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A note on Misiurewicz polynomials

par Vefa GOKSEL

Résumé. Soit fc,d(x) = xd + c ∈ C[x]. On appelle point de Misiurewicz une
valeur c0 pour laquelle fc0,d a une orbite critique finie et strictement pré-
périodique. Tout point de Misiurewicz appartient à Q. Supposons que les
points c0, c1 ∈ Q sont tels que les orbites de fc0,d et de fc1,d sont du même
type. Une question classique est de savoir si c0 et c1 sont nécessairement
conjugués sur Q. Récemment, certains progrès ont été réalisés par plusieurs
auteurs pour répondre à cette question. Dans cette note, nous démontrons de
nouveaux résultats dans le cas où d est un nombre premier. Tous les résultats
connus jusqu’à présent portent sur des cas où la période est au plus 3. En
particulier, notre travail est le premier à fournir des informations dans le cas
de période plus grande que 3.

Abstract. Let fc,d(x) = xd + c ∈ C[x]. The c0 values for which fc0,d has
a strictly pre-periodic finite critical orbit are called Misiurewicz points. Any
Misiurewicz point lies in Q. Suppose that the Misiurewicz points c0, c1 ∈ Q
are such that the polynomials fc0,d and fc1,d have the same orbit type. One
classical question is whether c0 and c1 need to be Galois conjugates or not.
Recently there has been partial progress on this question by several authors.
In this note, we prove some new results when d is a prime. All the results
known so far were in the cases of period at most 3. In particular, our work is
the first to say something provable in the cases of period greater than 3.

1. Introduction
Let f(x) ∈ C[x] be a polynomial of degree d ≥ 2. We denote by fn(x) the

nth iterate of f(x) for n ≥ 1. We also make the convention that f0(x) = x.
For a given c ∈ C, the orbit of c under f is defined to be the set

Of (c) = {f(c), f2(c), . . .}.

The polynomial f is called post-critically finite (PCF) if this orbit is
finite for every critical point of f . Most polynomials are not post-critically
finite, so such polynomials are rather special. In this paper, we will consider
an even more special case, namely post-critically finite polynomials of the
form xd + c ∈ C[x], where d ≥ 2. From now on, we set fc,d(x) = xd + c.
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Polynomials in this family are particularly nice, because they all have the
unique critical point 0.

Now suppose fc,d is PCF, i.e. there exist integers m,n ∈ Z with n 6= 0
such that fmc,d(0) = fm+n

c,d (0). We say that fc,d has exact type (m,n) if n
is the minimal positive integer such that fmc,d(0) = fm+n

c,d (0) and fkc,d(0) 6=
fk+n
c,d (0) for any k < m. It is easy to see that if m 6= 0, then m has to be at
least 2. A number c0 for which fc0,d has type (m,n) with m ≥ 2 is called
a Misiurewicz point of type (m,n). Any Misiurewicz point of type (m,n)
is a root of a polynomial Gd,m,n(c) ∈ Z[c], which we call the Misiurewicz
polynomial of type (m,n). So, in particular, all Misiurewicz points lie in Q.

It is straightforward to check that for c0, c1 ∈ C, the polynomials fc0,d

and fc1,d are affine conjugate to each other if and only if cd−1
0 = cd−1

1 .
Milnor [11] asked the following question.

Question 1.1. Suppose that fc0,d and fc1,d have the same exact type (m,n).
Does it follow that cd−1

0 and cd−1
1 are Galois conjugates?

In this note, we will study the following question, which is a more general
version of Question 1.1. It appears in [1, Question 9.8] in a different form.

Question 1.2. Suppose that fc0,d and fc1,d have the same exact type (m,n).
Does it follow that c0 and c1 are Galois conjugates?

Before we talk about some recent partial progress on these questions, let
us first precisely define the polynomial Gd,m,n(c).

Definition 1.3 ([12]). We set Gd,0,n(c) =
∏
k|n(fkc,d(0))µ( n

k
). For m 6= 0, we

define Gd,m,n(c) as follows: We first set

Fd,m,n(c) =
∏
k|n

(
fm+k
c,d (0)− fmc,d(0)

fm−1+k
c,d (0)− fm−1

c,d (0)

)µ( n
k

)

.

