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An introduction to oddly tame number fields.

par GUILLERMO MANTILLA-SOLER

RESUME. Il résulte des généralités sur les formes quadratiques que la classe
spinorielle de la trace intégrale d’un corps de nombres détermine la signature
et le discriminant du corps. Dans cet article, nous définissons une famille de
corps de nombres, qui contient, entre autres, tous les corps galoisiens de degré
impair modérément ramifiés, pour lesquels la réciproque est vraie. Autrement
dit, pour un corps de nombres K de cette famille, on montre que la classe
spinorielle de la trace intégrale ne contient pas d’informations sur K autres
que celles qui sont fournies par le discriminant et la signature.

ABSTRACT. It follows from generalities of quadratic forms that the spinor
class of the integral trace of a number field determines the signature and the
discriminant of the field. In this paper we define a family of number fields, that
contains among others all odd degree Galois tame number fields, for which
the converse is true. In other words, for a number field K in such family we
prove that the spinor class of the integral trace carries no more information
about K than the discriminant and the signature do.

1. Introduction

Let K be a number field, O its maximal order and let rx and sx be
the number of real and complex places respectively. The integral trace form
of K is the isometry class of the Z-quadratic module

Ok, tK)
associated to the trace pairing
Ok X Ok = Z;  (z,y) = Trgg(zy).

Since (rx+sk, sx) = Sign((Ok, tx)) and disc(K) = det((Ox, tx)) (see [9])
it follows from generalities of quadratic forms (see [2, IX §4]) that the
spinor genus of (O, tx) determines the signature and the discriminant of
K. Besides the trivial case of fields of degree less than 3, there are some
interesting instances where the converse of the above holds:
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Theorem ([4, Theorem 3.2]). Let K and L be cubic number fields. Then
(Ok,ti) and (Op,tr) belong to the same spinor genus if and only if
disc(K') = disc(L).

Recall that for cubic fields the sign of the discriminant determines the
signature of the field, hence it is not necessary to mention signatures in
the above theorem. There are examples that show that the above theorem
cannot be extended to isometry classes; take for instance (see [7, Theo-
rem 5.2] and [4, Theorem 3.2]) two non isomorphic cubic fields of positive
fundamental discriminant, e.g., any two of the four cubic fields of discrim-
inant 32009. There are some cases in which the isometry class of the trace
is determined by the discriminant and the signature:

Theorem ([1, Theorems 4.2, 4.5]). Let n be a positive integer and let K, L
be two tame Z/nZ-number fields. Then

(Ok,tKk) = (Or,tr) if and only if disc(K) = disc(L).

For odd n there is no need to mention the signature since the fields are
totally real. As it turns out, in the above situation, for n even the equality
between discriminants imply the equality of the signatures. The following
example shows that the theorem above cannot be extended to arbitrary
Galois groups, not even abelian ones. All the examples in this paper have
been obtained with the help of John Jones’ tables of number fields [3].

Example 1.1. Let K and L be the number fields defined respectively by
the polynomials fx = 2* —412? 4+ 144 and f; = 2* — 2% — 4622 — 1152 — 35.
Both fields are quartic V4-Galois fields with discriminant equal to 5% - 132 -
172. Since in the first field p = 5 has one prime factor, while in the second
it has two, we see using [4, Proposition 2.9] that the integral traces of K
and L are not in the same spinor genus, thus they are not isometric.

In this paper we define a class of number fields for which the discriminant
and the signature are necessary and sufficient to determine the spinor class
of the integral trace.

Definition 1.2. Let K be a number field, let p be a rational prime and
let e1,...,e4 be the ramification indices of p in K. The prime p is called
uniformly ramified in K if ey = --- = ey.

The definition of uniformly ramified prime is inspired by the behaviour of
ramification in Galois number fields; however there are non Galois number
fields in which every prime is uniformly ramified, e.g., a field in which every
ramified prime is totally ramified. For instance, the number field defined
by the polynomial 2* — 23 — 722 + 11z + 3 is an S;—quartic field in which
p = 59 is the only ramified prime and such prime is totally ramified.
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Let K be a number field. A prime p is called an exceptional prime for
K if
e there is an even number of primes above p,
e or p is not uniformly ramified,
. ([)r p]is uniformly ramified with common ramification degree e but,
K:Q

N 1S even.

