
Francesco BATTISTONI

On small discriminants of number fields of degree 8 and 9
Tome 32, no 2 (2020), p. 489-501.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_2_489_0>

© Société Arithmétique de Bordeaux, 2020, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
l’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que l’utilisation à fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_2_489_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 32 (2020), 489–501

On small discriminants of number fields of
degree 8 and 9

par Francesco BATTISTONI

Résumé. Nous classifions tous les corps de nombres de signature (4, 2), (6, 1),
(1, 4) et (3, 3) et discriminant inférieur à une certaine borne spécifique. Ceci
achève la recherche du discriminant minimal pour les corps de degré 8 et
contribue à l’étude du cas de degré 9. On rappelle les outils théoriques et
les étapes algorithmiques sur lesquels repose notre méthode, on se concentre
ensuite sur les aspects nouveaux qui proviennent de la nouvelle implémen-
tation de ce processus dans le système de calcul formel PARI/GP; enfin, on
fait quelques remarques sur nos résultats finals, parmi lesquels mentionnons
l’existence d’un corps de nombres de signature (3, 3) et d’un petit discrimi-
nant, inconnu jusqu’à présent.

Abstract. We classify all the number fields with signature (4, 2), (6, 1), (1, 4)
and (3, 3) having discriminant lower than a specific upper bound. This com-
pletes the search for minimum discriminants for fields of degree 8 and contin-
ues it in the degree 9 case. We recall the theoretical tools and the algorithmic
steps upon which our procedure is based, then we focus on the novelties
due to a new implementation of this process on the computer algebra system
PARI/GP; finally, we make some remarks about the final results, among which
the existence of a number field with signature (3, 3) and small discriminant
which was not previously known.

1. Introduction
Consider the family of number fields K with fixed degree n and fixed sig-

nature (r1, r2). Classical results by Minkowski and Hermite, obtained at the
end of the 19th century, imply the following properties for the discriminant
dK of the fields:

• There exists an explicit lower bound |dK | > C(n, r2), where
C(n, r2) > 1 depends only on the degree and the signature. This im-
plies that in the family of fields with degree n and signature (r1, r2)
there exists a field F such that |dK | attains the minimum value
when K = F .

Manuscrit reçu le 13 décembre 2019, révisé le 27 avril 2020, accepté le 3 juin 2020.
2020 Mathematics Subject Classification. 11R21, 11R29, 11Y40.
Mots-clefs. Number fields, classification for small discriminant.
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• For every C > 0, there exist only finitely many number fields with
fixed degree and signature and such that |dK | ≤ C.

The study of number fields with respect to their discriminants is then
characterized by a double purpose: to find the minimum values for the dis-
criminants of fields with fixed signature, and to completely classify all the
fields in this family up to a chosen discriminant bound (a goal which en-
compasses the first one). Complete tables of number fields with bounded
discriminant are useful tools in Number Theory, because they provide ex-
plicit examples over which one can get some heuristic or prove results which
are known to be asymptotically true in the discriminant (see, as an exam-
ple, the work by Astudillo, Diaz y Diaz and Friedman [1] on minimum
regulators which explicitly requires this kind of lists).

Giving a complete classification of fields with fixed degree n and signature
(r1, r2) is easy for n = 2, because every quadratic field has the form Q(

√
d)

with d ∈ Z squarefree, and this structure returns dK equal to either 4d or
d, depending on the residue class of d modulo 4.

For n = 3 the research is still not difficult, thanks to Davenport and
Heilbronn’s correspondence between isomorphism classes of cubic orders
in number fields and equivalence classes of binary integral cubic forms [9];
this bijection preserves discriminants and is the theoretical cornerstone for
Belabas’ algorithm for the classification of cubic fields with bounded dis-
criminant [4].

