

Angelot BEHAJAINA

Réalisations galoisiennes explicites de certaines familles de 2-groupes Tome 32, $n^{\circ}\,2$ (2020), p. 605-630.

http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_2_605_0

© Société Arithmétique de Bordeaux, 2020, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.centre-mersenne.org/

Réalisations galoisiennes explicites de certaines familles de 2-groupes

par Angelot BEHAJAINA

RÉSUMÉ. Dans cet article, nous construisons, pour certains 2-groupes G, des extensions galoisiennes explicites $E/\mathbb{Q}(T)$ de groupe G vérifiant $E \cap \overline{\mathbb{Q}} = \mathbb{Q}$. Nous fournissons aussi des progressions arithmétiques explicites d'entiers t_0 telles que la spécialisation E_{t_0}/\mathbb{Q} de $E/\mathbb{Q}(T)$ en t_0 soit de groupe G.

ABSTRACT. In this paper, we construct, for some 2-groups G, explicit Galois extensions $E/\mathbb{Q}(T)$ of group G with $E \cap \overline{\mathbb{Q}} = \mathbb{Q}$. We also provide explicit arithmetic progressions of integers t_0 such that the specialization E_{t_0}/\mathbb{Q} of $E/\mathbb{Q}(T)$ at t_0 has Galois group G.

1. Introduction

Le problème inverse de Galois consiste à savoir si tout groupe fini se réalise comme le groupe de Galois d'une extension galoisienne F/\mathbb{Q} . Bien que remontant à Hilbert et Noether, et malgré de nombreux travaux, ce célèbre problème de la théorie des nombres demeure largement ouvert. L'approche géométrique à ce problème consiste à montrer que tout groupe fini G est groupe de Galois régulier sur \mathbb{Q} , c'est-à-dire à introduire une indéterminée T et à construire une extension galoisienne $E/\mathbb{Q}(T)$ de groupe G telle que E/\mathbb{Q} soit régulière (c'est-à-dire $E \cap \overline{\mathbb{Q}} = \mathbb{Q}$). Le théorème d'irréductibilité de Hilbert fournit alors une infinité de nombres rationnels t_0 tels que la spécialisation E_{t_0}/\mathbb{Q} de $E/\mathbb{Q}(T)$ en t_0 soit galoisienne de groupe G (voir §2.1 pour la définition). Certains groupes finis, simples non abéliens notamment, ont été réalisés par cette méthode. On renvoie aux ouvrages de référence [6], [9], [13] et [15] pour plus de détails.

Une version raffinée du problème inverse de Galois et de sa version régulière consiste, pour un groupe fini G donné, à construire une extension galoisienne ou un polynôme explicite de groupe G. Par exemple, pour $G = \mathbb{Z}/2\mathbb{Z}$, on peut prendre $F/\mathbb{Q} = \mathbb{Q}(\sqrt{2})/\mathbb{Q}$. Un autre exemple est le trinôme $Y^n - Y - T$ $(n \geq 3)$ dont le corps de décomposition E sur $\mathbb{Q}(T)$ vérifie $\operatorname{Gal}(E/\mathbb{Q}(T)) = S_n$ et $E \cap \overline{\mathbb{Q}} = \mathbb{Q}$ (voir [13, §4.4]). On renvoie aux dernières

Manuscrit reçu le 14 avril 2020, révisé le 21 juin 2020, accepté le 28 juillet 2020. Classification Mathématique (2020). 12E30, 12F12.

Mots-clefs. Théorie inverse de Galois, spécialisation, réalisations explicites, quaternions généralisés.

pages de [9] pour d'autres réalisations explicites de certains groupes finis G, en général de petit cardinal.

Dans cet article, nous nous intéressons à certains 2-groupes, plus précisément aux groupes non abéliens d'ordre 2^n et d'exposant 2^{n-1} . Pour $n \geq 3$, il existe exactement quatre tels groupes (voir [7, p. 127]), à savoir le groupe diédral D_{2^n} , le groupe quasi-diédral QD_{2^n} , le groupe modulaire M_{2^n} et le groupe des quaternions généralisés Q_{2n} (voir §2.2 pour une présentation de chacun de ces groupes). Bien entendu, ces groupes étant résolubles, ils sont groupes de Galois sur \mathbb{Q} par le théorème de Shafarevich (voir [11, (9.6.1)]). Ces groupes sont en fait groupes de Galois réguliers sur Q. En effet, il est connu que tout produit en couronnes $\mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/h\mathbb{Z}$ est groupe de Galois d'une extension galoisienne $E/\mathbb{Q}(T_1,\ldots,T_s)$ vérifiant $E\cap\overline{\mathbb{Q}}=\mathbb{Q}$ pour un certain $s \geq 1$, qui est en fait égal à h, et que tout produit semi-direct $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/h\mathbb{Z}$ est quotient de $\mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/h\mathbb{Z}$ (voir [6, §16.4]). Un argument de spécialisation (voir [6, Proposition 13.2.1]), en général non explicite, permet alors de prendre s=1 (pour h quelconque). Ceci s'applique en particulier aux 2-groupes ci-dessus puisque les trois premiers sont des produits semidirects $\mathbb{Z}/2^{n-1}\mathbb{Z}\rtimes\mathbb{Z}/2\mathbb{Z}$ et le dernier est quotient d'un produit semi-direct $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$.

Par contre, l'existence de réalisations explicites de ces groupes est en général inconnue, notamment pour les groupes de quaternions généralisés (voir [7, p. 141]). Dans la suite, nous construisons de telles extensions en développant et en rendant explicite la méthode de [6, §16.4]. Nous montrons par exemple le théorème suivant (voir théorème 4.2) :

Théorème 1.1. Soient $n \ge 3$ et $\xi = \exp(2\pi i/2^{n-1})$. Pour $l \in [1, 2^{n-1}]$ et $l \in \{1, 2\}$, on pose

$$z_{\ell,l} = \sum_{j \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} \xi^{lj} \prod_{k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} (T+1+(-1)^{\ell} \sqrt{T^2+1} - \xi^k)^{r(j/k)/2^{n-1}},$$

où $r:(\mathbb{Z}/2^{n-1}\mathbb{Z})^*\to \llbracket 0,2^{n-1}-1\rrbracket$ envoie $k\in(\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ sur son unique représentant modulo 2^{n-1} . Si l'on note

$$w = \sqrt{T^2 + 1} + \left(\sqrt{T^2 + 1 + T\sqrt{T^2 + 1}} + \sum_{l=1}^{2^{n-1}} z_{1,l} z_{2,l}\right)^2,$$

alors l'extension $\mathbb{Q}(T, w)/\mathbb{Q}(T)$ est galoisienne de groupe Q_{2^n} et $\mathbb{Q}(T, w)/\mathbb{Q}$ est régulière. De plus, les $\mathbb{Q}(T)$ -conjugués de w sont les

$$(-1)^a \sqrt{T^2 + 1} + \left(\pm \sqrt{T^2 + (-1)^a T} \sqrt{T^2 + 1} + \sum_{l=1}^{2^{n-1}} z_{2,l} z_{1,l+s}\right)^2$$

$$où (a,s) \in \{0,1\} \times [0,2^{n-2}-1].$$

Nous donnons aussi des analogues pour D_{2^n} , QD_{2^n} et M_{2^n} (voir corollaires 3.6, 3.7 et 3.8).

Nous construisons en fait une réalisation régulière explicite de n'importe quel produit semi-direct $\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ $(m \geq 3)$, ce qui généralise nos résultats sur D_{2^n} , QD_{2^n} et M_{2^n} (voir théorème 3.5). Ce résultat plus général nous permet aussi de construire une réalisation régulière explicite du groupe diédral D_{2m} à 2m éléments $(m \geq 3)$, voir corollaire 3.6. Ceci fournit une variante régulière, valable pour tout m, d'une construction de Martinais et Schneps (voir [10]).

Notons toutefois que notre méthode diffère de celle de [6, §16.4] puisque nous construisons "directement" des extensions galoisiennes $E/\mathbb{Q}(T)$ de groupe $\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, c'est-à-dire notre méthode ne nécessite pas l'argument de spécialisation nécessaire pour passer de $\mathbb{Q}(T_1, T_2)$ à $\mathbb{Q}(T)$ rappelé plus haut. De plus, la stratégie de la preuve du théorème 1.1 ne consiste pas à réaliser explicitement $\mathbb{Z}/2^{n-1}\mathbb{Z} \wr \mathbb{Z}/4\mathbb{Z}$, puis ses quotients $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$, puis Q_{2^n} . Elle consiste plutôt à remarquer que Q_{2^n} est quotient d'un produit semi-direct $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ qui est en fait un produit fibré de $\mathbb{Z}/4\mathbb{Z}$ et de D_{2^n} . Nous utilisons alors la réalisation régulière explicite de D_{2^n} obtenue dans le corollaire 3.6 pour réaliser explicitement ce produit fibré, et donc Q_{2^n} .

Nous donnons ensuite des progressions arithmétiques explicites d'entiers t_0 tels que la spécialisation de $E/\mathbb{Q}(T)$ en t_0 soit galoisienne de groupe Q_{2^n} , où $E/\mathbb{Q}(T)$ désigne l'extension de groupe Q_{2^n} construite dans le théorème 1.1. L'existence de progressions arithmétiques d'entiers satisfaisant à la propriété de spécialisation de Hilbert a été étudiée par de nombreux auteurs, par exemple, par Davenport-Lewis-Schinzel (voir [12]), Fried (voir [4]), Dèbes-Ghazi (voir [2]), Dèbes-Legrand (voir [3]) et Legrand (voir [8]). Nous explicitons la méthode de [8], qui repose sur l'inertie des spécialisations, et obtenons le théorème suivant :

Théorème 1.2. Soit $n \geq 3$. Soient p et q deux nombres premiers distincts supérieurs ou égaux à $7^{2^{n-2}}+1$ tels que $p\equiv 1\pmod{2^{n-1}}$ et $q\equiv 1\pmod{4}$. Alors il existe un $t_0\in [\![0,p^2q^2-1]\!]$ explicite tel que, si t désigne n'importe quel entier positif vérifiant $t\equiv t_0\pmod{p^2q^2}$, alors la spécialisation E_t/\mathbb{Q} de $E/\mathbb{Q}(T)$ en t est galoisienne de groupe Q_{2^n} .

Nous renvoyons au théorème 4.10 pour un énoncé plus général où l'on explique comment construire un tel t_0 . Par ailleurs, il nous paraît plausible que des analogues peuvent être donnés pour les autres 2-groupes considérés dans cet article. Nous laissons ce travail au lecteur intéressé.

L'article est organisé de la manière suivante. La section 2 est dédiée aux préliminaires. Dans la section 3, nous construisons des réalisations régulières explicites de n'importe quel produit semi-direct $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $(m \geq 3)$. La section 4 est non seulement dédiée à la même tâche pour les groupes de

quaternions généralisés mais aussi à la construction de réalisations explicites de ces groupes sur $\mathbb Q$ par spécialisation.

Remerciements. Je tiens à remercier mes directeurs de thèse, Bruno Deschamps et François Legrand, pour leurs nombreuses relectures, commentaires utiles et précieuses suggestions. Je remercie également le GDRI GANDA pour son soutien financier et Denis Simon pour certaines discussions lors de la préparation de ce travail. Je remercie aussi le rapporteur pour ses remarques qui ont permis d'améliorer ce travail.

2. Préliminaires

2.1. Extensions de corps de fonctions. Étant donnés un groupe fini G et un corps K, une G-extension de K est une extension galoisienne F/K de groupe G. Si F/K et M/L désignent deux extensions galoisiennes finies telles que $K \subset L$ et $F \subset M$, l'application de restriction $\operatorname{Gal}(M/L) \to \operatorname{Gal}(F/K)$ sera notée $\operatorname{res}_{F/K}^{M/L}$.

Étant donnée une indéterminée T, on dit qu'une extension finie galoisienne $E/\mathbb{Q}(T)$ est \mathbb{Q} -régulière si E/\mathbb{Q} est régulière, c'est-à-dire si $E \cap \overline{\mathbb{Q}} = \mathbb{Q}$. On dit que $t_0 \in \mathbb{P}^1(\overline{\mathbb{Q}})$ est un point de branchement de $E/\mathbb{Q}(T)$ si l'idéal $\langle T - t_0 \rangle$ est ramifié dans la clôture intégrale de $\overline{\mathbb{Q}}[T - t_0]$ dans $E\overline{\mathbb{Q}}$ (si $t_0 = \infty$, $T - t_0$ doit être remplacé par 1/T).

On suppose maintenant que $E/\mathbb{Q}(T)$ est une G-extension \mathbb{Q} -régulière de points de branchement t_1, \ldots, t_r . Étant donné $t_0 \in \mathbb{P}^1(\mathbb{Q}) \setminus \{t_1, \ldots, t_r\}$, la spécialisation de $E/\mathbb{Q}(T)$ en t_0 , notée E_{t_0}/\mathbb{Q} , est l'extension résiduelle en un idéal premier \mathcal{P} au dessus de $\langle T - t_0 \rangle$. Comme $E/\mathbb{Q}(T)$ est galoisienne, l'extension E_{t_0}/\mathbb{Q} ne dépend pas du choix de l'idéal premier \mathcal{P} . De plus, E_{t_0}/\mathbb{Q} est galoisienne et son groupe de Galois est le groupe de décomposition de $E/\mathbb{Q}(T)$ en \mathcal{P} .

