
Jyothsnaa SIVARAMAN

Primitive roots for Pjateckii-Šapiro primes
Tome 33, no 1 (2021), p. 83-94.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_1_83_0>

© Société Arithmétique de Bordeaux, 2021, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
l’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que l’utilisation à fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_1_83_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 33 (2021), 83–94

Primitive roots for Pjateckii-Šapiro primes

par Jyothsnaa SIVARAMAN

Résumé. Pour tout nombre réel positif non entier c, la suite (bncc)n est ap-
pelée suite de Pjateckii-Šapiro. Étant donné un nombre réel c dans l’intervalle(
1, 11

12
)
, on a une formule asymptotique pour le nombre de nombres premiers

de cette suite qui sont au plus égaux à x. Nous utilisons la méthode de Gupta
et Murty pour étudier le problème d’Artin pour ces nombres premiers. Nous
démontrons que, bien que l’ensemble de ces nombres premiers a une densité
relative nulle pour c donné, il existe des entiers positifs qui sont des racines
primitives pour une infinité de nombres premiers de Pjateckii-Šapiro pour
tout c fixé dans l’intervalle

(
1,

√
77
7 −

1
4
)
.

Abstract. For any non-integral positive real number c, any sequence (bncc)n

is called a Pjateckii-Šapiro sequence. Given a real number c in the interval(
1, 12

11
)
, it is known that the number of primes in this sequence up to x has an

asymptotic formula. We would like to use the techniques of Gupta and Murty
to study Artin’s problems for such primes. We will prove that even though
the set of Pjateckii-Šapiro primes is of density zero for a fixed c, one can show
that there exist natural numbers which are primitive roots for infinitely many
Pjateckii-Šapiro primes for any fixed c in the interval

(
1,

√
77
7 −

1
4
)
.

1. Introduction

The study of prime producing polynomials in one variable is one that
has attracted a lot of attention. Dirichlet’s theorem on primes in arithmetic
progressions supplies a satisfactory answer to this problem in the case of
linear polynomials. However there has been little progress even in the case
of quadratic polynomials. In 1953, Pjateckii-Šapiro studied a problem that
may in some sense be considered as an intermediate step towards the qua-
dratic case. For a non-integral positive real c, let

(1.1) Pc(x) = {p ≤ x : p = bncc}

where bnc is used to denote the integral part of n. Such primes will be
referred to in this paper as Pjateckii-Šapiro primes. Pjateckii-Šapiro ([12])
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proved that for c ∈ (1, 12/11), the number of such primes with p up to x
(denoted πc(x)) is asymptotic to

x
1
c

log x.

A lot of work has gone into extending the range of c for which such an
asymptotic formula is valid. For further reference in this regard the reader
may look at [5, 7, 8, 10, 13, 14]. We are interested in something slightly
different. In 1973, Leitmann and Wolke [9] proved that the number of
Pjateckii-Šapiro primes in an arithmetic progression modulo q is asymp-
totic to

x
1
c

φ(q) log x.

We observe that such a property immediately allows the application of
sieve methods to sets containing linear forms in Pjateckii-Šapiro primes.
This brings us to the developments regarding a famous conjecture in math-
ematics, Artin’s primitive root conjecture.

In 1927, Artin conjectured that every number a other than ±1 or perfect
squares is a primitive root for infinitely many primes. In 1967, Hooley [6]
proved this under the extended Riemann hypothesis. In fact he proved that
such an a is a primitive root for a positive density of primes, where this
density is less than 1. In 1984, Gupta and Murty [3] showed unconditionally
the existence of an a ∈ N and a δ > 0 such that a is a primitive root mod p
for atleast δx

log2 x
primes upto x. This was done using techniques of sieve

methods and linear algebra.
We would like to prove a similar theorem by restricting our set of primes

to the Pjateckii-Šapiro primes. A crucial ingredient of Gupta and Murty’s
proof is a result of Fouvry and Iwaniec [2]. However due to the absence of
such techniques for Pjateckii-Šapiro primes we will prove our result based
on a Bombieri–Vinogradov type theorem for Pjateckii-Šapiro primes [11].
We state our result precisely below.

Theorem 1. For every real number c ∈ (1,
√

77
7 −

1
4), there exists a nat-

ural number a which is a primitive root for infinitely many primes in the
sequence (bncc)n.

In the following section, we will introduce some preliminaries required to
prove the above theorem and then move on to the proof in the subsequent
section.
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2. Preliminaries

We begin with some notation required for the sieve-theoretic arguments.
Let P be a subset of the set of rational primes, z be a real number and

(2.1) P(z) :=
∏
p≤z
p∈P

p.

