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Multipliers and invariants of endomorphisms of
projective space in dimension greater than 1

par Benjamin HUTZ

Résumé. Il existe une action par conjugaison naturelle sur l’ensemble des
endomorphismes de PN de degré fixé d ≥ 2. L’ensemble quotient pour cette
action forme l’espace de modules des endomorphismes de degré d de PN , que
l’on note MN

d . Nous construisons des fonctions invariantes sur ces espaces
de modules, qui proviennent de l’ensemble des matrices des multiplicateurs
des points périodiques. Nous démontrons des propriétés élémentaires de ces
fonctions, en particulier qu’elles sont régulières sur MN

d , et établissons des
méthodes pour les calculer, ainsi que l’existence de relations entre elles. Dans
la partie principale de l’article, on étudie dans quelle mesure ces fonctions
invariantes déterminent la classe de conjugaison dans l’espace de modules. Des
types différents des familles isospectrales sont construits, et une généralisation
du théorème de McMullen sur l’application multiplicateur de dimension 1 est
proposée. Finalement, nous prouvons que le dernier résultat est vrai aussi
pour certaines familles spécifiques dansMN

d .

Abstract. There is a natural conjugation action on the set of endomorphism
of PN of fixed degree d ≥ 2. The quotient by this action forms the moduli of
degree d endomorphisms of PN , denoted MN

d . We construct invariant func-
tions on this moduli space coming from the set of multiplier matrices of the
periodic points. The basic properties of these functions are demonstrated such
as that they are in the ring of regular functions ofMN

d , methods of comput-
ing them, as well as the existence of relations. The main part of the article
examines to what extent these invariant functions determine the conjugacy
class in the moduli space. Several different types of isospectral families are
constructed and a generalization of McMullen’s theorem on the multiplier
mapping of dimension 1 is proposed. Finally, this generalization is shown to
hold when restricted to several specific families inMN

d .

1. Introduction
Let f : PN → PN be a degree d ≥ 2 endomorphism, i.e., defined by an

(N+1)-tuple of homogeneous degree d polynomials with no common zeroes,
defined over an algebraically closed field of characteristic zero. We define
the nth iterate of f for n ≥ 1 as fn = f ◦fn−1 with f0 the identity map. Let
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HomN
d be the set of all such endomorphisms. There is a natural conjugation

action of HomN
d by elements of PGLN+1 (the automorphism group of PN ),

and we denote fα = α−1 ◦ f ◦ α for α ∈ PGLN+1. Conjugation preserves
the intrinsic properties of a dynamical system, so we consider the quotient
MN

d = HomN
d /PGLN+1. This quotient exists as a geometric quotient (N =

1: [23, 28], N > 1: [19, 26]) and is called the moduli space of dynamical
systems of degree d on PN . These moduli spaces (and their generalizations)
have received much study; for example, see [3, 5, 21, 22, 23, 28].

Note that the action of PGLN+1 on HomN
d induces an action on the

ring of regular functions Q[HomN
d ] of HomN

d . Hence, it makes sense to
talk about functions in Q[HomN

d ] that are invariant under the action of
PGLN+1. We denote the set of such functions as Q[HomN

d ]PGLN+1 . The
action of PGLN+1 can be lifted to an equivalent action of SLN+1 and it is
often easier to work with this action. In dimension 1, Silverman [28] proves
that the ring of regular functions of the moduli space is exactly this set
of invariant functions, i.e., Q[M1

d] = Q[Hom1
d]SL2 and this holds in any

dimension Q[MN
d ] = Q[HomN

d ]SLN+1 following Levy [19]. We study the
invariant functions that arise from applying symmetric functions to the set
of eigenvalues of the multipliers of the periodic points of some fixed period.
We denote these invariants as σ(n)

i,j and give a precise definition in Section 2.
We could also define invariant functions using the periodic points of formal
period n defined as those points in the support of the n-th dynatomic
cycle, see Hutz [16] for the definition and properties of dynatomic cycles.
In Section 2 we prove that these invariant functions are in fact regular.

Theorem A. For f ∈ HomN
d and n ≥ 1 and i, j in the appropriate range,

let σ(n)
i,j and σ∗(n)

i,j be the multiplier invariants associated to f as defined by
equations (2.1) and (2.2) respectively.

(1) The functions

f 7→ σ
(n)
i,j and f 7→ σ

∗(n)
i,j

are in Q[akl, ρ−1], where {akl} are the coefficients of a generic ele-
ment fgen of HomN

d and ρ the resultant of fgen.
(2) The functions are PGLN+1 invariant and, hence, are in the ring of

regular functions Q[MN
d ].

One of the early motivations for studying invariant functions on the
moduli spaces comes from Milnor [23]. Milnor proved thatM1

2(C) ∼= A2(C)
by giving an explicit isomorphism utilizing invariant functions constructed
from the multipliers of the fixed points (extended to schemes over Z by
Silverman [28]). Recall that for a fixed point z of a rational function φ, the
multiplier at z is defined as λz = φ′(z). Given the multipliers of the three
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fixed points λ1, λ2, and λ3 of a degree 2 endomorphism of P1, we can define
three invariant functions σ1, σ1, and σ3 as

(t− λ1)(t− λ2)(t− λ3) =
3∑
i=0

(−1)iσit3−i,

where t is an indeterminate. In particular, σi is the i-th elementary sym-
metric polynomial evaluated on the multipliers of the fixed points. Because
the set of multipliers of the fixed points (the multiplier spectrum) are, at
worst, permuted under conjugation, the values σ1, σ2, and σ3 are invariants
of the conjugacy class. Milnor’s isomorphism is then given explicitly as

M1
2 → A2

[f ] 7→ (σ1, σ2).
Milnor’s map can be extended to any degree as

τd,1 :M1
d → Ad

[f ] 7→ (σ1, . . . , σd).
Note that we utilize only the first d of the d + 1 fixed point multiplier
invariants since there is the following relation (see Hutz–Tepper [17] or
Fujimura–Nishizawa [7, Theorem 1])

(−1)d+1σd+1 + (−1)d−1σd−1 + (−1)d−22σd−2 + · · · − (d− 1)σ1 + d = 0.
For degree larger than 2, the map τd,1 is no longer an isomorphism. When
restricted to polynomials, Fujimura [7] provided the cardinality of a generic
fiber is (d− 2)! and Sugiyama gave an algorithm to compute the cardinal-
ity of any fiber [31]. However, less is known for rational functions. Mc-
Mullen [22] showed that when τd,1 is extended to include symmetric func-
tions of the multipliers of periodic points of higher period, denoted τd,n,
the resulting map is generically finite-to-one away from the Lattès maps.
Gorbovickis strengthens McMullen’s theorem to choosing only 2d − 2 or-
bits out of all possible periodic points to arrive at a finite-to-one map away
from the Lattès maps and gives conditions on what orbits are sufficiently
independent to be used in this mapping [10, 11]. One open question in this
area is to determine the cardinality of a generic fiber of this generalization.
The author and Michael Tepper studied this problem for degree 3 rational
functions [17] and proved that the cardinality of τd,2 is generically at most
12, i.e., when including the multiplier invariants associated to the fixed
points and periodic points of period 2. Levy studied τd,n in dimension 1 in
positive characteristic [20].

In dimension greater than 1, these problems have received little study.
There is a series of papers by Guillot from the complex perspective studying
the eigenvalues of the multiplier matrices of the fixed points in certain
special cases [12, 13, 14, 15]. The parts of his work most related to this
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article are mainly in the recent preprint [14] and concern relations among
the eigenvalues of the fixed point multipliers for quadratic self-maps of P2

as well as how well these eigenvalues are able to determine the map up to
linear equivalence. While there is some small overlap of results on P2 with
his sequence of papers (mainly Corollary 5.20), the methods are entirely
different and the focus here is on moduli invariants in general.

With the invariant functions defined in Section 2, we are able to conjec-
ture in Section 5 an analog of McMullen’s Theorem for MN

d and N ≥ 2
(Conjecture 5.1). We then go on to prove in that section that the multi-
plier map τNd,n is finite-to-one for certain specific families as well as provide
a number of examples of infinite families whose image is a single point
(similar to the Lattès families in dimension 1). These families, whose mul-
tiplier spectrums are the same for every member of the family, are called
isospectral (see Definition 5.2). These results provide some partial answers
to questions raised during the Bellairs Workshop on Moduli Spaces and the
Arithmetic of Dynamical Systems in 2010 and subsequent notes published
by Silverman [30, Question 2.43] and also raised in Doyle–Silverman [5,
Question 19.5].