Then, for m ≥ 2, we define

Gd,m,n(c) =
{
Fd,m,n(c) if n - m− 1
Fd,m,n(c)/(Fd,1,n(c))d−1 if n | m− 1.

See [7] for a proof that Gd,m,n(c) is in fact a polynomial with integer
coefficients.

We also need to introduce the polynomials Hd,m,n(c) ∈ Z[c], which are
the unique polynomials that satisfy Hd,0,1(c) = 1, and Hd,m,n(cd−1) =
Gd,m,n(c) for (m,n) 6= (0, 1). The polynomials Hd,m,n(c) arise when one
works with the polynomials gc,d(x) = cxd + 1 instead of fc,d(x) (see [2]
and [3]). In other words, they can be defined by simply replacing fc,d with
gc,d in Definition 1.3.
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Question 1.1 is equivalent to asking whether the polynomial Hd,m,n(c) is
irreducible over Q or not, and Question 1.2 is equivalent to asking whether
the polynomial Gd,m,n(c) is irreducible over Q or not. From now on, when-
ever we say irreducible, we will mean irreducibility over Q (unless we state
otherwise).

We note that because of the relation given above, the irreducibility ques-
tions for the polynomials Gd,m,n(c) and Hd,m,n(c) are not equivalent when
d > 2, namely the irreducibility of Gd,m,n(c) is a stronger condition than
the irreducibility of Hd,m,n(c).

We now summarize the known partial results regarding Question 1.1 and
Question 1.2. Buff [2] has shown that Hd,0,3(c) is irreducible if and only if
d 6≡ 1 (mod 6). The author [5] has proven that for any m ≥ 2, Gd,m,1(c)
is irreducible when d is a prime, and also that G2,m,2(c) is irreducible.
Buff, Epstein and Koch [3] have proven that for any m ≥ 2, Hd,m,1(c) and
Hd,m,2(c) have exactly k irreducible factors when d is a prime power, where
k is such that d = pk for some rational prime p. They have also proven
that for any m ≥ 2, G2,m,3(c) is irreducible, and H8,m,3(c) has exactly
3 irreducible factors. These irreducibility results they have proven were
corollaries of one of their main theorems ([3, Theorem 19]), which makes a
somewhat surprising connection between the polynomial Hd,m,n(c) ∈ Z[c]
and the reduced polynomial Hd,0,n(c) ∈ Fp[c] when d is a power of p. More
precisely, it states that if the reduced polynomial Hd,m,n(c) ∈ Fp[c] is ir-
reducible over Fp, then the polynomial Hd,m,n(c) has exactly k irreducible
factors over Q, where d = pk for some prime p. They also remark that the
reduced polynomial Hd,0,n(c) ∈ Fp[c] is irreducible only in the cases that
show up in the above corollaries: (d, n) = (pk, 1), (pk, 2), (2, 3) or (8, 3).

We now state our main result.
Theorem 1.4. Let d be a prime. Then, for all m, the number of irreducible
factors of Gd,m,n(c) over Q is bounded from above by the number of irre-
ducible factors of the reduced polynomial Gd,0,n(c) ∈ Fd[c]. In particular, if
Gd,0,n(c) ∈ Fd[c] is irreducible over Fd, then Gd,m,n(c) is irreducible over Q.

The following immediate corollary to this theorem recovers all the cases
that the polynomial Gd,m,n(c) is known to be irreducible.
Corollary 1.5. Let d be a prime. Then, for any m ≥ 2, Gd,m,1(c), G2,m,2(c)
and G2,m,3(c) are irreducible over Q.
Proof. Noting that each of Gd,0,1(c) = c ∈ Fd[c], G2,0,2(c) = c + 1 ∈ F2[c],
and G2,0,3(c) = c3 + c + 1 ∈ F2[c] is irreducible, the corollary follows from
Theorem 1.4. �

We also obtain the following new irreducibility result.
Corollary 1.6. For any m ≥ 2, G3,m,2(c) is irreducible over Q.
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Proof. We have G3,0,2(c) = c2 + 1, which is irreducible in F3[c], hence the
result again follows from Theorem 1.4. �

Remark 1.7. Theorem 1.4 does not imply the irreducibility of Gd,m,2(c)
for any prime d > 3, because we have Gd,0,2(c) = cd−1 + 1, and one can
easily show that cd−1 + 1 is always reducible in Fd[c] when d > 3. In fact,
one can prove something much stronger; cd−1 +1 is reducible modulo every
prime when d > 3.

