one from [4]. After introducing some modular representation theory, we
show the compatibility of these two recipes in Section 4. In Section 5, we
will introduce a simplified version of the Breuil–Mézard conjecture and
describe Kisin’s recipe. In the final section we show this is compatible with
the recipe from Buzzard, Diamond and Jarvis which establishes our main
theorem.

2. Background and notation
2.1. General notation. In the following we will study continuous Galois
representations ρ : GQ → GL2(Fp). We will fix an algebraic closure Qp and
an embedding Q ↪→ Qp, so that we can view GQp as a subgroup of GQ. We
will identify GQp with Gp the decomposition subgroup at p and write Ip
for the inertia group at p. Moreover, we will write Ip,w for the wild inertia
subgroup and Ip,t for the tame inertia subgroup.

We will often be interested in studying restrictions of our representation,
e.g. ρ|Gp or ρ|Ip . We write ωn for a fundamental character of level n, and
write ω for the mod p cyclotomic character, i.e. the unique fundamental
character of level 1.
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We will write χcyc : GQp → Z×p for the cyclotomic character. For λ ∈ F×p ,
we denote by µλ : GQp → F×p the unramified character sending geometric
Frobenius to λ.

We will briefly recall the p-adic Hodge theory notions we will need when
discussing the Breuil–Mézard conjecture.

2.2. p-adic Hodge theory notions. We let E/Qp be a sufficiently large
extension with ring of integers O, uniformiser $ and residue field F. We let
r : GQp → GLd(E) = AutE(V ) be a continuous representation with V an
E-vector space of dimension d.

Definition 2.1 (Crystalline representations). Let V be as above. Then we
say V is crystalline if Dcris(V ) = (V ⊗Qp Bcris)GQp is free of rank d over
(E ⊗Qp Bcris)GQp = E, where Bcris is one of Fontaine’s period rings, see
e.g. [2].

Definition 2.2 (Hodge–Tate weights). If V is a crystalline representation
ofGQp over Qp, then we define the Hodge–Tate weights of V to be the multi-
set of integers such that an arbitrary integer i appears with multiplicity

dimQp
(V ⊗Qp Cp(−i))GQp ,

with Cp denoting the completion of Qp and Cp(−i)) the −i-th Tate twist
of Cp.

Example 2.3. With this convention the p-adic cyclotomic character χcyc
has Hodge–Tate weight one.

3. Definitions of the weight invariants

In this section we first define the minimal weight invariant that is easy
to define with the p-adic Hodge theory notions in mind. Afterwards we will
explicitly define Serre’s k(ρ) and study the recipe from [4] to allow us to
define kmin(W (ρ)) in the next section. Throughout this section we let p be
an odd prime and we let r : GQp → GL2(Fp) be any continuous represen-
tation. We also let ρ : GQ → GL2(Fp) be a continuous, odd, irreducible
representation and write ρGp for its restriction to GQp .

3.1. The invariant kcris(ρ).

Definition 3.1 (Crystalline lift). We say r has a crystalline lift of weight k
if it has a lift r̃ to characteristic zero which is crystalline with Hodge–Tate
weights (0, k − 1).

Definition 3.2 (kcris(ρ)). For a representation r as above we define kcris(r)
to be the least k ≥ 2 such that r has a crystalline lift of weight k.

For a representation ρ as above we set kcris(ρ) := kcris(ρGp).
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Example 3.3. Suppose ρGQp
is given by(
ωµλ 0

0 µλ′

)
,

then we obtain a lift (
χcycµλ̃ 0

0 µλ̃′

)
,

with ∼ denoting the Teichmüller lift. This has Hodge–Tate weights (0, 1),
so we have a crystalline lift of weight 2 and thus kcris(ρ) = 2.

3.2. Serre’s minimal weight k(ρ). In this section, we describe how
Serre defines k(ρ) in the seminal paper [20]. If ρGp is semisimple, Ip,w acts
trivially by [18, Proposition 4]. As a consequence the action of Ip factors
through Ip,t. This action ρIp,t is then given by two characters φ, φ′ : Ip,t →
F×p . From [7, p. 567] we obtain that {φp, φ′p} = {φ, φ′}. Now, no longer
assuming ρGp to be semisimple, but looking at the semisimplification of
ρGp we have two cases:

(1) φ, φ′ are both of level 1, and ρGp is reducible,
(2) φ, φ′ are both of level 2, φp = φ′ and φ′p = φ, and ρGp is irreducible.