Given a subset of non negative integers A, let Aq := {a ∈ A : q|a}, where
q is a natural number. In the sequel, ω is a multiplicative function, q is
a square free natural number with all its prime divisors in P and rq is as
defined by (2.2):

(2.2) |Aq| =
ω(q)
q
|A|+ rq.

Set

(2.3) V (z) =
∏
p<z
p∈P

(
1− ω(p)

p

)

and
(2.4) S(A,P, z) = {a ∈ A : (a,P(z)) = 1},
where (a,P(z)) denotes the gcd of a and P(z).

Theorem 2 (Halberstam and Richert (see [4, p. 236])). Let P be a subset
of the set of rational primes, z be a real number and P(z), ω, rq, V (z) and
S(A,P, z) be as in (2.1), (2.2), (2.3) and (2.4). Suppose that

(a) there exists a constant A1 ≥ 1 such that

0 ≤ ω(p)
p
≤ 1− 1

A1

for all p ∈ P;
(b) there exist constants L and A2, independent of z such that for any

integer g1 with 2 ≤ g1 ≤ z one has

−L ≤
∑

g1≤p≤z
p∈P

ω(p) log p
p

− log
(
z

g1

)
≤ A2;

(c) there exists a real number α with 0 < α ≤ 1 such that∑
q|P(z)

q< Xα

logF X

µ2(q)3ν(q)|rq| ≤
G1X

log2X

for some positive constants F and G1. Here µ is the Möbius function
and ν(q) denotes the number of distinct prime divisors of q.
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Then for X ≥ z, one has

S(A,P, z) ≥ XV (z)
{
g

(
α

logX
log z

)
− B

log1/14X

}
.

Here g is a continuous function on [2,∞) satisfying

g(s) = 2eγ log(s− 1)/s,

for s ∈ [2, 4]. Here γ is the Euler and Mascheroni constant and B is an
absolute constant.

In order to estimate the term stated in (c) of the theorem above we will
require a theorem of Deshouillers ([1]) and an analogue of the Bombieri
Vinogradov theorem ([11]), both of which we state below.

Theorem 3 (Deshouillers ([1])). Let c ∈ (1, 2) and let x be a real number.
Let q and a be two integers such that 0 ≤ a < q ≤ xc. One has∣∣∣∣Nc(x; q, a)− x

q

∣∣∣∣�c
x(c+1)/3

q1/3

where Nc(x; q, a) = |{n ≤ x : bncc ≡ a mod q}|.

The above theorem implies that for 0 ≤ a < q ≤ x
2−c
2c

Nc((x+ 1)1/c, q, a)�c
x1/c

q
+ x

c+1
3c

q1/3 �
x1/c

q
.

In particular, in this range we have∣∣∣∣∣πc(x; q, a)− x1/c

φ(q) log(x)

∣∣∣∣∣ ≤ Nc((x+ 1)1/c; q, a) + x1/c

φ(q) log(x)(2.5)

�c
x1/c

φ(q) ,(2.6)

where πc(x; d, a) := |{p ≤ x : p = bncc, p ≡ a mod q}|. This bound will be
applied in Section 3 in order to bound the error term in the sieve. We now
state the following result of Lu, as referred to in the introduction.

Theorem 4 (Lu ([11])). Let ε > 0 and ξ = 13/c−12
4 − ε, where 1 < c < 13

12 .
Then for fixed integer a 6= 0, we have∑

d≤xξ
(d,a)=1

∣∣∣∣πc(x, d, a)− 1
φ(d)πc(x)

∣∣∣∣� x1/c

logA x
,

where A is an arbitrary positive real number.

Finally we state the well known Gupta–Murty lemma.
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Lemma 5 (Gupta and Murty ([3])). Suppose that q1, . . . , qn are a
set of n distinct rational primes. Let Γ = {qa1

1 . . . qann : ai ∈ N} and
Γp = {a mod p : a ∈ Γ}. Then

|{p : p is a rational prime and |Γp| ≤ y}| � y
n+1
n .

With this we conclude our section on the preliminaries and move on to
the proof of our theorems.

3. Proof of theorem

Before we begin proving the theorem, let us fix some notation for the
sake of convenience. Let η be equal to 13/c−12

16 and let n = bη−1c. Further
let q1, . . . , qn be n distinct odd primes with q1 ≡ 1 mod 4. Since the value
of c required for Theorem 1 is in (1, 1.004), in this case n = 16.

Theorem 6. For q1 as chosen and a c ∈
(
1,
√

77
7 −

1
4

)
and let

T (x) :=

p− 1 ≤ x :

(
q1
p

)
= −1, p = bncc,

any odd prime dividing p− 1 is larger than xη

 .
Then, we have

|T (x)| � x1/c

log2 x
.

