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On Short Sums Involving Fourier Coefficients of
Maass Forms

par Jesse JÄÄSAARI

Résumé. Nous étudions les sommes des valeurs propres des opérateurs de
Hecke des formes paraboliques de Hecke–Maass pour le groupe SL(n,Z) avec
n ≥ 3 quelconque, sur des intervalles courts d’une certaine longueur, en ad-
mettant l’hypothèse de Lindelöf généralisée et une estimation pour l’exposant
en direction de la conjecture de Ramanujan–Petersson, un peu plus forte que
celle qui est actuellement connue. En particulier, dans cette situation, nous
donnons une évaluation asymptotique du deuxième moment des sommes en
question.

Abstract. We study sums of Hecke eigenvalues of Hecke–Maass cusp forms
for the group SL(n,Z), with general n ≥ 3, over short intervals of certain
length under the assumption of the generalised Lindelöf hypothesis
and a slightly stronger upper bound concerning the exponent towards the
Ramanujan–Petersson conjecture than is currently known. In particular, in
this case we evaluate the second moment of the sums in question asymptoti-
cally.

1. Introduction
Let f be a non-trivial Maass cusp form of type ν ∈ Cn−1 for the

full modular group SL(n,Z) with Fourier coefficients A(m1, . . . ,mn−1) =
Af (m1, . . . ,mn−1), where n ≥ 3 is a fixed positive integer throughout the
article. The Fourier–Whittaker expansion of f is given by

f(z) =
∑

γ∈U(n−1,Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

A(m1, . . . ,mn−1)∏n−1
k=1 |mk|k(n−k)/2

·WJacquet

M (
γ

1

)
z, ν;ψ(

1,...,1, mn−1
|mn−1|

) ,
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where

M =


m1 · · ·mn−2|mn−1|

. . .
m1m2

m1
1

 ,

U(n−1,Z) is the group of (n−1)× (n−1) integral upper triangular matri-
ces with ones on the diagonal, ψ(1,...,1,mn−1/|mn−1|) is a certain character of
U(n− 1,Z), and WJacquet is the Jacquet–Whittaker function of type ν for
the character ψ(1,...,1,mn−1/|mn−1|). For more details we refer to Goldfeld’s
book [6]. We further assume that the Maass cusp form f is an eigenfunction
for the full Hecke ring and normalised so that A(1, . . . , 1) = 1.

In this case it is known that the eigenvalue of f under the mth Hecke
operator Tm (see Section 4) is given by A(m, 1, . . . , 1). The coefficients
A(m, 1, . . . , 1) are fascinating number theoretic objects and they have been
studied extensively as are the Fourier coefficients of holomorphic cusp forms
and Maass cusp forms in the classical situation n = 2.

Obtaining estimates for the sum of Hecke eigenvalues of cusp forms is a
classical problem with a long history. For normalised Fourier coefficients of
holomorphic cusp forms, denoted by a(m), the trivial bound for the long
sum ∑

m≤x
a(m)

is�ε x
1+ε for every ε > 0. First to improve this was Hecke [9] who showed

essentially square-root cancellation and shortly after this was sharpened by
Walfisz [29]. Then Rankin [24] showed that one has an estimate of the form∑

m≤x
a(m)� x2/5,

which was the sharpest result for a long time. The currently best known
upper bound is �ε x

1/3(log x)−δ+ε for δ = (8− 3
√

6)/10 proved by Rankin
himself [25]. For classical Maass cusp form coefficients t(m) it follows from
Rankin’s argument that ∑

m≤x
t(m)�ε x

1/3+ϑ/3+ε,

where ϑ ≥ 0 is the exponent towards the Ramanujan–Petersson conjecture
for classical Maass cusp forms [8]. Towards this it is known that ϑ ≤ 7/64.
Currently the best known unconditional result for classical Maass cusp
form coefficients is �ε x

1027/2827+ε, which is due to Lü [20]. It is a folklore
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conjecture that the correct upper bound is�ε x
1/4+ε for both holomorphic

cusp forms and classical Maass cusp forms.
Concerning the higher rank analogue, Goldfeld and Sengupta [7] have

recently shown that for the Fourier coefficients of a GL(n) Maass cusp
form, the upper bound∑

m≤x
A(m, 1, . . . , 1)�ε x

(n3−1)/(n3+n2+n+1)+ε

holds for any n ≥ 3. This has been since slightly improved further by
Meher and Murty [22]. Again the trivial bound for the sum is �ε x

1+ε.
The conjectural upper bound in this case is �ε x

(n−1)/2n+ε.
It is natural to study analogous problems for shorter summation ranges

[x, x + ∆] with ∆ = o(x). Intuitively studying short sums makes sense
as one might suspect that shorter intervals capture the erratic nature of
the Fourier coefficients better than longer intervals. Furthermore, when
∆ is small compared to x, studying short sums is analogous to studying
classical error terms in analytic number theory, such as the error term in
Dirichlet’s divisor problem, in short intervals. The shape of the main term
in the truncated GL(n) Voronoi summation formula and the square-root-
cancellation heuristics suggest that the correct upper bound is∑

x≤m≤x+∆
A(m, 1, . . . , 1)�ε min

(
∆1/2xε, x(n−1)/2n+ε

)
,(1.1)

where ∆� x, for every ε > 0.
Pointwise upper bounds for short exponential sums involving Fourier

coefficients of cusp forms (of which the plain sum of Fourier coefficients
corresponds to the case of the trivial twist) have been obtained first by
Jutila [16] and later by Ernvall-Hytönen and Karppinen [5] in the GL(2)-
setting for holomorphic cusp forms. Recently analogues of many results
of [5] have been obtained for sums involving Fourier coefficients of classical
Maass cusp forms [14].

In the present article we evaluate the mean square of sums of Hecke
eigenvalues asymptotically over certain short intervals in the general GL(n)-
situation assuming the generalised Lindelöf hypothesis for the Godement–
Jacquet L-function attached to the underlying cusp form in the t-aspect
and a weak version of the Ramanujan–Petersson conjecture. Previously
an analogous result has been established for the error term in Dirichlet’s
divisor problem for the k-fold divisor function dk, which is defined as

∆k(x) :=
∑
m≤x

dk(m)− Ress=1

(
ζk(s)x

s

s

)
,

by Lester [19] under the Lindelöf hypothesis for the Riemann ζ-function
and we follow his strategy. The key difference in our situation is that only
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a bound of the form A(m, 1, . . . , 1) �ε m
ϑ+ε, for some fixed ϑ ≥ 0, is

known for the Hecke eigenvalues. It is important to keep track of ϑ because
unconditionally we only know that ϑ ≤ 1/2− 1/(n2 + 1). Indeed, our main
theorems are conditional on the assumption ϑ < 1/2− 1/n.

While analytic number theory of automorphic forms has seen many ad-
vances in the classical GL(2)-setting, the results are more sporadic in the
case n ≥ 3. There are not many statements which are currently known to
hold for an individual (contrast to on average over a family of) cusp form
on GL(n) for arbitrary n. The best known results of this type are the ap-
proximations to the Ramanujan–Petersson conjecture discussed below. The
main results in the present article add further examples of such properties
assuming hypothesis which are expected to be true.

This article is organised as follows. In Section 2 we introduce the state-
ments of the main theorems. In Section 4 we collect some facts and results
needed in the proofs. The penultimate section contains the proof of Theo-
rem 1 and Theorem 2 is proved in Section 6.

2. The main results
The average behaviour of short rationally additively twisted exponential

sums weighted by Fourier coefficients of holomorphic cusp forms has been
studied e.g. by Jutila [15], Ernvall-Hytönen [2, 3], and Vesalainen [28]. In the
higher rank setting, the mean square of long rationally additively twisted
sums involving Fourier coefficients of GL(3) Maass cusp forms has been
considered in [13].

In the present article we study sums of Hecke eigenvalues of Hecke–
Maass cusp forms for the group SL(n,Z) over short intervals under certain
assumptions. However, the method used in the proofs is slightly different
compared to the works mentioned above. Those methods are not applicable
in our situation essentially for two reasons; first one being that trigonomet-
ric polynomials in the truncated GL(n)-Voronoi summation formula are
more complicated than in the lower rank setting and the other one is that
the error term in the Voronoi formula gives a larger contribution than the
expected main term. Instead, we follow Lester’s work [19] where a similar
problem for the error term of the Dirichlet divisor problem for the k-fold
divisor function is treated by combining Jutila’s method [15] with the one of
Selberg [26]. Selberg’s method has been also applied to other problems con-
cerning automorphic forms, see e.g. [23]. The assumptions concerning the
truth of the generalised Lindelöf hypothesis for the relevant Godement–
Jacquet L-function in the t-aspect and a weak form of the Ramanujan–
Petersson conjecture are needed to guarantee that the expected error term
in the truncated Voronoi summation formula is small enough on average.
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In both of the main results, let the underlying non-trivial Hecke–Maass
cusp form have Hecke eigenvalues A(m, 1, . . . , 1). Our first main result com-
putes the variance of short sums of these coefficients. These types of av-
erages appear for example when studying the value distribution of short
sums involving Hecke eigenvalues.