Étant donné un nombre premier p, on pose $1/\infty = 0$, $1/0 = \infty$, $v(\infty) = -\infty$ et $v(0) = \infty$, où v désigne la valuation p-adique. Soit $\mathbb{Z}_{p\mathbb{Z}}$ le localisé de \mathbb{Z} en p. Pour chaque $t \in \mathbb{P}^1(\overline{\mathbb{Q}})$, on note $m_t(X) \in \mathbb{Q}[X]$ le polynôme minimal de t sur \mathbb{Q} , avec la convention $m_{\infty}(X) = 1$.

Définition 2.1. Soient t_0 et t_1 dans $\mathbb{P}^1(\overline{\mathbb{Q}})$. On dit que t_0 et t_1 se rencontrent modulo p s'il existe un corps de nombres F et un idéal premier de F au dessus de p de valuation associée w tels que $t_0, t_1 \in \mathbb{P}^1(F)$ et tels que l'une des conditions suivantes soit vérifiée :

- (1) $w(t_0) \ge 0$, $w(t_1) \ge 0$ et $w(t_0 t_1) > 0$,
- (2) $w(t_0) \le 0$, $w(t_1) \le 0$ et $w((1/t_0) (1/t_1)) > 0$.

Le lemme suivant nous sera utile par la suite.

Lemme 2.2. Soient t_0 et t_1 dans $\overline{\mathbb{Q}}$ entiers sur $\mathbb{Z}_{p\mathbb{Z}}$. Si t_0 et t_1 se rencontrent modulo p et si $N(t_0-t_1)$ désigne la norme de t_0-t_1 dans une extension finie galoisienne F/\mathbb{Q} donnée telle que $t_0, t_1 \in F$, alors $v(N(t_0-t_1))>0$.

Démonstration. On se donne un idéal premier de F au dessus de p de valuation associée w tel que $w(t_0 - t_1) > 0$. On a

$$w(N(t_0 - t_1)) = \sum_{\sigma \in Gal(F/\mathbb{Q})} w(\sigma(t_0 - t_1)) \ge w(t_0 - t_1) > 0.$$

Définition 2.3. On dit que p est un mauvais premier (et un bon premier sinon) de l'extension $E/\mathbb{Q}(T)$ si l'une des conditions suivantes est vérifiée :

- $(1) |G| \in p\mathbb{Z},$
- (2) deux points de branchement distincts de $E/\mathbb{Q}(T)$ se rencontrent modulo p,
- (3) p est verticalement ramifié dans $E/\mathbb{Q}(T)$, c'est-à-dire l'idéal $p\mathbb{Z}[T]$ se ramifie dans la clôture intégrale de $\mathbb{Z}[T]$ dans E,
- (4) p se ramifie dans $\mathbb{Q}(t_1,\ldots,t_r)/\mathbb{Q}$, où t_1,\ldots,t_r sont les points de branchement de $E/\mathbb{Q}(T)$.

À chaque point de branchement t_i est associée une classe de conjugaison C_i de G, appelée classe canonique de l'inertie. En effet, les groupes d'inertie de $E\overline{\mathbb{Q}}/\overline{\mathbb{Q}}(T)$ en t_i sont des groupes cycliques deux à deux conjugués et d'ordre égal à l'indice de ramification e_i . De plus, chacun d'eux admet un générateur distingué correspondant à l'automorphisme $(T-t_i)^{1/e_i} \mapsto \exp(2\pi i/e_i)(T-t_i)^{1/e_i}$ de $\overline{\mathbb{Q}}(((T-t_i)^{1/e_i}))$ (on remplace $T-t_i$ par 1/T si $t_i = \infty$). Alors C_i est la classe de conjugaison de tous les générateurs distingués des groupes d'inertie en t_i . Le r-uplet non ordonné (C_1, \ldots, C_r) est appelé invariant canonique de l'inertie de $E/\mathbb{Q}(T)$. Pour $i \in \{1, \ldots, r\}$, notons g_i le générateur distingué d'un certain groupe d'inertie de $E\overline{\mathbb{Q}}/\overline{\mathbb{Q}}(T)$ en t_i .

Nous renvoyons à [1, Proposition 4.2] et $[8, \S 2.2.3]$ pour le théorème suivant.

Théorème 2.4. Soit $t_0 \in \mathbb{P}^1(\mathbb{Q}) \setminus \{t_1, \dots, t_r\}$. Fixons $j \in [\![1, r]\!]$ tel que t_0 et t_j se rencontrent modulo p. Supposons que p soit un bon premier pour $E/\mathbb{Q}(T)$ et que $m_{t_j}(T)$ et $m_{1/t_j}(T)$ soient dans $\mathbb{Z}_{p\mathbb{Z}}[T]$. Alors le groupe d'inertie de E_{t_0}/\mathbb{Q} en p est conjugué dans G à $\langle g_j^a \rangle$, où $a = v(m_{t_j}(t_0))$ (resp. $a = v(m_{1/t_j}(1/t_0))$) si $v(t_0) \geq 0$ (resp. $v(t_0) \leq 0$).

2.2. Sur les 2-groupes. Dans cet article, le groupe cyclique d'ordre m est noté $\mathbb{Z}/m\mathbb{Z}$ et considéré additivement.

Un produit semi-direct $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est déterminé par l'image d de $1 \in \mathbb{Z}/2\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z}) = (\mathbb{Z}/m\mathbb{Z})^*$ (on a nécessairement $d^2 = 1$). Une présentation de ce groupe est

$$(2.1) \mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z} = \langle r, s \mid r^m = s^2 = 1, srs^{-1} = r^d \rangle,$$

où r (resp. s) correspond à (1,0) (resp. (0,1)). Dans la suite, on considérera trois cas :

- (1) m arbitraire et d = -1; dans ce cas, $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est le groupe diédral D_{2m} ,
- (2) $m = 2^{n-1}$ $(n \ge 3)$ et $d = 2^{n-2} 1$; dans ce cas, le produit semidirect $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ est le groupe quasi-diédral QD_{2^n} ,
- (3) $m = 2^{n-1}$ $(n \ge 3)$ et $d = 2^{n-2} + 1$; dans ce cas, le produit semidirect $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ est le groupe modulaire M_{2^n} .

Étant donné $n \geq 3$, on définit le groupe Δ_n comme étant le produit semi-direct $\mathbb{Z}/2^{n-1}\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ où l'image de $1 \in \mathbb{Z}/4\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/2^{n-1}\mathbb{Z})$ est – Id. Ce groupe admet comme présentation

(2.2)
$$\Delta_n = \langle \rho, \sigma \mid \rho^{2^{n-1}} = \sigma^4 = 1, \sigma \rho \sigma^{-1} = \rho^{-1} \rangle,$$

où ρ (resp. σ) correspond à (1,0) (resp. (0,1)). Le groupe des quaternions généralisés d'ordre 2^n , noté Q_{2^n} , est le quotient de Δ_n par le sous-groupe distingué $\langle (2^{n-2},2) \rangle$. La présentation (2.2) de Δ_n induit la présentation de Q_{2^n} suivante :

(2.3)
$$Q_{2^n} = \langle \Lambda, \Sigma \mid \Lambda^{2^{n-1}} = \Sigma^4 = 1, \Lambda^{2^{n-2}} = \Sigma^2, \Sigma \Lambda \Sigma^{-1} = \Lambda^{-1} \rangle,$$

où Λ (resp. Σ) est l'image de ρ (resp. σ) modulo $\langle (2^{n-2},2) \rangle$.

Pour $m \geq 2$, le produit en couronnes de $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$, noté $\mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/2\mathbb{Z}$, est le produit semi-direct $(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$ où l'image de $1 \in \mathbb{Z}/2\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z})$ est l'automorphisme $(a, b) \mapsto (b, a)$.

Dans ce texte, on utilise toujours les présentations ci-dessus.

La proposition suivante nous sera utile par la suite.

Proposition 2.5. Soient $n \geq 3$, K un corps et M/K une D_{2^n} -extension. Notons L le sous-corps de M fixé par r, où r est défini dans la présentation (2.1). Supposons que L/K se plonge dans une $\mathbb{Z}/4\mathbb{Z}$ -extension H/K et soit τ un générateur de Gal(H/K). D'une part, H/L et M/L sont linéairement disjointes. D'autre part, HM/K est une Δ_n -extension. De plus, il existe un unique relèvement ρ de r dans Gal(HM/H) et celui-ci vérifie ce qui suit : pour tout relèvement σ de τ dans Δ_n , les éléments ρ et σ vérifient la présentation (2.2).

Démonstration. Tout d'abord, il est clair que HM/K est galoisienne. De plus, on a $H \not\subset M$ car $\mathbb{Z}/4\mathbb{Z}$ n'est pas quotient de D_{2^n} . Par conséquent, on a [HM:M]=2, les extensions H/L et M/L sont linéairement disjointes et $\operatorname{res}_{M/L}^{HM/H}$ est un isomorphisme. Ainsi, r admet un unique relèvement ρ dans $\operatorname{Gal}(HM/H)$. À partir de maintenant, on se donne un relèvement σ de τ à HM.

Maintenant, σ est d'ordre 4. En effet, on a $o(\sigma) \geq o(\tau) = 4$. De plus, σ ne fixe pas $L = M^{\langle r \rangle}$ et $\operatorname{res}_{M/K}^{HM/K}(\sigma) \in D_{2^n}$. Par conséquent, on a

 $\operatorname{res}_{M/K}^{HM/K}(\sigma)^2 = \operatorname{Id}_M$. Puisque [HM:M] = 2, on obtient $o(\sigma^2) \leq 2$. Ainsi $o(\sigma) \leq 4$ et donc $o(\sigma) = 4$.

Ensuite, $\sigma\rho\sigma^{-1}=\rho^{-1}$. En effet, on a $\operatorname{res}_{M/L}^{HM/H}(\sigma\rho\sigma^{-1})=\operatorname{res}_{M/K}^{HM/K}(\sigma)\cdot r\cdot\operatorname{res}_{M/K}^{HM/K}(\sigma)^{-1}=r^{-1} \text{ car }\operatorname{res}_{M/K}^{HM/K}(\sigma)\notin\langle r\rangle.$ Or $r^{-1}=\operatorname{res}_{M/L}^{HM/H}(\rho^{-1})$ et $\operatorname{res}_{M/L}^{HM/H}$ est injective. Donc $\sigma\rho\sigma^{-1}=\rho^{-1}$.

De plus, on a $\operatorname{Gal}(HM/K) = \langle \rho, \sigma \rangle$. En effet, soit s comme dans (2.1). Le morphisme de restriction $\langle \rho, \sigma \rangle \to \langle r, s \rangle = D_{2^n}$ est surjectif puisque l'on a $s = r^a \operatorname{res}_{M/K}^{HM/K}(\sigma)$ pour un certain a. Ainsi $2^n = |D_{2^n}|$ divise $|\langle \rho, \sigma \rangle|$, donc divise $|\operatorname{Gal}(HM/K)| = 2^{n+1}$. Le morphisme n'est pas injectif car $o(\sigma) = 4 \neq 2 = o(r^{-a}s) = o(\operatorname{res}_{M/K}^{HM/K}(\sigma))$. On en déduit donc $\operatorname{Gal}(HM/K) = \langle \rho, \sigma \rangle$.

Enfin, on a $\operatorname{Gal}(HM/K) = \Delta_n$ et ρ , σ vérifient (2.2). En effet, les égalités $\rho^{2^{n-1}} = 1$, $\sigma^4 = 1$, $\sigma\rho\sigma^{-1} = \rho^{-1}$ et $|\langle \rho, \sigma \rangle| = 2^{n+1}$ montrent que l'on a $\langle \rho, \sigma \rangle = \Delta_n$. Le paragraphe précédent donne alors $\operatorname{Gal}(HM/K) = \Delta_n$. \square

La proposition précédente admet la version régulière suivante :

Proposition 2.6. Soient $n \geq 3$ et $M/\mathbb{Q}(T)$ une D_{2^n} -extension \mathbb{Q} -régulière. Notons L le sous-corps de M fixé par r, où r est défini dans (2.1). Supposons que $L/\mathbb{Q}(T)$ se plonge dans une $\mathbb{Z}/4\mathbb{Z}$ -extension $H/\mathbb{Q}(T)$. Alors $HM/\mathbb{Q}(T)$ est une Δ_n -extension \mathbb{Q} -régulière.

 $D\acute{e}monstration$. Supposons que H/\mathbb{Q} ne soit pas régulière. Alors $[H \cap \overline{\mathbb{Q}} : \mathbb{Q}] = 2$ car $L \subset H$ et $L/\mathbb{Q}(T)$ est une extension de degré 2 \mathbb{Q} -régulière. Ainsi, $(H \cap \overline{\mathbb{Q}})(T)/\mathbb{Q}(T)$ et $L/\mathbb{Q}(T)$ sont linéairement disjointes, ce qui entraîne $\mathrm{Gal}(H/\mathbb{Q}(T)) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, une contradiction. Par conséquent, $H/\mathbb{Q}(T)$ est \mathbb{Q} -régulière. En appliquant la proposition 2.5 aux extensions $M/\mathbb{Q}(T)$ et $H/\mathbb{Q}(T)$ (resp. $M\overline{\mathbb{Q}}/\overline{\mathbb{Q}}(T)$) et $H/\mathbb{Q}(T)$ (resp. $H/\mathbb{Q}/\overline{\mathbb{Q}}(T)$) est une Δ_n -extension. Ainsi, $H/\mathbb{Q}(T)$ est \mathbb{Q} -régulière. \square

2.3. Un lemme sur les racines de l'unité. Nous terminons cette section avec un lemme, que nous utiliserons à plusieurs reprises par la suite :

Lemme 2.7. Soient $m \geq 3$ et $\xi = \exp(2\pi i/m)$. Posons $s_k = -(1-\xi^k)/2 + 1/(2(1-\xi^k))$ pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$. Soit $\overline{\mathcal{O}}$ la clôture intégrale de $\overline{\mathbb{Q}}[T]$ dans $\overline{\mathbb{Q}}(T)(\sqrt{T^2+1})$.