Whenever one considers fields of higher degree, the classification becomes
harder to get. There are two main mathematical frameworks, developed
during the 1970’s and 1980’s, which allowed several researchers to get results
for fields with low degree:

• Geometry of Numbers and its applications to the rings of integers,
which provided explicit estimates on the possible maximum values
for the coefficients of the defining polynomials of number fields K
with bounded |dK |: this was investigated by Hunter and Pohst [28]
for number fields over Q and by Martinet [19] for generic number
field extensions;
• Lower bounds for the discriminants derived from the explicit for-
mulae of Dedekind Zeta functions, a procedure which was pursued
by Odlyzko [20], Poitou [30] and Serre [34] and which allowed Diaz
y Diaz [10] to obtain lower bounds of |dK | for several degrees and
signatures.

The simultaneous use of the previous tools permitted to develop algorith-
mic procedures which gave complete classifications of number fields up to
certain discriminant bounds in the following cases:

• Number fields with degree 4 [6] and 5 [31];
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• Number fields with degree 6 [5, 21, 22, 23, 24, 25, 26] and de-
gree 7 [11, 12, 14, 27].
• Totally complex [13] and totally real [29] number fields of degree 8;
• Totally real number fields of degree 9 [36].

For what concerns further signatures in degree 8, no complete tables up
to some bound were known and for several years no attempts of this kind
were made. During his Ph.D. work, the author [3] was then able to give a
complete classification of number fields with degree 8, signature (2, 3) and
|dK | ≤ 5726301, showing that there exist exactly 56 such fields: this result
was obtained by exploiting the aforementioned theoretical ideas in order
to write an algorithmic procedure which was implemented in a program
relying on the softwares MATLAB and PARI/GP [38].

This setting was not good enough for exploring other signatures in de-
gree 8 and 9, but we are now able to provide a better implementation,
needing just PARI/GP, which allowed us to obtain the following classifica-
tion result.

Theorem 1.1. There exist 41 number fields K with signature (4, 2) and
with |dK | ≤ 20829049. The minimum value of |dK | is 15243125.

There exist 8 number fields K with signature (6, 1) and with |dK | ≤
79259702. The minimum value of |dK | is 65106259.

There exist 67 number fields K with signature (1, 4) and with |dK | ≤
39657561. The minimum value of |dK | is 29510281.

There exist 116 number fields K with signature (3, 3) and with |dK | ≤
146723910. The minimum value of |dK | is 109880167.

The number fields and the complete tables are gathered in the website [2],
together with the PARI/GP programs used for their classification, and these
programs can be found also in the GitHub repository available at https://
github.com/FrancescoBattistoni/SmallDiscriminants. The programs
were run on the cluster system of Université de Bordeaux and on the clusters
INDACO and HORIZON of Università degli Studi di Milano.

Here is an overview of the paper.
Section 2 recalls the theoretical foundations of the algorithmic proce-

dure, which are respectively Hunter–Pohst–Martinet’s Theorem and the
local corrections for lower bounds of discriminants given by prime ideals.
Section 3 presents the various steps in which the algorithm is divided. Sec-
tion 4 finally presents the main novelties of our new implementation and
some remarks on the final results obtained.

Acknowledgements. I would like to thank my Ph.D. advisor Giuseppe
Molteni for every useful suggestion and for his supervision of my research
in Università degli Studi di Milano. I would like to thank also Institut de
Mathématiques de Bordeaux, for hosting me and allowing me to use the
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IMB cluster, and the people I worked with and gave me many advices:
Bill Allombert, Karim Belabas, Henri Cohen, Andreas Enge, Aurel Page,
Guillaume Ricotta, Damien Robert.

Thanks also to Alessio Alessi and Francesco Fichera, who gave me
permission for using INDACO and HORIZON clusters respectively, to
Schehrazad Selmane, for lending me her tables with local corrections, and to
Gunter Malle and Ken Yamamura, for their remarks about the preliminary
version of this paper.

2. Theoretical recalls
In our procedure we look for irreducible monic polynomials of degree 8

and 9 with integer coefficients which define the desired number fields: the
first problem consists then in giving an upper bound to the number of
these polynomials, and the bound should depend on the discriminant and
the signature.

Given a number field K, an element α ∈ OK and a number k ∈ Z, the
Newton sum of order k of α is defined as the sum

Sk(α) :=
n∑
i=1

αki

where the αi’s represent the conjugates of α with respects to the embeddings
σ1, . . . , σn of K.