3.2.1. The level two case. In the level two case, we can write

ρIp ∼ ωa ⊗
(
ωb−a2 0

0 ω
p(b−a)
2

)
,

with 0 ≤ a < b ≤ p− 2 ([20, Section 2.2]). In this case we define
k(ρ) = pa+ b+ 1.

3.2.2. The level one case. In the level one case the representation ρGp is
reducible, and we split into two cases depending on whether ρIp,w is trivial.

ρIp,w is trivial. In this case, we can write

ρIp ∼ ωa ⊗
(
ωb−a 0

0 1

)
,

for 0 ≤ a ≤ b ≤ p−2, and in which case we define k(ρ) = pa+b+1, however,
if (a, b) = (0, 0) this definition would give us k(ρ) = 1. Since we are not
including modular forms of weight 1, we simply add p− 1, so k(ρ) = p. So
we find

k(ρ) =
{
pa+ b+ 1 if (a, b) 6= (0, 0),
p if (a, b) = (0, 0).

ρIp,w is non-trivial. Here we can write

ρIp ∼ ωα ⊗
(
ωβ−α ∗

0 1

)
.
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We fix representatives α, β such that 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1. For
β 6= α+ 1, we define a = min(α, β) and b = max(α, β), and then we set

k(ρ) = pa+ b+ 1.

However, if β = α+ 1, we split according to whether the representation is
peu ramifiée or très ramifiée at p. For definitions of these notions we refer
to [20, p. 186]. Then Serre defines

k(ρ) =
{

2 + α(p+ 1) if ρGp is peu ramifiée and β = α+ 1,
p+ 1 + α(p+ 1) if ρGp is très ramifiée and β = α+ 1.

This definition is slightly different for p = 2, but we focus only on odd
primes.

3.3. Serre weights and the set W (ρ). Before we introduce the new
notion of weights, we briefly reformulate Serre’s weight recipe. We write
Symn F2

p for the n-th symmetric power of the standard representation of
GL2(Fp) on F2

p. Now for any continuous, odd, irreducible representation
ρ : GQ → GL2(Fp) we say ρ is modular of weight k ≥ 2 if and only if
ρ ∼ ρf , f of weight k and level N prime to p. Now, as is explained in [9],
this is equivalent to the Hecke eigensystem of ρ appearing in H1(Γ1(N),
Symk−2 F2

p), which is in turn equivalent to the Hecke eigensystem appearing
in H1(Γ1(N), V ) for V a Jordan–Hölder factor of Symk−2 F2

p.
If k > p+1, then Symk−2 F2

p is reducible, so we get proper Jordan–Hölder
factors. We obtain a new notion of weight from [4] as follows.

Definition 3.4 (Serre weight). We define a Serre weight to be an irre-
ducible Fp-representation of GL2(Fp).

The irreducible representations of GL2(Fp) are given by

Va,b = deta⊗Symb−1 F2
p,

where 0 ≤ a ≤ p − 2 and 1 ≤ b ≤ p. We do not need to recall the precise
definition of what it means for ρ to be modular of weight W , where W is
any finite-dimensional Fp[(GL2(Fp)]-module, here, since it is not relevant for
this paper but refer to [4, Definition 2.1]. The authors proceed in showing
that this notion of modularity of weightW is equivalent to ρ being modular
of weight V where V is a Jordan–Hölder factor of W [4, Lemma 2.3], and
these are exactly the Serre weights. For each ρ as above (and more general ρ)
they define a set W (ρ) consisting of Serre weights and then conjecture that
if ρ is modular, then

W (ρ) = {V | ρ is modular of weight V }.
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Next we will describe the set W (ρ) for all possible ρ, up to twists by the
cyclotomic character. This is motivated by the compatibility of modularity
in the sense of Serre weights among determinants and twists, proven in [4,
Corollary 2.11(2)]. In particular, ρ is modular of weight b + 1 and level
prime to p in the classical sense if and only if ωaρ is modular of weight
Va,b [4, p. 30].

Definition 3.5. Let ρ : GQp → GL2(Fp) be a continuous, odd, irreducible
representation, suppose ρGp is irreducible, then up to a twist

ρIp ∼
(
ωb2 0
0 ωpb2

)
,

for 1 ≤ b ≤ p− 1. Then the set W (ρ) is given by
W (ρ) = {V0,b, Vb−1,p+1−b}.

Otherwise, for ρGp reducible, up to a twist we can write

ρIp ∼
(
ωb ∗
0 1

)
,

for 1 ≤ b ≤ p− 1, and we write

ρGp ∼
(
χ1 ∗
0 χ2

)
.