- (a) Pour $k \neq k'$, on a $s_k \neq s_{k'}$.
- (b) Pour $\epsilon \in \{-1,1\}$ et $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on a $s_k \neq \epsilon i$.
- (c) Les idéaux $(T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi^k)\overline{\mathcal{O}}$ $(k \in (\mathbb{Z}/m\mathbb{Z})^*$ et $\ell \in \{0,1\}$) sont premiers et deux à deux distincts. De plus, pour $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on $a(T+1\pm\sqrt{T^2+1}-\xi^k)\overline{\mathcal{O}}\cap\overline{\mathbb{Q}}[T]=(T-s_k)\overline{\mathbb{Q}}[T]$.

Démonstration. (a). S'il y avait égalité, on aurait $(1 - \xi^k)(1 - \xi^{k'}) = -1$ et donc $\xi^k = (\xi^{k'} - 2)/(\xi^{k'} - 1)$. Ainsi $\xi^{k'}$ serait à la fois sur le cercle unité et la médiatrice du segment [1, 2], une contradiction.

- (b). S'il y avait égalité, on aurait $\xi^{2k} 2(1+i\epsilon)\xi^k + 2i\epsilon = 0$ et donc $\xi^k = 1 + i\epsilon$, une contradiction.
- (c). On a tout d'abord $(T+1+\sqrt{T^2+1}-\xi^k)(T+1-\sqrt{T^2+1}-\xi^k)=2(1-\xi^k)(T-s_k)$, ce qui donne $(T+1+\sqrt{T^2+1}-\xi^k)\overline{\mathcal{O}}\cdot (T+1-\sqrt{T^2+1}-\xi^k)\overline{\mathcal{O}}\cdot (T+1-\sqrt{T$

3. Produits semi-directs $\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$

Dans cette partie, nous construisons, pour tout $m \geq 3$ et tout produit semi-direct $G = \mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, une extension galoisienne \mathbb{Q} -régulière explicite de $\mathbb{Q}(T)$ de groupe G (voir théorème 3.5).

3.1. Notations. On pose $L = \mathbb{Q}(T)(\sqrt{T^2 + 1})$ et on note β le générateur de $\operatorname{Gal}(L/\mathbb{Q}(T))$. On note \mathcal{O} (resp. $\overline{\mathcal{O}}$) la clôture intégrale de $\mathbb{Q}[T]$ (resp. $\overline{\mathbb{Q}}[T]$) dans L (resp. $L\overline{\mathbb{Q}}$). On se donne $m \geq 3$ et on note $\xi = \exp(2\pi i/m)$. Pour $\ell \in \{1,2\}$ et $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on note $\mathcal{P}_{\ell,k}$ l'idéal premier de $\overline{\mathcal{O}}$ engendré par $T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi^k$ (voir lemme 2.7) et on choisit une racine m-ième $x_{\ell,k}$ de $T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi^k$ dans $\overline{\mathbb{Q}(T)}$. Pour $\ell \in \{1,2\}$, on note M_{ℓ} le compositum des corps $L(\xi,x_{\ell,k})$ ($k \in (\mathbb{Z}/m\mathbb{Z})^*$) et, pour tout $j \in (\mathbb{Z}/m\mathbb{Z})^*$, on pose

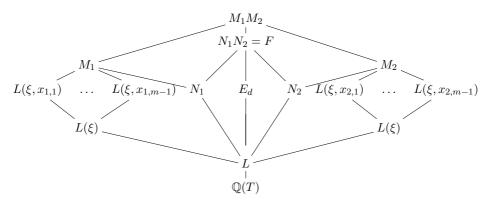
$$y_{\ell,j} = \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{r_m(j/k)},$$

où $r_m:(\mathbb{Z}/m\mathbb{Z})^*\to \llbracket 0,m-1\rrbracket$ envoie $k\in(\mathbb{Z}/m\mathbb{Z})^*$ sur son unique représentant modulo m. Pour tout $\ell\in\{1,2\}$ et tout $l\in\mathbb{N},$ on pose

$$z_{\ell,l} = \sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj} y_{\ell,j} = \sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj} \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{r_m(j/k)}.$$

Pour tout $\ell \in \{1, 2\}$, notons $N_{\ell} = L(z_{\ell, 1})$ et $h_{\ell}(X) = \prod_{l=1}^{m} (X - z_{\ell, l})$. Posons $F = N_1 N_2 = L(z_{1, 1}, z_{2, 1})$ et $E_d = \mathbb{Q}(T, \sqrt{T^2 + 1} + \sum_{l=1}^{m} z_{2, l} z_{1, -dl})$ pour tout $d \in (\mathbb{Z}/m\mathbb{Z})^*$ vérifiant $d^2 = 1$.

On a le diagramme suivant :



3.2. Résultats préparatoires. Commençons par déterminer $Gal(M_1/L)$ et $Gal(M_2/L)$.

Lemme 3.1.

- (a) Les extensions finies $(L(\xi, x_{\ell,k})/L(\xi))_{\ell \in \{1,2\}, k \in (\mathbb{Z}/m\mathbb{Z})^*}$ et $(\overline{\mathbb{Q}}L(x_{\ell,k})/\overline{\mathbb{Q}}L)_{\ell \in \{1,2\}, k \in (\mathbb{Z}/m\mathbb{Z})^*}$ sont cycliques de degré m et linéairement disjointes dans leur ensemble 1 . Ainsi, pour $\ell \in \{1,2\}$, l'extension $M_{\ell}/L(\xi)$ est galoisienne de groupe $(\mathbb{Z}/m\mathbb{Z})^{\varphi(m)}$, où φ est l'indicatrice d'Euler. De plus, pour $\ell \in \{1,2\}$, les idéaux premiers de $\overline{\mathcal{O}}$ ramifiés dans $\overline{\mathbb{Q}}M_{\ell}$ sont les $\mathcal{P}_{\ell,k}$ $(k \in (\mathbb{Z}/m\mathbb{Z})^*)$.
- (b) Soit $\ell \in \{1,2\}$. L'extension M_{ℓ}/L est galoisienne de degré $m^{\varphi(m)}\varphi(m)$. De plus, pour tout $\omega \in \operatorname{Gal}(M_{\ell}/L)$, il existe un unique $v(\omega) \in (\mathbb{Z}/m\mathbb{Z})^*$ tel que $\omega(\xi) = \xi^{v(\omega)}$ et, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, il existe un unique $s_k \in \mathbb{Z}/m\mathbb{Z}$ tel que $\omega(x_{\ell,k}) = \xi^{s_k} x_{\ell,v(\omega)k}$. L'application

$$f: \left\{ \begin{array}{ccc} \operatorname{Gal}(M_{\ell}/L) & \to & (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^{\varphi(m)} \\ \omega & \mapsto & (v(\omega), (s_k)_{k \in (\mathbb{Z}/m\mathbb{Z})^*}) \end{array} \right.$$

est en fait bijective.

 $D\acute{e}monstration.$ (a). Soient $\ell \in \{1,2\}$ et $k \in (\mathbb{Z}/m\mathbb{Z})^*$. Du fait que $X^m - (T+1+(-1)^\ell\sqrt{T^2+1}-\xi^k) \in \overline{\mathcal{O}}[X]$ est d'Eisenstein pour l'idéal premier $\mathcal{P}_{\ell,k}$, on obtient que $\overline{\mathbb{Q}}L(x_{\ell,k})/\overline{\mathbb{Q}}L$ et $L(\xi,x_{\ell,k})/L(\xi)$ sont de degré m. Par la théorie de Kummer, $\overline{\mathbb{Q}}L(x_{\ell,k})/\overline{\mathbb{Q}}L$ et $L(\xi,x_{\ell,k})/L(\xi)$ sont cycliques. De plus, les sous-extensions de $L(\xi,x_{\ell,k})/L(\xi)$ (resp. $\overline{\mathbb{Q}}L(x_{\ell,k})/\overline{\mathbb{Q}}L$) sont les $(L(\xi,x_{\ell,k}^a)/L(\xi))_{a|m}$ (resp. $(\overline{\mathbb{Q}}L(x_{\ell,k}^a)/\overline{\mathbb{Q}}L)_{a|m}$). Pour tout diviseur a de m, différent de m, le seul idéal premier de $\overline{\mathcal{O}}$ ramifié dans $\overline{\mathbb{Q}}L(x_{\ell,k}^a)/\overline{\mathbb{Q}}L$ est $\mathcal{P}_{\ell,k}$.

¹Rappelons que des extensions galoisiennes finies $M_1/K, \ldots, M_n/K$ sont linéairement disjointes dans leur ensemble si, pour toute partition (I,J) de $[\![1,n]\!]$, le compositum des M_i $(i\in I)$ est linéairement disjoint sur K du compositum des M_j $(j\in J)$.

Comme les idéaux premiers $\mathcal{P}_{\ell,k}$ ($\ell \in \{1,2\}$ et $k \in (\mathbb{Z}/m\mathbb{Z})^*$) sont distincts (voir lemme 2.7), le lemme d'Abhyankar fournit la conclusion voulue.

(b). Le corps M_{ℓ} est le corps de décomposition sur L de $\prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} (X^m - x_{\ell,k}^m) \in L[X]$, ce qui montre que M_{ℓ}/L est galoisienne. De plus, puisque L/\mathbb{Q} est régulière, $\mathbb{Q}(T,\xi)$ et L sont linéairement disjoints sur $\mathbb{Q}(T)$. On a donc $[L(\xi):L] = \varphi(m)$ et, par le a), $[M_{\ell}:L] = m^{\varphi(m)}\varphi(m)$. Il est alors clair que l'application f est bien définie et que celle-ci est injective. Pour des raisons de cardinalité, elle est aussi surjective.

La proposition suivante est inspirée de [9, Chapter III, Theorem 4.3] et permet de déterminer le groupe de Galois de N_{ℓ}/L .

Proposition 3.2. *Soit* $\ell \in \{1, 2\}$.

- (a) Le polynôme $h_{\ell}(X)$ est dans L[X] et est irréductible sur $\overline{\mathbb{Q}}L$.
- (b) L'extension N_{ℓ}/L est galoisienne de groupe $\mathbb{Z}/m\mathbb{Z}$. De plus, un générateur de $Gal(N_{\ell}/L)$ est donné par γ_{ℓ} , où γ_{ℓ} vérifie $\gamma_{\ell}(z_{\ell,l}) = z_{\ell,l+1}$ pour tout $l \in \mathbb{N}$.

Démonstration. Écrivons

$$h_{\ell}(X) = X^m + \sum_{\iota=1}^{m} (-1)^{\iota} s_{\ell,\iota} X^{m-\iota}$$

dans $\mathbb{Q}(T)[X]$. Pour tout $\varsigma \in [1, m]$, notons

$$q_{\ell,\varsigma} = \sum_{l=1}^{m} z_{\ell,l}^{\varsigma}.$$

Des identités de Newton, pour tout $\varsigma \in [1, m]$, on a

(3.1)
$$q_{\ell,\varsigma} + \sum_{\iota=1}^{\varsigma-1} (-1)^{\iota} s_{\ell,\iota} q_{\ell,\varsigma-\iota} + (-1)^{\varsigma} \varsigma s_{\ell,\varsigma} = 0.$$

(a). Pour $\varsigma \in [\![1,m]\!]$, on a $q_{\ell,\varsigma} \in \mathcal{O}[\xi]$. En effet, soit $\varsigma \in [\![1,m]\!]$. On a

$$q_{\ell,\varsigma} = \sum_{l=1}^{m} \left(\sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj} y_{\ell,j} \right)^{\varsigma} = \sum_{l=1}^{m} \prod_{\lambda=1}^{\varsigma} \left(\sum_{j_{\lambda} \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj_{\lambda}} y_{\ell,j_{\lambda}} \right)$$

$$= \sum_{l=1}^{m} \left(\sum_{(j_{1},\dots,j_{\varsigma}) \in ((\mathbb{Z}/m\mathbb{Z})^{*})^{\varsigma}} \left(\prod_{\lambda=1}^{\varsigma} \xi^{lj_{\lambda}} y_{\ell,j_{\lambda}} \right) \right)$$

$$= \sum_{(j_{1},\dots,j_{\varsigma}) \in ((\mathbb{Z}/m\mathbb{Z})^{*})^{\varsigma}} \left(\sum_{l=1}^{m} \prod_{\lambda=1}^{\varsigma} \xi^{lj_{\lambda}} \right) \left(\prod_{\lambda=1}^{\varsigma} y_{\ell,j_{\lambda}} \right)$$

$$= \sum_{(j_{1},\dots,j_{\varsigma}) \in ((\mathbb{Z}/m\mathbb{Z})^{*})^{\varsigma}} \left(\sum_{l=1}^{m} \xi^{l(\sum_{\lambda=1}^{\varsigma} j_{\lambda})} \right) \left(\prod_{\lambda=1}^{\varsigma} y_{\ell,j_{\lambda}} \right).$$

Du fait que, pour tout $o \in \mathbb{Z}$, la somme $\sum_{l=1}^{m} \xi^{lo}$ est égale à m si m divise o et est égale à 0 sinon, les seuls termes non nuls dans la somme ci-dessus sont ceux vérifiant $\sum_{\lambda=1}^{\varsigma} j_{\lambda} \equiv 0 \pmod{m}$. On obtient alors

$$q_{\ell,\varsigma} = \sum_{\substack{(j_1,\dots,j_\varsigma)\in((\mathbb{Z}/m\mathbb{Z})^*)^\varsigma\\\sum_{\lambda=1}^\varsigma j_\lambda\equiv 0\pmod m}} m\prod_{\lambda=1}^\varsigma \left(\prod_{k\in(\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{r_m(j_\lambda/k)}\right)$$
$$= \sum_{\substack{(j_1,\dots,j_\varsigma)\in((\mathbb{Z}/m\mathbb{Z})^*)^\varsigma\\\sum_{\lambda=1}^\varsigma j_\lambda\equiv 0\pmod m}} m\left(\prod_{k\in(\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{\sum_{\lambda=1}^\varsigma r_m(j_\lambda/k)}\right).$$

Comme, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on a

(3.2)
$$\sum_{\lambda=1}^{\varsigma} r_m(j_{\lambda}/k) \equiv \left(\sum_{\lambda=1}^{\varsigma} j_{\lambda}\right)/k \equiv 0 \pmod{m},$$

les termes de $q_{\ell,\varsigma}$ appartiennent bien à $\mathcal{O}[\xi]$.