One has Sk(α) ∈ Z, and S1(α) = Tr(α); moreover, if f(x) := xn +
a1x

n−1 + · · ·+an−1x+an is the defining polynomial of α, then one has the
recursive relations

(2.1) Sk(α) = −kak −
k−1∑
j=1

ajSk−j(α) for every 2 ≤ k ≤ n

which link the coefficients of f(x) to the values of the Newton sums.
Consider then the absolute Newton sum

T2(α) :=
n∑
i=1
|αi|2.

We have an estimate for T2(α), depending on n and |dK |, provided by
Hunter–Pohst–Martinet’s Theorem [19].

Theorem 2.1. Let K be a number field of degree n with discriminant dK .
Then there exists an element α ∈ OK \ Z which satisfies the following
conditions:

(1) 0 ≤ Tr(α) ≤
⌊
n
2
⌋

;

(2) T2(α) ≤ Tr(α)2

n + γn−1
(
|dK |
n

)1/(n−1)
=: U2

where γn−1 is Hermite’s constant in dimension n− 1.
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The element α is called an HPM-element for K: for such an algebraic
integer, the previous theorem allows us to compute an upper bound for its
trace and its second Newton sum S2. These data, together with the absolute
value of the norm N := |Nm(α)|, are enough for giving upper bounds to
every Newton sum, thanks to Pohst’s result [28].

Theorem 2.2. Given K, U2 and α as in Theorem 2.1, given N ∈ N such
that N ≤ (U2/n)n/2, then for every k ∈ Z \ {0, 2} we have an inequality

|Sk(α)| ≤ Uk
where Uk is an explicit number depending on n, r1 and U2.

Our goal is to test the polynomials generated by a choice of the co-
efficients which derives from the values of the Newton sums Sk (with
2 ≤ k ≤ n) ranging in the intervals [−Uk, Uk] and satisfying the recur-
sive relations (2.1). In order to do so, we need to choose an upper bound
for |dK |.

Remark 2.3. The condition N ≤ (U2/n)n/2 is set in order to respect the
inequality between geometric and arithmetic means: in fact,

N2 =
n∏
i=1
|αi|2 ≤

(∑n
i=1 |αi|2

n

)n
=
(
U2
n

)n
.

We recall now an inequality, proved by Poitou [30], which gives a lower
bound for the discriminants of number fields with fixed degree n and sig-
nature (r1, r2).

Theorem 2.4. Let K be a number field of degree n, signature (r1, r2) and
discriminant dK . Let f(x) be the function

f(x) :=
( 3
x3 (sin x− x cosx)

)2
.

Then, for every y > 0, one has

(2.2) 1
n

log |dK | ≥ γ + log 4π − L1(y)− 12π
5n√y

+ 4
n

∑
p⊂OK

∞∑
m=1

log Nm(p)
1 + (Nm(p))m f(m√y log Nm(p))

where γ is Euler’s constant, the sum runs over the non-zero prime ideals
of OK , Nm(p) is the absolute norm of the prime p and

L1(y) :=
∞∑
k=1

1
2k − 1L

(
y

(2k − 1)2

)
+ r1
n

∞∑
k=1

(−1)k−1L

(
y

k2

)
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where

L(y) := − 3
20y2 + 33

10y+2+
( 3

80y3 + 3
4y2

)(
log(1+4y)− 1

√
y

arctan(2√y)
)
.

Assume that we are able to guarantee that a prime ideal p with a fixed
norm is contained in OK : then the estimate (2.2) can be reduced to an
explicit inequality of the form

(2.3) 1
n

log |dK | ≥ By(r1, r2) + 4
n
Fy(Nm(p))

where

By(r1, r2) := γ+log 4π−L1(y)− 12π
5n√y , Fy(q) :=

∞∑
m=1

log q
1+qm f(m√y log q).

The term in inequality (2.3) which depends explicitly on p is called local
correction given by an ideal of norm Nm(p). Looking for the value of y
which maximizes the right hand side of (2.3), we obtain a lower bound
C(r1, r2,Nm(p)) called lower bound for the discriminant with the local cor-
rection given by an ideal of norm Nm(p). It is important to underline that
different signatures and norms may require different values of y for a proper
optimization.