In this case, as in the proof of [4, Theorem 3.17],

W (ρ) =



{V0,b}, if 1 < b < p− 1 and ρGp is non-split,
{V0,b, Vb,p−1−b}, if 1 < b < p− 2 and ρGp is split,
{V0,p−2, Vp−2,p, Vp−2,1}, if b = p− 2, p > 3 and ρGp is split,
{V0,p−1}, if b = p− 1 and p > 2,
{V0,p}, if b = 1, χ1χ

−1
2 = ω and

ρGp is très ramifiée,
{V0,p, V0,1, V1,p−2}, if b = 1, p > 3, and ρGp is split,
{V0,3, V0,1, V1,3, V1,1}, if b = 1, p = 3 and ρGp is split,
{V0,p, V0,1}, otherwise.

(3.1)

We emphasise that in fact the above set depends only on ρIp , as is proved
in [4, Proposition 3.13].

4. Compatibility of two modularity recipes

In this section we will first introduce notions concerning the Grothendieck
groups of our representations, which can be found in more in detail in [6].
Then for each Serre weight Va,b we will define kmin(Va,b) as the minimal k
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such that Va,b appears as Jordan–Hölder constituent of Symk−2 F2
p. Using

modular representation theory we will show that we can determine this
value explicitly. Then we will finally define the third weight invariant of
interest, kmin(W (ρ)), which will be the minimum of all the kmin(Va,b) for
Va,b ∈W (ρ).

4.1. Grothendieck group relations. We write G0(Fp[GL2(Fp)]) for the
Grothendieck group on finite-dimensional representations of GL2(Fp) over
Fp. The group is isomorphic to the free abelian group generated by the
classes of irreducible representations, i.e. [deta⊗Symn] with 0 ≤ a ≤ p −
2, 0 ≤ n ≤ p − 1. As in [6], write R ≤ R′ whenever R′ − R is in the
submonoid of G0(Fp[GL2(Fp)]) consisting of classes of Fp-representations of
GL2(Fp). If σ, σ′ are Fp-representations of GL2(Fp) and if σ is irreducible,
then [σ] ≤ [σ′] if and only if σ is a Jordan–Hölder factor of σ′. Hence the
Grothendieck group enables us to determine the Jordan–Hölder factors of
the representations we are interested in.

For k < −1, we define

[Symk] := −[detk+1⊗Sym−k−2],

and [Sym−1] = 0. To ease notation, in the following we will write Sn for
Symn F2

p. In all following results we will make extensive use of Serre’s peri-
odic relation

[Sn+p−1 − Sn] = [det⊗(Sn−2 − Sn−p−1)]
which holds for all n ∈ Z, obtained from [21].

This relation can be proved using Brauer characters, which are Qp-valued
functions on the p-regular conjugacy classes of G = GL2(Fp) (see e.g. [19,
Section 18.1] for an introduction to these). Following [5], we write βm,n for
the Brauer character corresponding to the representation detm⊗Sn. We let
ι denote the embedding Fp → F̄p and as before let ∼ denote the Teichmüller
lift.

Now let g ∈ GL2(Fp) be any p-regular element. If g is diagonalisable over
Fp, we find g ∼

(
x 0
0 y

)
for some x, y ∈ Fp and we have

βm,n(g) = ι̃(xy)m
∑

0≤i≤n
ι̃(x)n−iι̃(y)i.

If g ∈ GL2(Fp) is not diagonalisable over Fp, we can diagonalise it over a
quadratic extension k of Fp. In this case g ∼

(
c 0
0 cp

)
for some c ∈ k and

βm,n(g) = ι̃′(c)m(p+1) ∑
0≤i≤n

ι̃′(c)n+(p−1)i,

where ι′ is any extension of ι to k. By [19, Section 18.2, Corollary 1] we know
that if two Fp-representations of GL2(Fp) have the same Brauer character,
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they define the same class in G0(Fp[GL2(Fp)]). Given this and the above
computations, the relation follows from a straightforward check.

Lemma 4.1. Let 1 ≤ n ≤ p− 1 and k ≥ 1, then
[Sn+k(p−1)] = [Sn] + [detn⊗Sp−n−1] + [det⊗Sn+(k−1)(p−1)−2].

Proof. We proceed using Serre’s periodic relation above and induction on
k. The base case is k = 1:

[Sn+p−1] = [Sn] + [det⊗Sn−2]− [det⊗Sn−p−1]
= [Sn] + [det⊗Sn−2] + [det⊗(detn−p⊗Sp−n−1)]
= [Sn] + [det⊗Sn−2] + [detn⊗Sp−n−1].