Definition 1.3. A number field K is called oddly tame if the following
conditions hold:

(1) The field K is tame, i.e., every ramified prime p is not wildly
ramified.
(2) There is at most one odd ramified prime that is exceptional for K.

If there is an odd ramified exceptional prime for K, then we call it the
exceptional prime of K.

Remark 1.4. Notice that the collection of oddly tame number fields con-
tains all tame Galois number fields of odd degree and all tame number fields
in which all ramified primes are totally ramified. However, there can be
oddly tame number fields that are of even degree, that are not Galois or in
which no ramified prime is totally ramified. One such example is the sextic
field K defined by the polynomial 2% —22° 4324 — 9234822 —7x—5. Thisis a
Djg-sextic number field with discriminant 32 - 233 such that 30k = 773 and
230k = (P1P2)? for some prime ideals P;. This is the unique, up to conju-
gacy, oddly tame number field of signature (2,2) and discriminant 33 - 233.
However, as verified by Example 1.5, there are pairs of non-isomorphic
oddly tame number fields of the same signature and discriminant.

Our main result states that for oddly tame number fields the signature
and the discriminant are necessary and sufficient to determine the spinor
genus of the integral trace. Moreover, for non totally real fields this can be
improved to isometry class.

Theorem (cf. Theorem 2.4). Let K, L be two oddly tame number fields.
Suppose that the set formed by exceptional primes of K and L contains at
most one element. Then (O, tx) and (Or,tr) belong to the same spinor
genus if and only if disc(K) = disc(L) and Sign({Og, tx)) = Sign({Op,t1)).
Furthermore, If K is not totally real

(Og,tx) =2 (Or,tr) if and only if
disc(K) = disc(L) and Sign((Og,tx)) = Sign((Or,tr))
Example 1.5. Consider the sextic fields K and L defined by the polyno-
mials fx := 2% —2° — 22* + 23 4+ 722 — 62+ 4 and fr, := 25 — 325 + 102* —

1523 + 1922 — 12z + 3. Both fields have signature (r,s) = (0,3), discrim-
inant —33 - 1072 and Galois closure with Galois group D1s. The fields are
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not isomorphic; in K the prime p = 3 has only one prime lying over it,
while in L it has three. In both fields the prime p = 3 is uniformly ramified
with ramification index e = 2. In particular, K and L are oddly tame num-
ber fields that are neither Galois or of odd degree or with totally ramified
primes. Moreover, the prime ¢ = 107 is exceptional in both fields. Since K
is not totally real we know by Theorem 2.4 that (Ok,tx) = (Ofr,tL).

2. Proofs of our results

One of the main ingredients we use is the set of a-invariants of a number
field; for definitions and properties see [6].

Definition 2.1. Let K be a number and let p be an odd prime. Let g be
the number of prime factors of p in K and let (e1,...,e4) and (f1,..., fy)
be the ramification and residue degrees of p over K. The first ramification
invariant of p in K is the integer

g
K i F—
o, = (H e{)ué 2
i=1

where F' =} f; and u, € {1,...,p — 1} is the first non quadratic residue
modulo p.