Selmane [33] computed the values of local corrections and of the corre-
sponding lower bounds for several signatures and prime ideals; these values
are reported in the following tables, which present lower bounds for |dK |
for fields of degree 8 and 9 in every signature. The first line in each table
consists of absolute lower bounds obtained by Diaz y Diaz [10] by optimiza-
tion of By only, without any local correction; the remaining lines present
instead lower bounds with local corrections given by prime ideals p with
norm Nm(p) ≤ 7.

Table 2.1. Lower bounds C(r1, r2,Nm(p)) with local cor-
rections for fields of degree 8

(r1, r2) (0,4) (2, 3) (4, 2) (6, 1) (8,0)
No local corrections 1052302 3403708 11660853 42071532 158960873
Nm(p) = 2 3379343 11725962 42765027 163060410 646844001
Nm(p) = 3 2403757 8336752 30393063 115852707 459467465
Nm(p) = 4 1930702 6688609 24363884 92810084 367892401
Nm(p) = 5 1656110 5726300 20829049 79259702 313918560
Nm(p) = 7 1362891 4682934 16957023 64309249 254052210

Lower bounds with local corrections provide the following arithmetic
consequences: if K has signature (r1, r2) and |dK | < C(r1, r2,Nm(p)), then
OK does not admit any prime ideal with norm less or equal than Nm(p).
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Table 2.2. Lower bounds C(r1, r2,Nm(p)) with local cor-
rections for fields of degree 9

(r1, r2) (1,4) (3, 3) (5, 2) (7, 1) (9,0)
No local corrections 23007468 80499454 295584269 1133345241 4516673524
Nm(p) = 2 81295493 301476699 1165734091 4679379812 19422150186
Nm(p) = 3 57789556 214235371 828172359 3323651196 13792634200
Nm(p) = 4 46348899 171694276 663330644 2660853331 11037921283
Nm(p) = 5 39657561 146723910 566314434 2269968332 9410709985
Nm(p) = 7 32371189 119294181 459066389 1835807996 7596751280

This fact has consequences on the defining polynomials of the field: as-
sume that |dK | is less than C(r1, r2,Nm(p)). If p(x) is a defining poly-
nomial of K and α ∈ K is a root of p(x), then we know that |p(n)| =
Nm((α− n)OK) for every n ∈ Z, and so p(n) must not be an exact multi-
ple of every m ∈ {2, . . . ,Nm(p)}, where a number a is said to be an exact
multiple of b if b divides a and a/b is not divisible by b. If m = l is prime,
the required condition becomes vl(p(n)) 6= 1, where vl is the l-adic discrete
valuation.

3. The Algorithmic Procedure
We want to detect all the number fields K with degree n, signature

(r1, r2) and |dK | ≤ C(r1, r2, 5), where C(r1, r2, 5) is the lower bound for
the signature (r1, r2) with local correction given by a prime ideal of norm
5. We accomplish this by constructing all the polynomials of degree n hav-
ing integer coefficients bounded by the values Um obtained from Theo-
rems 2.1 and 2.2, setting C(r1, r2, 5) as upper bound of |dK |. Thanks to
this construction, it is clear that we are dealing with defining polynomials
of HPM-elements.

The polynomials are generated ranging the values for the Newton sums
Sm in the intervals [−Um, Um]; from these values we create the coefficients
of the polynomials with the help of the recursive relations (2.1) and of
further conditions derived from the arithmetic nature of the problem, like
the fact that any evaluation of the polynomial cannot be an exact multiple
of 2, 3, 4 or 5.

Remark 3.1. As stated above, the procedure assumes that we are looking
for defining polynomials of HPM-elements. There is a problem, however:
unless the number field K is primitive, i.e. without subfields which are
not Q and K, nothing assures us that the defining polynomial of an HPM
element α ∈ K has degree exactly equal to n. In fact, α could be contained
in a proper subfield of K.



496 Francesco Battistoni

So this procedure gives a complete classification only for primitive fields,
which for composite degrees is still a proper subset of the considered family
(though being actually a very large subset).