Now we suppose that it holds for some i ≥ 1. Then we find
[Sn+(i+1)(p−1)] = [Sn+i(p−1)] + [det⊗Sn+i(p−1)−2]− [det⊗Sn+i(p−1)−p−1]

(IH)= [Sn] + [detn⊗Sp−n−1] + [det⊗Sn+(i−1)(p−1)−2]
+ [det⊗Sn+i(p−1)−2]− [det⊗Sn+i(p−1)−p−1]

= [Sn] + [detn⊗Sp−n−1] + [det⊗Sn+i(p−1)−2]
where (IH) refers to the induction hypothesis and where the last step simply
is because [det⊗Sn+(i−1)(p−1)−2] = [det⊗Sn+i(p−1)−p−1] since the indices
are the same. �

When it is clear from the context, in the following we will often omit the
brackets of a class in the Grothendieck group.

4.2. The invariants kmin(Va,b) and kmin(W (ρ)). Next for each Va,b ∈
W (ρ), we define

kmin(Va,b) = min
k

{
k ≥ 2

∣∣∣Va,b ∈ JH(Symk−2 F2
p)
}
,

and using the results above we prove an explicit formula for this.

Proposition 4.2. Let 0 ≤ a ≤ p− 2 and 1 ≤ b ≤ p, then

kmin(Va,b) =
{
a(p+ 1) + b+ 1, a+ b < p,

(a+ 1)(p+ 1) + bp− p2, a+ b ≥ p.

Proof. Define k′min(Va,b) to be

k′min(Va,b) =
{
a(p+ 1) + b+ 1, a+ b < p,

(a+ 1)(p+ 1) + bp− p2, a+ b ≥ p.

So we need to show that kmin(Va,b) = k′min(Va,b). To avoid complications
later, we first prove the proposition for a = 0.

For a = 0 we find k′min(Va,b) = b + 1 for all b in which case Va,b equals
Sb−1, which is irreducible. Since Sb+1−2 = Sb−1, the minimal k such that
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Va,b appears in some Sk−2 is b + 1, so we find kmin(Va,b) = b + 1 and the
result follows. Henceforth we assume a 6= 0.

Now first we prove Va,b ∈ JH(Sk′
min(Va,b)−2), starting with a, b such that

a+b < p. We do this by induction on a, the base case is a = 0, which is done
above. Now suppose we have proved for some a ≤ p−2 that if 1 ≤ b < p−a,
that then Va,b ∈ JH(Sk′

min(Va,b)−2). Now we use Lemma 4.1 to show that if
a+1 ≤ p−2 and 1 ≤ b < p−(a+1), that then Va+1,b ∈ JH(Sk′

min(Va+1,b)−2):
Sk′

min(Va+1,b)−2 = S(a+1)(p+1)+b−1

≥ det⊗Sa(p+1)+b−1
(IH)
≥ det⊗(deta⊗Sb−1)
= deta+1⊗Sb−1.

Now for a, b such that a + b ≥ p, we again perform induction on a. This
time our base case is a = p − b in which case k′min(Va,b) = a + p + 1. Now
we use Lemma 4.1 again, which gives us
(4.1) Sa+p−1 = Sa + det⊗Sa−2 + deta⊗Sp−a−1.

Now since b = p − a, we find that Va,b corresponds to the last term. Now
again we do induction on a, suppose we have proved for some a ≤ p − 2
that if p − a ≤ b ≤ p, that then Va,b ∈ JH(Sk′

min(Va,b)−2). Again we use
Lemma 4.1, this time to show that if a+ 1 ≤ p− 2 and p− (a+ 1) ≤ b ≤ p,
that then Va+1,b ∈ JH(Sk′

min(Va+1,b)−2):
Sk′

min(Va+1,b)−2 = S(a+2)(p+1)+bp−p2−2

≥ det⊗S(a+1)(p+1)+bp−p2−2
(IH)
≥ det⊗(deta⊗Sb−1)
= deta+1⊗Sb−1.

This finishes the first part, we proceed with showing that the values given
above for k′min(Va,b) are actually minimal.