The following theorem summarizes the results of this article on isospec-
tral families.
Theorem B. The following constructions produce isospectral families.

(1) (Theorem 5.3) Let fa : P1 → P1 be a family of Lattès maps of
degree d. Then the k-symmetric product F is an isospectral family
in Homk

d.
(2) (Theorem 5.6) Let fa : PN → PN and gb : PM → PM be isospectral

families of morphisms with deg(fa) = deg(gb), then the cartesian
product family ha,b = fa × gb is isospectral in HomN+M+1

d .
(3) (Theorem 5.9) Let fa : PN → PN be an isospectral family of degree

d and g : PM → PM the degree d powering map. Then the family of
endomorphisms of ha : P(N+1)(M+1)−1 → P(N+1)(M+1)−1 induced by
the Segre embedding of fa × g is isospectral in Hom(N+1)(M+1)−1

d .
In some sense, these are the “obvious” constructions that produce isospec-

tral families. It would be interesting to know if these are the only construc-
tions that lead to isospectral families.

The following theorem summarizes the results of this article that prove
special cases where the multiplier map is finite-to-one (Conjecture 5.1).
Theorem C. The multiplier map is finite-to-one when restricted to the
following families.

(1) (Theorem 5.13) The fixed point multiplier map, τNd,1, is (generi-
cally) ((d − 2)!)N -to-one when restricted to split polynomial endo-
morphisms.
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(2) (Theorem 5.17) The fixed point multiplier map τNd,1 is (generi-
cally) finite-to-one when restricted to triangular polynomial endo-
morphisms.

(3) (Corollary 5.20) The fixed point multiplier map τ2
2,1 is (generically)

finite-to-one when restricted to monic polynomials of the form (5.1).
The explicit hypersurface given by the image of τ2

2,1 restricted to this
family is given in Theorem 5.19.

It should be noted that while this article was being prepared John Doyle
and Joseph Silverman released an article [5, Section 19] that touches briefly
on constructing invariants on MN

d . They construct a similar version of
invariant functions from multipliers without the associated study of the
ring of regular functions Q[MN

d ] and mainly raise a number of interesting
questions related to these invariant functions. Consequently, their article
can almost be considered as additional motivation for this work as, while
there is some overlap of subject, there is little overlap of results. Further,
we find our fuller construction of the invariant functions obtained from
multipliers more useful in computations such as those in Theorem 5.19 due
to their lower complexity. The hope is that this initial study of multiplier
invariants in higher dimensions will lead to many fruitful results.

The organization of the article is as follows. Section 2 defines the multi-
plier invariants and studies their basic properties. Section 3 discusses gen-
erators and relations among the invariants. Section 4 gives an algorithm
to compute the invariants without computing either the periodic points
or their multiplier matrices. Section 5 conjectures a higher dimensional
statement of McMullen’s theorem and gives both isospectral families and
families that are finite-to-one under τNd,n.

Acknowledgments. The author thanks Carlos D’Andrea for helpful com-
munication Section 4 as well as Joseph Silverman for several helpful con-
versations on this topic in general. An anonymous referee provided helpful
comments improving the clarify of this article.

2. Defining the Multiplier Invariants
Let f ∈ HomN

d . We designate the n-th iterate of f with exponential
notation fn = f ◦ fn−1. For an element α ∈ PGLN+1, we denote the
conjugate as fα = α−1 ◦ f ◦ α. At each fixed point P , the map induced
on the tangent space by f , dfP , is an element of GLN , after choosing a
basis. While the resulting matrix is not independent of this choice of basis,
the characteristic polynomial of this matrix is independent of this choice of
basis. We will denote the set of fixed points of f as Fix(f) and the points
of period n for f as Pern(f).
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Definition 2.1. Define the multiplier polynomial at P ∈ Fix(f) to be
the characteristic polynomial of dfP denoted γf,P . Its eigenvalues will be
denoted λP,1, . . . , λP,N . This definition can be extended to periodic points
of any order by considering the fixed points of the iterate fn. When needed,
we will call dfP the multiplier matrix at P .

The polynomial n-multiplier spectrum of f is the set of multiplier poly-
nomials for the periodic points of period n

Γn(f) = {γfn,P : P ∈ Pern(f)},

and the n-multiplier spectrum is the set of all eigenvalues (with multiplic-
ity) of the multiplier matrices or, equivalently, the zeros of the multiplier
polynomials

Λn(f) = {λP,1, . . . , λP,N : P ∈ Pern(f)}.
The map f will be dropped from the notation, when it is clear what map
is being referred to.

When counted with multiplicity, there are Dn = dn(N+1)−1
d−1 points of pe-

riod n for f , see Hutz [16, Proposition 4.17]. We can make similar definitions
when working with the points of formal period n; the designation will be
marked by a superscript asterisk; e.g.,

Γ∗n(f) = {γf,P : P ∈ Per∗n(f)}.

Since we will only mention the formal periodic point case in passing, we
leave the definitions and properties to the references; see Hutz [16].

We first see that multiplier polynomials are invariant under conjugation
by an element of PGLN+1.

Lemma 2.2. Let f ∈ HomN
d and P ∈ Fix(f) and α ∈ PGLN+1. Then

γf,P = γfα,α−1(P ).

Proof. Without loss of generality, we may assume that P and α−1P are in
the same affine chart. Let x = (x0, . . . , xN ) be coordinates for PN and fix
j such that the jth coordinate of P is not zero. Let z be coordinates of
the affine chart obtained by dehomogenizing at xj . Let φ be the dehomog-
enization of f , and P̃ the dehomogenization of P . Denoting the Jacobian
matrix as ∂φ

∂z , the chain rule tells us that

∂φα

∂z
(α−1P̃ ) = ∂

∂z
(α−1 ◦ φ ◦ α)(α−1P̃ )

= ∂α−1

∂z
(φ(P̃ )) · ∂φ

∂z
(P̃ ) · ∂α

∂z
(α−1P̃ )

= ∂α−1

∂z
(P̃ ) · ∂φ

∂z
(P̃ ) · ∂α

∂z
(α−1P̃ ).
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For matrices defined over a field, we have ABC and BCA are similar ma-
trices since BCA = A−1ABCA. Consequently,

charpoly(ABC) = charpoly(BCA)
so that

γfα,α−1P = charpoly
(
∂φ

∂z
(P̃ ) · ∂α

∂z
(α−1P̃ ) · ∂α

−1

∂z
(P̃ )

)
.

Moreover,
∂α

∂z
(α−1P̃ ) · ∂α

−1

∂z
(P̃ ) = ∂

∂z

(
α ◦ α−1

)
(P̃ ) = Id .

Therefore,

γfα,α−1P = γf,P = charpoly
(
∂φ

∂z
(P̃ )

)
.

�

The fixed points depend algebraically but not rationally on the coeffi-
cients of f and form an unordered set. Furthermore, Lemma 2.2 tells us
that the multiplier spectra depend only on the conjugacy class of f . Con-
sequently, we use the multipliers to define invariants on the moduli space.

We are looking for functions on the moduli space, we need them to be
invariant under conjugation. Conjugation can permute the fixed points. We
also need to be careful with the basis for the tangent space. The eigenvalues
of the Jacobian matrix are not fixed, but the symmetric functions of the
eigenvalues are. So we need to find functions that are invariant under the
action of the wreath product SN o SDn , where SN is the symmetric group
on N elements. We can think of the wreath product as acting on Dn sets of
N variables (the N eigenvalues of each of the Dn periodic point multiplier
matrices). We can permute each set of variables independently and we can
permute the sets of variables. In dimension 1, the multiplier matrix is a sin-
gle complex number and we have S1oSDn ∼= SDn . Furthermore, the invariant
functions arising from the fixed point multipliers are generated by the el-
ementary symmetric polynomials of the fixed point multipliers. In higher
dimensions, the invariant ring of the finite group SN o SDn is much more
complicated and can involve both primary and secondary invariants. While
there is a reasonably nice description of the primary invariants of wreath
products in terms of the primary invariants of the component groups [4,
Theorem 7.10], this seems to lead to an overly complicated system of gener-
ators (recall that the number of primary/secondary invariants is not fixed
and some choices produce “better” sets of generators). Regardless, because
of the rapid growth of the size of these wreath products, computing explicit
sets of generators is not feasible even for small N , n, and d. We take the
following approach.
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Let t be the indeterminant for the characteristic polynomials and con-
sider the polynomial in variables (w, t) given by

Σn(f) =
∏

P∈Pern(f)
(w − γf,P ) =

Dn∏
i=1

w −
 N∏
j=1

(t− λi,j)

 .
Label the coefficients of this polynomial by the complement of the bi-degree
in (w, t), i.e.,

(2.1) Σn(f) =
Dn∑
i=0

Ni∑
j=0

(−1)i+jσ(n)
i,j w

Dn−itNi−j .