Theorem 1. Let f be a non-trivial Hecke–Maass cusp form for the group
SL(n,Z) normalised so that A(1, . . . , 1) = 1. Assume the generalised Lin-
delöf hypothesis for L(s, f) in the t-aspect and that the exponent towards
the Ramanujan–Petersson conjecture for the Hecke–Maass form in ques-
tion satisfies 0 ≤ ϑ < 1/2 − 1/n. Furthermore, suppose that 2 ≤ L �ε

X1/(n(n−1+2nϑ))−ε for some small fixed ε > 0 and that L = L(X) −→∞ as
X −→∞. Then we have

1
X

∫ 2X

X

∣∣∣∣∣∣
∑

x≤m≤x+x(n−1)/n/L

A(m, 1, . . . , 1)

∣∣∣∣∣∣
2

dx ∼ Cf ·
X(n−1)/n

L
.

Here Cf is a constant given by

Cf := 2(n−1)/n − 1
2n− 1 · rf ·Hf (1),(2.1)

where rf is the residue of the Rankin–Selberg L-function L(s, f × f̃) at-
tached to the underlying Hecke–Maass cusp form f at s = 1, and f̃ is the
dual Maass form of the form f . The residue is given by

rf = 4πn2/2

n · w(f)‖f‖
2.

For the proof of this, see Appendix A in [18]. The Petersson norm of f is
given by

‖f‖2 :=
∫

SL(n,Z)\Hn
|f(z)|2 d∗z,

where d∗z is the SL(n,R)-invariant measure on the generalised upper-half
plane Hn ' SL(n,R)/SO(n,R), see Section 1.5 of [6]. Furthermore,

w(f) :=
∏

1≤j≤n
Γ
(1 + 2<(λj(ν))

2

) ∏
1≤j<k≤n

∣∣∣∣∣Γ
(

1 + λj(ν) + λk(ν)
2

)∣∣∣∣∣
2

,

where λj(ν), j = 1, . . . , n, are the Langlands parameters of the form f .
These are complex numbers expressed in terms of the type ν = (ν1, . . . ,
νn−1) ∈ Cn−1 of f . Finally, the constant Hf (1) is given by

Hf (1) :=
∏
p

Pn(αp(f), αp(f̃), p−1),
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where Pn is the polynomial defined in (4.1) below, αp(f) := {α1,p(f), . . . ,
αn,p(f)} is the set of Satake parameters of f at prime p. It is also known
that αp(f̃) = αp(f) := {α1,p(f), . . . , αn,p(f)}. The fact that Hf (1) is non-
zero and finite is shown in [18, Appendix B].

The other main theorem computes the mean square of the sum of Hecke
eigenvalues over certain short intervals of fixed length.

Theorem 2. Let f be a non-trivial Hecke–Maass cusp form for the group
SL(n,Z) normalised so that A(1, . . . , 1) = 1. Suppose that X(n−1)/n+ε �ε

∆ �ε X
1−ε for some small fixed ε > 0 and that the generalised Lindelöf

hypothesis for L(s, f) holds in the t-aspect. Suppose also that the exponent
towards the Ramanujan–Petersson conjecture for the Hecke–Maass cusp
form in question satisfies 0 ≤ ϑ < 1/2− 1/n. Then we have

1
X

∫ 2X

X

∣∣∣∣∣∣
∑

x≤m≤x+∆
A(m, 1, . . . , 1)

∣∣∣∣∣∣
2

dx ∼ Bf ·X(n−1)/n,

where

Bf := 1
π2 ·

2(2n−1)/n − 1
2n− 1

∞∑
m=1

|A(m, 1, . . . , 1)|2

m(n+1)/n .

The fact that Bf is finite follows from (4.6) below and partial summation.
This partly generalises results of Ivić [11], Jutila [15], and Vesalainen [28]
to the higher rank setting, and is an analogue to Lester’s result [19] in the
setting of cusp forms.
Remark 3. Theorem 2 is not expected to hold in the range ∆�ε′X

(n−1)/n−ε′

as in that case the sum of coefficients over the interval [x, x + ∆], with
x � X, is conjectured to be bounded from above by ∆1/2Xε (see (1.1)).

3. Notation
The symbols �, �, �, O, and ∼ are used for the usual asymptotic

notation: for complex valued functions f and g in some set X, the notation
f � g means that |f(x)| 6 C |g(x)| for all x ∈ X for some implicit constant
C ∈ R+. When the implied constant depends on some parameters α, β, . . .,
we use �α,β,... instead of mere �. The notation g � f means f � g, and
f � g means f � g � f .

All the implicit constants are allowed to depend on the underlying Maass
cusp form and on ε, which denotes an arbitrarily small fixed positive num-
ber, which may not be the same on each occurrence, unless stated otherwise.

As usual, we write e(x) for e2πix. The notation
∏
p means the product over

primes. The real and imaginary parts of a complex number s are denoted
by <(s) and =(s), respectively. Finally, sometimes we also write s = σ+ it
with σ, t ∈ R.



On Short Sums Involving Fourier Coefficients of Maass Forms 767

4. Useful results
We start by recalling standard facts about higher rank Hecke opera-

tors and automorphic L-functions. Let f be a non-trivial Maass cusp form
of type (ν1, . . . , νn−1) ∈ Cn−1 for the group SL(n,Z) normalised so that
A(1, . . . , 1) = 1. By analogue to the classical situation, it follows that for
every integer m ≥ 1 there is a Hecke operator given by

Tmf(z) := 1
mn−1/2

∑∏n

`=1 c`=m
0≤ci,`<c` (1≤i<`≤n)

f



c1 c1,2 · · · c1,n

c2 · · · c2,n
. . . ...

cn

 · z


acting on the space L2(SL(n,Z)\Hn) of square-integrable automorphic func-
tions (which contains the space of Maass cusp forms for SL(n,Z)). Unlike
in the classical situation, these operators are not self-adjoint, but they are
normal. If the Maass cusp form f is an eigenfunction of every Hecke op-
erator Tm, it is called a Hecke–Maass cusp form. We remark that if the
Fourier coefficient A(1, . . . , 1) of a Hecke–Maass cusp form is zero, then the
form vanishes identically. For more theory of Hecke operators for the group
SL(n,Z), see [6, Section 9.3].

Fourier coefficients and Satake parameters of a given Hecke–Maass cusp
form are closely related by the work of Shintani [27] together with results
of Casselman and Shalika [1]. They showed that for any prime number p
and β1, . . . , βn ∈ Z+ ∪ {0} one has

Af (pβ1 , . . . , pβn−1) = Sβn−1,...,β1(α1,p(f), . . . , αn,p(f)),

where

Sβn−1,...,β1(x1, . . . , xn)

:= 1
V (x1, . . . , xn) det





x
n−1+βn−1+···+β1
1 · · · x

n−1+βn−1+···+β1
n

...
...

...
x

2+βn−1+βn−2
1 · · · x

2+βn−1+βn−2
n

x
1+βn−1
1 · · · x

1+βn−1
n

1 · · · 1




is a Schur polynomial, and V (x1, . . . , xn) is the Vandermonde determinant
given by

V (x1, . . . , xn) :=
∏

1≤i<j≤n
(xi − xj).

Kowalski and Ricotta proved in [18, Proposition B.1] that there exists a
polynomial Pn(x,y, T ), where x = (x1, . . . , xn), y = (y1, . . . , yn), and T
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are indeterminates, such that∑
k≥0

S0,...,0,k(x)S0,...,0,k(y)T k = Pn(x,y, T )∏
1≤j,`≤n(1− xjy`T ) .(4.1)

Next, we define an important notion of a dual Maass cusp form. Let

f̃(z) := f(w · t(z−1) · w), where w =


(−1)bn/2c

1
. . .