We will show that if r < k′min(Va,b), then Va,b 6∈ JH(Sr−2). Now we write
r = s+ t(p+ 1) for some 2 ≤ s ≤ p + 2 and t ≥ 0. We proceed by using
induction on t. First say t = 0, then for r = s and for 2 ≤ r ≤ p+ 1, Sr−2
is irreducible, in which case Va,b ∈ JH(Sr−2) if and only if Va,b = Sr−2. But
the latter implies a = 0, which we have already dealt with above. Now for
the remaining case r = p+ 2, we find

Sr−2 = Sp = S1 + det⊗Sp−2,

hence we have two Jordan–Hölder constituents. Now since S1 = V0,2, again
we have a = 0. Now for the second constituent we find k′min(V1,p−1) = p+2.
But then r = k′min(Va,b), which gives us a contradiction.
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Now suppose it holds for some r = s + t(p + 1), then to complete our
induction we need to prove that if r = s+ (t+ 1)(p+ 1) < k′min(Va,b), then
Va,b 6∈ JH(Sr−2). Again we use Lemma 4.1, first we rewrite r = A(p− 1) +
B + p+ 1 for some A ≥ 0 and 1 ≤ B ≤ p− 1. Then we obtain

Sr−2 = SA(p−1)+B+p+1−2 = S(A+1)(p−1)+B

= SB + detB ⊗Sp−B−1 + det⊗SA(p−1)+B−2.

The first two terms in the sum are irreducible, so are Jordan–Hölder con-
stituents, hence we have to show these do not correspond to Va,b. Recall
that we have assumed a 6= 0, hence Va,b 6= SB for any B. Next we consider
the term detB ⊗Sp−B−1. Now since 1 ≤ B ≤ p− 1 we must have B = a (as
a 6= 0) and hence b = p − B = p − a in order for it to correspond to Va,b.
But for Va,p−a we have k′min(Va,b) = a+p+ 1. However, since t+ 1 ≥ 1, this
implies r ≥ a+ p+ 1, which gives us a contradiction with r < k′min(Va,b).

It remains to show Va,b 6∈ JH(det⊗SA(p−1)+B−2), which is equivalent to
showing Va−1,b 6∈ JH(SA(p−1)+B−2). Now by our induction hypothesis we
find that if r − (p+ 1) < k′min(Va−1,b) then Va−1,b 6∈ JH(Sr−(p+1)−2). Now
for all a + b 6= p, we find k′min(Va−1,b) = k′min(Va,b) − (p + 1), so the result
follows for such a, b where a+ b 6= p.

Now we finish by showing Va,b 6∈ JH(det⊗SA(p−1)+B−2) in the remaining
case where a + b = p. We have seen that k′min(Va,p−a) = a + p + 1. We
further know that for a 6= 0, we have kmin(Va,b) ≥ p + 2. Now if for some
r < k′min(Va,b), we have Va,b ∈ JH(Sr−2), then we must have p + 2 ≤ r ≤
a+p. Recalling r = A(p−1)+B+p+1 for some A ≥ 0 and 1 ≤ B ≤ p−1, this
gives us A = 0 and 1 ≤ B ≤ a− 1, so that det⊗SA(p−1)+B−2 = det⊗SB−2,
which is irreducible and does not correspond to Va,p−a. So it follows in this
case too and we can conclude kmin(Va,b) = k′min(Va,b). �

Now we finally introduce the third minimal weight invariant:

Definition 4.3. We set

kmin(W (ρ)) = min
k
{kmin(Va,b) |Va,b ∈W (ρ)}.

Alternatively, we can write

kmin(W (ρ)) = min
k

{
k ≥ 2

∣∣∣W (ρ) ∩ JH(Symk−2 F2
p) 6= ∅

}
.

Now we are ready to prove the compatibility between the two weight
recipes.

Theorem 4.4. Let p be an odd prime and let

ρ : GQ → GL2(Fp),
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be a continuous, odd, irreducible representation. Let k(ρ) be defined as in
Section 3.2 and kmin(W (ρ)) as above, then

k(ρ) = kmin(W (ρ)).

Proof. We go through it case by case. We start with the irreducible case
where

ρIp ∼ ωa ⊗
(
ω

(b−a)
2 0
0 ω

p(b−a)
2

)
,

for some 0 ≤ a < b ≤ p − 1. In this case k(ρ) = pa + b + 1 and we have
W (ρ) = {Va,b−a, Vb−1,p+1−(b−a)}. Now by Proposition 4.2 we find

kmin(Va,b−a) = pa+ b+ 1, kmin(Vb−1,p+1−(b−a)) = pa+ b+ p,

hence
kmin(W (ρ)) = pa+ b+ 1 = k(ρ).