We can make a similar definition for the formal periodic points:

(2.2) Σ∗n(f) =
D∗n∑
i=0

Ni∑
j=0

(−1)i+jσ∗(n)
i,j wD

∗
n−itNi−j .

The σ(n)
i,j are symmetric functions of the (coefficients of the) γP , and the

(coefficients of the) γP are rational functions of P and the coefficients of
f . Consequently, the σ(n)

i,j are rational functions on HomN
d . We now show

they are regular functions on the moduli space MN
d = HomN

d /PGLN+1.
Similar to Silverman [28], we generalize this construction to work over Z.

Let M =
(N+d
N

)
be the number of monomials of degree d in N + 1

variables. We can identify P(N+1)M−1 with N + 1 tuples of homogeneous
polynomials of degree d. For indeterminants ai,j , denote

(2.3) fgen = [f0, . . . , fN ] = [a00x
d
0 + · · ·+ a0Mx

d
N , a10x

d
0 + · · ·+ a1Mx

d
N ,

. . . , aN0x
d
0 + · · ·+ aNMx

d
N ].

Let ρ = Res(f0, . . . , fN ) ∈ Z[aij ] be the Macaulay resultant. The set HomN
d

is the open subset of P(N+1)M−1 defined by the condition ρ 6= 0. Then

HomN
d = ProjZ[aij ] \ {ρ = 0}

and so
H1(HomN

d ,OHomN
d

) = Z[aij ][ρ−1](0),

where the subscript (0) denotes the elements of degree 0 (i.e., rational
functions whose numerator and denominator are homogeneous of the same
degree). From generic properties of projective and affine varieties; see, for
example, the proof of Proposition 4.27 in Silverman [29], the ring of regular
functions Q[HomN

d ] of the affine variety HomN
d is given explicitly by

Q[HomN
d ] = Q

[
a
eij
ij

ρ
:
∑

eij = (N + 1)dN
]
.
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We now show that the σ(n)
i,j and σ∗(n)

i,j are regular functions onMN
d . This

generalizes the dimension 1 result of Silverman [29, Theorem 4.50].

Proof of Theorem A.

(1). FromMinimair [25, Theorem 1] we know that the resultant of an iterate
of f is a power of the resultant of f . Denote ρ(n) as the resultant of the
n-th iterate. Then we have

Q[akl, ρ−1] = Q[akl, (ρ(n))−1].

We can replace f by fn and consider only the multiplier spectrum of the
fixed points.

Let K denote the field Q(akl) treating akl as indeterminants. The fixed
points of fgen (defined in equation (2.3)) are the common zeros of a finite
collection of polynomials with coefficients in K. Hence, the set of fixed
points Fix(f) and their multipliers Λ1(f) are Gal(K/K) invariant sets.
Thus, the symmetric functions σ(1)

i,j (f) are Gal(K/K) fixed elements of K,
so are in K. Furthermore, σ(1)

i,j is homogeneous in {akl} in the sense that
σ

(1)
i,j gives the same values for fgen = [f0, . . . , fN ] and cfgen = [cf0, . . . , cfN ]

for any nonzero constant c. In particular, σ(1)
i,j is in K(0), the set of rational

functions of {akl} whose numerator and denominator have the same degree.
We want to show that these are regular functions onMN

d , so we need to
check that the only poles occur where ρ = 0. The only way to get a pole is if
one of the partial derivatives in the multiplier matrix has a pole. Thus, we
are looking at the denominators of the partial derivatives of a dehomoge-
nization of fgen. Because the multiplier is independent of the dehomogeniza-
tion choice, we could equally well dehomogenize at any of the coordinates
x0, . . . , xN . Fix a dehomogenization index b; then such a partial derivative
can be expressed as a rational function, for φv = fv(x0,...,xb−1,1,xb+1,...,xN )

fb(x0,...,xb−1,1,xb+1,...,xN ) , as

∂φv
∂xw

= (∂fv/∂xw) · fb − (∂fb/∂xw) · fv
f2
b

.

In particular, a pole occurs at α for this dehomogenization when fb(α) = 0.
Since the multiplier is independent of the choice of homogenization, σ(1)

i,j

is undefined exactly when fb(α) vanishes for every 0 ≤ b ≤ N for some
α. However, this is the condition in which the denominator of σ(1)

i,j is some
power of the resultant.

The only point of interest in modifying the above proof for σ∗(n)
i,j is having

the points and their multipliers be Gal(K/K) invariant sets. For the n-
periodic points, we have a simple system of polynomial equations obtained
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from fn(P ) = P . However, for the formal n-periodic points, we have an
inclusion-exclusion:

Φ∗n(f) =
∏
d|n

(Φd(f))µ(n/d).

Each Φd(f) on the right-hand side is a system of polynomial equations
obtained from fd(P ) = P and, hence, is Gal(K/K) invariant. Hence, Φ∗n(f)
is Gal(K/K) invariant and the rest of the proof follows similarly to the
previous situation.

(2). For the second part, we have already seen that the σ(n)
i,j are conjugation

invariant, so combining with the first part we have

σ
(n)
i,j ∈ Q[HomN

d ]SLN+1 = Q[MN
d ].

The statement follows similarly for σ∗(n)
i,j . �

3. Generators and Relations Among the σi,j
It is well known that in dimension 1 the elementary symmetric functions

of the multipliers are not all independent. Specifically, we have the relation
(see Hutz–Tepper [17] or Fujimura–Nishizawa [7, Theorem 1])

(−1)d+1σd+1 + (−1)d−1σd−1 + (−1)d−22σd−2 + · · · − (d− 1)σ1 + d = 0.

Milnor [23] made specific use of this general relation for degree 2 in noting
that σ3 + 2 = σ1. This relation can be obtained by expanding the classical
relation between the multipliers [24, Theorem 12.4],

(3.1)
d+1∑
i=1

1
1− λi

= 1

when λi 6= 1 for all 1 ≤ i ≤ d + 1, in terms of the elementary symmetric
polynomials. We look at two sources of relations in this section:

(1) relations obtained algebraically among the σi,j
(2) relations obtained from the generalization of equation (3.1).

There are further cases of relations among the eigenvalues studied by Guil-
lot in [15] in the case of quadratic maps on P2, which we will not touch
upon in this article.

Theorem 3.1. Let σ(n)
i,j be defined as above. Then every σ(n)

i,j with i > j is
dependent on the set {σ(n)

1,j , . . . , σ
(n)
j,j }.

Proof. We notate σi for the elementary symmetric polynomials and σ(n)
i,j as

defined in (2.1).
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From the definition of Σn(f), we can write

Σn(f) =
Dn∏
i=1

w − (tN − σ1(λi)tN−1 + σ2(λi)tN−2 + · · ·+ (−1)NσN (λi)),

where σk are the elementary symmetric polynomials and λu = {λu,1, . . . ,
λu,N} are the eigenvalues of the multiplier matrix for a periodic point of
period n. We can then write the σ(n)

i,j as combinations of the σk(λu). In
particular, we have

σ
(n)
i,j =

∑
subsets (u1, . . . , ui) of {1, . . . , Dn}


i∑

k=1∑
ak=j

σa1(λu1)σa2(λu2) · · ·σak(λuk)


=

∑
v∈Part(j,i)

(
Dn − len(v)
i− len(v)

)
σv,

where Part(j, i) is the set of partitions of the integer j with i parts (allowing
0 as a part), len(v) is the number of nonzero parts, and σv =

∏
i∈v σvi(λuvi ).

Note that each term actually has Dn terms in the product. The ones not
listed are all σ0(λ) = 1 (corresponding to additional zeros in the full length
Dn partition of j).

Fix j and consider σ(n)
1,j , . . . , σ

(n)
Dn,j

. Notice that every one is the same
degree, j, as polynomials in the eigenvalues of the multiplier matrices and
that there are no new partitions that occur in σ(n)

i,j than have already oc-
curred in {σ(n)

1,j , . . . , σ
(n)
j,j }. Further, each σ

(n)
b,j contains a partition not found

in σ(n)
a,j for a < b ≤ j and, hence, {σ(n)

1,j , . . . , σ
(n)
j,j } are independent. Since the

σk are fixed values and the binomial coefficient depends only on the length
of the partition (which can be no larger than j), we can think of σ(n)

i,j as
linear combinations of j unknowns. These j unknowns are

zk =
∑

v∈Part(j,i)
len(v)=k

σv.