Although Theorem 1.4 does not give any analogue of Corollary 1.5 or
Corollary 1.6 when n > 3, it provides an upper bound for the number of
irreducible factors of the polynomial Gd,m,n(c), which is independent of m.
In particular, because of the way its proof proceeds, it reduces Question 1.2
to perhaps a simpler problem. We illustrate this with the following example.

Example 1.8. One of the simplest cases that Gd,m,n(c) is not known to
be irreducible is the case d = 2, n = 4. Since we have G2,0,4(c) = (c2 + c+
1)(c4+c+1) ∈ F2[c], the proof of Theorem 1.4 implies that if G2,m,4(c) is not
irreducible for some m ≥ 2, then there must exist polynomials f(c), g(c) ∈
Z[c] such that

G2,m,4(c) = [(c2 + c+ 1)Mm,4 + 2f(c)][(c4 + c+ 1)Mm,4 + 2g(c)],

where Mm,4 = 2m−1 if m 6≡ 1 (mod 4), and Mm,4 = 2m−1 − 1 otherwise.
MAGMA computations reveal that this does not happen for the small val-
ues of m (thus G2,m,4(c) is irreducible), but whether this is the case for all
m or not remains open.

Using Theorem 1.4 together with a result of Buff–Epstein–Koch [3] and
Dedekind’s criterion [4], we also prove the following result about the number
fields generated by Misiurewicz points.

Theorem 1.9. Let d be a prime, and c0 a root of Gd,m,n(c). Set K = Q(c0).
Then we have d - [OK : Z[c0]].

Theorem 1.9 has an arithmetic consequence for the critical orbit of fc,d,
see Corollary 3.5 for details.

Finally, we introduce some notation that we will be using throughout
the article. Let K be a number field, and OK its ring of integers. For
any a ∈ OK , we denote by (a) the ideal of OK generated by a. We will
also denote by NK/Q(a) the norm of a in the extension K/Q. When the
polynomial fc0,d has type (m,n), we will use the set {a1, . . . , am+n−1} to
denote the critical orbit of fc0,d, where we set ai = f ic0,d

(0). Whenever we
use ai for some i > m + n − 1, we again obtain it by setting ai = f ico,d

(0)
and using the periodicity of fc0,d.
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2. Proof of Theorem 1.4
The goal in this section is to prove Theorem 1.4. We start by recalling

the main theorem of [5], as it will be crucial throughout the paper.

Theorem 2.1 ([5]). Let fc,d(x) = xd + c ∈ Q[x] be a PCF polynomial
having exact type (m,n) with m 6= 0. Set K = Q(c), and let Ofc,d

=
{a1, a2, . . . , am+n−1} ⊂ OK be the critical orbit of fc,d. Then the following
holds:

(a) If n - i, then ai is a unit.
(b) If d is a prime and n | i, then one has (ai)Mm,n = (d), where

Mm,n =
{
dm−1(d− 1) if n - m− 1
(dm−1 − 1)(d− 1) if n | m− 1.

Lemma 2.2. Let p be a rational prime, and c0 a root of Gd,m,n(c), where
m 6= 0. Set K = Q(c0). Then we have an = Gd,0,n(c0)u for some unit u
in OK .

Proof. We know from Theorem 2.1 that ai is a unit in OK for all 1 ≤ i ≤
n − 1. It is also clear by the definition of Gd,0,n(c) that Gd,0,n(c0) divides
an in Z[c0]. Note that the sequence {ai}i≥1 is a rigid divisibility sequence
(see [6] for a definition of a rigid divisibility sequence and the proof of this
fact), from which one sees that Gd,0,n(c0) is the primitive part of an ([9,
Lemma 5.4]). This implies that an

Gd,0,n(c0) divides a1 · · · an−1 in Z[c0]. But,
the product a1 · · · an−1 is a unit in OK , hence an

Gd,0,n(c0) must be a unit in
OK , which is what we wanted. �

The following lemma due to Buff–Epstein–Koch will also be crucial in
the proof of Theorem 1.4.