Next we continue with the reducible case, first assume ρIp,w is trivial, then

ρIp ∼ ωa ⊗
(
ωb−a 0

0 1

)
,

for 0 ≤ a ≤ b ≤ p− 2. Here we have k(ρ) = pa+ b+ 1 unless (a, b) = (0, 0)
in which case k(ρ) = p. We have

W (ρ) =



{Va,b−a, Vb,p−1−(b−a)}, 1 < b− a < p− 2,
{V0,p−2, Vp−2,p, Vp−2,1}, b− a = p− 2, p > 3,
{Va,p−1}, b− a = 0,
{Va,p, Va,1, Va+1,p−2}, b− a = 1, p > 3,
{V0,3, V0,1, V1,3, V1,1}, b− a = 1, p = 3,

and use Proposition 4.2 to find

kmin(W (ρ)) =



pa+ b+ 1, 1 < b− a < p− 2,
p− 1, b− a = p− 2, p > 3,
p, b− a = 0, (a, b) = (0, 0),
pa+ b+ 1, b− a = 0, (a, b) 6= (0, 0),
pa+ b+ 1, b− a = 1, p > 3,
2, b− a = 1, p = 3.

In the first, third, fourth and fifth case it is clear that this coincides with
k(ρ). For the second case, note 0 ≤ a ≤ b ≤ p − 2 by assumption, hence
a = 0, b = p − 2, in which case hence k(ρ) = p − 2 + 1 = p − 1. Finally, if
p = 3, b− a = 1, then a = 0, b = 1, so k(ρ) = 2.

Next assume ρIp,w is non-trivial, then

ρIp ∼ ωα ⊗
(
ωβ−α ∗

0 1

)
,
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where 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1. First assume β 6= α+ 1, then

k(ρ) = 1 + pmin(α, β) + max(α, β),

however, we first assume β ≥ α. We find

W (ρ) =


{Vα,β−α}, 1 < β − α < p− 1,
{Vα,p−1}, β − α = 0,
{V0,p−1}, β − α = p− 1,

and use Proposition 4.2 to find

kmin(W (ρ)) =


pα+ β + 1, 1 < β − α < p− 1,
pα+ β + 1, β − α = 0,
p, β − α = p− 1.

Note in the final case β = p − 1, α = 0, so k(ρ) = 1 + p − 1 = p, hence in
all cases kmin(W (ρ)) = k(ρ).

Now suppose β − α < 0, then 1 < β − α+ p− 1 ≤ p− 2, and so we have
W (ρ) = {Vα,β−α+p−1}, now since α + β − α + p − 1 = β + p − 1 ≥ p, we
find by Proposition 4.2

kmin(Vα,β−α+p−1) = 1 + pβ + α

which coincides with k(ρ) in this case. Now suppose β = α+ 1, then recall
that

k(ρ) =
{

2 + α(p+ 1), if ρGp is peu ramifiée,
p+ 1 + α(p+ 1), if ρGp is très ramifiée,

and

W (ρ) =
{
{Vα,1, Vα,p}, if ρGp is peu ramifiée,
{Vα,p}, if ρGp is très ramifiée,

and

kmin(W (ρ)) =
{

2 + α(p+ 1), if ρGp is peu ramifiée,
p+ 1 + α(p+ 1), if ρGp is très ramifiée.

by Proposition 4.2, hence the two notions coincide. �

Remark 4.5. Note that in general the minimal Serre weights are not
unique in the sense that there may exist two different weights Va,b, Va′,b′

such that kmin(Va,b) = kmin(Va′,b′) = kmin(W (ρ)). For example, let ρ be
so that ρIp,w is trivial, 1 < b − a < p − 2 and a 6= 0. In this case
kmin(W (ρ)) = 1 + pa+ b and the weights Va,b−a and Vb,p−1−(b−a) are both
minimal Serre weights.
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5. Breuil–Mézard conjecture

In the previous sections we have purely focused on modularity, but now
will use the Breuil–Mézard conjecture to relate Serre’s conjectures to the
existence of crystalline lifts. This involves yet another recipe, described by
Kisin in [14]. We will adjust notation to our setting.

As before, we let ρ : GQ → GL2(Fp) be a continuous, odd, irreducible
representation and ρGp its restriction to GQp . To each ρGp , or indeed any
continuous representation r : GQp → GL2(Fp), Kisin associates a non-
negative integer µn,m(ρGp) and we will set µn,m(ρ) := µn,m(ρGp).

We will show that having µn,m(ρ) > 0 corresponds to the existence of a
crystalline lift of ρGp of some specific weight. In order to do that we use
the connection between the Breuil–Mézard conjecture and the set of Serre
weights W (ρ) from [4], which was first observed in [10]. We will define a set
BM(ρ) consisting of all Vm,n+1 such that µn,m(ρ) > 0. Then, inspired by [10,
Theorem A(2)], we will show that Kisin’s recipe is compatible with 3.1, i.e.
that BM(ρ) = W (ρ).