At most j of these can be independent so at most j of the σ(n)
i,j for 0 ≤ i ≤

Dn are independent. Since the first j, {σ(n)
1,j , . . . , σ

(n)
j,j } are independent, the

remaining are dependent. �

Now we turn to the generalization by Ueda of Milnor’s Rational Fixed
Point Theorem [24, Theorem 12.4] derived from a generalization of the
Cauchy integral formula. This generalization also appears in Abate [1] and
Guillot [12]. Fatou and Julia both made use of the relation between the
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multipliers of the fixed points. Milnor formalized the statement and made
extensive use of the relation. We recall Ueda’s statement in our notation.

Proposition 3.2 (Ueda [33, Theorem 4]). Let f : PN (C)→ PN (C) be holo-
morphic of degree d ≥ 2. Let t be the indeterminant for the characteristic
polynomials. We have the relation

(3.2)
∑

P∈Fix(f)

γf,P (t)
γf,P (1) = tN+1 − dN+1

t− d
=

N∑
k=0

dktN−k.

Remark. Equating the coefficients of t on both sides yields N + 1 relations,
but only N of these N + 1 relations are independent: taking the sum of the
coefficient relations is the same as putting in t = 1, which is counting the
fixed points.

Interestingly, we can create alternate forms for these relations by differ-
entiating with respect to t; see, for example, Ueda [33, Corollary 5].

It is tempting to try to convert Ueda’s relations among the multipliers
to relations among the σ(n)

i,j . While it is possible to write Ueda’s relations in
terms of the σ(n)

i,j , the specific form typically depends on N , d, and k since
we need to consider the partitions of k. The following Corollary is one case
where the form does not depend on N , d, and k.

Corollary 3.3. Let f : PN → PN be a morphism. We have the relation

(D1 − 1) +
ND1∑
k=1

(−1)k+1(σ(1)
D1,k
− σ(1)

D1−1,k) = 0.

Proof. If all the fixed points are distinct, we consider
D1∑
i=1

1∏N
j=1(1− λi,j)

= 1.

Finding a common denominator and then clearing the denominator, this
equality becomes

D1∑
k=1

D1∏
j=1
j 6=k

N∏
i=1

(1− λj,i)−
D1∏
j=1

N∏
i=1

(1− λj,i) = 0.

The first term produces the σ(1)
D1−1,i, the symmetric functions on sets of

D1 − 1 variables (with the constant D1 coming from the constant term).
The second term produces the σ(1)

D1,i
, the full symmetric functions, (with a

constant term of 1). The signs are determined by the number of (−1)’s in
the product. This proves the relation when the fixed points are distinct.
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Since the set of maps with distinct fixed points is dense in HomN
d (it

is the complement of the closed variety defined by the common vanishing
of the N ×N minors of the Jacobian matrix of the fixed point variety) it
follows that the function

(D1 − 1) +
ND1∑
i=1

(−1)i+1(σ(1)
D1,i
− σ(1)

D1−1,i) ∈ C[HomN
d ]

is identically zero. �

While we have illustrated a few relations among the σ(n)
i,j , it would be

interesting to determine a minimal set of generators and full set of relations
among the σ(n)

i,j .

4. Computing

With the goal of trying to use the σ(n)
i,j as coordinates in the moduli

space MN
d we now turn to explicitly computing the σ(n)

i,j for a given map
f : PN → PN or family of maps. For a given map in dimension 1, given
enough time, we could compute a splitting field of fn(z) = z find each of
the fixed points, compute their multipliers, and calculate the σi. However,
when dealing with families of maps, the coefficients are functions of one or
more parameters, this method becomes completely impractical. Fortunately
we can use resultants to compute the σi without actually computing the
fixed points or their multipliers. The key is the Poisson product form of the
resultant of two polynomials:

Res(F,G) =
∏

F (z)=0
G(z).

If we set F = f(z) − z and G = w − f ′(z) for an indeterminant w, the
resultant (which can be calculated just in terms of the coefficients of F and
G) is a polynomial in w with the σi as coefficients. We would like something
similar for f : PN → PN , specifically a way to compute the σ(1)

i,j that does
not involve computing the fixed points nor their multiplier matrices. While
the theory of resultants does not quite work (wrong number of equations
and variables) we are able to use tools from elimination theory to perform
these computations. This causes the computations to rely on the calculation
of Groebner bases, which can be quite slow, but is effective for the families
discussed in the article. We first prove the general elimination theory result.

Proposition 4.1. Let X = V (f1(x), . . . , fm(x)) ⊂ AN be a zero dimen-
sional variety defined by polynomials f1, . . . , fm, where x = (x1, . . . , xN ).
Let g(x, t) ∈ K[x][t] be a polynomial. Consider the ideal

I = (f1, . . . , fm, w − g) ⊂ K[x][w, t].
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Let B be a Groebner basis for I under the lexicographic ordering with x >
w > t. Then, the only polynomial in B in the variables (w, t) has as zeros
the polynomial g evaluated at the finitely many (algebraic) points of X.

Proof. Let G(w, t) be the polynomial in B in the variables (w, t). This poly-
nomial is in the ideal generated by (f1, . . . , fm, w− g), so after specializing
x to a common root a of f1 = . . . = fm = 0 (i.e., a point of X) we have
that for some polynomial A

G(w, t) = A(a,w, t)(w − g(a, t)).
In other words, g(a, t) is a root of G(w, t).

In the other direction, the “elimination-extension theorem” (see [2, Chap-
ter 3]) guarantees that every root of G(w, t) extends to a root of the full
system f1 = . . . = fm = w − g = 0, so that it comes from g(a, t) for some
a ∈ X. �

We can use Proposition 4.1 to (usually) compute the symmetric func-
tions of the characteristic polynomials of the multipliers without actually
computing the periodic points or the multipliers. When there are multiplic-
ities involved (i.e., two periodic points have the same characteristic poly-
nomial), the Groebner basis calculation loses this multiplicity information
and, hence, does not exactly compute the σ(1)

i,j . There are two ways around
this issue. One is to introduce a deformation parameter to “separate” the
values, take a Groebner basis of the new system, and specialize the defor-
mation parameter to 0. However, in practice some care needs to be taken
in choosing how to deform so that the values do in fact separate. An alter-
native is a modification on computing Chow forms (or U -resultants). We
adopt the latter approach.

Proposition 4.2. Let X = V (f1(x), . . . , fm(x)) ⊂ AN be a zero dimen-
sional variety defined by polynomials f1, . . . , fm, where x = (x1, . . . , xN ).
Let g(x, t) ∈ K[x][t] be a polynomial. Consider the ideal

I = (f1, . . . , fm, u0g + u1x1 + · · ·+ uNxN ) ⊂ K[x][u, t],
where u = (u0, . . . , uN ) are indeterminants. Let B be a Groebner basis of I
under the lexicographic ordering with x > u > t. Then, the only polynomial
in B in the variables (u, t) is of the form∏

a∈X
g(a, t)u0 + a1u1 + · · ·+ aNuN .

Proof. Essentially the same as the Proposition 4.1. �

The following algorithm computes the product of the characteristic poly-
nomials of the multipliers of the fixed points. Roughly the algorithm com-
putes the characteristic polynomials for the fixed points one affine chart at
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a time. The specialization step (Step 3.iii.) avoids duplication of periodic
points that are in multiple affine charts.

Algorithm 4.3. Let f : PN → PN be a morphism.

Input: f
Output: Σ1(f)

1. Let X be the zero dimensional variety defining the fixed points.
2. Set σ = 1.
3. For each j from N to 0 do:

i. Consider the j-th affine chart fj : AN → AN in variables
x1, . . . , xN and the fixed point variety Xj of fj .

ii. Compute g as the characteristic polynomial of the jacobian
matrix

g(x, t) = charpoly
(

∂fj
∂(x1, . . . , xN )

)
.

iii. Specialize to (x1, . . . , xN ) 7→ (x1, . . . , xj , 0, . . . , 0).
iv. Compute a lexicographic (x > u > w > t) Groebner basis of

the (specialized) ideal.
B = (Xj , u0(w − g) + u1x1 + · · ·+ uNxN )

v. For G the element of B in the variables (u, t), specialize to
u0 = 1 and ui = 0 for 1 ≤ i ≤ N , call the specialization G̃. Set

σ = σ · G̃.

4. Return σ

Note that if the symbolic characteristic polynomial is a rational function
in x, say g = gnum

gden
, then we can take the ideal:

I = (Xf , u0(wgden − gnum) + gden(u1x1 + · · ·+ uNxN )).
For Σn(f), replace f with fn.