1

 .
Then f̃ is a Maass cusp form of type (νn−1, . . . , ν1) ∈ Cn−1 for the group
SL(n,Z) and it is called the dual Maass cusp form of f . It turns out that

Af (m1, . . . ,mn−1) = Af̃ (mn−1, . . . ,m1)(4.2)

for every m1, . . . ,mn−1 ≥ 1.
Fourier coefficients of a Hecke–Maass cusp form satisfy the multiplica-

tivity relation

A(m, 1, . . . , 1)A(m1, . . . ,mn−1)

=
∑∏n

`=1 c`=m
cj |mj for 1≤j≤n−1

A

(
m1cn
c1

,
m2c1
c2

, . . . ,
mn−1cn−2
cn−1

)

for positive integers m,m1, . . . ,mn−2, and a non-zero integer mn−1. Fur-
thermore, the relation

A(m1, . . . ,mn−1)A(m′1, . . . ,m′n−1) = A(m1m
′
1, . . . ,mn−1m

′
n−1)(4.3)

holds if (m1 · · ·mn−1,m
′
1 · · ·m′n−1) = 1. For the proofs of these facts, see [6,

Theorem 9.3.11.]
For an eigenfunction of Hecke operators, one can use Möbius inversion

to show that the relation

A(m1, . . . ,mn−1) = A(mn−1, . . . ,m1)

holds [6, Theorem 9.3.6, Theorem 9.3.11, Addendum]. In particular, to-
gether with the relation (4.2) this yields the equality

Af (m, 1, . . . , 1) = Af̃ (m, 1, . . . , 1).

Also, it follows that |A(m, 1, .., 1)| = |A(1, . . . , 1,m)|. Associated to the
form f is the L-series given by

L(s, f) :=
∞∑
m=1

Af (m, 1, . . . , 1)
ms

,
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which converges absolutely for large enough <(s). This has an entire con-
tinuation to the whole complex plane via the functional equation

L(s, f) = πns−n/2
G(1− s, f̃)
G(s, f) L(1− s, f̃),(4.4)

where

G(s, f) :=
n∏
j=1

Γ
(
s− λj(ν)

2

)
and so G(s, f̃) =

n∏
j=1

Γ
(
s− λ̃j(ν)

2

)
.

Recall that here λj(ν) and λ̃j(ν) are the Langlands parameters of f and f̃ ,
respectively. The resulting L-function attached to the form f is called the
Godement–Jacquet L-function.

An elementary application of Stirling’s formula says that when s lies in
the vertical strips −δ ≤ <(s) ≤ 1 + δ, for a small fixed δ > 0, and has
sufficiently large imaginary part, the multiple Γ-factors can be replaced by
a single quotient of two Γ-factors [4]:

G(1− s, f̃)
G(s, f) = nns−n/2

Γ
(

1−ns
2

)
Γ
(
ns−(n−1)

2

) (1 +O(|s|−1)
)
.

The main theorems of the present article are conditional on the generalised
Lindelöf hypothesis for the Godement–Jacquet L-function in the t-aspect.
It states that on the critical line σ = 1/2 an estimate of the form L(1/2 +
it, f)�ε (1+ |t|)ε holds for every ε > 0. For more detailed discussion about
this conjecture, see [12].

The Rankin–Selberg L-function of two Hecke–Maass cusp forms f and g
for the group SL(n,Z) is given by

L(s, f × g) := ζ(ns)
∑

m1,...,mn−1≥1

Af (m1, . . . ,mn−1)Ag(m1, . . . ,mn−1)
(mn−1

1 mn−2
2 · · ·mn−1)s

,

which converges absolutely for large enough <(s). This L-series has an an-
alytic continuation to the whole complex plane if g 6= f̃ and a meromorphic
continuation to C with a simple pole at s = 1 if g = f̃ . If we set

Λ(s, f × g)

:=
n∏
i=1

n∏
j=1

π(−s+λi(νf )+λj(νg))/2Γ
(
s− λi(νf )− λj(νg)

2

)
L(s, f × g),

then the functional equation

Λ(s, f × g) = Λ(1− s, f̃ × g̃)(4.5)

holds; see [6, Theorem 12.1.4].
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If L(s, f) has an Euler product representation

L(s, f) =
∞∑
m=1

A(m, 1, . . . , 1)
ms

=
∏
p

n∏
j=1

(1− αj,p(f)p−s)−1,

where the complex numbers αj,p(f) are the Satake parameters of the un-
derlying Hecke–Maass cusp form f at prime p, for large enough <(s), and
similar representation holds for g with Satake parameters αj,p(g), then
also the Rankin–Selberg L-function has an Euler product representation
given by

L(s, f × g) =
∏
p

n∏
k=1

n∏
`=1

(1− αk,p(f)α`,p(g)p−s)−1

when <(s) is large enough.
Analytic properties of L(s, f × f̃) imply that∑

mn−1
1 mn−2

2 ···mn−1≤x

|A(m1,m2, . . . ,mn−1)|2 ∼ rf · x,(4.6)

where rf is as before, see [6, Proposition 12.1.6, Remark 12.1.8]. This result
can be interpreted as saying that the Fourier coefficients A(m1, . . . ,mn−1)
are essentially of constant order of magnitude on average. However, cur-
rently known pointwise bounds for the Fourier coefficients are quite far from
the expected truth. The Ramanujan–Petersson conjecture predicts that an
estimate of the form A(m, 1, . . . , 1)�ε m

ε holds for every ε > 0. There are
however approximations towards this conjecture. Let ϑ = ϑ(n) ≥ 0 be the
smallest non-negative real number so that the estimate A(m, 1, . . . , 1) �ε

mϑ+ε holds. Hence the Ramanujan–Petersson conjecture states that the
value ϑ(n) = 0 is admissible for every n ≥ 2. It is easy to see that
one has ϑ ≤ 1/2 [6, Proposition 12.1.6], but currently it is known that
ϑ ≤ 1/2−1/(n2 +1). This result is due to [21]. For small values of n sharper
results are known. We have ϑ(2) ≤ 7/64, ϑ(3) ≤ 5/14 and ϑ(4) ≤ 9/22 [17].
An equivalent estimate holds for the Satake parameters of the underlying
form f . Namely, we have αj,p(f)�ε p

ϑ(n)+ε for every prime p.
It follows from (4.6), for a fixed δ ∈ R+, by partial summation that

∞∑
m=1

|A(1, . . . , 1,m)|2

m1+δ �δ 1 and
∞∑
m=1

|A(1, . . . , 1,m)|
m1+δ �δ 1.(4.7)

In the course of the proof of Proposition 9 we will come across certain
complex line integrals involving Γ-functions. More precisely, these integrals
are of the form

Ων,k(y; δ, Y ) := 1
2πi

∫ −δ+iY
−δ−iY

Γ
(

1−ns
2

)
Γ
(
ns+1

2 + ν − n
2

) (s+ Λ)−k ys ds,
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where the integration is along a straight line segment, and where ν and
k are non-negative integers, and y and Y are positive real numbers. The
parameter Λ is a large positive real number, which will depend on n and the
underlying Hecke–Maass cusp form. The parameter δ will be a sufficiently
small positive real constant. All the implicit constants in the following are
going to depend on n, δ and Λ. It is proved in [13] that the following lemma
holds.
Lemma 4 ([13, Lemma 8]). Let ν and k be non-negative integers, and let
y, Y ∈ [1,∞[ with y < (nY/2)n. Then

Ων,k(y; δ, Y ) =
(
n

2

)k−1
y1/2+(1−ν−k)/n Jν+k−n/2(2y1/n) +O(1)

+O
(
Y n/2−ν−k+nδ

)
+O

(
Y n/2−ν−k 1

log nnY n

2ny

)
.

Using the asymptotics of J-Bessel functions for y � 1, we get the fol-
lowing corollary.
Corollary 5. Let y, Y ∈ [1,∞[ with y < (nY/2)n. Then

Ω0,1(y; δ, Y ) = 1√
π
y(n−1)/2n cos

(
2y1/n + (n−3)

4 π

)
+O(y1/2−1/(2n)−1/n)

+O(Y n/2−1+nδ) +O

(
Y n/2−1 1

log nnY n

2ny

)
.