Par conséquent, les $s_{\ell,\iota}$ ($\iota \in [\![1,m]\!]$) sont dans $\mathcal{O}[\xi]$ en utilisant la relation (3.1).

De plus, par le lemme 3.1, tout $\omega \in \operatorname{Gal}(L(\xi)/L)$ se relève en un unique $\widetilde{\omega} \in \operatorname{Gal}(M_{\ell}/L)$ tel que, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on ait $\widetilde{\omega}(x_{\ell,k}) = x_{\ell,v(\omega)k}$, où $v(\omega)$ est l'unique élément de $(\mathbb{Z}/m\mathbb{Z})^*$ vérifiant $\omega(\xi) = \xi^{v(\omega)}$. Tout $\widetilde{\omega}$ de cette forme fixe les $z_{\ell,l}$ car, pour tout $l \in [1, m]$, on a

$$\widetilde{\omega}(z_{\ell,l}) = \widetilde{\omega} \left(\sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj} \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{r_m(j/k)} \right)$$

$$= \sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{ljv(\omega)} \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,v(\omega)k}^{r_m(j/k)}$$

$$= \sum_{j \in (\mathbb{Z}/m\mathbb{Z})^*} \xi^{lj} \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{r_m(j/k)}$$

$$= z_{\ell l}.$$

Des résultats précédents, on déduit que les $s_{\ell,\iota}$ sont dans \mathcal{O} .

Montrons maintenant que $h_{\ell}(X)$ est irréductible sur $\overline{\mathbb{Q}}L$. Pour cela, il suffit de vérifier que c'est un polynôme d'Eisenstein pour l'idéal premier $\mathcal{P}_{\ell,1}$. En utilisant l'équation (3.2), on voit que $q_{\ell,\varsigma} \in \mathcal{P}_{\ell,1}$ pour tout ς . Par conséquent, en utilisant l'identité (3.1), on a $s_{\ell,\iota} \in \mathcal{P}_{\ell,1}$ pour tout $\iota \in [\![1,m]\!]$. Donc, il reste à montrer que $s_{\ell,m} \notin \mathcal{P}_{\ell,1}^2$. En utilisant l'identité (3.1) avec $\varsigma = m$ et le fait que $s_{\ell,\iota}q_{\ell,m-\iota} \in \mathcal{P}_{\ell,1}^2$ pour tout $\iota \in [\![1,m-1]\!]$, il suffit de vérifier que $q_{\ell,m} \notin \mathcal{P}_{\ell,1}^2$.

Pour cela, notons v la valuation de $\overline{\mathbb{Q}}L$ associée à $\mathcal{P}_{\ell,1}$. Pour $(j_1,\ldots,j_m)\in ((\mathbb{Z}/m\mathbb{Z})^*)^m$ tel que $\sum_{\lambda=1}^m j_\lambda \equiv 0 \pmod{m}$, on a

$$v\left(x_{\ell,k}^{\sum_{\lambda=1}^{m} r_m(j_\lambda/k)}\right) = 0$$

pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^* \setminus \{1\}$ par le lemme 2.7. Par conséquent, on a

$$v\left(m\left(\prod_{k\in(\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{\sum_{\lambda=1}^m r_m(j_{\lambda}/k)}\right)\right)$$

$$= v\left(x_{\ell,1}^{\sum_{\lambda=1}^m r_m(j_{\lambda})}\right)$$

$$= v\left(\left(T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi\right)^{\frac{\sum_{\lambda=1}^m r_m(j_{\lambda})}{m}}\right)$$

$$= \frac{1}{m}\left(\sum_{\lambda=1}^m r_m(j_{\lambda})\right).$$

En remarquant que la valuation ci-dessus est égale à 1 si $(j_1, \ldots, j_m) = (1, \ldots, 1)$ et supérieure ou égale à 2 sinon, on obtient $v(q_{\ell,m}) = 1$, ce qui achève la démonstration du (a).

(b). Pour tout $j \in (\mathbb{Z}/m\mathbb{Z})^*$, l'extension $L(\xi, y_{\ell,j})/L(\xi)$ est cyclique de degré m. En effet, $X^m - \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} x_{\ell,k}^{mr_m(j/k)} \in L(\xi)[X]$ annule $y_{\ell,j}$ et est d'Eisenstein pour l'idéal premier $\mathcal{P}_{\ell,j}$. On conclut donc par la théorie de Kummer.

Maintenant, si F_{ℓ} désigne le compositum des $L(\xi, y_{\ell,j})$ $(j \in (\mathbb{Z}/m\mathbb{Z})^*)$, on a $F_{\ell} = L(\xi, y_{\ell,1})$. En effet, soit $j \in (\mathbb{Z}/m\mathbb{Z})^*$. Pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, il existe $o_{j,k} \in m\mathbb{Z}$ tel que $r_m(j)r_m(1/k) = r_m(j/k) + o_{j,k}$. On a alors

$$y_{\ell,1}^{r_m(j)} = y_{\ell,j} \left(\prod_{k \in (\mathbb{Z}/m\mathbb{Z})^*} \left(T + 1 + (-1)^{\ell} \sqrt{T^2 + 1} - \xi^k \right)^{o_{j,k}/m} \right),$$

donc $L(\xi, y_{\ell,j}) \subset L(\xi, y_{\ell,1})$. Par conséquent, on a $F_{\ell} = L(\xi, y_{\ell,1})$.

De plus, F_ℓ/L est galoisienne. En effet, $L(\xi)/L$ est clairement galoisienne et, d'après les deux paragraphes précédents, $F_\ell/L(\xi)$ l'est aussi. Par conséquent, il suffit de montrer que tout élément de $\operatorname{Gal}(L(\xi)/L)$ se relève en un élément de $\operatorname{Aut}(F_\ell/L)$. Fixons pour cela $\omega \in \operatorname{Gal}(L(\xi)/L)$. Notons comme précédemment $\widetilde{\omega}$ l'unique relèvement de ω à M_ℓ tel que, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on ait $\widetilde{\omega}(x_{\ell,k}) = x_{\ell,v(\omega)k}$, où $v(\omega)$ est l'unique élément de $(\mathbb{Z}/m\mathbb{Z})^*$ vérifiant $\omega(\xi) = \xi^{v(\omega)}$. Pour tout $j \in (\mathbb{Z}/m\mathbb{Z})^*$, on a $\widetilde{\omega}(y_{\ell,j}) = y_{\ell,v(\omega)j}$, ce qui montre que la restriction de $\widetilde{\omega}$ à F_ℓ est bien un élément de $\operatorname{Aut}(F_\ell/L)$.

En outre, N_{ℓ}/L est cyclique de degré m. En effet, d'après le a), N_{ℓ}/L est de degré m. Notons $\Omega = \{ \operatorname{res}_{F_{\ell}/L}^{M/L}(\widetilde{\omega}) \mid \omega \in \operatorname{Gal}(L(\xi)/L) \}$, où $\widetilde{\omega}$ est défini dans le paragraphe précédent. Vu que $v(\omega\omega') = v(\omega)v(\omega')$ pour tous $\omega, \omega' \in \operatorname{Gal}(L(\xi)/L)$, l'ensemble Ω est un sous-groupe de $\operatorname{Gal}(F_{\ell}/L)$. Par restriction, Ω est isomorphe à $\operatorname{Gal}(L(\xi)/L)$. De plus, la preuve du (a) montre que Ω fixe chaque élément du sous-corps N_{ℓ} de F_{ℓ} . Pour des raisons de degrés, on a forcément $N_{\ell} = F_{\ell}^{\Omega}$. De plus, par le (a), les L-conjugués de $z_{\ell,1}$ sont les $z_{\ell,l}$ ($l \in [\![1,m]\!]$). Ils sont fixés par Ω par la preuve du (a), donc ils sont dans N_{ℓ} . On en déduit que N_{ℓ}/L est galoisienne de degré m. On remarque enfin que $L(\xi) \cap N_{\ell} = L(\xi) \cap F_{\ell}^{\Omega} = L(\xi)^{\operatorname{Gal}(L(\xi)/L)} = L$ et donc $F_{\ell} = N_{\ell}(\xi)$. On en déduit $\operatorname{Gal}(N_{\ell}/L) \simeq \operatorname{Gal}(F_{\ell}/L(\xi)) \simeq \mathbb{Z}/m\mathbb{Z}$.

Enfin, γ_{ℓ} définit bien un générateur de $\operatorname{Gal}(N_{\ell}/L)$. En effet, avec les notations du lemme 3.1, soit ω l'unique élément de $\operatorname{Gal}(M_{\ell}/L)$ défini par $v(\omega) = 1$, $s_1 = 1$ et $s_k = 0$ pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^* \setminus \{1\}$. On vérifie que $\omega(z_{\ell,l}) = z_{\ell,l+1}$ pour tout $l \in [1, m]$. Ainsi $\gamma_{\ell} = \operatorname{res}_{N_{\ell}/L}^{M_{\ell}/L}(\omega)$ est un élément de $\operatorname{Gal}(N_{\ell}/L)$ d'ordre m.

Nous relevons maintenant le générateur β de $\operatorname{Gal}(L/\mathbb{Q}(T))$ en un élément χ de $\operatorname{Aut}(M_1M_2/\mathbb{Q}(T))$.

Lemme 3.3. Il existe un automorphisme χ de M_1M_2 prolongeant β , fixant ξ et tel que $\chi(x_{2,k}) = x_{1,k}$ et $\chi(x_{1,k}) = x_{2,k}$ pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$. En conséquence, $\chi(z_{1,l}) = z_{2,l}$ et $\chi(z_{2,l}) = z_{1,l}$ pour tout $l \in [1, m]$. De plus, l'extension $M_1M_2/\mathbb{Q}(T)$ est galoisienne.

Démonstration. On remarque d'abord que l'on peut étendre β en un automorphisme de $L(\xi)$ fixant ξ . Ensuite, on étend β en un isomorphisme $M_2 \to M_1$ tel que $\beta(x_{2,k}) = x_{1,k}$ pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$. En effet, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on a $(X^m - (T+1+\sqrt{T^2+1}-\xi^k))^\beta = X^m - (T+1-\sqrt{T^2+1}-\xi^k))$ et le polynôme minimal de $x_{2,k}$ (resp. $x_{1,k}$) sur le compositum des corps $L(\xi,x_{2,k'})$ (resp. $L(\xi,x_{1,k'})$), pour $k' \in (\mathbb{Z}/m\mathbb{Z})^* \setminus \{k\}$, est $X^m - (T+1+\sqrt{T^2+1}-\xi^k)$ (resp. $X^m - (T+1-\sqrt{T^2+1}-\xi^k)$), d'après le lemme 3.1. Enfin, on étend β en un automorphisme χ de M_1M_2 tel que $\chi(x_{1,k}) = x_{2,k}$ pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$. En effet, pour tout $k \in (\mathbb{Z}/m\mathbb{Z})^*$, on a $(X^m - (T+1-\sqrt{T^2+1}-\xi^k))^\beta = X^m - (T+1+\sqrt{T^2+1}-\xi^k)$ et le polynôme minimal de $x_{1,k}$ (resp. $x_{2,k}$) sur le compositum des corps M_2 et $L(\xi,x_{1,k'})$ (resp. M_1 et $L(\xi,x_{2,k'})$), pour $k' \in (\mathbb{Z}/m\mathbb{Z})^* \setminus \{k\}$, est $X^m - (T+1-\sqrt{T^2+1}-\xi^k)$ (resp. $X^m - (T+1+\sqrt{T^2+1}-\xi^k)$). \square

Nous déterminons enfin le groupe de Galois de $F/\mathbb{Q}(T)$.

Proposition 3.4.

(a) L'extension $F/\mathbb{Q}(T)$ est galoisienne et \mathbb{Q} -régulière.