5. McMullen’s Theorem and Special Families
One of the main motivations of the current work is Milnor parameters

and McMullen’s Theorem. Milnor [23] proved that M2(C) ∼= A2(C) and
Silverman extended the isomorphism to one over Spec(Z) [28]. The isomor-
phism is explicitly given by the first two elementary symmetric polynomials
of the multipliers of the fixed points. For the case of polynomials, Fujimura
(and others) proved that the symmetric function in the multipliers of the
fixed points gives a (d − 2)!-to-1 mapping [7, 31]. Hutz–Tepper [17] prove
that for polynomials of degree ≤ 5, adding the symmetric functions of the
2-periodic multipliers makes the mapping one-to-one and conjecture the
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same holds for polynomials of any degree. They also show for degree 3 ra-
tional functions that while the map to the fixed point multiplier symmetric
functions is infinite-to-one, by adding the 2-periodic point multiplier sym-
metric functions the mapping is (generically) 12-to-one. The methods in all
these cases are explicitly computational.

Using complex analytic methods, McMullen proved in dimension 1 that
by including symmetric functions of the multipliers of the periodic points
of enough periods, the multiplier map will always be finite-to-one away
from the locus of Lattès maps [22]. The Lattès maps must be avoided
since they all have the same set of multipliers. We proposed the following
generalization of McMullen’s Theorem.

Conjecture 5.1. Let f : PN → PN be a morphism. Define the map

τNd,n :MN
d → AM

by
τNd,n(f) = (σ(1), . . . ,σ(n)),

where σ(k) is the complete set of sigma invariants for the points of period
k. Then for large enough n, τNd,n is quasi-finite on a Zariski open set.

We prove a few special cases and describe a few special subvarieties where
the map τNd,n is constant for all n.

5.1. Isospectral Families.

Definition 5.2. We say that two maps f, g : PN → PN are isospectral
if they have the same image under τNd,n for all n. Similarly, we say that a
family fa : PN → PN is isospectral if its image under τNd,n is a point for all
n.

5.1.1. Lattès. One way to generate isospectral maps in higher dimensions
is to apply a construction to a family of Lattès maps. For example, sym-
metrization [8], cartesian products, and Segre embeddings can be used to
construct isotrivial families starting with a Lattès family.

It is worth mentioning that Rong [27, Theorem 4.2] proves that sym-
metric maps (up to semi-conjugacy) are the only Lattès on P2. He follows
Ueda’s construction [32] which is the same as the 2-symmetric product as
defined in [8] which is essentially the map induced on P2 by f × f from the
isomorphism (P1)2/S2 ∼= P2.

Theorem 5.3. Let fa : P1 → P1 be a family of Lattès maps of degree d.
Then the k-symmetric product F is an isospectral family in Homk

d.

Proof. The multipliers of the symmetric product F depend only on the
multipliers of f [8]. �
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Example 5.4. We compute with an example from Gauthier–Hutz–
Kaschner [8]. Starting with the Lattès family

fa : P1 → P1

[u : v] 7→ [(u2 − av2)2 : 4uv(u− v)(u− av)]
we compute the 2-symmetric product

Fa : P2 → P2

[x : y, z] 7→ [((x+ az)2 − ay2)2 :
4((x+ az)3y + 2(a+ 1)(x+ az)2xz + a(x+ az)y3

− 8axyz(x+ az)− (a+ 1)(x2y2 + a2y2z2)) :
16xz(x− y + z)(x− ay + a2z)].

We compute the product of (w − γ(t)), without multiplicity, to have

Σn(f) = w5 + w4(−5t2 − 4t) + w3(10t4 + 16t3 − 4t2 − 32t− 48)
+ w2(−10t6 − 24t5 + 12t4 + 112t3 + 240t2 + 256t+ 128)
+ w(5t8 + 16t7 − 12t6 − 128t5 − 336t4 − 576t3 − 576t2 − 256t)
− t10 − 4t9 + 4t8 + 48t7 + 144t6 + 320t5 + 448t4 + 256t3.

Note that this does not depend on the parameter a.

Next we consider cartesian products of maps. Given morphisms f : PN →
PN and g : PM → PM , we define a map h = f × g : PN+M+1 → PN+M+1

as the induced map by the coordinates of f and g. Specifically,

h(x0, . . . , xN , xN+1, . . . , xN+M+1)
= [f0(x0, . . . , xN ), . . . , fN (x0, . . . , xN ),

g0(xN+1, . . . , xN+M+1), . . . , gM (xN+1, . . . , xN+M+1)].
For this product to be well defined as a projective map, we must have
deg(f) = deg(g). Note that the resulting map h is a morphism.

Lemma 5.5. Let f : PN → PN and g : PM → PM be morphisms of degree
d > 1 and h = f × g. The fixed points of h are of the following three forms.

(1) (fixed point of f) · k · (d− 1 root of unity) × (fixed point of g) where
k satisfies f(kx0, . . . , kxN ) = (kαx0, . . . , kαxN ), where g(xN+1, . . . ,
xN+M+1) = (αxN+1, . . . , αxN+M+1) for some nonzero constant α

(2) [0, . . . , 0]× (fixed point of g)
(3) (fixed point of f)×[0, . . . , 0]

Proof. Recall that for a morphism of degree d on PN there are dN+1−1
d−1 =

dN + · · ·+d+ 1 fixed points (counted with multiplicity). Each of the points
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enuemrated in the statement is clearly fixed and distinct from each other
and there are a total of

(d− 1) · d
N+1 − 1
d− 1 · d

M+1 − 1
d− 1 + dN+1 − 1

d− 1 + dM+1 − 1
d− 1

= dN+1d
M+1 − 1
d− 1 + dN+1 − 1

d− 1
= dN+M+1 + · · ·+ d+ 1

of these points (counted with multiplicity). Therefore, these are all of the
fixed points. �

Theorem 5.6. Let fa : PN → PN and gb : PM → PM be isospectral
families of morphisms with deg(fa) = deg(gb). Then the cartesian product
family ha,b = fa × gb is isospectral in HomN+M+1

d .

Proof. We need to show that the eigenvalues of the multiplier matrices of
ha,b depend only on the eigenvalues of the multiplier matrices of fa and gb.
We consider each type of fixed point of ha,b from Lemma 5.5 in turn.

For a fixed point Q of the form (fixed point of f)·k ·(d−1 root of unity)×
(fixed point of g), where k satisfies f(kx0, . . . , kxN ) = (kαx0, . . . , kαxN )
and where g(xN+1, . . . , xN+M+1) = (αxN+1, . . . , αxN+M+1), notate

Q = αζQf ×Qg,

where ζ is the d − 1st root of unity. We will show that the eigenvalues of
the multiplier matrix of Q are the eigenvalues of the multiplier matrix of
Qf , the eigenvalues of the multiplier matrix of Qg, and d.

At least one coordinate of Qf is nonzero, if we dehomogenize ha,b at that
coordinate and compute the multiplier matrix, we have a matrix of the
form (

mf,Qf 0
−− G

)
so the eigenvalues of the multiplier matrix of Qf for f are eigenvalues of
this matrix. Similarly at least one coordinate of Qg is nonzero and we see
that the eigenvalues of the multiplier matrix of Qg are also eigenvalues.

There is one remaining undetermined eigenvalue, which we now show
is d, the degree of ha,b. Let i be the coordinate of Qg that is nonzero.
Dehomogenizing at i and, with a slight abuse of notation, labeling the
new coordinates (x0, . . . , xN , xN+1, . . . , x̂i, . . . , xn+M+1) and computing the
multiplier matrix, we get (

∂fj/gi
∂(x0,...,xN ) 0
−− mG,Qg

)
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Where the upper left hand block is the Jacobian matrix of the dehomoge-
nization with respect to the first N + 1 variables,

Jf =


gi
∂f0
∂x0
g2
i

· · ·
gi

∂f0
∂xN

g2
i... · · ·
...

gi
∂fN
∂x0
g2
i

· · ·
gi
∂fN
∂xN

g2
i

 = 1
gi


∂f0
∂x0

· · · ∂f0
∂xN... · · ·
...

∂fN
∂x0

· · · ∂fN
∂xN


We are looking for roots of the characteristic polynomial det(Jf − t Id)
or, equivalently, that the matrix Jf − d Id is singular. We will see that its
columns are dependent using Euler’s identity for homogeneous polynomials

dfj =
N∑
l=0

xl
∂fj
∂xl

.