Lemma 2.3 ([3]). Let d be a rational prime, and define Mm,n as in The-
orem 2.1. Then we have Gd,m,n ≡ G

Mm,n

d,0,n (mod d) for all n ≥ 1.

We now recall the following standard result, which we state without proof.

Lemma 2.4. Let K be a number field, p a rational prime, and α ∈ OK .
Then the ideal (p, α) is the unit ideal if and only if NK/Q(α) is relatively
prime to p.
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Lemma 2.5. Let K be a number field, and p a rational prime. Choose
α ∈ OK so that K = Q(α). Let f(x) ∈ Z[x] be the minimal polynomial of
α. Suppose f(x) ∈ Fp[x] factors as

f(x) = g1(x)e1 · · · gk(x)ek ,

where g1(x), . . . , gk(x) ∈ Fp[x] are distinct and irreducible. Then, for any
monic polynomial h(x) ∈ Z[x], (p, h(α)) is not the unit ideal in OK if and
only if gi(x)|h(x) in Fp[x] for some 1 ≤ i ≤ k.

Proof. First suppose that (p, h(α)) is not the unit ideal in OK . Then by
Lemma 2.4,NK/Q(h(α)) ≡ 0 (mod p). Recall thatNK/Q(h(α)) = Res(f, h).
Hence, we get Res(f, h) ≡ 0 (mod p), which forces f and h to have a
common factor in Fp[x], which proves this part of the statement. For the
other direction, assume gi(x)|h(x) for some 1 ≤ i ≤ k. Since this means
that f and h have a common factor in Fp[x], this again implies that
NK/Q(h(α)) = Res(f, h) ≡ 0 (mod p), which, by Lemma 2.4, shows that
(p, h(α)) is not the unit ideal in OK , as desired. �

The next proposition combined with the remark following it will provide
us an explicit factorization of the ideal (d) in the number field generated
by a root of the Misiurewicz polynomial Gd,m,n(c), which will be heavily
used in the proof of Theorem 1.4.

Proposition 2.6. Let d be a prime. Suppose Gd,0,n(c) factors as
Gd,0,n(c) = f1(c) · · · fk(c),

where f1(c), . . . , fk(c) ∈ Fp[c] are distinct irreducible polynomials. Then, if
f̃1(c), . . . , f̃k(c) ∈ Z[c] are any lifts of these polynomials, and c0 is a root of
Gd,m,n, we have

(2.1) (an) = (d, f̃1(c0)) · · · (d, f̃k(c0)).

Proof. First note that from Lemma 2.2, we have an = Gd,0,n(c0)u for some
unit u ∈ Z[c0]. This gives that

(2.2) an = f̃1(c0) · · · f̃k(c0)u+ dα(c0)
for some α(c) ∈ Z[c]. We will now prove the proposition by showing that
each side of (2.1) is contained in the other side:

We first show that the right-hand side is contained in the left-hand side.
All the generators of the product ideal involving d already belong to (an),
because from Theorem 2.1 we have d ∈ (an). So, it suffices to show that
f̃1(c0) · · · f̃k(c0) ∈ (an). We have d ∈ (an), which gives an − dα(c0) =
f̃1(c0) · · · f̃k(c0)u ∈ (an), which gives what we want, since u is a unit.

For the other direction, first note that if k ≤ Mm,n, then since an ∈
(d, f̃i(c0)) for all i (by (2.2)), we get that d lies in the right-hand side
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of (2.1), because from Theorem 2.1 we have d ∈ (an)k, and akn lies in the
right-hand side. But then, if d lies in the right-hand side of (2.1), we get that
an = f̃1(c0) · · · f̃k(c0)u+ dα(c0) lies in the right-hand side of (2.1) as well,
as desired. So, we can assume without loss of generality that k > Mm,n.
By the reasoning above, to finish the proof, it suffices to prove that d lies
in the right-hand side of (2.1). Write k = Mm,nl + q, 0 ≤ q < Mm,n. Note
that similar to above, we will have

an ∈ (d, f̃ iMm,n+1(c0)) · · · (d, f̃ (i+1)Mm,n
(c0))

for i = 0, . . . , l − 1, and

an ∈ (d, f̃ lMm,n+1(c0)) · · · (d, f̃ lMm,n+q(c0)).