We also need asymptotics for the sum of the coefficients |A(m, 1, . . . , 1)|2.
The proof of the following theorem combines methods from [18] and [22].
Theorem 6. Let f be a non-trivial Hecke–Maass cusp form for the group
SL(n,Z) normalised so that A(1, . . . , 1) = 1. Then∑

m≤x
|A(m, 1, . . . , 1)|2 ∼ rf ·Hf (1) · x,

where rf and Hf (1) are as given above.
Proof. We start by defining a Dirichlet series

Df (s) :=
∞∑
m=1

|A(m, 1, . . . , 1)|2

ms
,

which is absolutely convergent for <(s) > 1 due to (4.6) and defines a
holomorphic function in this half-plane. Since f is a Hecke eigenform, the
coefficients A(m, 1, . . . , 1) are multiplicative by using (4.3). Therefore we
have

Df (s) =
∏
p

∑
k≥0

|A(pk, 1, . . . , 1)|2

pks
=:
∏
p

Df,p(s)
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for <(s) > 1. Furthermore, by applying (4.1) with x = αp(f), y = αp(f̃)
and T = p−s, we have

Df,p(s) = Pn(αp(f), αp(f̃), p−s)∏
1≤j,k≤n(1− αj,p(f)αk,p(f̃)p−s)

for any prime p, where Pn is the polynomial given by (4.1). Hence, by using
the estimates αp(f), αp(f̃)�ε p

ϑ+ε, the quotient

Df (s)
L(s, f × f̃)

=
∏
p

Pn(αp(f), αp(f̃), p−s) =: Hf (s)(4.8)

defines a bounded holomorphic function on the half-plane <(s) > 1/2 + ϑ.
Hence, writing Hf (s) as a Dirichlet series

Hf (s) =
∞∑
m=1

c(m)
ms

in this half-plane, we have∑
m≤x

c(m)�ε x
1/2+ϑ+ε(4.9)

for every ε > 0.
For simplicity, write

af×f̃ (m) :=
∑

mn−1
1 mn−2

2 ···mn−1=m

|A(m1, . . . ,mn−1)|2

for the Dirichlet series coefficients of L(s, f×f̃). By the properties of Dirich-
let convolution together with (4.8) we have

|A(m, 1, . . . , 1)|2 =
∑
d|m

c(d)af×f̃
(
m

d

)
.

Therefore ∑
m≤x
|A(m, 1, . . . , 1)|2 =

∑
m≤x

∑
d|m

c(d)af×f̃
(
m

d

)
=
∑
d≤x

∑
`≤x

d

c(d)af×f̃ (`)

∼ rf · x
∑
d≤x

c(d)
d
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by using (4.6). Combining this with the observation, which follows from
(4.9), the fact that ϑ ≤ 1/2− 1/(n2 + 1), and partial summation,∑

d>x

c(d)
d
�ε

∫ ∞
x

t1/2+ϑ+ε

t2
dt

�ε x
−1/2+ϑ+ε

�ε x
−1/(n2+1)+ε

it follows that∑
m≤x
|A(m, 1, . . . , 1)|2 ∼ rf · x

∑
d≤x

c(d)
d

= rf · x
∞∑
d=1

c(d)
d

+O

x∑
d>x

c(d)
d


∼ rf ·Hf (1) · x.

Note thatHf (1) is clearly finite and non-zero. This completes the proof. �

As a consequence of this, we can evaluate the sum∑
m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n sin2
(
πm1/n

L

)
,

where 0 < θ ≤ 1 is fixed, asymptotically for a certain range of L.

Lemma 7. Let L be such that L� Xθ/n−ε for some small fixed ε > 0 and
that L = L(X) −→∞ as X −→∞. Then we have∑

m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n sin2
(
πm1/n

L

)
∼ rf ·Hf (1) · n

L
· π

2

2 .

Proof. By using partial summation we have∑
m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n sin2
(
πm1/n

L

)
(4.10)

=
(

1 + 1
n

)∫ Xθ

1

∑
m≤x
|A(m, 1, . . . , 1)|2

sin2
(
πx1/n

L

)
x(2n+1)/n dx

− 2π
n
· 1
L

∫ Xθ

1

∑
m≤x
|A(m, 1, . . . , 1)|2

sin
(
πx1/n

L

)
cos
(
πx1/n

L

)
x2 dx

+O

( 1
Xθ/n

)
,
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where the error term comes from the substitution term by trivial estimation.
The first term on the right-hand side is, by using Theorem 6 and a simple
change of variables, asymptotically

∼
(

1 + 1
n

)
· rf ·Hf (1)

∫ Xθ

1

1
x(n+1)/n sin2

(
πx1/n

L

)
dx

∼
(

1 + 1
n

)
· rf ·Hf (1)

∫ Xθ/n/L

1/L

1
(yL)n+1 sin2(πy) · Lnnyn−1 dy

∼ rf ·Hf (1) · (n+ 1)
L

∫ Xθ/n/L

1/L

sin2(πy)
y2 dy

∼ rf ·Hf (1) · (n+ 1)
L

· π
2

2 ,

where the last estimate follows from the identity∫ ∞
0

sin2(πy)
y2 dy = π2

2
together with the estimates∫ 1/L

0

sin2(πy)
y2 dy � 1

L
,∫ ∞

Xθ/n/L

sin2(πy)
y2 dy � L

Xθ/n

provided that L = L(X) −→ ∞ as X −→ ∞ and L � Xθ/n−ε for some
fixed ε > 0.

An analogous computation shows that the second term on the right-hand
side of (4.10) is

∼ −π
2

2 ·
rf ·Hf (1)

L
.

Together these imply the claimed asymptotics. �

5. Proof of Theorem 1
Our main strategy in the proof is inspired by the method of Lester [19].
Let f be a non-trivial Hecke–Maass cusp form for the group SL(n,Z)

with Hecke eigenvalues A(m, 1, . . . , 1). Let 0 < θ ≤ 1 and define

P (x; θ) := x(n−1)/2n

π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n cos

(
2πn(mx)1/n + (n− 3)

4 π

)
for X ≤ x ≤ 2X.
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Let us write

E(x; θ) :=

∑
m≤x

A(m, 1, . . . , 1)

− P (x; θ).

We remark that arguments similar to those in Section 7 of [13] show that

E(x; θ)�ε x
1−(1+θ)/n+ϑ+ε,(5.1)

where ϑ is the exponent towards the Ramanujan–Petersson conjecture for
GL(n) Maass cusp forms. Notice that this is worse than the trivial bound
unless ϑ is small. The pointwise bound (5.1) is too weak to establish Theo-
rem 1, but it will be shown that on average E(x+ x(n−1)/n/L; θ)−E(x; θ)
is much smaller than what this bound implies, of course under certain as-
sumptions.

The proof has three main steps. The first two are formulated in the fol-
lowing propositions. The first one evaluates the mean square of the expected
main term for the sums of Hecke eigenvalues asymptotically over the short
interval [x, x+ x(n−1)/n/L] for a suitable L = L(X).

Proposition 8. Let f be a non-trivial Hecke–Maass cusp form for the
group SL(n,Z) normalised so that A(1, . . . , 1) = 1. Let 0 ≤ θ ≤ 1

n−1 and
suppose that 2 ≤ L �ε X

1/(n(n−1))−ε for some small fixed ε > 0. Then we
have

1
X

∫ 2X

X

∣∣∣∣∣P
(
x+ x(n−1)/n

L
; θ
)
− P (x; θ)

∣∣∣∣∣
2

dx ∼ X(n−1)/n

L
· Cf ,

where Cf is as in (2.1).

The other proposition shows that on average P (x; θ) is a sufficiently
good approximation for the sum of Hecke eigenvalues A(m, 1, . . . , 1) over
the interval [x, x + x(n−1)/n/L] under the assumption of the generalised
Lindelöf hypothesis for the Godement–Jacquet L-function in the t-aspect
and a weak version of the Ramanujan–Petersson conjecture. This is better
than the pointwise upper bounds for the error term one gets from the GL(n)
Voronoi summation formula.

Proposition 9. Let f be a non-trivial Hecke–Maass cusp form for the
group SL(n,Z) normalised so that A(1, . . . , 1) = 1. Suppose that 0 < θ <
1/(n−1+2nϑ), where ϑ is the exponent towards the Ramanujan–Petersson
conjecture, and assume also that 0 ≤ ϑ < 1/2 − 1/n. Furthermore, sup-
pose that the generalised Lindelöf hypothesis for the Godement–Jacquet L-
function attached to the underlying Hecke–Maass cusp form holds in the
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t-aspect. Then we have

1
X

∫ 2X

X

∣∣∣∣∣E
(
x+ x(n−1)/n

L
; θ
)
− E(x; θ)

∣∣∣∣∣
2

dx�ε X
1−(1+θ)/n+ε

for every ε > 0.

Remark 10. Notice that this bound is superior compared to the bound
�ε X

2−2(1+θ)/n+2ϑ+ε, which follows from (5.1).