Taking the linear combination of the columns with (x0, . . . , xN ) we arrive
at the column vector 

(∑N
l=0 xl

∂f0
∂xl

)
− x0d

...(∑N
l=0 xl

∂fN
∂xl

)
− xNd

 .
Notice that fi(x0, . . . , xN ) = xi since we are working with a fixed point (the
factor of α cancels since we have dehomogenized). Therefore, by Euler’s
identity, this is the zero column vector and the columns are dependent.
Hence, the matrix (Jf − d Id) is singular and d is an eigenvalue of Jf .

For the remaining two fixed point forms, we dehomogenize at a nonzero
coordinate (say either fi or gi). Then the multiplier matrix is of the form(

0 0
−− mG,Qg

)
,

so we have eigenvalues 0 and λQg (or 0 and λQf , respectively).
The eigenvalues of the multiplier matrices of ha,b depend only on the

degree, the dimension, and the eigenvalues of the multiplier matrices of fa
and gb. Since fa and gb are isospectral, then so is ha,b. �

Example 5.7. Consider the two maps
fa : P1 → P1 [u, v] 7→ [(u2 − av2)2 : 4uv(u− v)(u− av)]
g : P1 → P1 [z : w] 7→ [z4 : w4]

The cartesian product is the family
Fa : P3 → P3

[(u2 − av2)2 : 4uv(u− v)(u− av) : z4 : w4].
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We compute the σ(1)
i,j (in Sage) and see that the result does not depend on

the parameter a.

Σ1(f) = w11 + w10(−11t3 + 40t2 − 64t+ 32)
+ w9(55t6 − 400t5 + 1272t4 − 2080t3 + 1280t2 + 1024t− 2048)
+ w8(−165t9 + 1800t8 − 8568t7 + 22240t6 − 28864t5 − 128t4

+ 59392t3 − 75776t2 + 32768t)
+ · · ·

Note that we can create similar families for P2.

Example 5.8. Consider the Lattès family given by multiplication by 2 on
y2 = x3 + a:

fa : P1 → P1 [u, v] 7→ [u4 + (−8a)uv3 : 4u3v + 4av4]

and the family

Fa : P2 → P2

[x4+(−8a)xy3 : 4x3y + 4ay4 : z4].

We compute the σ(1)
i,j (in Sage) without multiplicity and see that the result

does not depend on the parameter a.

Σ1(f) = w5 + w4(−5t2 + 8t− 8) + w3(10t4 − 32t3 + 28t2 + 48t− 128)
+ w2(−10t6 + 48t5 − 36t4 − 176t3 + 320t2 + 256t)
+ w(5t8 − 32t7 + 20t6 + 208t5 − 256t4 − 512t3)
− t10 + 8t9 + (−4)t8 + (−80)t7 + 64t6 + 256t5

Next we consider products of maps (of the same degree) embedded into
PN by the Segre embedding. Given morphisms f : PN → PN and g : PM →
PM , we define a map f×g : PN×PM → PN×PM . Via the Segre embedding,
this product induces a map h : P(N+1)(M+1)−1 → P(N+1)(M+1)−1.

Theorem 5.9. Let fa : PN → PN be an isospectral family of degree d ≥ 2
and g : PM → PM the degree d powering map. Then the family of endo-
morphisms of ha : P(N+1)(M+1)−1 → P(N+1)(M+1)−1 induced by the Segre
embedding of fa × g is isospectral in Hom(N+1)(M+1)−1

d .

Proof. The map induced by the Segre embedding of fa and the powering
map is (after permuting coordinates) the cartesian product of M +1 copies
of fa. Applying Theorem 5.6 inductively to the product gives the result. �
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Example 5.10. Consider the Lattès map induced by multiplication by 2
on the Mordell family: y2 = x3 + a,

Fa : P1 → P1

[x : y] 7→ [x4 + (−8a)xy3 : 4(x3y + ay4)]

and the powering map

G : P1 → P1

[x : y] 7→ [x4 : y4].

We compute the map induced on P3 → P3 by the Segre embedding
given by

fa : P3 → P3

[u0 : u1 : u2 : u2] 7→ [u4
0 + (−8a)u0u

3
2 : u4

1 + (−8a)u1u
3
3 :

4(u3
0u2 + au4

2) : 4(u3
1u3 + au4

3)].

We compute the σ(1)
i,j (in Sage) without multiplicity and see that they do

not depend on a

Σ1(f) = w8 + w7(−8t3 + 8t2 + 20t− 16)
+ w6(28t6 − 56t5 − 140t4 + 256t3 + 160t2 − 512t− 512)
+ w5(−56t9 + 168t8 + 420t7 − 1280t6 − 1056t5 + 4032t4

+ 3072t3 − 4096t2 − 4096t)
+ w4(70t12 − 280t11 − 700t10 + 3120t9 + 2864t8 − 13888t7

− 9856t6 + 26624t5 + 26624t4)
+ · · ·

It is not clear if endomorphisms of PN induced by the Segre embedding
applied to more general isospectral families are still isospectral. The ques-
tion comes down to the fixed points of the induced map that are not in
the image of the Segre embedding. It seems possible that the multipliers
of these points could depend on the parameter. Surprisingly, the few ex-
amples attempted by computation appeared to be isospectral, but the full
computation was beyond the reach of the machine being used.

5.2. Finite-to-One. In this section, we prove the multiplier map τNd,n is
finite-to-one for certain special families.

5.2.1. Split Polynomial Endomorphisms. We first treat the simplest
case, split polynomial endomorphisms. On affine space, a split polynomial
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endomorphism is an endomorphism where each coordinate is a single vari-
able polynomial: F = (F1(x1), F2(x2), . . . , FN (xN )) : AN → AN , for poly-
nomials F1, . . . , FN . A projective split polynomial endomorphism is the
homogenization of an affine split polynomial endomorphism. See Ghioca–
Nguyen [9] for a study of periodic subvarieties for split polynomial maps and
the Dynamical Mordell–Lang Conjecture in the disintegrated (not Cheby-
shev or power map) case. We must have deg(F1) = · · · = deg(FN ) for the
resulting projective map to be a morphism.

The following two lemmas are simple calculations.

Lemma 5.11. The multiplier matrix of an affine fixed point of a split
polynomial endomorphism is diagonal with entries the multipliers of the
fixed points of the coordinate polynomials as maps of A1.

Lemma 5.12. Let f : PN → PN be a split polynomial endomorphism. Let
m =

(
m′ 0
0 1

)
for an N × N permutation matrix m′. Then the conjugation

fm is obtained by permuting the first N coordinate functions of f by m′.

Theorem 5.13. The fixed point multiplier map, τNd,1, is generically ((d −
2)!)N -to-one when restricted to split polynomial endomorphisms of degree
d on PN .

Proof. To check that τNd,1 is finite-to-one and compute the degree we assume
we are given Σ1(f) for some split polynomial endomorphism f .

The σ(1)
i,j are the coefficients of the polynomial Σ1(f), which we can factor

to get (unordered) sets of eigenvalues of the multiplier matrices. We need
to determine how many ways we can split these unordered eigenvalues into
multiplier spectra for the coordinate maps.

After a change of variables, we can assume that each Fi is monic. The
affine fixed points are all possible cartesian products of the fixed points of
F1, . . . , FN : A1 → A1. The fixed points at infinity are (x1 : · · · : xN : 0)
with each xi ∈ {−1, 0, 1}, not all 0. In particular, we know which eigenvalues
come from the fixed points at infinity. For the affine fixed points, since the
multiplier matrices are diagonal (Lemma 5.11) the multiplier of each fixed
point of each coordinate function is repeated a specific number of times:
(d+1)N−1. Further, based on which eigenvalues occur in which (unordered)
sets, we can split the eigenvalues into multiplier spectra for each coordinate
function in only one way. Consequently, the only freedom of choice we have
is to permute the coordinate functions.

Having partitioned the eigenvalues into multiplier spectra based on co-
ordinate functions, we can apply Fujimura’s results summarized in [6] that
any given set of multiplier invariants arising from the multiplier spectra of
the fixed points of a polynomial corresponds to (d− 2)! possible conjugacy
classes of polynomials. There are N sets of multiplier spectra, so we have
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(generically) ((d−2)!)N possible sets of N coordinate functions. Then these
N coordinate functions can be arranged in any permutation; however, all
of these N ! permutations are conjugate (Lemma 5.12), so the total degree
of τNd,1 restricted to split polynomial endomorphisms is ((d− 2)!)N . �

Remark. Moreoever, we can apply Sugiyama’s algorithm [31] to determine
which sets of multipliers σ(1)

i,j are in the image of τNd,1 and what the degree
of a specific fiber is by applying the algorithm componentwise.