This implies that al+1
n lies in the right-hand side of (2.1), which, if l+ 1 ≤

Mm,n, will again imply that d lies in the right-hand side of (2.1), which will
finish the proof. If l + 1 > Mm,n, we can repeat the same argument again,
and it is obvious that this procedure will eventually terminate, and we will
get that d lies in the right-hand side of (2.1), so we are done. �

Remark 2.7. Note that since we have (an)Mm,n = (d) from Theorem 2.1,
Proposition 2.3 gives a factorization of the ideal (d) in OK . More precisely,
we get

(2.3) (d) = (d, f̃1(c0))Mm,n · · · (d, f̃k(c0))Mm,n .

We are finally ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall from Lemma 2.3 that if Gd,0,n(c) ∈ Fd[c] fac-
tors as

Gd,0,n(c) = f1(c) · · · fk(c),
then we have

Gd,m,n(c) = (f1(c) · · · fk(c))Mm,n .

Let H(c) ∈ Z[c] be any irreducible factor of Gd,m,n(c), and take c0 to be a
root of H(c). If we can show that H(c) = (A(c))Mm,n for some A(c) ∈ Fd[c],
this will clearly prove the theorem. Assume for the sake of contradiction
that H(c) = f1(c)α1 · · · fk(c)αk , where for at least one i we have 0 < αi <
Mm,n. This gives H(c) = f1(c)α1 · · · fk(c)αk +dH1(c) for some H1(c) ∈ Z[c].
In particular, we have f1(c0)α1 · · · fk(c0)αk = −dH1(c0). The last equality
implies that the product (d, f̃1(c0))α1 · · · (d, f̃k(c0))αk is contained in the
ideal (d), because all the generators of the product ideal are divisible by d.
This gives

(2.4) (d)|(d, f̃1(c0))α1 · · · (d, f̃k(c0))αk .

Now (2.3) and (2.4) together will clearly imply that if αi < Mm,n, then
(d, f̃ i(c0)) must be the unit ideal in OK , which contradicts Lemma 2.5.
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Hence, we conclude that for all i we have αi = 0 or αi = Mm,n, which
shows that H(c) = (A(c))Mm,n for some A(c) ∈ Fd[c], as desired. �

3. Proof of Theorem 1.9
The goal of this section is to prove Theorem 1.9. We start by recalling a

basic fact from algebraic number theory:

Theorem 3.1 ([8]). Let K/Q be an algebraic number field of degree n
with ring of integers OK and discriminant DK . Let α ∈ OK with minimal
polynomial f(x) be such that K = Q(α). Then

Disc(f(x)) = [OK : Z[α]]2DK .

Understanding the rational primes which divide the index [OK : Z[α]] is
important for the following reason: By Dedekind’s Factorization Theorem,
for a rational prime p not dividing the index [OK : Z[α]], the factorization
of the ideal (p) in OK can be obtained from the factorization of the reduced
polynomial f(x) ∈ Fp[x] (See for instance [10] for a precise statement).

Next, we recall Dedekind’s criterion (see for instance [4, Theorem 6.1.4]),
which will be the most important tool for the proof of Theorem 1.9.

Theorem 3.2. Let α be an algebraic integer, f its minimal polynomial,
K = Q(α), and OK its ring of integers. Let p be a rational prime. Let
f = fe1

1 · · · f
ek
k be the decomposition of f in Fp[x]. Let f̃ i ∈ Z[x] be any

lift of fi, and g ∈ Z[x] such that f = f̃1
e1 · · · f̃kek + pg. The following are

equivalent:
(a) p - [OK : Z[α]].
(b) For all i, either ei = 1 or fi does not divide g in Fp[x].