Once these have been established, the proof can be completed as follows.
For now, let ε > 0 be small but fixed. For notational simplicity, we set

S(x, L) :=
∑

x≤m≤x+x(n−1)/n/L

A(m, 1, . . . , 1)

and

Q(x, L, θ) := P

(
x+ x(n−1)/n

L
; θ
)
− P (x; θ).

Then by making use of the elementary identity

|S|2 = |Q|2 + |S −Q|2 + 2<
(
Q(S −Q)

)
we obtain

1
X

∫ 2X

X

∣∣∣∣∣∣
∑

x≤m≤x+x(n−1)/n/L

A(m, 1, . . . , 1)

∣∣∣∣∣∣
2

dx

= 1
X

∫ 2X

X
|Q(x, L; θ)|2 dx+O

(
1
X

∫ 2X

X
|S(x, L)−Q(x, L; θ)|2 dx

)

+O

(
1
X

∫ 2X

X
|S(x, L)−Q(x, L; θ)| · |Q(x, L; θ)|dx

)
.

By Proposition 8, the first term on the right-hand side is

∼ Cf ·
X(n−1)/n

L

assuming L�εX
1/(n(n−1))−ε and the second term is, say,�εX

1−(1+θ)/n+ε/2

by Proposition 9 provided that 0 < θ < 1/(n−1+2nϑ) and ϑ < 1/2−1/n.
For the last term, an application of the Cauchy–Schwarz inequality yields

�ε
1
X
·
(
X(2n−1)/n

L

)1/2

· (X2−(1+θ)/n+ε/2)1/2

�ε
X1−(2+θ)/2n+ε/4

L1/2 .
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Notice that this is smaller than the main term due to the assumption L�ε

Xθ/n−ε. This completes the proof of Theorem 1. The next two subsections
are devoted to the proofs of Propositions 8 and 9.

5.1. Proof of Proposition 8. We start by writing

P

(
x+ x(n−1)/n

L
; θ
)
− P (x; θ)

= P

(
x+ x(n−1)/n

L
; θ
)
− P

((
x1/n + 1

nL

)n
; θ
)

︸ ︷︷ ︸
=:I1(x,L;θ)

+ P

((
x1/n + 1

nL

)n
; θ
)
− P (x; θ)︸ ︷︷ ︸

=:I2(x,L;θ)

.

The idea here is that I2(x, L; θ) is easier to handle than the original differ-
ence and intuitively I1(x, L; θ) should be small on average, which turns out
to be the case. Indeed, for I2(x, L; θ) the resulting trigonometric polynomial
simplifies so that its mean-square can be evaluated by using Lemma 7.

We have

(5.2) 1
X

∫ 2X

X

∣∣∣∣∣P
(
x+ x(n−1)/n

L
; θ
)
− P (x; θ)

∣∣∣∣∣
2

dx

= 1
X

∫ 2X

X
|I1(x, L; θ)|2 dx+ 1

X

∫ 2X

X
|I2(x, L; θ)|2 dx

+O

(
1
X

∫ 2X

X
|I1(x, L; θ)I2(x, L; θ)|dx

)
.

The proof of the proposition now proceeds by estimating the first two
terms on the right-hand side separately. The second term is treated in
Lemma 11 and the first term in Lemma 12. The error term is then han-
dled by an application of the Cauchy–Schwarz inequality. Once we have
shown that the contribution of the first term on the right-hand side is
�ε L

−4X(n−1)/n+(3−n)/(n(n−1))−ε and the contribution of the second term
is � X(n−1)/n/L, it follows that the error term contributes

�ε
1
X

(
X(2n−1)/n+(3−n)/(n(n−1))−ε

L4

)1/2(
X2−1/n

L

)1/2

�ε
X(n−1)/n+(3−n)/(2n(n−1))−ε/2

L5/2 ,

which is small enough as n ≥ 3.
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Lemma 11. Suppose that 0 < θ ≤ 1/(n−1)−ε for some small fixed ε > 0.
Then we have

1
X

∫ 2X

X
|I2(x, L; θ)|2 dx ∼ Cf ·

X(n−1)/n

L
.

Proof. To estimate the difference I2(x, L; θ) we are reduced to understand-
ing terms of the form

(x+ Ξ)(n−1)/2n cos
(

2πn(mx)1/n + 2πm1/n

L
+ (n− 3)

4 π

)

− x(n−1)/2n cos
(

2πn(mx)1/n + (n− 3)
4 π

)
,

where Ξ is given by the equation x+Ξ = (x1/n+1/nL)n. Now, the relevant
observation is that∣∣∣(x+ Ξ)(n−1)/2n − x(n−1)/2n

∣∣∣ � ∣∣∣∣∣
∫ x+Ξ

x
y−(n+1)/2n dy

∣∣∣∣∣� x−(n+1)/2n · Ξ.

But by the binomial theorem we have

Ξ� x(n−1)/n

L
,

and so ∣∣∣(x+ Ξ)(n−1)/2n − x(n−1)/2n
∣∣∣� x(n−3)/2n

L
.

This shows that

(x+ Ξ)(n−1)/2n cos
(

2πn(mx)1/n + 2πm1/n

L
+ (n− 3)

4 π

)

− x(n−1)/2n cos
(

2πn(mx)1/n + (n− 3)
4 π

)

= x(n−1)/2n
(

cos
(

2πn(mx)1/n + 2πm1/n

L
+ (n− 3)

4 π

)

− cos
(

2πn(mx)1/n + (n− 3)
4 π

))

+O

(
x(n−3)/2n

L
cos

(
2πn(mx)1/n + 2πm1/n

L
+ (n− 3)

4 π

))
.
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By using the formula for the difference of two cosines, cos(α) − cos(β) =
−2 sin((α+ β)/2) sin((α− β)/2), it follows that
I2(x, L; θ)

= −2x(n−1)/2n

π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n

sin
(
πm1/n

L

)

· sin
(

2πnm1/n

(
x1/n + 1

2nL

)
+ (n− 3)

4 π

)

+O

x(n−3)/2n

L

∣∣∣∣∣∣
∑

m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n

cos
(

2πnm1/n

(
x1/n+ 1

nL

)
+ (n−3)

4 π

)∣∣∣∣∣∣


=: M(x, L; θ) +R(x, L; θ).

Hence,

(5.3) 1
X

∫ 2X

X
|I2(x, L; θ)|2 dx

= 1
X

∫ 2X

X
|M(x, L; θ)|2 dx+ 1

X

∫ 2X

X
|R(x, L; θ)|2 dx

+O

(
1
X

∫ 2X

X
|M(x, L; θ)R(x, L; θ)|dx

)
.

The main term can be written as

M(x, L; θ) = −x
(n−1)/2n

πi
√
n

 ∑
m≤Xθ

a+
me(n(mx)1/n)−

∑
m≤Xθ

a−me(−n(mx)1/n)

,
where

a±m := A(1, . . . , 1,m)
m(n+1)/2n e

(
±m

1/n

2L ± (n− 3)
8

)
sin
(
πm1/n

L

)
.

Let us first evaluate the mean square of M(x, L; θ). Notice that

(5.4) |M(x, L; θ)|2

= x(n−1)/n

nπ2


∣∣∣∣∣∣
∑

m≤Xθ

a+
me(n(mx)1/n)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

m≤Xθ

a−me(−n(mx)1/n)

∣∣∣∣∣∣
2


− 2x(n−1)/n

nπ2 <

 ∑
m≤Xθ

a+
me(−n(mx)1/n)

 ∑
m≤Xθ

a−me(−n(mx)1/n)

.
We consider the first two terms on the right-hand side simultaneously as
their treatment is identical due to the fact that |a+

m| = |a−m|. By open-
ing the absolute squares these split into diagonal and off-diagonal terms.
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By the first derivative test [10, Section 5.1] the non-diagonal terms give a
contribution

� X(n−2)/n ∑
1≤m,`≤Xθ

m>`

|a+
ma

+
` |

m1/n − `1/n

� X(n−2)/n ∑
1≤m,`≤Xθ

m>`

|a+
ma

+
` |m(n−1)/n

|m− `|

� X(n−2)/nXθ(n−1)/n logX
∑

1≤m≤Xθ

|a+
m|2,

where the last estimate follows from the elementary estimate ab� a2 + b2.
The total contribution coming from the diagonal terms is

(2(2n−1)/n − 1)
(2− 1/n)nπ2

 ∑
m≤Xθ

|a+
m|2 +

∑
m≤Xθ

|a−m|2
X(n−1)/n

= 2(2(2n−1)/n − 1)
(2− 1/n)nπ2 ·X(n−1)/n ∑

m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n sin2
(
πm1/n

L

)
.