Fortunately, a relative version of Hunter–Pohst–Martinet’s Theorem [19]
allowed to get a complete classification of non-primitive fields up to larger
upper bounds for |dK |, and specifically in the following cases:

• [8] and [32] give a complete classification of non-primitive fields of
degree 8 with signature (2, 3), (4, 2) and (6, 1) and |dK | ≤ 6688609,
24363884 and 92810082 respectively;
• [15] gives a classification of non-primitive number fields of degree 9
with |dK | ≤ 5 ·107, 4 ·109, 5 ·109, 7 ·109, 6, 3 ·1010 for the signatures
(1, 4), (3, 3), (5, 2), (7, 1), (9, 0) respectively.

Thus in our procedure we can restrict ourselves to primitive fields.

For what concerns the algorithmic procedure, we underline that is in fact
the same we used in order to classify number fields with signature (2,3), so
that we will not give all the details here, but we will just refer to what is
presented in [3, Section 4]. In fact, we obtained Theorem 1.1 by following
the instructions of the previous algorithm from Step 0 to Step 4.

There are nonetheless some differences which must be remarked: first of
all, one should replace the previous upper bound 5762300 with C(r1, r2, 5),
the lower bound with local correction at ideals of norm 5; moreover, every
feature in the algorithm related to the previously chosen degree n = 8,
like the amount of nested loops or the checks done in Step 3, can be easily
generalized for an arbitrary degree n.

Next, there are some additional tests that can be made already in Step 1:
the polynomial p(x) is kept if and only if it is constructed by Newton sums
satisfying the followings restraints.

(3.1)

If a1 = 0, then S3 ≥ 0,

S2 ≥ −U2 + 2
n
a2

1,

|S3| ≤
(
S2 + U2

2 (S4 + 2(U2 − S2)2)
)1/2

,

S4 ≥ −2(U2 − S2)2.

The first two inequalities are proved in Cohen’s book [7, Chapter 9]. In-
equality (3.1) is proved by means of Cauchy–Schwartz inequality. The
fourth inequality is a trivial necessary condition for the validity of the third
one.

Finally, Step 5 of the previous version is now put into Step 3, so that a
candidate polynomial p(x) for defining a desired number field should satisfy,
together with the conditions described in Step 3, the following properties.
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• p(x) must be an irreducible polynomial.
• The field generated by p(x) must not have prime ideals of norm less
or equal than 5. This can be verified in an algorithmic way (as we
explain in the next section). Moreover, the signature of p(x) must
be equal to (r1, r2).
• Given an integer m, define coredisc(m) as the discriminant of
the number field Q(

√
m). Then we require |coredisc(disc(p(x)))| <

C(r1, r2, 5): this is justified by the fact that, if p(x) is an irreducible
integer polynomial, then |coredisc(disc(p))| ≤ |disc(Q[x]/(p(x))|.

Once we have followed the instructions from Step 0 to Step 4, comprehensive
of the above modifications, one just needs to replace the previous Step 5
with the following Step 5′.

Step 5′. We repeat the previous steps for every value of a1 between 0 and
n/2 and for every value of an which satisfies |an| ≤ (U2/n)n/2 and is not an
exact multiple of 2, 3, 4 or 5. We are left with a list of polynomials among
which we select the ones generating a number field K with signature (r1, r2)
and |dK | ≤ C(r1, r2, 5).

The gathered fields are finally classified up to isomorphism and put in
increasing order with respect to their absolute discriminant.

4. Remarks on the implementation and the results
The theoretical ideas on which our procedure is based and the several

steps composing the algorithm are very similar to what has been introduced
in [3], with only few differences in some of the conditions put during the
tests (like the check on the size of the coredisc). The main novelty which
allowed us to obtain complete tables for further signatures is the differ-
ent implementation, written only in PARI/GP, which gave the following
consequences and facts:

• As previously mentioned, the polynomials created during the pro-
cess are tested by verifying that the ideals generated by the corre-
sponding number fields do not have norm less or equal than 5. The
implementation of this process has been achieved thanks to the
ZpX-primedec() function, written by Karim Belabas on purpose:
the function is theoretically based upon the work by Ford, Pauli
and Roblot ([16, Section 6]) which use the Round 4 Algorithm in
order to recover the factorization of a prime ideal from the l-adic
factorization of a minimal polynomial of the field.