We also need the following lemma, which is a special case of Lemma 23
in [3]. We give an alternative proof in this special case.

Lemma 3.3. Let d be a prime. Then we have

Res(Gd,m,n, Gd,0,k) =
{
±ddeg(Gd,0,n) if n = k

±1 if n 6= k.

Proof. Suppose Gd,m,n(c) ∈ Z[c] factors as
Gd,m,n(c) = H1(c) · · ·Hl(c)

for some H1(c), . . . ,Hl(c) ∈ Z[c], and let c1, . . . , cl be some roots of H1(c),
. . . , Hl(c), respectively. Set Ki = Q(ci) for i = 1, . . . , l. Also define a(i)

s =
fsci,d

(0) for i = 1, . . . , l. Note that we have

Res(Gd,m,n, Gd,0,k) =
l∏

i=1
Res(Hi, Gd,0,k).
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Recall as in the proof of Lemma 2.5 that Res(Hi, Gd,0,k) = NKi/Q(Gd,0,k(ci))
for i = 1, . . . , l. Then, if k = n, we obtain

Res(Hi, Gd,0,k) = Res(Hi, Gd,0,n) = NKi/Q(Gd,0,n(ci)) = ±NKi/Q(a(i)
n ) = ±d

deg(Hi)
Mm,n ,

where the third equality follows from Lemma 2.2, and the last equality
follows by using the fact that norm is multiplicative, because we have
(a(i)
n )Mm,n = (d) in OKi (from Theorem 2.1). Thus, we get

Res(Gd,m,n, Gd,0,k) =
l∏

i=1
Res(Hi, Gd,0,k) = ±d

deg(Gd,m,n)
Mm,n = ±ddeg(Gd,0,n),

which gives us the result we want. Note that we used Lemma 2.3 for the
last equality. Now assume k 6= n. First note that we will be done if we
can show that Res(Hi, Gd,0,k) = ±1 for i = 1, . . . , l. There are two cases:
Either n|k or n - k. If n|k, since the sequence {a(i)

j }j≥1 is a rigid divisibility
sequence, and Gd,0,k(ci) is the primitive part of a(i)

k for i = 1, . . . , l, it

follows that Gd,0,k(ci) divides a
(i)
k

a
(i)
n

in Z[ci], which, by Theorem 2.1, implies
that Gd,0,k(ci) is a unit in OKi , i.e. NKi/Q(Gd,0,k(ci)) = ±1, which gives
Res(Hi, Gd,0,k) = ±1. If n - k, then a

(i)
k is a unit in OKi for i = 1, . . . , l,

but Gd,0,k(ci) divides a(i)
k in Z[ci], hence Gd,0,k(ci) is a unit in OKi , i.e.

NKi/Q(Gd,0,k(ci)) = ±1, which again implies that Res(Hi, Gd,0,k) = ±1, as
desired. �

We are finally ready to prove Theorem 1.9.

Proof of Theorem 1.9. Using the proof of Theorem 1.4, we can write the
factorization of Gd,m,n(c) over Q as

Gd,m,n(c) = (A1(c)Mm,n + dB1(c)) · · · (Al(c)Mm,n + dBl(c))
for some A1, . . . , Al, B1, . . . , Bl ∈ Z[c], and note that Ai(c) ∈ Z[c] are not
necessarily irreducible. By Dedekind’s criterion, to prove that d - [OK :
Z[c0]] for any root c0 of Gd,m,n(c), it suffices to show that Ai(c) and Bi(c)
have no common factor in Fd[c] for i = 1, . . . , l. To prove this, we will do
some computations with resultants.

Using Lemma 2.3, we can write
(3.1) Gd,0,n(c) = A1(c) · · ·Al(c) + dG(c)
for some G(c) ∈ Z[c]. First let

(3.2) X1 =Res
(
A1(c)Mm,n +dB1(c), Gd,0,n(c)

)
Res(A2(c) · · ·Al(c), Gd,0,n(c)).

Hence, we have

X1 = Res
(
A1(c)Mm,nA2(c) · · ·Al(c) + dA2(c) · · ·Al(c)B1(c), Gd,0,n(c)

)
.
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Using (3.1), this gives

(3.3) X1 =Res
(
Gd,0,n(c)A1(c)Mm,n−1+dA2(c)···Al(c)B1(c)−dG(c)A1(c)Mm,n−1, Gd,0,n(c)

)
.