For the third term in (5.4) we observe that it can be estimated similarly by
using the first derivative test as the off-diagonal terms above. Therefore it
follows that

1
X

∫ 2X

X
|M(x, L; θ)|2 dx

= 2
nπ2 ·

2(2n−1)/n − 1
2− 1/n X(n−1)/n ∑

m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n sin2
(
πm1/n

L

)

+O

X(n−2)/n+θ(n−1)/n logX
∑

m≤Xθ

|a+
m|2
 .

By using Lemma 7 we infer that∑
m≤Xθ

|a+
m|2 =

∑
m≤Xθ

|A(m, 1, . . . 1)|2

m(n+1)/n sin2
(
πm1/n

L

)
∼ rf ·Hf (1) · n

L
· π

2

2 .

The assumption θ < 1/(n−1)− ε guarantees that the error term is smaller
than the main term. The mean square of the remainder term R(x, L, θ) is
treated similarly: it is

� 1
X
· 1
L2 ·X

(2n−3)/n ∑
m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n � X(n−3)/n

L2
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by using (4.7).
Finally, the cross-terms in (5.3) are handled by a single application of

the Cauchy–Schwarz inequality; they contribute

�ε
1
X

(
X(2n−3)/n

L2

)1/2(
X(2n−1)/n+ε

L

)1/2

�ε
X(n−2)/n+ε/2

L3/2 ,

which is smaller than the main term if ε is small enough in terms of n. This
completes the proof of the lemma. �

Lemma 12. Assume that 0 < θ < 1/(n−1)−ε for some fixed ε > 0. Then
we have

1
X

∫ 2X

X
|I1(x, L; θ)|2 dx�ε

X(n−1)/n+(3−n)/(n(n−1))−ε

L4 + X(n−5)/n

L4 .

Proof. For simplicity, we set

x1 := x1/n + 1
nL

and x2 :=
(
x+ x(n−1)/n

L

)1/n

.

Then

I1(x, L; θ) = x
(n−1)/2
2 Σ(x2)− x(n−1)/2

1 Σ(x1),

where we have set

Σ(x) := 1
π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n cos

(
2πnxm1/n + (n− 3)

4 π

)
.

By the triangle inequality we get∣∣∣x(n−1)/2
2 Σ(x2)− x(n−1)/2

1 Σ(x1)
∣∣∣

=
∣∣∣(x(n−1)/2

1 − x(n−1)/2
2

)
Σ(x1) + x

(n−1)/2
2 (Σ(x1)− Σ(x2))

∣∣∣
�
∣∣∣x(n−1)/2

1 − x(n−1)/2
2

∣∣∣ · |Σ(x1)|+ x
(n−1)/2
2 |Σ(x1)− Σ(x2)| .

By the mean value theorem we have∣∣∣x(n−1)/2
1 − x(n−1)/2

2

∣∣∣ � ∫ x2

x1
t(n−3)/2 dt � |x1 − x2|X(n−3)/2n.
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For the second term we observe that

Σ(x1)− Σ(x2)

= 1
π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n

(
cos

(
2πnm1/nx1 + (n− 3)

4 π

)

− cos
(

2πnm1/nx2 + (n− 3)
4 π

))
�

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n ·m1/n|x1 − x2|

=
∑

m≤Xθ

A(1, . . . , 1,m)
m(n−1)/2n |x1 − x2|,

as ∣∣∣∣cos
(

2πnm1/nx1 + (n− 3)
4 π

)
− cos

(
2πnm1/nx2 + (n− 3)

4 π

)∣∣∣∣
�
∣∣∣∣m1/n

∫ x2

x1
sin
(

2πnm1/nt+ (n− 3)
4 π

)
dt
∣∣∣∣

� m1/n|x1 − x2|.

Thus we have∣∣∣x(n−1)/2
1 Σ(x1)− x(n−1)/2

2 Σ(x2)
∣∣∣

� |x1 − x2|

X(n−1)/2n ∑
m≤Xθ

A(1, . . . , 1,m)
m(n−1)/2n +X(n−3)/2n |Σ(x1)|

 .
But as, say, ∑

m≤Xθ

A(1, . . . , 1,m)
m(n−1)/2n �ε X

θ(n+1)/2n+ε/2n

by partial summation, and

|x1 − x2| �
∣∣∣∣∣
∫ x+x(n−1)/n/L

x+Ξ
t1/n−1 dt

∣∣∣∣∣
�
∣∣∣∣∣x(n−1)/n

L
− Ξ

∣∣∣∣∣ (x+ Ξ)(1−n)/n

� x(n−2)/n

L2 ·X(1−n)/n

� 1
L2X1/n ,
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it follows that this can be further estimated to be

�ε
1

L2X1/n

(
X(n−1)/2n+θ(n+1)/2n+ε/2n +X(n−3)/2n |Σ(x1)|

)
.

By using the inequality ab� a2 + b2 we infer

1
X

∫ 2X

X
|I1(x, L; θ)|2 dx

�ε
X(n−1)/n+θ(1+1/n)+ε/n

L4X2/n + X(n−3)/n

L4X2/n ·
1
X

∫ 2X

X
|Σ(x1)|2 dx

�ε
X(n−3)/n+θ(n+1)/n+ε/n

L4 + X(n−5)/n

L4 .

The claim follows from this by recalling that θ < 1/(n− 1)− ε. In the last
step we have used the fact that

1
X

∫ 2X

X
|Σ(x1)|2 dx� 1.

This follows by opening the absolute square and integrating termwise. The
off-diagonal contributes

�ε X
−1/n+θ(n−1)/n+ε(n−1)/n ∑

m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n

�ε X
−1/n+θ(n−1)/n+ε(n−1)/n

� 1

by using the first derivative test and the assumption θ < 1/(n−1)−ε. The
diagonal term is obviously

�
∑

m≤Xθ

|A(m, 1, . . . , 1)|2

m(n+1)/n � 1.

This completes the proof. �

Now, as Lemmas 11 and 12 are proved, the proof of Proposition 8 is
completed by the discussion above. �

5.2. Proof of Proposition 9. Recall that

E(x; θ) =

∑
m≤x

A(m, 1, . . . , 1)

− P (x; θ).
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Throughout the proof, let ε > 0 be small enough in terms of n but fixed.
We start by estimating

1
X

∫ 2X

X

∣∣∣∣∣E
(
x+ x(n−1)/n

L
; θ
)
− E(x; θ)

∣∣∣∣∣
2

dx

� 1
X

∫ 2X

X

∣∣∣∣∣E
(
x+ x(n−1)/n

L
; θ
)∣∣∣∣∣

2

dx+ 1
X

∫ 2X

X
|E(x; θ)|2 dx.

The analysis of both terms on the right-hand side is similar and hence we
concentrate on the latter term

1
X

∫ 2X

X
|E(x; θ)|2 dx.

As usual, the starting point is the truncated Perron’s formula which gives,
for a small enough fixed δ > 0,∑

m≤x
A(m, 1, . . . , 1) = 1

2πi

∫ 1+δ+iX

1+δ−iX
L(s, f)xsds

s
+O(Xϑ+ε/2)

uniformly for X ≤ x ≤ 2X.
The error term is admissible as we assume that ϑ < 1/2− 1/n. We shift

the line segment of integration first to the line σ = 1/2. The Phragmén-
Lindelöf principle tells that in the strip 1/2 ≤ σ ≤ 1+δ, the estimate of the
form L(s, f)�ε (1 + |t|)ε/4 holds under the assumption of the generalised
Lindelöf hypothesis. By using this, the horizontal line segments from the
shift contribute

�
∫ 1+δ

1/2
|L(σ ± iX, f)|xσ dσ

σ ± iX
�ε X

ε/4−1/2 +Xδ+ε/4

�ε X
δ+ε/4.