Hutz–Tepper conjectured in [17] that τ1
d,2 is injective for polynomial maps

in dimension 1, i.e., including the multipliers of the 2-periodic points. That
conjecture implies a similar statement here: τNd,n for n ≥ 2 is (generically)
one-to-one when restricted to split polynomial endomorphisms.
Example 5.14. For degree 2 polynomials

F = (x2 + c, y2 + d),

we have that the invariants {σ(1)
i,j } are generated by

σ
(1)
2,2 = 8(c+ d) + 60

σ
(1)
2,3 = 16(c+ d) + 24.

In particular, the pair (c, d) is determined up to permutation. Recall from
Milnor that the family of quadratic polynomials f(x) = x2 + c is the line
(σ1, σ2) = (2, 4c) inM1

2, so that each pair (c, d) corresponds to exactly one
function F . Since the permutations are conjugate, the multiplier mapping
τ2

2,1 is (generically) 1-to-1.
5.2.2. Triangular polynomials.
Definition 5.15. A triangular polynomial is a map of the form

F : AN → AN

(x1, . . . , xN ) 7→ (F1(x1), F2(x1, x2), . . . , FN (x1, . . . , xN ))
for polynomials F1, . . . , FN .

We are specifically interested in the case when the homogenization is an
endomorphism of PN and call such maps triangular polynomial endomor-
phisms. For the homogenization to be an endomorphism, it is necessary
that deg(F1) = · · · = deg(FN ).

The following combinatorial lemma is needed to ensure we have enough
equations to determine our map through interpolation.
Lemma 5.16. Fix a positive integer d ≥ 2. Then, for every positive integer
n ≥ 1 we have (

d+ n

d

)
≤

n∑
i=0

di.
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Proof. We proceed by induction on n. For n = 1, we compute

d+ 1 =
(
d+ 1
d

)
= d+ 1.

Now we induct on n so that n is at least 2, and we compute(
d+ (n+ 1)

d

)

= (n+ 2) · · · (n+ d+ 1)
d!

= (n+ 1)(n+ 2) · · · (n+ d)
d! + d

(n+ 2) · · · (n+ d)
d!

= (n+ 1)(n+ 2) · · · (n+ d)
d! + d

n+ 1
(n+ 1)(n+ 2) · · · (n+ d)

d!

≤ (dn + · · ·+ d+ 1) + d

n+ 1(dn + · · ·+ d+ 1).

We need
1

n+ 1(dn+1 + · · ·+ d) ≤ dn+1,

which is the same as
dn + · · ·+ d+ 1 ≤ ndn+1.

Since n is at least 2, it is sufficient to show that
dn−1 + · · ·+ d+ 1 ≤ dn.

Since dn−1
d−1 = dn−1 + · · ·+ d+ 1 and d ≥ 2, this is clear. �

Theorem 5.17. The fixed point multiplier map τNd,1 is (generically) finite-
to-one when restricted to triangular polynomial endomorphisms.

Proof. Let f be the homogenization of the triangular polynomial endomor-
phism (F1, . . . , FN ) : AN → AN . To check that τNd,1 is finite-to-one assume
we are given Σ1(f) for some triangular polynomial endomorphism f . The
σ

(1)
i,j are the coefficients of the polynomial Σ1(f), which we can factor to

get (unordered) sets of eigenvalues of the multiplier matrices.
From this finite set of eigenvalues there are a finite number of subsets

which could be the (affine) multipliers of fixed points for F1 as an endomor-
phism of P1. Since F1 is a polynomial, the fixed point at infinity is totally
ramified and has multiplier 0. Applying Fujimura [6], there are finitely many
possibilities for F1 for each subset of eigenvalues (specifically, (d−2)!). Write
each of these possibilities in a monic centered form and compute the fixed
points. For each fixed point z of F1 we can consider the single variable poly-
nomial F2(z, x2) : A1 → A1. Again there are finitely many subsets of the
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eigenvalues that could be the multipliers of the fixed points of F2(z, x2),
so there are finitely many possibilities for F2(z, x2). Again write each of
these in a monic centered form in terms of the variable x2. We now have
essentially an interpolation problem. We know the values of the coefficients
of the polynomial F2 specialized at the fixed points of F1. There are d+ 1
fixed points of F1 and each coefficient is a polynomial of degree at most d
in x1. Hence, the number of coefficient polynomials is no larger than the
number of fixed points, so we can find the unique polynomial F2.

Repeating this process for each F3, . . . , FN , we expect that there are
finitely many possibilities for F . Each step is a multivariate Lagrange in-
terpolation problem. Having distinct fixed points is an open condition in
MN

d so Lemma 5.16 shows that generically there are “enough” fixed points
at each stage to have enough equations to uniquely determine the coefficient
polynomials. The question remains as to whether enough of those equations
are independent. The equations to determine each Fk are linear equations in
the images of the Veronese embeddings νj for 1 ≤ j ≤ d applied to the fixed
points of (F1, F2, . . . , Fk−1) (as an endomorphism of Pk−1). So, if we are in
a situation of infinitely many solutions, then for some j, the images of these
fixed points under νj satisfy a hyperplane equation in the Veronese variety.
In particular, the fixed points of (F1, F2, . . . , Fk−1) as an endomorphism of
Pk−1 are on a degree j hypersurface in Pk−1. We need to see that having
such a dependency is a closed condition, so it does not happen generically.
Consider the product spacesMN

d ×M(N, j) for 1 ≤ j ≤ d where M(N, j)
is the moduli space of degree j hypersurfaces in PN . We are considering the
conditions on pairs (f, S) where Fix(f) ⊂ S. Checking whether a subvariety
is contained in a hypersurface gives a closed condition. Each of these closed
conditions (1 ≤ j ≤ d) projects to a closed condition on MN

d , so to have
any such relation is a closed condition onMN

d . Therefore, as long as there
exists at least one map outside of this condition, then generically there is
no such hypersurface relation among the fixed points. The powering map of
degree d has fixed points with each coefficient either 0 or a (d−1)-st root of
unity (but not all 0). In particular, every possible point whose coordinates
are 1 or 0 is fixed. These cannot all satisfy a single polynomial equation.
Hence, generically, the fixed points are not all on a hypersurface of degree
at most d and the interpolation problem gives a unqiue solution. �

If we can effectively determine a single variable polynomial from the
multipliers of its fixed points, the proof of Theorem 5.17 can be used to
effectively compute the fibers of τ1. Recall that for a degree 2 polynomial
whose affine fixed points have multipliers λ1, λ2, we have multiplier invari-
ants

(σ1, σ2) = (λ1 + λ2, λ1λ2) = (2, 4c),
and is conjugate to F (x) = x2 + c (Milnor [23]).
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Example 5.18. Consider the multiplier polynomial Σ1(f) that has the
pairs of multiplier matrix eigenvalues

{(0, 0), (0, 0), (3, 21/2), (−1, 3/2), (−1, 1/2), (3,−17/2), (0,−1)}.

We assume these invariants are associated to a degree 2 triangular polyno-
mial endomorphism of the form

F : P2 → P2

F (x, y, z) = [F1(x, z) : F2(x, y, z) : z2].

Since the values of multipliers of (affine) fixed points of F1 (as a polynomial
endomorphism of P1) must occur in two distinct pairs of eigenvalues, the
multipliers of the affine fixed points of F1 must be in the set

{0, 3,−1}

Of the three possible pairs (plus the multiplier of 0 at infinity), only one
such pair gives a quadratic polynomial. It has Milnor parameters

(σ1, σ2, σ3) = (2,−3, 0) = (2, 4c, 0)

so we have c = −3/4 and F1(x, 1) = x2 − 3/4 which (as an endomorphism
of P1) has fixed points {−1/2, 3/2,∞}.

Associated to the fixed point −1/2, which has multiplier −1, are the
eigenvalues {1/2, 3/2, 0}. These are the other value of the pairs of eigenval-
ues containing −1. Taking the possible pairs of these values, we get

(λ1, λ2)→ (σ1, σ2)
(1/2, 3/2) 7→ (2, 3/4)

(1/2, 0) 7→ (1/2, 0)
(3/2, 0) 7→ (3/2, 0)

The only one of these that is a quadratic polynomial is (2, 3/4) which
corresponds to F2(1/2, y, 1) = y2 + 3/16.

Associated to the fixed point 3/2, which has multiplier 3, are the eigen-
values {21/2,−17/2}. The corresponding Milnor parameters are (2,−357/4,
0). This gives the quadratic polynomial F2(−3/2, y, 1) = y2 − 357/16.