Thus, by the basic properties of resultants, we get

(3.4)
X1 = Res

(
d
(
A2(c) · · ·Al(c)B1(c)−G(c)A1(c)Mm,n−1), Gd,0,n(c)

)
= ddeg(Gd,0,n) Res

(
A2(c) · · ·Al(c)B1(c)−G(c)A1(c)Mm,n−1, Gd,0,n(c)

)
.

On the other hand, using (3.1) in the second factor in (3.2), we also have

(3.5)
X1 =Res

(
A1(c)Mm,n +dB1(c), Gd,0,n(c)

)
Res(A2(c)···Al(c), A1(c)···Al(c)+dG(c))

=Res
(
A1(c)Mm,n +dB1(c), Gd,0,n(c)

)
Res(A2(c)···Al(c), G(c))ddeg(A2(c)···Al(c))

Hence, in (3.4) and (3.5), we obtained two different expressions for X1.
Doing the same thing for each 1 ≤ i ≤ l, and multiplying out Xis, we will
obtain two different expressions for the product X1 · · ·Xl. Namely, if we
write each Xi similarly to (3.4), we get

(3.6) X1···Xl=dl deg(Gd,0,n)
l∏

i=1
Res

(
A1(c)···Al(c)

Ai(c)
Bi(c)−G(c)Ai(c)Mm,n−1, Gd,0,n

)
.

On the other hand, if we write each Xi similarly to (3.5), we obtain

(3.7)

X1 . . . Xl = Res
(

l∏
i=1

(Ai(c)Mm,n +dBi(c)), Gd,0,n(c)
)

Res(A1(c)···Al(c), G(c))l−1d(l−1) deg(Gd,0,n)

= Res(Gd,m,n(c), Gd,0,n(c)) Res(A1(c) · · ·Al(c), G(c))l−1d(l−1) deg(Gd,0,n)

= ±dl deg(Gd,0,n) Res(A1(c) · · ·Al(c), G(c))l−1,

where the last equality follows from Lemma 3.3. Hence, equating (3.6)
and (3.7), and simplifying, we get

(3.8) ±(Res(A1(c)···Al(c), G(c)))l−1 =
l∏

i=1
Res

(
A1(c)···Al(c)

Ai(c)
Bi(c)−G(c)Ai(c)Mm,n−1, Gd,0,n

)
.

Recall that our goal was to show that Ai(c) and Bi(c) have no common
factors in Fd[c]. Recalling (3.1), it is clear that to prove this, it suffices to
show that the right-hand side of (3.8) is not divisible by d. So, we will be
done if we can show that Res(A1(c) · · ·Al(c), G(c)) is not divisible by d,
i.e., it is enough to show that Res(Ai(c), G(c)) is not divisible by d for each
i. We need the following lemma to achieve this.

Lemma 3.4. Let p be a rational prime, f(x) ∈ Z[x] a monic polynomial
(not necessarily irreducible) such that Disc(f) is relatively prime to p. Sup-
pose that the reduced polynomial f(x) ∈ Fp[x] factors as

f(x) = f1(x) · · · fk(x),
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where f1(x), . . . , fk(x) ∈ Fp[x] are irreducible. Then we can choose lifts
f̃1(x), . . . , f̃k(x) ∈ Z[x] of f1(x), . . . , fk(x), respectively, and write f(x) =
f̃1(x) · · · f̃k(x) + pF (x) such that Res(f̃i(x), F (x)) is relatively prime to p
for all i.

Proof of Lemma 3.4. Considering the factorization of f(x) ∈ Z[x], without
loss of generality, we can write

f(x) = (f̃1(x) · · · f̃ i1(x) + pF1(x)) · · · (f̃ il−1+1(x) · · · f̃ il(x) + pFl(x)).