It follows that∑
m≤x

A(m, 1, . . . , 1)

= 1
2πi

∫ 1/2+iY

1/2−iY
L(s, f)xsds

s
+ 1

2πi

∫ 1/2−iY

1/2−iX
L(s, f)xsds

s

+ 1
2πi

∫ 1/2+iX

1/2+iY
L(s, f)xsds

s
+O

(
Xϑ+ε/2

)
,

uniformly for X ≤ x ≤ 2X, where 0 < Y < X is a parameter chosen later.
Next we move the line segment of integration to the line σ = −δ in

the first integral on the right-hand side. By using the convexity bound
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L(s, f)� (1 + |t|)(1+δ−σ)n/2 in the vertical strip −δ ≤ σ ≤ 1 + δ it follows
that the horizontal line segments contribute

�
∫ 1/2

−δ
|L(σ ± iY, f)|xσ dσ

σ ± iY
�ε Y

n/4+nδ/2−1X1/2 + Y n/2+nδ−1X−δ

�ε X
1/2−(1+θ)/2n+ε/2

as we will choose δ so that 2δθ ≤ ε, where the last estimate follows from
the assumption on θ together with the fact that we are going to choose Y
such that it satisfies Y � X(1+θ)/n.

Next, we treat the term
1

2πi

∫ −δ+iY
−δ−iY

L(s, f)xsds
s
.

We are now in the position to apply the method used in [13]. Since we
intend to apply Stirling’s formula, we write

1
2πi

∫ −δ+iY
−δ−iY

L(s, f)xs ds
s

= 1
2πi

( ∫ −δ−iΛ
−δ−iY

+
∫ −δ+iY
−δ+iΛ

)
L(s, f)xs ds

s
+Oδ,Λ(1),

where Λ := 1 + 2 max1≤j≤n{|λj(ν)|, |λ̃j(ν)|}. Now we may apply the func-
tional equation of the Godement–Jacquet L-function (4.4), interchange the
order of integration, and summation and apply Stirling’s formula to get

(5.5) 1
2πi

(∫ −δ−iΛ
−δ−iY

+
∫ −δ+iY
−δ+iΛ

)
L(s, f)xs ds

s

= 1
2πi

(∫ −δ−iΛ
−δ−iY

+
∫ −δ+iY
−δ+iΛ

)
πns−n/2

G(1− s, f̃)
G(s, f) L(1− s, f̃)xs ds

s

= 1
2π

∞∑
m=1

A(1, . . . , 1,m)
m

·
(∫ −δ−iΛ
−δ−iY

+
∫ −δ+iY
−δ+iΛ

)
1
i
πns−n/2 nns−n/2

·
Γ
(

1−ns
2

)
Γ
(
ns−(n−1)

2

) (1 +O(|s|−1)
)
ms xs

ds
s
.

In the region of integration, the quotient of the Γ-factors is � tn/2+nδ by
Stirling’s formula, and so the series corresponding to the O-term can be
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estimated to be

�
∞∑
m=1

|A(1, . . . , 1,m)|
m1+δ

∫ Y

Λ
tn/2+nδ t−1 x−δ

dt
t

� x−δ Y n/2+nδ−1

�ε X
ε/2 Y n/2−1

�ε X
1/2−(1+θ)/n+θ/2+ε/2

�ε X
1/2−(1+θ)/2n+ε/2,

provided that 2θδ 6 ε, by using (4.7), the assumption on θ, and the fact
that Y � X(1+θ)/n.

We are going to transform the rest of the integral in (5.5) further by
making a simple change of variables to rewrite it as

2<

∫ Y

Λ
(πn)n(−δ+it)−n/2

Γ
(

1−n(−δ+it)
2

)
Γ
(
n(−δ+it)−(n−1)

2

) (mx)−δ+it dt
−δ + it

 .
Using the elementary fact that

1
−δ + it

= 1
it

+O(t−2),

this equals

2<

∫ Y

Λ
(πn)n(−δ+it)−n/2

Γ
(

1−n(−δ+it)
2

)
Γ
(
n(−δ+it)−(n−1)

2

) (mx)−δ+it dt
it


+O(Xε/2 Y n/2−1).

By Stirling’s formula,

Γ
(

1−ns
2

)
Γ
(
ns−(n−1)

2

) =
(
nt

2

)n/2−nσ
exp

(
−int log nt2 + int+ πni

4

)(
1 +O(t−1)

)
.

Substituting this back to the last integral, and observing that the terms
coming from the O(t−1)-term contribute�ε X

ε/2 Y n/2−1, it takes the form

2 (2π)−n/2 (2nπnmx)−δ

· <
(∫ Y

Λ
tn/2+nδ−1 exp

(
−int log t

2π+it log(mx)+int+π(n−2)i
4

)
dt
)
.

The derivative of the phase is, up to a constant, given by

−n log t+ log(2n πnmx),
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and so the integrand has a unique saddle point at
t = 2π (mx)1/n.

We will choose Y to be

Y := 2π
((
Xθ + 1

2

)
x

)1/n
,

so that for the terms m > Xθ, the integrands have no saddle points and
are therefore oscillating.

First, we treat these high-frequency terms with m > Xθ. By using the
fact that t ≤ Y , the derivative of the phase in the corresponding integrals is

log 2nπnmx
tn

� log 2nπnmx
Y n

= log m

Xθ + 1
2
,

and so, by the first derivative test and (4.7), they contribute

� X−δ Y n/2+nδ−1 ∑
m>Xθ

|A(1, . . . , 1,m)|
m1+δ · 1

log m
Xθ+ 1

2

� X−δ Y n/2+nδ−1 ∑
Xθ<m62Xθ

|A(1, . . . , 1,m)|
m1+δ

(
m

Xθ+ 1
2
− 1

) +X−δ Y n/2+nδ−1

�ε X
(1/2+δ−1/n)(1+θ)−δ+θϑ+ε/2 +X(1/2+δ−1/n)(1+θ)−δ

�ε X
1/2−(1+θ)/2n+ε/2,

where the elementary fact that log x � x − 1 for x ∈ ]1, 2[ is used in
the second estimate, in the penultimate step we have used the fact that
Y � X(1+θ)/n, in the last estimate we have used that θ < 1/(n− 1 + 2nϑ),
and finally we have bounded the sum trivially by using the absolute values:∑

Xθ<m62Xθ

|A(1, . . . , 1,m)|
m1+δ

(
m

Xθ+ 1
2
− 1

)
� Xθϑ−θδ ∑

Xθ<m62Xθ

1
m−Xθ − 1

2
�ε X

θϑ+ε/2.

Next, we will deal with the low-frequency terms, that is, terms with m 6
Xθ. First, we extend the integrals over the line segments [−δ− iY,−δ− iΛ]
and [−δ+iΛ,−δ+iY ] to be over the whole line segment connecting −δ−iY
to −δ + iY with an error Oδ,Λ(1). Similarly, we may replace the factor s−1

by (s + Λ)−1 with the error O(Xε/2 Y n/2−1). Thus, the terms that we are
left to deal with are

(nπ)−n/2
∑

m6Xθ

A(1, . . . , 1,m)
m

· 1
2πi

∫ −δ+iY
−δ−iY

Γ
(

1−ns
2

)
Γ
(
ns−(n−1)

2

) (πnnnmx)s ds
s+Λ .
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The main terms come from using Corollary 5 on these integrals with the
choice y = πnnnmx. These main terms are given by

x(n−1)/2n

π
√
n

∑
m6Xθ

A(1, . . . , 1,m)
m(n+1)/2n cos

(
2nπ(mx)1/n + (n− 3)

4 π

)
= P (x; θ).

Note that the condition y < (nY/2)n is satisfied by the choice of Y . The
contribution coming from the error terms of Corollary 5 can be estimated
as follows by using partial summation together with (4.6) and recalling the
fact that Y � X(1+θ)/n:∑
m6Xθ

|A(1, . . . , 1,m)|
m

(
(mx)(n−3)/2n + Y n/2−1+nδ + Y (n−2)/2 1

log Y n

2nπnmx

)

�ε X
(n−3)(1+θ)/2n+ε/2

+X((n−2)/2n+δ)(1+θ) +X(n−2)(1+θ)/2n ∑
m6Xθ

|A(1, . . . , 1,m)|
m

1

log Xθ+ 1
2

m

�ε X
(n−3)(1+θ)/2n+ε/2 +X(n−2)(1+θ)/2n+ε/4

1 +
∑

m6Xθ

|A(1, . . . , 1,m)|
Xθ + 1

2 −m


�ε X

1/2−(1+θ)/2n+ε/2

if 2δ(1+θ) ≤ ε, where the last estimate follows simply by using the absolute
values as before. Therefore we have shown that

1
2πi

∫ −δ+iY
−δ−iY

L(s, f)xsds
s

= P (x; θ) +O
(
X1/2−(1+θ)/2n+ε/2

)
in the range 0 < θ < 1/(n − 1 + 2nϑ) assuming ϑ < 1/2 − 1/n and
2δ(1 + θ) ≤ ε. Furthermore, it follows that

E(x; θ) =
∫ 1/2−iY

1/2−iX
L(s, f)xsds

s
+
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

+O
(
X1/2−(1+θ)/2n+ε/2

)
for 0 < θ < 1/(n− 1 + 2nϑ) and ϑ < 1/2− 1/n.