Proof. By the law of quadratic reciprocity, we can choose an a mod q1 such
that p ≡ a mod q1 implies that q1 is a quadratic non-residue mod p. Let

A = {p− 1 ≤ x : p ≡ a mod q1, p = bncc}.

The choice of p will ensure that q1 cannot divide p−1. Let P={p : p 6=2, q1}.
By [9] we have that X = x1/c

φ(q1) log x . For p ∈ P, we define ω(p) = p
p−1 .

Condition (a) of Theorem 2 will be trivially satisfied by choosing A1 = 2.
To check condition (b), for any 2 ≤ g1 ≤ z we consider

∑
g1≤p≤z
p∈P

ω(p) log p
p

=
∑

g1≤p≤z

p
p−1 log p

p
−

∑
g1≤p≤z,
p|2q1

p
p−1 log p

p
.
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Since the second term in the above equality is bounded by a constant,
we have ∑

g1≤p≤z
p∈P

ω(p) log p
p

− log(z/g1)

=
∑

g1≤p≤z

log p
p

+
∑

g1≤p≤z

log p
p(p− 1) − log(z/g1) +O(1)

= O(1).

On observing condition (c), one notes that the factor 3ν(q) is not present
in the usual versions of the Bombieri–Vinogradov theorem. But
Cauchy–Schwarz permits us to treat this sum as soon as one has a
Bombieri–Vinogradov theorem and an upper bound for rq in which not
more than a power of log is lost. The Bombieri–Vinogradov theorem is as
stated in Theorem 4 ([11]), and the upper bound is as obtained from (2.5)
(comment following Theorem 3 ([1])).∑′

3ν(q)|rq| ≤
√∑′

9ν(q)|rq|
√∑′

|rq|

where the sum
∑′ is over the integers q which are less than x2η+ε (for ε

sufficiently small) and divide P(z). Here P(z) is defined in (2.1). Note that
since we have c < 3/2 and q < x1/6, (2.5) is applicable. Therefore, for any
q|P(z), we have by [11], and by the comment after Theorem 3 ([1], (2.5))∑′

|rq| �
x

1
c

logF x
and |rq| �

x1/c

φ(q)

and
∑′ 9ν(q)

φ(q) ≤
∑

q<x2η+ε

q square free

9ν(q)

φ(q)

≤
∏

p<x2η+ε

(
1 + 1

p− 1

)9

≤
∏

p<x2η+ε

(
1− 1

p

)−9
� log9 x,

where in the last step, we have used Merten’s theorem. Hence∑′
3ν(q)|rq| �

X

log2X
.

We now observe that for z = xη, α = c(2η + ε),
2η + ε

η
· log x− c · log(φ(q1) log x)

log x ≤ 4.
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Further for δ > 0 sufficiently small and x is sufficiently large
2η + ε

η
· log x− c · log(φ(q1) log x)

log x ≥ 2η + ε

η
· (1− δ) > 2.

Therefore, now applying Theorem 2 and Merten’s theorem we have

S(A,P, xη)� x1/c

log2 x
. �

Theorem 7. Consider the primes q1, . . . , qn. Let Γp be as in Lemma 5.
For c ∈ (1,

√
77
7 − 1

4), the number of p with p − 1 ∈ T (x) such that
F∗p = 〈q1 mod p, . . . , qn mod p〉 is atleast δx1/c

log2 x
for some positive δ and x

sufficiently large.

Proof. If (Z/pZ)∗ 6= Γp, then let i be the index of Γp in (Z/pZ)∗. Since
p − 1 ∈ T (x), this implies that 2 | i or i > xη. The squares modulo p
form an index two subgroup mod p. Since i divides [(Z/pZ)∗ : 〈q1〉 mod p]
and (Z/pZ)∗ is cyclic, if 2 | i, then q1 is a quadratic residue modulo p but( q1
p

)
= −1. Therefore i > xη. This implies that |Γp| ≤ x1−η. Therefore by

Lemma 5, we have
{p : |Γp| ≤ x1−η} � x1−(η)2

For c sufficiently close to one this term is o
(
x1/c

log2 x

)
. In order to compute

such a c, we consider the inequality

1−
(13/c− 12

16

)2
<

1
c
.