- (b) On $a \operatorname{Gal}(F/L) = \{\mathcal{L}_{a,b} \mid (a,b) \in (\mathbb{Z}/m\mathbb{Z})^2\}$, où $\mathcal{L}_{a,b}(z_{1,l}) = z_{1,l+a}$ et $\mathcal{L}_{a,b}(z_{2,l}) = z_{2,l+b}$ pour tout $(a,b) \in \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ et tout $l \in \mathbb{N}$.
- (c) Il existe $g \in Gal(F/\mathbb{Q}(T))$, d'ordre 2, vérifiant $res_{L/\mathbb{Q}(T)}^{F/\mathbb{Q}(T)}(g) = \beta$ et $g(z_{1,l}) = z_{2,l}$ (resp. $g(z_{2,l}) = z_{1,l}$) pour tout $l \in [1, m]$. De plus, on a

(3.3)
$$\operatorname{Gal}(F/\mathbb{Q}(T)) = \{\mathcal{L}_{a,b} \circ g^{\epsilon} \mid (a,b) \in (\mathbb{Z}/m\mathbb{Z})^2, \epsilon \in \{0,1\}\},\$$

qui est isomorphe à $\mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/2\mathbb{Z}$ via

$$\psi: \left\{ \begin{array}{ccc} \mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/2\mathbb{Z} & \to & \operatorname{Gal}(F/\mathbb{Q}(T)) \\ ((a,b),\epsilon) & \mapsto & \mathcal{L}_{a,b} \circ g^{\epsilon} \end{array} \right.$$

Démonstration. (a). Montrons tout d'abord que l'on a $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$. Pour cela, notons que $M_1\overline{\mathbb{Q}}$ et $M_2\overline{\mathbb{Q}}$ sont linéairement disjoints sur $L\overline{\mathbb{Q}}$ en vertu du lemme 3.1. En particulier, $N_1\overline{\mathbb{Q}}$ et $N_2\overline{\mathbb{Q}}$ le sont également. On a donc $[N_1N_2\overline{\mathbb{Q}}:L\overline{\mathbb{Q}}]=m^2$ par la proposition 3.2. Ainsi, on a $[N_1N_2\overline{\mathbb{Q}}:\overline{\mathbb{Q}}(T)]=2m^2$, ce qui montre bien $F\cap\overline{\mathbb{Q}}=\mathbb{Q}$ puisque $[F:\mathbb{Q}(T)]\leq 2m^2$. Au passage, on a montré que N_1 et N_2 étaient linéairement disjoints sur L. Ensuite, notons χ un automorphisme de M_1M_2 comme dans le lemme 3.3. On a $\chi(z_{1,l})=z_{2,l}$ et $\chi(z_{2,l})=z_{1,l}$ pour tout $l\in\mathbb{N}$, donc la restriction de χ à F, que l'on note g, est un automorphisme de F. Ainsi, $F/\mathbb{Q}(T)$ est galoisienne.

(b). Soient γ_1 et γ_2 les générateurs de $Gal(N_1/L)$ et $Gal(N_2/L)$ de la proposition 3.2. Puisque N_1 et N_2 sont linéairement disjoints sur L, on obtient un isomorphisme

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} & \to & \operatorname{Gal}(F/L) \\ (a,b) & \mapsto & (\gamma_1^a, \gamma_2^b) = \mathcal{L}_{a,b} \end{array} \right..$$

(c). Tout d'abord, on a

(3.4)
$$\operatorname{Gal}(F/\mathbb{Q}(T)) = \operatorname{Gal}(F/L) \rtimes \langle g \rangle.$$

En effet, notons que le groupe $\operatorname{Gal}(F/L)$ est bien un sous-groupe normal de $\operatorname{Gal}(F/\mathbb{Q}(T))$ et que l'on a $\operatorname{Gal}(F/L) \cap \langle g \rangle = \{\operatorname{Id}_F\}$ puisque g est d'ordre 2 et prolonge β . Le b) donne alors (3.3).

Considérons maintenant l'application ψ de la proposition. Par le b) et l'égalité (3.4), l'application ψ est bijective. Pour montrer que ψ est un isomorphisme, il suffit de vérifier que φ préserve l'action de $\mathbb{Z}/2\mathbb{Z}$. À cet effet, pour $(a,b) \in \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, on a

$$g \circ \varphi(a,b) \circ g^{-1}(z_{1,1}) = g \circ \varphi(a,b)(z_{2,1}) = g(\gamma_2^b(z_{2,1})) = g(z_{2,1+b})$$
$$= z_{1,1+b} = \gamma_1^b(z_{1,1})$$
$$= \varphi(b,a)(z_{1,1}) = \varphi((a,b)^{\overline{1}})(z_{1,1})$$

et, de même,
$$g \circ \varphi(a, b) \circ g^{-1}(z_{2,1}) = \varphi((a, b)^{\overline{1}})(z_{2,1}).$$

3.3. Résultat principal.

Théorème 3.5. On se donne un produit semi-direct $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, uniquement déterminé par l'image d de $1 \in \mathbb{Z}/2\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z}) = (\mathbb{Z}/m\mathbb{Z})^*$. Pour tout $\delta \in [1, m]$, posons

$$v_{\delta}(d) = \sum_{l=1}^{m} z_{2,l} z_{1,-dl+\delta}.$$

(a) L'extension $E_d/\mathbb{Q}(T) = \mathbb{Q}(T, \sqrt{T^2 + 1} + v_0(d))/\mathbb{Q}(T)$ est une $(\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z})$ -extension \mathbb{Q} -régulière. De plus, on a $E_d = L(v_0(d))$ et les $\mathbb{Q}(T)$ -conjugués de $\sqrt{T^2 + 1} + v_0(d)$ sont les

$$(-1)^{\epsilon} \sqrt{T^2 + 1} + v_{\delta}(d^{(-1)^{\epsilon}}), \quad (\delta, \epsilon) \in [1, m] \times \{0, 1\}.$$

(b) Le groupe $\operatorname{Gal}(E_d/L)$ est engendré par un automorphisme r vérifiant $r(v_{\delta}(d)) = v_{\delta+1}(d)$ pour tout $\delta \in [1, m]$. En posant $s = \operatorname{res}_{E_d/\mathbb{Q}(T)}^{F/\mathbb{Q}(T)}(g)$, où g est défini dans la proposition 3.4, on a

$$\operatorname{Gal}(E_d/\mathbb{Q}(T)) = \{ r^{\delta} \circ s^{\epsilon} \mid \delta \in [1, m], \epsilon \in \{0, 1\} \},\$$

qui est isomorphe à $\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ via $(\delta, \epsilon) \mapsto r^{\delta} \circ s^{\epsilon}$.

 $D\acute{e}monstration.$ D'après [6, Lemma 16.4.3], l'application suivante est un épimorphisme :

$$\alpha : \mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$$
$$((a,b),\eta) \mapsto (a+db,\eta).$$

Son noyau est $\ker(\alpha) = \{(-da, a) \mid a \in \mathbb{Z}/m\mathbb{Z}\}$. Ci-dessous, on utilise les notations $\mathcal{L}_{a,b}$ $((a,b) \in \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z})$ et ψ de la proposition 3.4.

Le sous-corps de F fixé par $\psi(\ker(\alpha))$ est $L(v_0(d))$. De plus, $L(v_0(d))/L$ est une $\mathbb{Z}/m\mathbb{Z}$ -extension de groupe de Galois engendré par l'automorphisme r vérifiant $r(v_\delta(d)) = v_{\delta+1}(d)$ pour tout $\delta \in [1, m]$. En effet, en remarquant que $\psi(\ker(\alpha)) = \{\mathcal{L}_{-da,a} \mid a \in \mathbb{Z}/m\mathbb{Z}\} \subset \operatorname{Gal}(F/L)$, on obtient

$$Gal(F^{\psi(\ker(\alpha))}/L) = Gal(F/L)/\psi(\ker(\alpha))$$

$$= \{ \operatorname{res}_{F^{\psi(\ker(\alpha))}/L}^{F/L}(\mathcal{L}_{\delta,0}) \mid \delta \in [1, m] \}$$

$$= \langle r \rangle,$$

où $r=\operatorname{res}_{F\psi(\ker(\alpha))/L}^{F/L}(\mathcal{L}_{1,0})$. On voit que $v_{\delta}(d)=\mathcal{L}_{\delta,0}(v_{0}(d))$ pour tout $\delta\in \llbracket 1,m \rrbracket$, donc les $v_{\delta}(d)$ sont L-conjugués. Il est immédiat que l'on a $v_{0}(d)\in F^{\psi(\ker(\alpha))}$ et donc $L(v_{0}(d))\subset F^{\psi(\ker(\alpha))}$. Pour l'inclusion inverse, puisque $[F^{\psi(\ker(\alpha))}:L]=m$, il suffit de montrer que les $v_{\delta}(d)$ sont deux à

deux distincts. Pour cela, soient $\delta \not\equiv t \pmod{m}$. On a

$$\begin{split} v_{\delta}(d) - v_{t}(d) &= \sum_{l=1}^{m} z_{2,l}(z_{1,-dl+\delta} - z_{1,-dl+t}) \\ &= \sum_{l=1}^{m} z_{2,l} \left(\sum_{j \in (\mathbb{Z}/m\mathbb{Z})^{*}} \xi^{-dlj}(\xi^{j\delta} - \xi^{jt}) y_{1,j} \right) \\ &= \sum_{l=1}^{m} \left(\sum_{j' \in (\mathbb{Z}/m\mathbb{Z})^{*}} \xi^{lj'} y_{2,j'} \right) \left(\sum_{j \in (\mathbb{Z}/m\mathbb{Z})^{*}} \xi^{-dlj}(\xi^{j\delta} - \xi^{jt}) y_{1,j} \right) \\ &= \sum_{l=1}^{m} \sum_{j,j' \in (\mathbb{Z}/m\mathbb{Z})^{*}} \xi^{l(-dj+j')}(\xi^{j\delta} - \xi^{jt}) \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^{*}} x_{2,k}^{r_{m}(j'/k)} x_{1,k}^{r_{m}(j/k)} \\ &= \sum_{j \in (\mathbb{Z}/m\mathbb{Z})^{*}} m(\xi^{j\delta} - \xi^{jt}) \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^{*}} x_{2,k}^{r_{m}(dj/k)} x_{1,k}^{r_{m}(j/k)}. \end{split}$$

La dernière égalité vient du fait que $\sum_{l=1}^{m} \xi^{lo}$ est égal à 0 si $o \not\equiv 0 \pmod{m}$ et m sinon. Soit \mathcal{P} un idéal premier au dessus de $\mathcal{P}_{1,1}$ dans $\overline{\mathbb{Q}}M_1M_2/\overline{\mathbb{Q}}L$. Pour $j \neq 1$ (resp. j = 1), on a $r_m(j/1) \geq 2$ (resp. $r_m(j/1) = 1$). Donc on a (3.5)

$$0 < v(v_{\delta}(d) - v_{t}(d)) = v\left(m(\xi^{\delta} - \xi^{t}) \prod_{k \in (\mathbb{Z}/m\mathbb{Z})^{*}} x_{2,k}^{r_{m}(d/k)} x_{1,k}^{r_{m}(1/k)}\right) < \infty,$$

où v est la valuation associée à \mathcal{P} . Par conséquent, on a $v_{\delta}(d) - v_{t}(d) \neq 0$. Maintenant, on a $E_{d} = L(v_{0}(d))$ et $\operatorname{Gal}(E_{d}/\mathbb{Q}(T)) = \{r^{\delta} \circ s^{\epsilon} \mid \delta \in [1, m], \epsilon \in \{0, 1\}\}$. En effet, pour $\delta \in [1, m]$ et $\epsilon \in \{0, 1\}$, posons $w_{\epsilon, \delta} = (-1)^{\epsilon} \sqrt{T^{2} + 1} + v_{\delta}(d^{(-1)^{\epsilon}})$. Il est déjà clair que l'on a $E_{d} = \mathbb{Q}(T)(w_{0,0}) \subset L(v_{0}(d))$. De plus, pour tout $\epsilon \in \{0, 1\}$ et tout $\delta \in [1, m]$, on a $w_{\epsilon, \delta} = \mathcal{L}_{\delta, 0} \circ g^{\epsilon}(w_{0,0})$. Il suffit donc de montrer que les $w_{\epsilon, \delta}$ sont deux à deux distincts. Soient donc (ϵ, δ) et (ϵ', δ') tels que $w_{\epsilon, \delta} = w_{\epsilon', \delta'}$. Supposons dans un premier temps $\epsilon = \epsilon'$ et $\delta \neq \delta'$. On a donc $0 = v_{\delta}(d^{(-1)^{\epsilon}}) - v_{\delta'}(d^{(-1)^{\epsilon}})$ et l'on aboutit à une contradiction comme dans le paragraphe précédent. Supposons maintenant $\epsilon \neq \epsilon'$. On a alors

$$0 = ((-1)^{\epsilon} - (-1)^{\epsilon'})\sqrt{T^2 + 1} + v_{\delta}(d^{(-1)^{\epsilon}}) - v_{\delta'}(d^{(-1)^{\epsilon'}}).$$

Comme dans le paragraphe précédent, soit \mathcal{P} un idéal premier au dessus de $\mathcal{P}_{1,1}$ dans $\overline{\mathbb{Q}}M_1M_2/\overline{\mathbb{Q}}L$. Si v désigne à nouveau la valuation associée à \mathcal{P} , on a $v(v_{\delta}(d^{(-1)^{\epsilon}}) - v_{\delta'}(d^{(-1)^{\epsilon'}})) > 0$. Or $v(\sqrt{T^2 + 1}) = 0$. En effet, si $\sqrt{T^2 + 1}$ était dans \mathcal{P} , alors T - i ou T + i le serait aussi. D'après le lemme 2.7, i ou -i serait alors égal à $-(1 - \xi)/2 + 1/(2(1 - \xi))$, ce qui est impossible.