From this it follows that
1
X

∫ 2X

X
|E(x; θ)|2 dx

�ε X
1−(1+θ)/n+ε

+ 1
X

∫ 2X

X

∣∣∣∣∣
∫ 1/2−iY

1/2−iX
L(s, f)xsds

s
+
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

∣∣∣∣∣
2

dx

for θ and ϑ in the same ranges as before.



On Short Sums Involving Fourier Coefficients of Maass Forms 789

Hence, we are now reduced to study the integral

1
X

∫ 2X

X

∣∣∣∣∣
∫ 1/2−iY

1/2−iX
L(s, f)xsds

s
+
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

∣∣∣∣∣
2

dx.

Let us fix a smooth compactly supported non-negative weight function w
majorising the characteristic function of the interval [1, 2].

Now we simply compute

1
X

∫ 2X

X

∣∣∣∣∣
∫ 1/2−iY

1/2−iX
L(s, f)xsds

s
+
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

∣∣∣∣∣
2

dx

≤ 1
X

∫
R

∣∣∣∣∣
∫ 1/2−iY

1/2−iX
L(s, f)xsds

s
+
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

∣∣∣∣∣
2

w

(
x

X

)
dx

� 1
X

∫
R

∣∣∣∣∣
∫ 1/2+iX

1/2+iY
L(s, f)xsds

s

∣∣∣∣∣
2

w

(
x

X

)
dx

= 1
X

∫
R

∫ 1/2+iX

1/2+iY

∫ 1/2+iX

1/2+iY
L(s1, f)xs1L(s2, f)xs2 ds1

s1

ds2
s2
w

(
x

X

)
dx

= 1
X

∫
R

∫ X

Y

∫ X

Y
L

(1
2 + it, f

)
x1/2+itL

(1
2 + iv, f

)
x1/2−iv

· dtdv(
1
2 + it

) (
1
2 − iv

)w( x
X

)
dx

=
∫ X

Y

∫ X

Y

L
(

1
2 +it, f

)
L
(

1
2−iv, f̃

)
(

1
2 +it

) (
1
2−iv

) X1+i(t−v)
(∫

R
x1+i(t−v)w(x) dx

)
dt dv.

By repeated integration by parts, we see that the inner integral is negligible
(i.e. �A X−A for any A ≥ 1) when |t − v| ≥ Xη for some fixed 0 < η <
(1+θ)/n. In the complementary range the inner integral is bounded. Using
this we simply estimate the remaining part of the integral as

� X

∫ ∫
Y≤t,v≤X
|t−v|≤Xη

∣∣∣L (1
2 + it, f

)
L
(

1
2 − iv, f̃

)∣∣∣
tv

dtdv

�ε X

∫ ∫
Y≤t,v≤X
|t−v|≤Xη

(tv)−1+εn/4(1+θ) dt dv

�ε X
1+ηY −1+εn/4(1+θ)

∫ X+Xη

Y−Xη
t−1+ε/4(1+θ) dt

�ε X
1+η+ε/4(1+θ)Y −1+ε/4(1+θ)

�ε X
1−(1+θ)/n+η+ε/4n+ε/4(1+θ),
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where, in the third step, we have used the fact that, for fixed t, the param-
eter v ranges over a set of measure � Xη. The resulting upper bound is
small enough if we choose η = ε/6 > 0. Here we have used the generalised
Lindelöf hypothesis in the second step and the fact that Y � X(1+θ)/n in
the last step. This finishes the proof. �

6. Proof of Theorem 2
We start by observing that

(6.1) 1
X

∫ 2X

X

∣∣∣∣∣∣
∑

x≤m≤x+∆
A(m, 1, . . . , 1)

∣∣∣∣∣∣
2

dx

= 1
X

∫ 2X

X
|P (x+ ∆; θ)− P (x; θ)|2 dx

+ 1
X

∫ 2X

X
|E (x+ ∆; θ)− E(x; θ)|2 dx

+O

(
1
X

∫ 2X

X
|P (x+∆; θ)−P (x; θ)| · |E (x+∆; θ)−E(x; θ)| dx

)
for any 0 < θ ≤ 1. In fact, we will suppose that 0 < θ < 1/(n − 1 + 2nϑ).
For the first term on the right-hand side we see that

(6.2) 1
X

∫ 2X

X
|P (x+ ∆; θ)− P (x; θ)|2 dx

= 1
X

∫ 2X

X
|P (x+ ∆; θ)|2 dx+ 1

X

∫ 2X

X
|P (x; θ)|2 dx

− 1
X

∫ 2X

X

[
P (x+ ∆; θ)P (x; θ) + P (x; θ)P (x+ ∆; θ)

]
dx.

By writing cosines in terms of exponentials we have

P (x; θ) = x(n−1)/2n

2π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n e

(
n(mx)1/n + (n− 3)

8

)

+ x(n−1)/2n

2π
√
n

∑
m≤Xθ

A(1, . . . , 1,m)
m(n+1)/2n e

(
−n(mx)1/n − (n− 3)

8

)
.

Arguing just as in the proof of Lemma 11 we see that

1
X

∫ 2X

X
|P (x; θ)|2 dx

∼ 1
2 ·

1
nπ2 ·

2(2n−1)/n − 1
2− 1/n ·X(n−1)/n

∞∑
m=1

|A(m, 1, . . . , 1)|2

m(n+1)/n
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assuming θ < 1/(n − 1) − ε for some small fixed ε > 0. The identical
argument shows that

1
X

∫ 2X

X
|P (x+ ∆; θ)|2 dx

satisfies the same asymptotics under the additional assumption ∆ = o(X).
On the other hand, in order to estimate the last remaining term in (6.2),

a short calculation by writing cosines in terms of exponential functions
shows that we need to estimate integrals of the form

1
X

∫ 2X

X
(x(x+ ∆))(n−1)/2n

e

(
±n

(
(m(x+ ∆))1/n ± (`x)1/n

)
± µ · (n− 3)

4

)
dx

with µ ∈ {0, 1}.
Set F (x) := (m(x + ∆))1/n − (`x)1/n. Using the easy observation that

for x 6= y we have |x1/n − y1/n| � |x− y|(max(x, y))(1−n)/n, it follows that

|F ′(x)| � X(1−n)/n|m− `|(max(m, `))(1−n)/n

for m 6= `. Also

(m(x+ ∆))1/n − (mx)1/n = m1/n
∫ x+∆

x
t(1−n)/n dt � m1/n∆X(1−n)/n.

Therefore, by applying the first derivative test, we have

1
X

∫ 2X

X

(x(x+ ∆))(n−1)/2n

4π2n

e

(
±n

(
(m(x+ ∆))1/n − (`x)1/n

)
± µ · (n− 3)

4

)
dx

�


X(n−2)/n(max(m,`))(n−1)/n

|m−`| , if m 6= `
X(2n−2)/n

∆m1/n , if m = `

Similarly,

1
X

∫ 2X

X

(x(x+ ∆))(n−1)/2n

4π2n

e

(
±n

(
(m(x+ ∆))1/n + (`x)1/n

)
± µ · (n− 3)

4

)
dx

� X(n−2)/n(max(m, `))(n−1)/n

|m+ `|
.
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Hence, the non-diagonal terms in
1
X

∫ 2X

X
|P (x+ ∆; θ)P (x; θ)|dx

contribute
�ε X

(n−2)/n+θ(n−1)/n+(n−2)ε/n

�ε X
(n−1)/n−ε/n

by using (4.7) and the assumption θ < 1/(n− 1)− ε. The diagonal contri-
bution is estimated as

� X(2n−2)/n

∆
∑

m≤Xθ

|A(1, . . . , 1,m)|2

m(n+1)/n

� X(2n−2)/n

∆
�ε X

(n−1)/n−ε,

provided that ∆�ε X
(n−1)/n+ε, again by using (4.7).

The term involving E(x; θ) is �ε X
(n−1)/n−ε, which follows from the

proof of Proposition 9 (here the generalised Lindelöf hypothesis is needed)
for 0 < θ < 1/(n − 1 + 2nϑ) assuming ϑ < 1/2 − 1/n. Finally, the error
term in (6.1) is �ε X

(n−1)/n−ε/2n by the Cauchy–Schwarz inequality. This
concludes the proof. �
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