Then we have f(x) = f̃1(x) · · · f̃k(x) + pF (x), where

F (x) = F1(x)f̃ i1+1(x) · · · f̃ il(x) + f̃1(x)K(x) + pL(x)

for some K(x), L(x) ∈ Z[x]. We would like to have that f1(x) and F (x)
have no common factor in Fp[x]. (This will finish the proof, because one
can then do the same thing for all i.) We have

F (x) = F1(x)fi1+1(x) · · · fil(x) + f1(x)K(x).

If F (x) and f1(x) had a common factor in Fp[x], then F1(x)fi1+1 · · · fil(x)
and f1(x) would have a common factor in Fp[x]. But, this would force F1(x)
and f1(x) to have a common factor in Fp[x], since Disc(f) is relatively prime
to p. So, if f1 and F 1(x) have no common factor in Fp[x], we are already
done. If they have a common factor, replace f̃1(x) by g̃1(x) = f̃1(x) + p,
which, since f̃1(x) · · · f̃ i1(x) + pF1(x) is a fixed polynomial in Z[x], will
replace F1(x) by G1(x) = F1(x) − f̃2(x) · · · f̃ i1(x). Now g̃1(x) = f1(x)
cannot have a common factor with G1(x) in Fp[x], because f1(x)|F 1(x)
(since f1(x) and F 1(x) are assumed to have a common factor, and f1(x) ∈
Fp[x] is irreducible), and f1 is relatively prime to fj in Fp[x] for j = 2, . . . , i1
(recall that Disc(f) was relatively prime to p). It is easy to see that we can
do the same thing for each fi without affecting the fact that fj and F 1 have
no common factor in Fp[x] for j < i, which finishes the proof. �

Noting that Disc(Gd,0,n) is relatively prime to d (see e.g. [2, Lemma 3]),
now the proof of Theorem 1.9 clearly follows from Lemma 3.4. �

Corollary 3.5. Let d be a prime and m 6= 0. Suppose that c0 is a root
of Gd,m,n(c). Set K = Q(c0). Then all the elements in the critical orbit
{a1, . . . , am+n−1} of fc,d are square-free in OK .

Proof. Note that if n - i, then ai is a unit in OK by Theorem 2.1, so there
is nothing to prove. We also know from Theorem 2.1 that (an) = (ank) in
OK for any k ≥ 1, so it is enough to prove that an is square-free in OK .
Recall from Proposition 2.6 that we have

(3.9) (an) = (d, f̃1(c0)) · · · (d, f̃k(c0)),
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where f̃1, . . . , f̃k are some lifts of the irreducible factors f1, . . . , fk ∈ Fd[c]
of the reduced polynomial Gd,0,n(c) ∈ Fd[c]. Let H(c) ∈ Z[c] be the minimal
polynomial of c0. It is clear from the proof of Theorem 1.4 that

H(c) = (fi1(c) . . . fit(c))Mm,n

for some i1, . . . , it ∈ {1, . . . , k}. Then, Lemma 2.5 implies that for any
j ∈ {1, . . . k}, (d, f̃ j(c0)) is not the unit ideal if and only if j ∈ {i1, . . . , it}.
Hence, we can rewrite (3.9) as

(3.10) (an) = (d, f̃ i1(c0)) · · · (d, f̃ it(c0)).

But, since we know from Theorem 1.9 that d - [OK : Z[c0]], combining (3.10)
with Dedekind’s Factorization Theorem will imply that (d, f̃ i1(c0)), . . . ,
(d, f̃ it(c0)) are distinct prime ideals in OK , which proves that an is square-
free in OK , as desired. �

Remark 3.6. The author’s interest in Corollary 3.5 comes from the ques-
tions related to the irreducibility of iterates of polynomials. For a field K,
we call a polynomial f(x) ∈ K[x] stable if all of its iterates are irreducible
over K. In our special case, it is known that fc,d is stable if the critical orbit
of fc,d does not contain ±dth power ([6, Theorem 8]). Corollary 3.5 implies
that non-unit elements in the orbit cannot be ±dth power. This establishes
stability in the case n = 1, because in that case there is no unit in the
orbit (by Theorem 2.1). This was already proven in [5, Corollary 1.2]. In
other words, Corollary 3.5 can be thought of as a mild generalization of [5,
Corollary 1.2].
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