Puisque $(-1)^{\epsilon} - (-1)^{\epsilon'} \neq 0$, on en déduit $v(0) = v(w_{\epsilon,\delta} - w_{\epsilon',\delta'}) = 0$, une contradiction.

- **3.4. Corollaires.** Les trois énoncés ci-dessous s'obtiennent à partir du théorème précédent en considérant successivement les cas suivants :
 - (1) m arbitraire et d = -1,
 - (2) m égal à une puissance de 2 et d = (m/2) 1,
 - (3) m égal à une puissance de 2 et d = (m/2) + 1.

Corollaire 3.6. L'extension $\mathbb{Q}(T, \sqrt{T^2+1} + \sum_{l=1}^m z_{2,l}z_{1,l})$ est une D_{2m} -extension \mathbb{Q} -régulière. De plus, les $\mathbb{Q}(T)$ -conjugués de $\sqrt{T^2+1} + \sum_{l=1}^m z_{2,l}z_{1,l}$ sont les

$$(-1)^{\epsilon} \sqrt{T^2 + 1} + \sum_{l=1}^{m} z_{2,l} z_{1,l+\delta}, \quad (\delta, \epsilon) \in [1, m] \times \{0, 1\}.$$

Corollaire 3.7. Soit $n \geq 3$. L'extension

$$\mathbb{Q}(T, \sqrt{T^2 + 1} + \sum_{l=1}^{2^{n-1}} z_{2,l} z_{1,-(2^{n-2}-1)l})$$

est une QD_{2^n} -extension \mathbb{Q} -régulière et les $\mathbb{Q}(T)$ -conjugués de $\sqrt{T^2+1}+\sum_{l=1}^{2^{n-1}}z_{2,l}z_{1,-(2^{n-2}-1)l}$ sont les

$$(-1)^{\epsilon}\sqrt{T^2+1}+\sum_{l=1}^{2^{n-1}}z_{2,l}z_{1,-(2^{n-2}-1)^{(-1)^{\epsilon}}l+\delta},\quad (\delta,\epsilon)\in [\![1,2^{n-1}]\!]\times\{0,1\}.$$

Corollaire 3.8. Soit $n \geq 3$. L'extension

$$\mathbb{Q}(T, \sqrt{T^2 + 1} + \sum_{l=1}^{2^{n-1}} z_{2,l} z_{1,-(2^{n-2}+1)l})$$

est une M_{2^n} -extension \mathbb{Q} -régulière et les $\mathbb{Q}(T)$ -conjugués de $\sqrt{T^2+1}+\sum_{l=1}^{2^{n-1}}z_{2,l}z_{1,-(2^{n-2}+1)l}$ sont les

$$(-1)^{\epsilon}\sqrt{T^2+1}+\sum_{l=1}^{2^{n-1}}z_{2,l}z_{1,-(2^{n-2}+1)^{(-1)^{\epsilon}}l+\delta},\quad (\delta,\epsilon)\in [\![1,2^{n-1}]\!]\times\{0,1\}.$$

4. Groupes de quaternions généralisés

4.1. Notations. On considère la $\mathbb{Z}/2\mathbb{Z}$ -extension

$$L/\mathbb{Q}(T) = \mathbb{Q}(T)(\sqrt{T^2+1})/\mathbb{Q}(T).$$

On se donne $n \ge 3$ et on note $\xi = \exp(2\pi i/2^{n-1})$. Pour tout $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$, on pose $s_k = -(1-\xi^k)/2 + 1/(2(1-\xi^k))$. Pour tout $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ et tout $\ell \in \{1,2\}$, on choisit une racine 2^{n-1} -ième $x_{\ell,k}$ de $T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi^k$

dans $\overline{\mathbb{Q}(T)}$. Pour $\ell \in \{1, 2\}$, on note M_{ℓ} le compositum des corps $L(\xi, x_{\ell,k})$ $(k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*)$. Pour tout $\ell \in \{1, 2\}$ et tout $\ell \in \mathbb{N}$, on pose

$$z_{\ell,l} = \sum_{j \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} \xi^{lj} \prod_{k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} x_{\ell,k}^{r_{2^{n-1}}(j/k)},$$

où $r_{2^{n-1}}:(\mathbb{Z}/2^{n-1}\mathbb{Z})^*\to \llbracket 0,2^{n-1}-1\rrbracket$ envoie $k\in(\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ sur son unique représentant modulo 2^{n-1} . De l'égalité $\xi^{2^{n-2}}=-1=(-1)^j$ pour tout entier impair j, on déduit

$$(4.1) \qquad z_{1,l+2^{n-2}} = \sum_{j \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} \xi^{2^{n-2}j} \xi^{lj} \prod_{k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} x_{1,k}^{r_{2^{n-1}}(j/k)} = -z_{1,l}.$$

Comme dans le théorème 3.5, on pose $v_{\delta}(-1) = \sum_{l=1}^{2^{n-1}} z_{2,l} z_{1,l+\delta}$ pour tout $\delta \in [0, 2^{n-1} - 1]$. Pour simplifier, on écrira v_{δ} au lieu de $v_{\delta}(-1)$. Les v_{δ} sont deux à deux distincts et sont conjugués sur L par le théorème 3.5. De plus, pour tout $\delta \in \mathbb{N}$, (4.1) entraîne

$$(4.2) v_{\delta+2^{n-2}} = -v_{\delta}.$$

Posons $\mu_1 = \sqrt{T^2 + 1 - T\sqrt{T^2 + 1}}$, $\mu_2 = -\sqrt{T^2 + 1 + T\sqrt{T^2 + 1}}$, $\mu_3 = -\mu_1$, $\mu_4 = -\mu_2$ et $H = \mathbb{Q}(T)(\mu_4)$. L'extension $H/\mathbb{Q}(T)$ est une $\mathbb{Z}/4\mathbb{Z}$ -extension \mathbb{Q} -régulière dans laquelle l'extension $L/\mathbb{Q}(T)$ se plonge. Notons τ le générateur de $\operatorname{Gal}(H/\mathbb{Q}(T))$ qui envoie μ_4 sur μ_1 .

On note $E/\mathbb{Q}(T)$ la D_{2^n} -extension \mathbb{Q} -régulière fournie par le corollaire 3.6.

4.2. Réalisations régulières explicites. Dans cette partie, nous construisons une extension galoisienne \mathbb{Q} -régulière explicite de $\mathbb{Q}(T)$ de groupe Q_{2^n} (voir théorème 4.2).

Commençons par déterminer $\operatorname{Gal}(HE/\mathbb{Q}(T))$.

Proposition 4.1. L'extension $HE/\mathbb{Q}(T)$ est une Δ_n -extension \mathbb{Q} -régulière. De plus, le groupe $Gal(HE/\mathbb{Q}(T))$ est engendré par deux éléments ρ et σ vérifiant les propriétés suivantes :

- $\rho(\mu_4) = \mu_4$ et $\rho(v_\delta) = v_{\delta+1}$ pour tout $\delta \in [1, 2^{n-1}]$,
- $\sigma(\mu_4) = \mu_1 \ et \ \sigma(v_0) = v_0$.

En outre, ρ et σ vérifient la présentation (2.2) et σ^2 fixe chaque élément de E.

Démonstration. L'extension $L/\mathbb{Q}(T) = E^{\langle r \rangle}/\mathbb{Q}(T)$, où r est défini dans le théorème 3.5, se plonge dans la $\mathbb{Z}/4\mathbb{Z}$ -extension \mathbb{Q} -régulière $H/\mathbb{Q}(T)$. La proposition 2.6 assure alors que $HE/\mathbb{Q}(T)$ est une Δ_n -extension \mathbb{Q} -régulière. Par la proposition 2.5, il existe un unique relèvement ρ de r dans $\mathrm{Gal}(HE/H)$ et celui-ci vérifie ce qui suit : pour tout relèvement $\tilde{\tau}$ de τ dans Δ_n , les éléments ρ et $\tilde{\tau}$ engendrent Δ_n et vérifient (2.2). Fixons maintenant un tel $\tilde{\tau}$ et considérons sa restriction à E. Il est alors clair

qu'il existe un entier t tel que $\operatorname{res}_{E/\mathbb{Q}(T)}^{HE/\mathbb{Q}(T)}(\widetilde{\tau}) = r^t s$, où s est défini dans le théorème 3.5, et que l'on a $\operatorname{res}_{E/\mathbb{Q}(T)}^{HE/\mathbb{Q}(T)}(\widetilde{\tau})(v_0) = r^t(v_0)$. La composée $\sigma = \rho^{-t}\widetilde{\tau}$ est alors un relevé de τ à HE qui fixe v_0 . Aussi, non seulement ρ et σ vérifient bien les deux propriétés de l'énoncé, mais ils vérifient aussi (2.2) (voir proposition 2.5). Pour le dernier point, il suffit de remarquer que $E = L(v_0)$ (voir théorème 3.5), que $\operatorname{res}_{L/\mathbb{Q}(T)}^{HE/\mathbb{Q}(T)}(\sigma^2) = \operatorname{Id}_L$ et que $\sigma^2(v_0) = v_0$. \square

Théorème 4.2. L'extension $\mathbb{Q}(T, \sqrt{T^2+1}+(\mu_4+v_0)^2)/\mathbb{Q}(T)$ est une Q_{2^n} -extension \mathbb{Q} -régulière. De plus, les $\mathbb{Q}(T)$ -conjugués de $\sqrt{T^2+1}+(\mu_4+v_0)^2$ sont les

$$(-1)^a \sqrt{T^2 + 1} + (\mu_a + v_\delta)^2$$
, $(a, \delta) \in [1, 4] \times [0, 2^{n-2} - 1]$.

Démonstration. La proposition 4.1 montre que $HE/\mathbb{Q}(T)$ est une Δ_n -extension \mathbb{Q} -régulière. Considérons les générateurs ρ et σ de $Gal(HE/\mathbb{Q}(T))$ définis dans cette même proposition.

On a $HE = L(\mu_4 + v_0)$. En effet, par construction, le corps HE est le compositum sur L des corps $L(\mu_4) = H$ et $L(v_0) = E$, qui sont linéairement disjoints sur L (voir proposition 2.5). Comme $L(\mu_4)/L$ et $L(v_0)/L$ sont galoisiennes, on obtient bien que $\mu_4 + v_0$ est un élément primitif de HE sur L (voir, par exemple, [16, Proposition 3.5.5]).

De plus, $L((\mu_4+v_0)^2)/\mathbb{Q}(T)$ est une Q_{2^n} -extension \mathbb{Q} -régulière. En effet, le polynôme $X^2-(\mu_4+v_0)^2$ annule μ_4+v_0 , donc $[HE:L((\mu_4+v_0)^2)]\leq 2$. D'après (4.2), on a

$$\rho^{2^{n-2}} \circ \sigma^2(\mu_4 + \nu_0) = \rho^{2^{n-2}}(-\mu_4 + \nu_0) = -\mu_4 + \nu_{2^{n-2}} = -(\mu_4 + \nu_0).$$

L'élément $\rho^{2^{n-2}}\sigma^2$ correspond à $(2^{n-2},2)$ dans Δ_n , qui est d'ordre 2. Ainsi, pour des raisons de degré, on obtient $L((\mu_4 + v_0)^2) = (HE)^{\langle \rho^{2^{n-2}}\sigma^2 \rangle}$ et $\operatorname{Gal}(L((\mu_4 + v_0)^2)/\mathbb{Q}(T)) = Q_{2^n}$.

Enfin, on a $\mathbb{Q}(T, \sqrt{T^2+1} + (\mu_4 + v_0)^2) = L((\mu_4 + v_0)^2)$. En effet, pour tout $(a, \delta) \in [1, 4] \times [0, 2^{n-2} - 1]$, posons $w_{a, \delta} = (-1)^a \sqrt{T^2+1} + (\mu_a + v_\delta)^2$. Il suffit de montrer que $w_{0,0}$ est un élément primitif de $L((\mu_4 + v_0)^2)$ sur $\mathbb{Q}(T)$. Il est clair que $w_{0,0} \in L((\mu_4 + v_0)^2)$. Pour tout $(a, \delta) \in [1, 4] \times [0, 2^{n-2} - 1]$, on a $w_{a,\delta} = \rho^\delta \circ \sigma^a(w_{0,0})$. Il suffit donc de montrer que les $w_{a,\delta}$ sont deux à deux distincts. Soient (a, δ) et (b, t) deux éléments distincts de $[1, 4] \times [0, 2^{n-2} - 1]$ tels que $w_{a,\delta} = w_{b,t}$. On remarque tout d'abord que l'on a $v_\delta \neq -v_t$. En effet, si ce n'était pas le cas, alors on aurait $v_\delta = -v_t = v_{t+2^{n-2}}$ (par l'égalité (4.2)) et donc $\delta = t + 2^{n-2}$ car les v_δ sont deux à deux distincts comme mentionné dans le §4.1, une contradiction.