This is equivalent to 112c2 + 56c − 169 < 0 which holds for all c ∈
(1,
√

77
7 −

1
4). �

Theorem 8. Given a set S of 2n−2 × 7 tuples each consisting of n entries
in Z satisfying;

(a) (u1, u2, . . . , un) 6≡ (0, 0, . . . , 0) mod 2 for all (u1, u2, . . . , un) ∈ S;
(b) for any element (u1, u2, . . . , un) of S there is atmost one

other element (v1, v2, . . . , vn) of S such that (u1, u2, . . . , un) ≡
(v1, v2, . . . , vn) mod 2;

(c) for any n− 1 dimensional subspace V of (Z/2Z)n, any family of n
elements of the set SV are linearly independent, where

SV :=
{

(u1, u2, . . . , un) ∈ S :
(u1, u2, . . . , un) 6≡ (v1, v2, . . . , vn) mod 2

for all (v1, v2, . . . , vn) ∈ V

}
.

Then there exists a (u1, u2, . . . , un) in S such that qu1
1 · · · qunn is a primitive

root for at least δ′x
1
c

log2 x
elements of T (x) for some positive constant δ′ and x

sufficiently large.
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Proof. Let p0 be a prime such that p0 − 1 ∈ T (x) and F∗p0 =
〈q1 mod p0, . . . , qn mod p0〉. Let g be a primitive root modulo p0. Then for
all 1 ≤ i ≤ n we have ei such that

qi ≡ gei mod p0.

By the choice of p0, we have
(e1, e2, . . . , en, p0 − 1) = 1.

Therefore (e1, e2, . . . , en) 6≡ (0, 0, . . . , 0) mod 2. Now let V be the orthogonal
complement space of this vector on reading modulo 2. We now consider SV .
By condition (b), the cardinality of SV is at least

(7× 2n−2)− 2(2n−1 − 1) = (3× 2n−2) + 2.
Further, we observe that qu1

1 . . . qunn is a primitive root modulo p0 if and
only if (

n∑
i=1

uiei, p0 − 1
)

= 1.

Since the elements of SV are not in V on reading modulo 2, it follows that
for all (u1, u2, . . . un) in SV ,

2 -
n∑
i=1

uiei.

Now consider the matrix of any n elements from SV . By our hypothesis the
determinant is non zero. However observe that

(3.1)


u

(1)
1 u

(1)
2 . . . u

(1)
n

...
u

(n)
1 u

(n)
2 . . . u

(n)
n


e1
...
en

 =


∑
u

(1)
i ei
...∑
u

(n)
i ei

 .
Discarding finitely many possible values of p0, we can assume that the odd
primes dividing p0 − 1 are coprime to the determinant of the above n by n
matrix. Now each divisor of p0 − 1 can divide atmost n − 1 of the entries
on the right hand side of (3.1). This is because of the initial condition that
(e1, e2, . . . , en, p0 − 1) = 1. Since p0 − 1 has atmost n prime divisors other
than 2 and each divisor of p0 − 1 can divide atmost n − 1 elements of the
form

∑
uiei for (u1, u2, . . . un) ∈ SV . We can now say that there are

(3× 2n−2) + 2− n(n− 1)
elements remaining in SV such that for any point (u1, u2, . . . , un) left in
SV , the term given by qu1

1 . . . qunn is a primitive root for p0. This shows that
for p0 as chosen above, we have the existence of a primitive root of the form
qu1

1 . . . qunn for some (u1, u2, . . . , un) ∈ S. But since there are only finitely
many points in S, and δx1/c/ log2 x possible choices for p0 (by Theorem 7),
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we have a primitive root for at least δ′x1/c/ log2 x primes of T (x) for some
positive δ′. �

We now need to prove that a set with the properties of S exists. To do
so, we begin with the following lemma.

Lemma 9. Given any N there exists a set of 7N vectors in Z3 such that
(a) any three of these vectors are linearly independent over R;
(b) for any non-zero congruence class modulo 2, exactly N vectors be-

long to this class, i.e.

(a, b, c) ≡ (a1, b1, c1) mod 2

for exactly N vectors in this set.

Proof. We will prove the same by induction on N . For N = 1 we follow
Gupta and Murty and consider the set

S1 := {(1, 0, 2), (2, 1, 0), (0, 2, 1), (1, 3, 0), (0, 1, 3), (3, 0, 1), (1, 1, 1)}.

It is easy to check that any three of these vectors are linearly independent.
Now suppose that we have the set for N − 1 (denoted SN−1, consisting of
7(N−1) vectors satisfying (a) and (b)). To construct the set for N , consider
one of the non-zero congruence classes modulo 2 in (Z/2Z)3. Let this be
represented by v. Consider the sublattice of Z3 given by all the vectors
congruent to (0, 0, 0) and v. Since this sublattice contains a set of three
linearly independent elements, it cannot be contained in a plane. Therefore
it is of rank 3. Now observe that no rank 3 sublattice of Z3 can be written
as a union of finitely many rank two sublattices. For each non-trivial class
v, by our induction hypothesis, we already have SN−1 with 7(N−1) vectors
satisfying the above two properties. So let us start with a vector in SN−1
which are congruent to v (Say w).