Among the useful properties of such invariants we have that they deter-
mine the genus of the integral trace which in degree at least 3, thanks to [5],
is the same as the spinor genus. The main relation about a-invariants and
the integral trace is the following:

Proposition 2.2 ([4, Proposition 2.9]). Let K, L be tame number fields of
degree n > 3. The forms (Ok,tx) and (Or,tr) belong to the same spinor
genus if and only if the following conditions hold:
(1) disc(K) = disc(L),
(2) SK = S,
(3) For every odd prime p that divides the common discriminant of K
and L we have that

)-()

In oddly tame number fields the «a;, invariant of a non-exceptional rami-
fied prime can be expressed, up to squares, in terms of the degree and the
discriminant. More explicitly:

Lemma 2.3. Let K be a degree n oddly tame number field of discriminant
d. Let p be an odd non-exceptional ramified prime in K. Then,

K n *\ 2
=" mod(Z

where v, denotes the standard p-adic valuation in Q.
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Proof. Let p # 2 be a ramified prime in K, not exceptional. By definition
of « invariants, and since p is uniformly ramified, ozzlf = el u;f ~9 where
e is the ramification invariant of p over K. By hypothesis ¢ is odd, and
since n = eF we have, by hypothesis as well, that F' is odd. Thus, af =e
mod (Z;)z. On the other hand, since p is tame, thanks to [8, Chapter III,
Proposition 13], we have that

vp(d):(e—l)F:n—F:n—%

from where the result follows. O

Theorem 2.4. Let Kand L be two oddly tame number fields. Suppose
that the set formed by exceptional primes of K and L contains at most
one element. Then (O, tx) and (Or,tr) belong to the same spinor genus
if and only if disc(K) = disc(L) and Sign({(Og,tx)) = Sign({(Or,tr)).
Furthermore, If K is not totally real
(Ok,tk) = (Op,tr) if and only if
disc(K) = disc(L) and Sign((Og,tx)) = Sign({Or,tr))
Proof. We may assume that K and L have degree at least 3. We show
the non trivial implication. Since for number fields of degree at least 3
the genus and the spinor genus of the integral trace form coincide, see [5,
Theorem 2.12], it is enough to show that (Ox,tx) ® R = (O, tr) ® R and
that (Og,tx) ® Zy = (Op,tr) @ Z, for all prime p. Since K and L have
the same signature it follows from a result of Taussky [9] that
<OK,tK> QR == <OL,tL> ® R.

Since for odd primes p the isometry class of a quadratic forms over Z,, with
invertible discriminant, is determined by the discriminant and dimension
of the form (see [2, Chapter 8, Lemma 3.4]) we have that

<OK,tK> ®Zp = <OLatL> ®Zp

for every odd unramified prime p. Given that both fields are tame it follows
from [4, Proposition 2.7] that

(Og,tg) @ Zo = (Op,tL) ® Zs.

Thanks to Lemma 2.3
o\ _ (o
p p

for every odd prime p that divides the common discriminant and that is
not exceptional.
Hence, by [6, Theorem 3.14]

<OK,tK> ® Zp = <OL,tL> & Zp
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for every prime p with one possible exception; an exceptional prime if it
exists. Since (O, tx) @R = (O, t1,) QR it follows from the product formula
for Hilbert symbols that

(Ok,tr) ®Qp = (Or,tL) ® Q,

for every prime p. Let p be the possible exceptional prime. For a = «

ozI% , since p t a one can check that

(5) =@n

where (-,-), is the p-adic Hilbert symbol. Combining [6, Theorem 2.13]
with [6, Lemma 2.9] and [4, Lemma 2.1] then shows that (Og,tx) ® Q, =
(Or,tr) ® Q, implies that

K
pOI‘

for every prime p. The result then follows from Proposition 2.2 and for the
isometry class in the non totally real case from [4, Theorem 2.13]. O

The following example shows, thanks to Theorem 2.4, that the Galois
structure of number fields with the same integral trace can be different.

Example 2.5. Consider the quartic fields K and L defined by the polyno-
mials fx = z* — 2% + 3622 — 362 +281 and f1, := 2* — 223 + 142% — 132+ 6.
Both fields have signature (r, s) = (0, 2), discriminant 53 - 292. The field K
is a Z/4Z-number field. In contrast L is not Galois, and its Galois closure
has Galois group Dg. In particular, the fields are not isomorphic. In both
fields the prime p = 5 is totally ramified, hence K and L are oddly tame
number fields. The prime ¢ = 29 is exceptional in both fields. Since K is
not totally real (Og,tx) = (Op,tr).
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