Associated to the fixed point at infinity, which has multiplier 0, are the
eigenvalues {0, 3,−1}. The corresponding Milnor parameters are (2,−3, 0).
This is the polynomial F2(1, y, 0) = y2 − 3/4.

We can conjugate so that the second coordinate of F is a polynomial in
normal form (which we will consider as lacking monomials {yd−1x, yd−1}
and with yd monic). Write the second coordinate as

F2(x, y, z) = y2 + ax2 + bxz + cz2.
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We need to solve

F2(−1/2, y, 1) : 1/4a− 1/2b+ c = 3/16
F2(3/2, y, 1) : 9/4a+ 3/2b+ c = −357/16
F2(1, y, 0) : a = −3/4.

The unique solution is a = −3/4, b = −21/2, c = −39/8, which gives the
map

F = [x2 − 3/4z2 : −3/4x2 + y2 − 21/2xz − 39/8z2 : z2].

5.2.3. Monic Polynomials. A regular polynomial endomorphism is an
endomorphism of PN that leaves a hyperplane invariant.

Similar to Ingram [18], we restrict attention to morphisms f : P2 → P2

of degree d = 2 with a totally invariant hyperplane H ⊂ P2 such that
the restriction of f to H is the dth power map in some coordinates. This
defines a subvariety MP 2

2 ⊂ M2
2 of the space of coordinate-free endomor-

phisms of P2. Ingram calls such a map a monic polynomial and we adopt
his terminology. We next determine a model for conjugacy classes in MP 2

2 .
Let (x, y, z) be the coordinates of P2. We conjugate to move the invariant

hyperplane to the hyperplane z = 0 and, since we are assuming we have a
monic polynomial, {(1, 1, 0), (0, 1, 0), (1, 0, 0)} are fixed points. So the map
is of the form

f(x, y, z) = [x2 + a1xz + a2yz + a3z
2 : b1xz + y2 + b2yz + b3z

2 : z2].

We can conjugate by an element of the form

m =

1 0 a
0 1 b
0 0 1


to maintain the form of f . In particular,

fm = [x2 + (2a+ a1)xz + a2yz + (a2 + aa1 + a2b− a+ a3)z2 :
y2 + b1xz + (2b+ b2)yz + (b2 + ab1 + bb2 − b+ b3)z2 : z2].

So we have one more degree of freedom in this family. Choosing to also fix
the point (1, 0, 1) removes this freedom and forces a3 = −a1 and b3 = −b1.
Thus, we can assume that our map is of the form

(5.1) f(x, y, z) = [x2 + a1xz + a2yz − a1z
2 : y2 + b1xz + b2yz − b1z

2 : z2].

With this form we can explicitly compute Σ1(f) and the relations among
the multiplier invariants.

To ease readability, we drop the superscript (1) from the σ(1)
i,j in the

following theorem.
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Theorem 5.19. The image of τ2
2,1 restricted to monic polynomials of the

form (5.1) is generated by

σ1,2 = 8a2b1 + 4
σ2,2 = −2a2

1 − 4a1b1 + 36a2b1 − 4a2b2 − 2b2
2 − 4a1 + 4a2 − 4b1 + 4b2 + 60

σ2,3 = 8a2
1b1 + 16a1a2b1 + 16a2b1b2 + 8a2b

2
2 − 4a2

1 + 8a1b1 + 40a2b1

− 24a2b2 − 4b2
2 − 8a1 + 16a2 + 8b2 + 24

σ2,4 = −4a3
1b1 + 18a2

2b
2
1 − 8a1a2b1b2 − 2a2

1b
2
2 − 4a2b

3
2 − 4a2

1b1 + 24a1a2b1

+ 4a2
1b2 + 8a2b1b2 − 4a1b

2
2 + 20a2b

2
2 − 4a2

1 + 20a2b1 + 8a1b2

− 32a2b2 − 4b2
2 − 8a1 + 16a2 + 8b2

σ3,3 = 32a2
1b1 + 64a1a2b1 − 8a2

2b1 − 8a2b
2
1 + 64a2b1b2 + 32a2b

2
2 − 32a2

1

+ 128a2b1 − 128a2b2 − 32b2
2 − 64a1 + 96a2 − 32b1 + 64b2 + 176.

Further, the image of the (restricted) map

τ2
2,1 : MP 2

2 → A5

[f ] 7→ (σ1,2, σ2,2, σ2,3, σ2,4, σ3,3)

is the hypersurface defined by the vanishing of

36σ5
1,2 − 18σ4

1,2σ2,2 + 2σ3
1,2σ

2
2,2 + 17712σ4

1,2 − 8384σ3
1,2σ2,2 + 1292σ2

1,2σ
2
2,2

− 64σ1,2σ
3
2,2 − 2456σ3

1,2σ2,3 + 476σ2
1,2σ2,2σ2,3 + 73σ2

1,2σ
2
2,3 + 16σ1,2σ2,2σ

2
2,3

+ 16σ3
1,2σ2,4 + 792σ3

1,2σ3,3 − 196σ2
1,2σ2,2σ3,3 + 8σ1,2σ

2
2,2σ3,3 − 54σ2

1,2σ2,3σ3,3

− 4σ1,2σ2,2σ2,3σ3,3 + 9σ2
1,2σ

2
3,3 + 197280σ3

1,2 − 105984σ2
1,2σ2,2

+ 22464σ1,2σ
2
2,2 − 1792σ3

2,2 + 48256σ2
1,2σ2,3 − 12064σ1,2σ2,2σ2,3

− 11336σ1,2σ
2
2,3 + 1472σ2,2σ

2
2,3 + 512σ3

2,3 − 51392σ2
1,2σ2,4

+ 20480σ1,2σ2,2σ2,4 − 2048σ2
2,2σ2,4 + 10240σ1,2σ2,3σ2,4 − 2048σ2,2σ2,3σ2,4

− 512σ2
2,3σ2,4 + 3008σ2

1,2σ3,3 − 2400σ1,2σ2,2σ3,3 + 480σ2
2,2σ3,3

+ 2992σ1,2σ2,3σ3,3 − 240σ2,2σ2,3σ3,3 − 256σ2
2,3σ3,3 − 2560σ1,2σ2,4σ3,3

+ 512σ2,2σ2,4σ3,3 + 256σ2,3σ2,4σ3,3 − 40σ1,2σ
2
3,3 − 32σ2,2σ

2
3,3 + 32σ2,3σ

2
3,3

− 32σ2,4σ
2
3,3 + 2411904σ2

1,2 − 1307136σ1,2σ2,2 + 171968σ2
2,2

+ 268416σ1,2σ2,3 + 16064σ2,2σ2,3 − 38768σ2
2,3 − 613632σ1,2σ2,4

+ 122880σ2,2σ2,4 + 61440σ2,3σ2,4 + 85376σ1,2σ3,3 − 32320σ2,2σ3,3

+ 4768σ2,3σ3,3 − 15360σ2,4σ3,3 + 1232σ2
3,3 + 20517376σ1,2 − 5436928σ2,2

− 459776σ2,3 − 1844224σ2,4 + 532480σ3,3 + 56702976.
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Proof. The independence/dependence of the σi,j is a simple ring calculation
given their forms from Σ1(f), and it was performed in Sage.

To get the hypersurface equation, we take the elimination ideal in the
variables (`1, . . . , `5) of (σ1,2−`1, . . . , σ3,3−`5). The statement then follows
from the Elimination and Extension Theorems [2, Chapter 3]. �

Corollary 5.20. The fixed point multiplier map τ2
2,1 is (generically) finite-

to-one when restricted to monic polynomials of the form (5.1).

Proof. Consider the map
φ : A4 → X ⊂ A5

(a1, a2, b1, b2) 7→ (σ1,2, σ2,2, σ2,3, σ2,4, σ3,3),
where X is the hypersurface defined in Theorem 5.19. Then φ is a dominant
morphism of affine varieties. Hence, there is an open set U ⊂ X such that

dim(φ−1(y)) = dim(A4)− dim(X) = 0, ∀ y ∈ U.
In particular, τ2

2,1 is finite-to-one. �

Note that Corollary 5.20 does not give the generic degree of τ2
2,1 and the

computations to compute the degree did not finish on the machine being
used. However, in some partial calculations (fixing a subset of the σ(1)

i,j ), it
appears the generic degree should be 8. Although, there were a number of
closed subsets where the degree is 12. Note also that when we used only the
invariants defined in Doyle–Silverman [5] ({σ(1)

D1,j
: 1 ≤ j ≤ ND1}), then

the computations similar to Theorem 5.19 did not finish in a reasonable
amount of time even though one would still expect to find five generators
and a hypersurface requirement.
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