There exists a point in this lattice (given by w and the vectors congruent
to (0,0,0)) which is not contained in the plane generated by any two vectors
in SN−1. If this vector, say u, is congruent to v then our construction is
complete. If not, u is congruent to (0, 0, 0). In the second case consider a
vector in this lattice:

n1w + n2u

where n1 is odd and it does not belong to the finitely many planes given
by any two elements of SN−1. This will now give us a vector congruent
to v satisfying the linear independence condition. Similarly, we now add
6 more vectors (satisfying appropriate congruence conditions) by ensuring
that each one does not belong to any of the planes spanned by any set of
two vectors chosen before it. This completes the proof of the lemma. �
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Theorem 10. Given any n > 3 there exists a set of 2n−2×7, n-tuples with
entries in Z, satisfying the hypothesis of Theorem 8.

Proof. The proof proceeds by induction. We provide below the first step of
the induction process which can be seen as generic. Choose a set of 2n−2×7
vectors of dimension 3 (denoted by Sn−2) using Lemma 9. Let M be an
integer greater than the maximum of the absolute value of the determinant
of any three vectors in Sn−2. By our choice of these vectors, each class ā
of (Z/2Z)3 except the one corresponding to (0, 0, 0) contains exactly 2n−2

vectors of this set. We denote this set of 2n−2 vectors by Tā. We now extend
these to four dimensional vectors by adjoining a power of M or M + 1 in
the following manner.

In each Tā, we extend 2n−3 vectors by adjoining distinct powers of M ,
such that as we vary the classes ā, the powers are all distinct. Let the
highest power of M thus assigned be x.

For the other 2n−3 vectors in each Tā we adjoin powers (strictly greater
than x) of M + 1, once again we ensure that the powers are distinct on
varying ā.

This will ensure that exactly 2n−3 extensions are congruent modulo 2 and
that any four of these 4-dimensional vectors are linearly independent over
R. The condition (c) of the statement comes from the following observation.
Consider the matrix

L :=


u

(1)
1 u

(1)
2 u

(1)
3 u

(1)
4

u
(2)
1 u

(2)
2 u

(2)
3 u

(2)
4

u
(3)
1 u

(3)
2 u

(3)
3 u

(3)
4

X1 X2 X3 X4


where the Xi is either a power of M or M + 1 as the case may be.

Suppose that the cofactor to the Xi is given by αi. Then the determinant
of L is given by

det(L) = α1X1 + α2X2 + α3X3 + α4X4

where |αi| < M cannot be zero. We provide below the argument in the
most general case. Suppose that |αi| < M and
K := α1M

m1 +α2M
m2 +···+αlM

ml +αl+1(M+1)ml+1 +···+αp(M+1)mp

= α1M
m1 +Mm2(α2 + · · ·+ αlM

ml−m2)
+ (M + 1)ml+1(αl+1 + · · ·+ αp(M + 1)mp−ml+1).

It follows that if there is at least one term with M + 1 then
|Mm2(α2 +···+αlM

ml−m2)+(M+1)ml+1(αl+1 +···+αp(M+1)mp−ml+1)|
> (M + 1)ml+1 −Mml+1 − . . .Mm2+1 > Mm2
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Since |α1M
m1 | < Mm2 , it follows that K is non-zero. For the d-th stage

in the induction process:
(a) We start with the set (Q) of (d + 2)-dimensional vectors of cardi-

nality 2n−2×7. This set has the property that any d+2 vectors are
linearly independent.

(b) Each ā ∈ (Z/2Z)d+2 which occurs in Q, corresponds to exactly
2n−1−d vectors.

(c) Let N be an integer greater than the absolute value of the determi-
nant of any d+2 vectors from the initial set. For each ā ∈ (Z/2Z)d+2

which occurs in Q, extend 2n−2−d vectors by appending distinct
powers of N such that the powers are distinct as we vary over ā oc-
curing in Q. Suppose that the highest such power is x. Extend the
other 2n−2−d vectors by appending distinct powers (strictly greater
than x) of N + 1, again distinct as we vary over ā occuring in Q.

(d) On constructing a matrix from d + 3 vectors of this new set, the
above argument shows that these are all linearly independent.

Repeating this process n − 3 times we get a set of 2n−2 × 7 vectors
satisfying the hypothesis of Theorem 8. �
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