The numbers µn,m(ρ) are related to the representations we have previ-
ously seen introduced as Serre weights, recall these are just the irreducible
GL2(Fp) representations over Fp. Kisin’s notation is as follows:

σn,m = Symn F2 ⊗ detm, n ∈ {0, . . . , p− 1},m ∈ {0, . . . , p− 2}.

Recall that for [4] we get Va,b = deta⊗Symb−1 F2, a ∈ {0, . . . , p− 2}, b ∈
{1, . . . , p}, so that we have

σn,m = Vm,n+1.

For any continuous representation r : GQp → GL2(Fp) the integers µn,m(r)
provide information about the deformation ring R�,ψ

cr (k, τ, r) ([14, p. 646]).
However, since we are only interested in crystalline lifts of ρGp , this means
that our type τ as defined in [14, (1.1)] is trivial. This also fixes the deter-
minant condition, hence we will drop the character ψ from our notation in
the ring and just use R(k, ρ).

Definition 5.1. Let R(k, ρ) be the ring parameterising crystalline lifts of
ρGp with Hodge–Tate weights (0, k − 1).

Now we state the Breuil–Mézard conjecture formally as a theorem and
give references for the proof.

Theorem 5.2 (Breuil–Mézard conjecture). Let p be an odd prime. Suppose
ρ is as above then

e(R(k, ρ)/$) =
∑
n,m

acr(n,m)µn,m(ρ).
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This was proven for all p when ρGp is not a twist of an extension of the
trivial representation by ω and in all cases when p ≥ 5, in [14], [16] and [12]
with the remaining cases proven in [22] and [23]. We explain the terms
on the right hand side first. Applying the definition on [14, p. 646] to our
setting, it follows that the acr(n,m) in above formula are simply the Jordan–
Hölder multiplicities of the σn,m in Symk−2 F2

p. We will define the µn,m(ρ) =
µn,m(ρGp) in the next section. Finally the expression e(R(k, ρ)/$) denotes
the Hilbert–Samuel multiplicity of R(k, ρ)/$.

The only property of the Hilbert–Samuel multiplicity occurring in the
conjecture we will need is that e(R(k, ρ)/$) 6= 0 if and only if R(k, ρ)/$
is non-trivial. As a consequence, for our purposes we are not interested in
the exact value of µn,m(ρ), we only want to know when it is non-zero.

Definition 5.3. We define

BM(ρ) = {Vm,n+1 |µn,m(ρ) > 0}.

Next we want to show that BM(ρ) = W (ρ). This will allow us to deter-
mine the k such that R(k, ρ) 6= 0, so that we indeed find a crystalline lift of
type (0, kmin(W (ρ))− 1). We will use this to show kcris(ρ) ≥ kmin(W (ρ)).

5.1. Kisin’s recipe. As with the other two recipes, we split into the ir-
reducible and reducible case. First assume ρGp is irreducible, where Kisin
sets µn,m(ρ) = 1 if

ρIp ∼ ωm ⊗
(
ω

(n+1)
2 0
0 ω

p(n+1)
2

)
,

and µn,m(ρ) = 0 otherwise.
Next we continue with the reducible case, Kisin sets µn,m(ρ) = 0 unless

ρGp ∼ ωm ⊗
(
ωn+1µλ ∗

0 µλ′

)
,

for λ, λ′ ∈ F×p in which case we set µn,m(ρ) = 1 except in the following
cases:

(1) If n = p − 1, λ = λ′ and ∗ is peu ramifiée (including the trivial
case), then µn,m(ρ) = 2.

(2) If n = 0, λ = λ′ and ∗ is très ramifiée, then µn,m(ρ) = 0.
(3) If n = p− 2, and ρGp is semi-simple, then µp−2,m(ρ) = 2 if λ 6= λ′.

If n = p − 2, and ρGp is semi-simple and λ = λ′, Kisin does not define
µp−2,m(ρ) explicitly, but defines it to be the Hilbert–Samuel multiplic-
ity obtained by taking τ trivial and k = p in his conjecture ([14, Con-
jecture 1.1.5]). Kisin notes that global considerations suggest the integer
µp−2,m(ρ) to be 2 if λ = λ′. However, in [17, Theorem 1], this multiplicity
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has been computed explicitly. We will adjust Kisin’s recipe to account for
that, in line with the errata of [14] in [10, Appendix B], so:

(4) If n=p−2, and ρGp is semi-simple and if λ=λ′ we set µp−2,m(ρ)=4.

5.2. Compatibility with modularity. Next we will show BM(ρ) =
W (ρ). For simplicity we will not distinguish between Vm+p−1,n and Vm,n in
the proofs below. We start with the irreducible case.