De l'égalité $w_{a,\delta} = w_{b,t}$, un petit calcul montre que

$$(4.3) \quad 2(\mu_a v_\delta - \mu_b v_t) = v_t^2 - v_\delta^2 + ((-1)^b - (-1)^a)(T+1)\sqrt{T^2 + 1}$$
$$\in E \subset (HE)^{\langle \sigma^2 \rangle},$$

où l'inclusion $E \subset (HE)^{\langle \sigma^2 \rangle}$ vient de la proposition 4.1. Ainsi, $\mu_a v_\delta - \mu_b v_t = \sigma^2(\mu_a v_\delta - \mu_b v_t) = -(\mu_a v_\delta - \mu_b v_t)$ et donc $\mu_a v_\delta - \mu_b v_t = 0$. On distingue maintenant deux cas.

Supposons d'abord a et b de même parité. L'équation (4.3) donne $v_t^2 - v_\delta^2 = 0$. Ainsi on a $v_t = v_\delta$ car $v_t \neq -v_\delta$. En conséquence, on obtient $t = \delta$. De l'égalité $\mu_a v_\delta - \mu_b v_t = 0$, on déduit a = b, une contradiction.

Supposons maintenant a et b de parité différente. En remarquant que

$$v_{\delta}^{2} - v_{t}^{2} = (v_{\delta} - v_{t})(v_{\delta} + v_{t}) = (v_{\delta} - v_{t})(v_{\delta} - v_{t+2^{n-2}}),$$

l'égalité (4.3) donne $(v_{\delta}-v_t)(v_{\delta}-v_{t+2^{n-2}})=2(-1)^b(T+1)\sqrt{T^2+1}$. Comme précédemment, soit $\mathcal P$ un idéal premier de $\overline{\mathbb Q}M_1M_2$ contenant $T+1-\sqrt{T^2+1}-\xi$ de valuation associée v. L'équation (3.5) dans la preuve du théorème 3.5 montre que $v(2(-1)^b(T+1)\sqrt{T^2+1})=v((v_{\delta}-v_t)(v_{\delta}-v_{t+2^{n-2}}))>0$. Par le lemme 2.7, on a $v(2(-1)^b(T+1)\sqrt{T^2+1})=v((T+1)^2(T^2+1))=0$, une contradiction. Par conséquent $w_{a,\delta}\neq w_{b,t}$.

- **4.3. Réalisations explicites de** Q_{2^n} sur \mathbb{Q} . Dans cette partie, nous construisons des réalisations explicites de Q_{2^n} sur \mathbb{Q} par spécialisation de la Q_{2^n} -extension \mathbb{Q} -régulière $\Gamma/\mathbb{Q}(T)$ fournie par le théorème 4.2 (voir théorème 4.10).
- **4.3.1.** Bons premiers. On donne ici une condition suffisante pour qu'un nombre premier p soit un bon premier pour $\Gamma/\mathbb{Q}(T)$ (voir proposition 4.7).

Lemme 4.3.

- (a) L'ensemble des points de branchement de $H/\mathbb{Q}(T)$ est contenu dans $\{-i, i, 0, \infty\}$.
- (b) L'ensemble des points de branchement de $M_1M_2/\mathbb{Q}(T)$ est contenu dans $\{-i, i, \infty\} \cup \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}.$
- (c) L'ensemble des points de branchement de $\Gamma/\mathbb{Q}(T)$ est contenu dans $\{-i, i, 0, \infty\} \cup \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}.$

Démonstration. (a). Cela vient du fait que le discriminant du polynôme minimal de μ_4 sur $\overline{\mathbb{Q}}(T)$ est $256T^4(T^2+1)^3$.

(b). Soit $\lambda \in \overline{\mathbb{Q}}$ un point de branchement de $M_1M_2/\mathbb{Q}(T)$ qui n'est pas dans $\{-i,i\}$. Par [14, Proposition 6.2.3], λ n'est pas un point de branchement de $L/\mathbb{Q}(T)$. En conséquence, on peut trouver un idéal premier \mathcal{P} de $\overline{\mathbb{Q}}L$ contenant $T-\lambda$ et se ramifiant dans $\overline{\mathbb{Q}}M_1M_2/\overline{\mathbb{Q}}L$. Par le lemme 3.1 et le

lemme d'Abhyankar, il existe $\ell \in \{1,2\}$ et $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ tels que \mathcal{P} soit engendré par $T+1+(-1)^{\ell}\sqrt{T^2+1}-\xi^k$. D'où $\lambda=s_k$ par le lemme 2.7.

(c). Il suffit de remarquer que l'on a $\Gamma \subset$ HM_1M_2 et d'utiliser le (a) et le (b).

Lemme 4.4. Soit p un nombre premier impair qui ne divise pas $2^{2^{n-2}} + 1$. Alors, pour tout $t \in \{i, -i\} \cup \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}$ et tout idéal premier $de \mathbb{Z}[\xi]$ au dessus de p de valuation associée v, on a <math>v(t) = 0.

Démonstration. Le cas où $t \in \{-i, i\}$ est immédiat. Il reste à considérer le cas où $t \in \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}$. Soit donc $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$. On a

(4.4)
$$s_k = \frac{\xi^k (2 - \xi^k)}{2(1 - \xi^k)}.$$

On remarque ensuite que le polynôme minimal de $1-\xi^k$ (resp. $2-\xi^k)$ sur \mathbb{Q} est $(X-1)^{2^{n-2}}+1$ (resp. $(X-2)^{2^{n-2}}+1$). Donc la norme de $1-\xi^k$ (resp. $2-\xi^k$) dans $\mathbb{Q}(\xi)/\mathbb{Q}$ est 2 (resp. $2^{2^{n-2}}+1$). Par conséquent, si v est comme dans l'énoncé, on a v(x)=0 dès que x est un \mathbb{Q} -conjugué de $1-\xi^k$ ou $2 - \xi^k$. On peut ainsi conclure en vertu de (4.4).

Lemme 4.5. Pour tout $x \in \mathbb{Q}(\xi)$, on note N(x) la norme de x dans $\mathbb{Q}(\xi)/\mathbb{Q}$. Soit p un nombre premier impair tel que

- (a) pour tout $k \not\equiv 1 \pmod{2^{n-1}}$, le nombre premier p ne divise pas
- $N((1-\xi^k)(1-\xi)+1),$ (b) pour tout $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$, le nombre premier p ne divise pas $N(\xi^{k}(2-\xi)\pm 2i(1-\xi^{k})).$

Alors deux points de branchement quelconques et distincts de $\Gamma/\mathbb{Q}(T)$ ne peuvent se rencontrer modulo p. Cette dernière conclusion est en particulier vraie pour $p \ge 7^{2^{n-2}} + 1$.

Démonstration. Par le lemme 4.3, il suffit de vérifier que deux éléments quelconques et distincts de $\{-i, i, 0, \infty\} \cup \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}$ ne peuvent se rencontrer modulo p.

D'après le lemme 4.4, on a $v(s_k) = 0$ pour tout $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ et toute valuation v de $\mathbb{Q}(\xi)$ étendant la valuation p-adique. Par conséquent, s_k et 0 ne peuvent se rencontrer modulo p. Il en est de même pour s_k et ∞ .

On remarque maintenant que les s_k $(k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*)$ sont deux à deux conjugués sur \mathbb{Q} . Par conséquent, pour montrer qu'il n'existe pas $k \neq l$ tels que s_k et s_l se rencontrent modulo p, il suffit de le faire pour $k \neq 1$ et l = 1. Fixons donc $k \neq 1$. On a

$$s_k - s_1 = \frac{\xi^k - \xi}{2(1 - \xi^k)(1 - \xi)}((1 - \xi^k)(1 - \xi) + 1).$$

D'après l'hypothèse du a), le nombre premier p ne divise pas $N((1-\xi^k)(1-\xi)+1)$. De plus, on montre comme dans la preuve du lemme 4.4 que p ne divise, ni $N(2(1-\xi^k)(1-\xi))$, ni $N(\xi^k-\xi)$. Le lemme 2.2 montre alors que s_k et s_1 ne se rencontrent pas modulo p.

Ensuite, pour tout $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$, on a

$$s_k \pm i = \frac{\xi^k (2 - \xi^k) \pm 2i(1 - \xi^k)}{2(1 - \xi^k)}$$

et on montre comme ci-dessus que s_k et $\pm i$ ne peuvent se rencontrer modulo p.

Pour le dernier point, on remarque que les valeurs absolues des normes de (a) et (b) sont inférieures ou égales à $7^{2^{n-2}}$.

Lemme 4.6. Aucun nombre premier impair p n'est verticalement ramifié dans $\Gamma/\mathbb{Q}(T)$.

Démonstration. Il suffit de travailler au dessus du localisé $R = \mathbb{Z}[T]_{p\mathbb{Z}[T]}$ de $\mathbb{Z}[T]$ en $p\mathbb{Z}[T]$. Remarquons que $\Gamma \subset HM_1M_2$ et notons C la clôture intégrale de R dans HM_1M_2 .

Tout d'abord, le discriminant du polynôme minimal de μ_4 sur $\mathbb{Q}(T)$ est $256T^4(T^2+1)^3 \notin p\mathbb{Z}[T]$, donc pR est non ramifié dans $H/\mathbb{Q}(T)$.

Soient maintenant $\ell_0 \in \{1,2\}$ et $k_0 \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$. Les $\mathbb{Q}(T)$ -conjugués de x_{ℓ_0,k_0} sont parmi les $\xi^l x_{\ell,k}$ où $l \in [1,2^{n-1}]$, $\ell \in \{1,2\}$ et $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$. En posant

$$\eta_{(l,\ell,k),(l',\ell',k')} = \xi^l x_{\ell,k} - \xi^{l'} x_{\ell',k'}$$

pour tous $(l,\ell,k) \neq (l',\ell',k')$, on voit que le discriminant du polynôme minimal de x_{ℓ_0,k_0} sur $\mathbb{Q}(T)$ divise $\prod_{(l,\ell,k)\neq(l',\ell',k')} \eta_{(l,\ell,k),(l',\ell',k')}$ dans C.

Soient $(l, \ell, k) \neq (l', \ell', k')$. Pour simplifier, on pose $\eta = \eta_{(l,\ell,k),(l',\ell',k')}$. Supposons tout d'abord $\ell \neq \ell'$. Par définition des $x_{\ell,k}$, on a $\eta r = 4T^2 + 4 - (\xi^k - \xi^{k'})^2 \in C$, où

$$r = (((-1)^l - (-1)^{l'})\sqrt{T^2 + 1} - (\xi^k - \xi^{k'})) \prod_{s=0}^{2^{n-2}} ((\xi^l x_{\ell,k})^{2^s} - (\xi^{l'} x_{\ell',k'})^{2^s}) \in C.$$

On peut encore multiplier $4T^2 + 4 - (\xi^k - \xi^{k'})^2$ par ses $\mathbb{Q}(T)$ -conjugués pour obtenir qu'il existe un $r' \in C$ tel que $\eta r' = 4^u T^v + a$, où $u \in \mathbb{N}$, $v \in \mathbb{N}$ et $a \in \mathbb{Z}[T]$ de degré inférieur ou égal à v - 1.

Supposons maintenant $\ell = \ell'$ et k = k'. Dans ce cas, on a

$$\eta x_{\ell,k}^{2^{n-1}-1} = \xi^l (1 - \xi^{l'-l})(T + 1 + (-1)^\ell \sqrt{T^2 + 1} - \xi^k).$$

En multipliant ce dernier élément par $T+1-(-1)^{\ell}\sqrt{T^2+1}-\xi^k\in C$, on obtient qu'il existe un r' dans C tel que $\eta r'=\xi^l(1-\xi^{l'-l})(2(1-\xi^k)T+1)$

 $(1-\xi)^2-1$). Or, la norme de ξ dans $\mathbb{Q}(\xi)/\mathbb{Q}$ vaut ± 1 et, comme déjà vu, la norme de $1-\xi^k$ dans cette même extension est une puissance de 2 pour tout $k \not\equiv 0 \pmod{2^{n-1}}$. On peut encore multiplier

$$\xi^{l}(1-\xi^{l'-l})(2(1-\xi^{k})T+(1-\xi)^{2}-1)$$

par ses $\mathbb{Q}(T)$ -conjugués pour obtenir qu'il existe un $r'' \in C$ tel que $\eta r'' =$ $\pm 2^u T^v + a$, où $u \in \mathbb{N}$, $v \in \mathbb{N}$ et $a \in \mathbb{Z}[T]$ de degré inférieur ou égal à v - 1.

Supposons enfin $\ell = \ell'$ et $k \neq k'$. Dans ce cas, il existe un élément r de Ctel que $\eta r = 2^u$ avec $u \in \mathbb{N}$. En effet, le produit de η et $\prod_{s=0}^{2^{n-2}} ((\xi^l x_{\ell,k})^{2^s} (\xi^{l'}x_{\ell,k'})^{2^s}$) vaut $-\xi^k(1-\xi^{k'-k})$, dont la norme est une puissance de 2.

En considérant les trois cas ci-dessus, il existe donc un élément r de Ctel que le produit de r et du discriminant du polynôme minimal de x_{ℓ_0,k_0} sur $\mathbb{Q}(T)$ soit de la forme $2^u T^v + a \in \mathbb{Z}[T]$ avec $u \in \mathbb{N}, v \in \mathbb{N}$ et $a \in \mathbb{Z}_{(p)}[T]$ de degré inférieur ou égal à v-1. Par conséquent, ce discriminant n'est pas dans pR. En particulier, pR n'est pas ramifié dans $\mathbb{Q}(T)(x_{\ell_0,k_0})$. De plus, pR n'est pas ramifié dans $\mathbb{Q}(T,\xi)/\mathbb{Q}(T)$. Le lemme d'Abhyankar permet alors de conclure.