For what concerns its efficiency, this function is an order of mag-
nitude faster than the partial factorization given by nfinit() and
faster than the usual decomposition function idealprimedec():
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moreover, it is even faster whenever the valuation at l of the in-
dex [OK : Z[X]/(p)] is small.
• The final check on the polynomials, suggested by Bill Allombert,
concerns the size of core(disc(p(x))): this test was added only some
month after the signatures in degree 8 were solved. However, it al-
lows to exclude many polynomials, because several candidate poly-
nomials p(x) have in fact core discriminants with very big size,
which would force the number field discriminant to be way over the
desired upper bound.

The number of polynomials surviving this last condition is very
small, at most 100 in our examples, and for these one can directly
compute the number field discriminant.
• The times of computation vary considerably and range from few
hours (for signatures (2,3) and (4,2)), few days (signatures (6,1)
and (1,4)), up to some months (signature (3,3)).
• The tables presenting all the detected number fields can be found
as PARI/GP files at the website [2], together with the programs
written by the author, the collection of polynomials found as result
of the iterations and the overview on computation times.

Finally, we present some remarks concerning the results described in The-
orem 1.1.

• Every field in our lists is uniquely characterized by its signature and
the value of its discriminant, with exceptions given only by two fields
with signature (3, 3) and same discriminant equal to −142989047.
These fields are given by the defining polynomials x9− 4x7− 4x6 +
2x5 + 5x4 + 6x3 + 8x2 + 4x+ 1 and x9 − 6x7 − 9x6 − 2x5 + 21x4 +
35x3 + 23x2 + 7x+ 1.
• Every field of degree 8 and every field with signature (1, 4) contained
in our lists was already known: in fact, they are all gathered into
the Klüners–Malle database of number fields [18], although many of
them are missing from the LMFDB database [37]. Our work allows
to say that these are the only number fields with the corresponding
signatures with discriminant less than the chosen upper bound.
• Concerning the fields of degree 9 and signature (3, 3), our procedure
showed that there exist 116 such fields with |dK | ≤ 146723910,
while the Klüners–Malle database only contains 62 fields of this
kind. Considering the additional 54 fields, we see that 52 of them
have discriminant which match with Denis Simon’s table of small
polynomial discriminants [35]. The two remaining fields satisfy in-
stead the following properties: one of them is the field of discrimi-
nant −142989047 which is not isomorphic to the one given by the
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polynomial in Simon’s list mentioned above; the other one has dis-
criminant equal to −129079703, which is a value not contained in
Simon’s lists for polynomials of degree 9 with 3 real roots, thus
providing a number field and a discriminant value which were not
previously known.
• Every field in the list has trivial class group, and every primitive
field has Galois group G of the Galois closure equal to either S8 or
S9, depending on the degree. More in detail, we have:
- 27 primitive fields out of 41 fields with signature (4,2) (65.8% ca.).
- 4 primitive fields out of 8 fields with signature (6,1) (50%).
- 63 primitive fields out of 67 fields with signature (1,4) (94% ca.).
- 112 primitive fields out of 116 fields in signature (3,3) (96.5% ca.).
Furthermore, Table 4.1 provides the minimum values of |dK | for a
field K with signature (r1, r2) and with Galois group G as reported.

Table 4.1. Minimum discriminants for specific Galois groups

n (r1, r2) G minimum |dK |
8 (4,2) S8 15908237
8 (6,1) S8 65106259
9 (1,4) S9 29510281
9 (3,3) S9 109880167

• Although the algorithm classifies only primitive fields, every non-
primitive field with |dK | ≤ C(n, r1, 5) was displayed as output.
• The groups in [2] are presented according to the LMFDB notation:
every group is denoted by nTq, where n is the degree of the corre-
sponding field and q is the label of the group as transitive subgroup
of Sn: the choice of the label is based upon Hulpke’s algorithm for
the classification of transitive subgroups of Sn [17]. For standard
groups, like the dihedral group Dn or the symmetric group Sn, the
classical name of the group is written together with the LMFDB
label.
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