Proposition 5.4. Suppose ρGp is irreducible, then BM(ρ) = W (ρ).

Proof. We obtain
BM(ρ) = {Vm,n+1, Vm+n,p−n}.

Now for

ρIp ∼
(
ω

(n+1)
2 0
0 ω

p(n+1)
2

)
,

we have W (ρ) = {V0,n+1, Vn,p−n} so that if

ρIp ∼ ωm ⊗
(
ω

(n+1)
2 0
0 ω

p(n+1)
2

)
,

we have W (ρ) = {Vm,n+1, Vm+n,p−n}. This completes the proof for the
irreducible case. �

Proposition 5.5. Suppose ρGp is reducible, then BM(ρ) = W (ρ).

Proof. In the reducible case it is a bit more complicated to determine
BM(ρ). Most of the time we just get one non-zero element, Vm,n+1, in
BM(ρ). But we note that if ρ is split, then we have

ωm+n+1µλ ⊕ ωmµλ′ = ωm+n+1(ωp−1−(n+1)µλ′ ⊕ µλ).

Given this, computing BM(ρ) is just a combinatorial exercise, recalling
ωp−1 = 1 and thus ωp = ω (which is relevant since we allow n in a range
including both 0 and p− 1). We obtain

BM(ρ) =



Vm,n+1, 0 < n < p− 2, ρGp non-split,
Vm,n+1, Vm+n+1,p−2−n, 0 < n < p− 3, ρGp split,
Vm,p−2, Vm+p−2,p, Vm+p−2,1, n = p− 3, ρGp split, p > 3,
Vm,n+1, n = p− 2,
Vm,1, Vm,p, Vm+1,1, Vm+1,p−1, n = 0, p− 1, ρGp split, p = 3,
Vm,1, Vm,p, Vm+1,p−2, n = 0, p− 1, ρGp split, p > 3,
Vm,1, Vm,p, n = 0, p− 1, ρGp non-split

and not très ramifiée,
Vm,p, n = 0, p− 1, ρGp très ramifiée.
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The result now follows easily from comparing the above to (3.1) and re-
calling that ωm ⊗ V ∈ W (ρ) is equivalent to V ∈ W (ωm ⊗ ρ) due to the
compatibility with twists, proven in [4, Corollary 2.11(2)]. �

6. The main result

In this final section we will tie it all together. The main result left to prove
is the equality kmin(W (ρ)) = kcris(ρ), which we will do using Proposition 5.4
and Proposition 5.5 and Theorem 5.2. We note here that this is a direct
consequence of Conjecture 4.2.2 in [8] for F = Q. We refer also to the
discussion in the final paragraph of [8, Section 4.2], however we do not
need the assumptions therein with the recent progress on the Breuil–Mézard
conjecture as made evident in Theorem 5.2.

Theorem 6.1. Let p be an odd prime and let

ρ : GQ → GL2(Fp)

be a continuous, odd, irreducible representation. Let kmin(W (ρ)) be defined
as in Definition 4.3 and kcris(ρ) as in Definition 3.2. Then

kmin(W (ρ)) = kcris(ρ).

Proof. Suppose first we have a crystalline lift of weight kcris(ρ), then we
know R(k, ρ) is non-trivial, hence e(R(k, ρ)/$) 6= 0 for k = kcris(ρ). By
Theorem 5.2, this means there must be (m,n) such that acr(n,m) > 0
and µn,m(ρ) > 0, so Vm,n+1 ∈ BM(ρ) = W (ρ). Since acr(n,m) > 0, this
Vm,n+1 must be a Jordan–Hölder constituent of Symkcris(ρ)−2 F2

p, so that
kmin(W (ρ)) ≤ kcris(ρ).

Conversely suppose we have Vm,n+1 ∈ W (ρ) such that kmin(W (ρ)) =
kmin(Vm,n+1). Then Vm,n+1 ∈ BM(ρ), so that µn,m(ρ) > 0 and that
acr(n,m) > 0, so again by Theorem 5.2 we have e(R(k, ρ)/$) 6= 0. This
means R(k, ρ) is non-trivial for k = kmin(Vm,n+1), hence we have a crys-
talline lift of weight kmin(W (ρ)). This means kmin(W (ρ)) ≥ kcris(ρ). �

Now the main result follows from Theorem 6.1 and Theorem 4.4.

Theorem 6.2. Let ρ : GQ → GL2(Fp) be an continuous, odd and irre-
ducible Galois representation for p an odd prime. Then

k(ρ) = kmin(W (ρ)) = kcris(ρ).
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