Proposition 4.7. Soit p un nombre premier impair qui vérifie les conditions du lemme 4.5. Alors p est un bon premier pour $\Gamma/\mathbb{Q}(T)$.

 $D\acute{e}monstration$. D'après les lemmes 4.5 et 4.6, p ne vérifie aucune des conditions (2) et (3) de la définition 2.3. De plus, p ne vérifie pas la condition (1). Quant à la condition (4), il suffit de voir que le corps engendré par les points de branchement de $\Gamma/\mathbb{Q}(T)$ est contenu dans $\mathbb{Q}(\xi)$.

4.3.2. Invariant canonique de l'inertie. Dans ce qui suit, Λ et Σ sont les générateurs de Q_{2^n} de la présentation (2.3). Rappelons que les classes de conjugaison non triviales de Q_{2^n} sont

- les $\mathcal{A}_{j} = \{\Lambda^{j}, \Lambda^{-j}\}$ où $j \in [1, 2^{n-2} 1]$ et $\mathcal{A}_{2^{n-2}} = \{\Lambda^{2^{n-2}}\}$, $\mathcal{B} = \{\Lambda^{2j}\Sigma \mid j \in [0, 2^{n-2} 1]]\}$, $\mathcal{C} = \{\Lambda^{2j+1}\Sigma \mid j \in [0, 2^{n-2} 1]]\}$.

Lemme 4.8. La classe canonique de l'inertie du point de branchement i de $\Gamma/\mathbb{Q}(T)$ est \mathcal{B} ou \mathcal{C} . De plus, il existe un $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ et un $j \in [1, 2^{n-2}]$ impair tels que la classe canonique de l'inertie du point de branchement s_k de $\Gamma/\mathbb{Q}(T)$ soit \mathcal{A}_i ,

Démonstration. Pour tout $t \in \{-i, i, 0, \infty\} \cup \{s_k \mid k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*\}$, notons C_t la classe canonique de l'inertie de t dans $\Gamma/\mathbb{Q}(T)$. Puisque i est point de branchement de $L/\mathbb{Q}(T)$, la classe C_i n'est pas contenue dans $Gal(\Gamma/L) =$ $\langle \Lambda \rangle$. De plus, on vérifie facilement que l'on a $\mathcal{B}^3 = \mathcal{B}$ et $\mathcal{C}^3 = \mathcal{C}$. Ainsi, par le Branch Cycle Lemma (voir [5] et [15, Lemma 2.8]), on a $C_i = C_{-i}$.

Ensuite, puisque les points de branchement de $L/\mathbb{Q}(T)$ sont i et -i, la classe C_0 est de type \mathcal{A} ou triviale et il en est de même des classes

 C_{s_k} (voir lemme 2.7). Supposons que toutes ces classes de conjugaison soient triviales ou de la forme A_j avec j pair. Puisque l'ensemble des points de branchement de $\Gamma/\mathbb{Q}(T)$ est contenu dans $\{-i,i,0,\infty\}\cup\{s_k\mid$ $k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ (voir lemme 4.3), le théorème d'existence de Riemann fournit $(g_i, g_{-i}, g_0, g_\infty, (g_{s_k})_k) \in C_i \times C_{-i} \times C_0 \times C_\infty \times (C_{s_k})_k$ tel que $\langle g_i, g_{-i}, g_0, g_\infty, \{g_k \mid k\} \rangle = Q_{2^n}$ et $g_i \cdot g_{-i} \cdot g_0 \cdot g_\infty \cdot \prod_k g_k = 1$. Notons $g_i = Q_{2^n}$ $\Lambda^{a_i}\Sigma$, $g_{-i}=\Lambda^{a_{-i}}\Sigma$, avec a_i et a_{-i} de même parité, $g_0=\Lambda^{2a_0}$, $g_\infty=\Lambda^{a_\infty}$ et $g_{s_k} = \Lambda^{2a_k}$ pour tout k. On obtient alors $1 = g_i \cdot g_{-i} \cdot g_0 \cdot g_\infty \cdot \prod_k g_k = \Lambda^v$ pour un certain entier v de même parité que $a_i + a_{-i} + 2a_0 + a_{\infty} + \sum_k 2a_k$. Par conséquent, a_{∞} est pair. La condition $\langle g_i, g_{-i}, g_0, g_{\infty}, \{g_k \mid k\} \rangle = Q_{2^n}$ entraîne alors $Q_{2^n} = \langle \Lambda^2, \Sigma \rangle$ (si $C_i = C_{-i} = \mathcal{B}$) ou $Q_{2^n} = \langle \Lambda^2, \Lambda \Sigma \rangle$ (si $C_i = C_{-i} = \mathcal{C}$), ce qui est impossible. En effet, $\langle \Lambda^2 \rangle$ est un sous-groupe distingué d'ordre 2^{n-2} et $\Sigma^2 = \Lambda^{2^{n-2}} \in \langle \Lambda^2 \rangle$ (resp. $(\Lambda \Sigma)^2 = \Lambda^{2^{n-2}} \in \langle \Lambda^2 \rangle$), donc $|\langle \Lambda^2, \Sigma \rangle|$ (resp. $|\langle \Lambda^2, \Lambda \Sigma \rangle|$) est 2^{n-1} alors que Q_{2^n} est d'ordre 2^n . Ainsi, soit la deuxième partie du lemme est vraie, soit l'indice de ramification de $\langle T \rangle$ dans $\Gamma \overline{\mathbb{Q}} / \overline{\mathbb{Q}}(T)$ vaut 2^{n-1} . Or, cette dernière conclusion est impossible car 0 n'est pas un point de branchement de $M_1M_2/\mathbb{Q}(T)$ (voir lemme 4.3) et l'indice de ramification de $\langle T \rangle$ dans $H\mathbb{Q}/\mathbb{Q}(T)$ vaut au plus 2.

4.3.3. Théorème principal. Notons $m(X) = \prod_{k \in (\mathbb{Z}/2^{n-1}\mathbb{Z})^*} (X - s_k) \in \mathbb{Q}[X]$. Par le lemme 4.4, les dénominateurs des coefficients de m(X) sont des puissances de 2.

Lemme 4.9. Pour $p \equiv 1 \pmod{2^{n-1}}$ premier, il existe $t \in \mathbb{Z}$ tel que $v_p(m(t)) > 0$.

Démonstration. Notons O la clôture intégrale du localisé $\mathbb{Z}_{[2]}$ de \mathbb{Z} en la partie multiplicative $\{2^j \mid j \geq 0\}$ dans $\mathbb{Q}(\xi)$. Soit \mathcal{P} un idéal premier de O au dessus de $p\mathbb{Z}_{[2]}$. Puisque $p \equiv 1 \pmod{2^{n-1}}$, le degré résiduel $f(\mathcal{P}/p\mathbb{Z}_{[2]})$ est égal à 1, c'est-à-dire $O/\mathcal{P} = \mathbb{Z}_{[2]}/p\mathbb{Z}_{[2]}$. Il existe donc $t \in \mathbb{Z}_{[2]}$ tel que m(t) = 0 modulo $p\mathbb{Z}_{[2]}$. On peut en fait choisir t dans \mathbb{Z} , ce qui conclut la démonstration. \square

Théorème 4.10. Soient p et q deux nombres premiers distincts ne divisant pas $2^{2^{n-2}} + 1$, qui vérifient les conditions du lemme 4.5 et tels que $p \equiv 1 \pmod{2^{n-1}}$ et $q \equiv 1 \pmod{4}$. Soit $t_0 \in \mathbb{N}$ vérifiant $v_p(m(t_0)) = 1$ et $v_q(t_0^2 + 1) = 1$. Alors la spécialisation Γ_t/\mathbb{Q} de $\Gamma/\mathbb{Q}(T)$ en t est galoisienne de groupe Q_{2^n} pour tout $t \equiv t_0 \pmod{p^2q^2}$.

Démonstration. Notons tout d'abord que t_0 comme dans l'énoncé existe. En effet, puisque $p \equiv 1 \pmod{2^{n-1}}$, il existe $t_{0,p}$ dans \mathbb{Z} tel que $v_p(m(t_{0,p})) > 0$ (voir lemme 4.9). De plus, d'après l'hypothèse $q \equiv 1 \pmod{4}$, il existe $t_{0,q}$ dans \mathbb{Z} tel que $v_q(t_{0,q}^2 + 1) > 0$. D'après [8, Lemma 3.12], quitte à changer $t_{0,p}$ et $t_{0,q}$, on peut supposer $v_p(m(t_{0,p})) = 1$ et $v_q(t_{0,q}^2 + 1) = 1$. Le théorème

chinois fournit alors un $t_0 \in \mathbb{Z}$ tel que $v_p(t_0 - t_{0,p}) \ge 2$ et $v_q(t_0 - t_{0,q}) \ge 2$. Enfin, [8, Remark 2.11] montre que t_0 vérifie les conditions de l'énoncé.

Fixons maintenant $t \equiv t_0 \pmod{p^2q^2}$. D'après les hypothèses $v_p(m(t_0)) = 1$ et $v_q(t_0^2+1)=1$, on a $v_p(m(t))=1$ et $v_q(t^2+1)=1$. En particulier, t n'est pas un point de branchement de $\Gamma/\mathbb{Q}(T)$ (voir lemme 4.3). Par [8, Lemma 2.5], on obtient que t et s_1 (resp. t et i) se rencontrent modulo p (resp. q). En outre, d'après le lemme 4.7, les nombres premiers p et q sont de bons premiers pour $\Gamma/\mathbb{Q}(T)$. Enfin, p unitarise s_1 par le lemme 4.4 et il est clair que q unitarise i. Si k désigne l'élément de $(\mathbb{Z}/2^{n-1}\mathbb{Z})^*$ fourni par le lemme 4.8, le théorème 2.4 assure alors que $\operatorname{Gal}(\Gamma_t/\mathbb{Q})$ contient un élément de la classe canonique de l'inertie C_{s_k} (resp. C_i) du point de branchement s_k (resp. i) de $\Gamma/\mathbb{Q}(T)$. Par le lemme 4.8, on obtient que $\operatorname{Gal}(\Gamma_t/\mathbb{Q})$ contient un élément de \mathcal{A}_j pour un certain $j \in [1, 2^{n-2}]$ impair et, soit un élément de \mathcal{B} , soit un élément de \mathcal{C} . On obtient alors $\operatorname{Gal}(\Gamma_t/\mathbb{Q}) = Q_{2^n}$, ce qui achève la démonstration.

Pour conclure ce texte, on détermine pour n=3 un exemple explicite de p, q et t_0 comme dans le théorème. D'abord, on remarque que $m(X)=X^2+X/2+5/8$. Ensuite, on s'assure que p=53 et q=61 vérifient les conditions du théorème. Enfin, des exemples de t_0 sont 804, 865 et 1758. Nous laissons au lecteur intéressé le soin de donner davantage d'exemples numériques.

Bibliographie

- [1] S. Beckmann, « On extensions of number fields obtained by specializing branched coverings », J. Reine Angew. Math. 419 (1991), p. 27-53.
- [2] P. Dèbes & N. Ghazi, «Galois covers and the Hilbert-Grunwald property», Ann. Inst. Fourier 62 (2012), n° 3, p. 989-1013.
- [3] P. Dèbes & F. Legrand, «Specialization results in Galois theory », Trans. Am. Math. Soc. 365 (2013), n° 10, p. 5259-5275.
- [4] M. D. Fried, « On Hilbert's irreducibility theorem », J. Number Theory 6 (1974), p. 211-231.
- [5] ———, « Fields of definition of function fields and Hurwitz families-groups as Galois groups », Commun. Algebra 5 (1977), n° 1, p. 17-82.
- [6] M. D. FRIED & M. JARDEN, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 11, Springer, 2008.
- [7] C. U. Jensen, A. Ledet & N. Yui, Generic polynomials. Constructive Aspects of the Inverse Galois Problem, Mathematical Sciences Research Institute Publications, vol. 45, Cambridge University Press, 2002, x+258 pages.
- [8] F. LEGRAND, « Specialization results and ramification conditions », Isr. J. Math. 214 (2016), n° 2, p. 621-650.
- [9] G. Malle & B. H. Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer, 2018, xvii+532 pages.
- [10] D. MARTINAIS & L. SCHNEPS, « Polynômes à groupe de galois diédral », Sémin. Théor. Nombres Bordx., Sér. II 4 (1992), n° 1, p. 141-153.
- [11] J. NEUKIRCH, A. SCHMIDT & K. WINGBERG, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, Springer, 2008, xvi+825 pages.
- [12] A. SCHINZEL, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications, vol. 77, Cambridge University Press, 2000, x+558 pages.

- [13] J.-P. Serre, *Topics in Galois Theory*, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, 1992, xvi+117 pages.
- [14] H. STICHTENOTH, Algebraic function fields and codes, 2nd éd., Graduate Texts in Mathematics, vol. 254, Springer, 2009, xiv+355 pages.
- [15] H. VÖLKLEIN, Groups as Galois groups, Cambridge Studies in Advanced Mathematics, vol. 53, Cambridge University Press, 1996, xviii+248 pages.
- [16] S. Weintraub, Galois Theory, Universitext, Springer, 2009.

Angelot Behajaina Laboratoire de Mathématiques Nicolas Oresme Université de Caen Normandie BP 5186, 14032 Caen Cedex, France E-mail: angelot.behajaina@unicaen.fr