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Schmid’s Formula for Higher Local Fields

par Matthew SCHMIDT

Résumé. En théorie du corps de classes local, le symbole de Schmid–Witt
encode des données intéressantes sur la ramification des p-extensions de K
et peut, par exemple, être utilisé pour calculer les groupes de ramification
supérieurs de telles extensions. En 1936, Schmid a découvert une formule
explicite pour le symbole de Schmid–Witt pour les extensions d’Artin–Schreier
des corps locaux. Sa formule a été ensuite généralisée au cas des extensions
d’Artin–Schreier–Witt, toujours pour les corps locaux. Dans cet article, nous
généralisons la formule de Schmid pour calculer le symbole d’Artin–Schreier–
Witt–Parshin pour les extensions d’Artin–Schreier–Witt des corps locaux de
dimension 2 de caractéristique positive.

Abstract. In local class field theory, the Schmid–Witt symbol encodes in-
teresting data about the ramification theory of p-extensi-ons of K and can,
for example, be used to compute the higher ramification groups of such ex-
tensions. In 1936, Schmid discovered an explicit formula for the Schmid–Witt
symbol of Artin–Schreier extensions of local fields. Later, his formula was gen-
eralized to Artin–Schreier–Witt extensions, but still over a local field. In this
paper we generalize Schmid’s formula to compute the Artin–Schreier–Witt–
Parshin symbol for Artin–Schreier–Witt extensions of two-dimensional local
fields of positive characteristic.

1. Introduction
Fix a prime p > 0. Let k be a finite field of characteristic p and K =

k((T )). Denote by W (K) the ring of Witt vectors of K and by Wn(K) the
ring of truncated Witt vectors of K of length n. Let ℘ : W (K) → W (K)
denote the map defined by ℘(x0, x1, . . . ) = (xp0, x

p
1, . . . )−(x0, x1, . . . ). Using

the reciprocity map ωK : K× → GK = Gal(Kab/K) from local class field
theory, we can define the Schmid–Witt symbol:

[ · , · )n : Wn(K)/℘Wn(K)×K×/(K×)pn →Wn(Fp),(1.1)

[x+ ℘Wn(K), y · (K×)pn)n = αωK(y) − α,
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where α ∈ Wn(Ksep) is such that ℘(α) = x. When n = 1, this symbol was
first studied by Schmid [15] who discovered the explicit formula

[x, y)1 = Trk/Fp
(res(x · d log y)),

where res : K → k is the residue map and d log is logarithmic differenti-
ation. For n > 1, Witt [19] generalized Schmid’s result to Artin–Schreier–
Witt extensions over K:

[x, y)n = πn(TrW (k)/W (Fp)(res(g(n−1)(X) · d log Y ))),

with X and Y being certain liftings of x and y, πn : W (Fp)→Wn(Fp) the
natural projection map and g(n)(x) the nth ghost vector component of the
Witt vector X. See [18, Proposition 3.5] for a full, modern treatment.

Recently, Kosters and Wan simplified Witt’s generalization of Schmid’s
formula producing a version much closer to Schmid’s original and vitally
avoiding the computation of ghost vectors:

[x, y)n = πn(TrW (k)/W (Fp)(res(x̃ · d log ỹ))),(1.2)

where x̃ and ỹ are again certain liftings of x and y (see [10, Theorem 1.2]).
In this paper, we generalize (1.2) to two-dimensional local fields of positive
characteristic.

More precisely, put K = k((S))((T )) and let Ktop
2 (K) be the topological

Milnor K-group of K ([2, Definition 4.1]). There are several approaches
to generalize local class field theory, and thus the Schmid–Witt symbol,
to higher local fields. Kato, in a series of papers ([4, 5, 6]), employs co-
homological machinery, much like Tate did in the classical case, to build
the reciprocity map. The high dimensional analogue to the Schmid–Witt
symbol can then be defined as we did in the classical case (1.1). On the
other hand, Parshin [13] uses an explicit non-degenerate pairing called the
Artin–Schreier–Witt–Parshin pairing (Definition 3.5) :

[ · , · )n : Wn(K)/℘Wn(K)×Ktop
2 (K)/(Ktop

2 (K))pn →Wn(Fp),(1.3)

and after applying Artin–Schreier–Witt theory, he is able to use this pairing
to derive a map fromKtop

2 (K) to the pro-p part of the absolute Galois group
of K. Pasting together similarly derived maps for the tame and unramified
parts, Parshin obtains the full reciprocity map. In this paper, we adopt
Parshin’s explicit approach.

After passing to projective limits, the symbol (1.3) becomes:

[ · , · ) : W (K)/℘W (K)× K̂top
2 (K)→W (Fp),(1.4)

where K̂top
2 (K) is the p-adic completion of the topological Milnor K-group.

The main theorem of this paper is the generalization of Kosters and Wan’s
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formula (1.2) to the symbol (1.4). To construct this generalization, we ap-
ply lifting/residue maps that allow us to express the Artin–Schreier–Witt–
Parshin symbol as the trace of a residue. Take R to be a certain two sided
power series ring in S and T and let K̃ = Fr(W (k))((S))((T )). Define a
reduction : W (K)/℘W (K)→ R and lift ̂: K̂top

2 (K)→ K̂top
2 (K̃). For full

details see Section 3. Our primary result is then:

Theorem 1.1. For x ∈W (K)/℘W (K) and y ∈ K̂top
2 (K),

[x, y) = TrW (k)/W (Fp)(res(x · d log(ŷ))).

After establishing some structure theorems, Proposition 2.1 and Corol-
lary 2.5, we prove Theorem 1.1 by showing our formula coincides with
Parshin’s on certain fundamental terms and extend via bilinearity and con-
tinuity.

Again, the core advantage of Theorem 1.1 is that we avoid ghost vectors
entirely which greatly simplifies computations. As an application, we apply
these simplifications to compute the upper ramification groups of Gp∞ , the
maximal abelian pro-p extension of K, as defined by Lomadze and Hyodo
in [11] and [3].

Lexicographically order Z2. For two vectors ~r = (r1, r2), ~m = (m1,m2) ∈
Z2
≥0, let `(~r, ~m) be the minimum integer ` such that (p`m1, p

`m2) ≮ ~r. For
any ~m = (m1,m2) ∈ Z2, write gcd ~m = gcd(m1,m2) and let Z2

>0 be the set
of vectors in Z2 greater than (0, 0). For ~i ∈ Z2

>0, let G
~i
p∞ denote the upper

ramification group of Gp∞ (Definition 4.2). Then:

Theorem 1.2. For ~i ∈ Z2
>0, there is a group isomorphism:

φ~i : G~ip∞ ∼=
(
p`(
~i,~m)W (k)

)
~m∈Z2

>0
p-gcd ~m

⊆
∏

~m∈Z2
>0

p-gcd ~m

W (k),

such that φ~j = φ~i|G~j
p∞

whenever ~j ≤~i.

Theorem 1.2 generalizes Theorem 1.1 in [18], which describes the rami-
fication groups of pro-p abelian extensions for a one-dimensional local field
K. Thus, our work can be interpreted as a first step generalization of
Thomas’ work in [18] to the case where the residue field is not only not
finite but not even perfect.

This paper was written under the supervision of my advisor, Hui June
Zhu. I thank her for her constant advice and guidance. I am also grateful
to Michiel Kosters and Daqing Wan for their comments and suggestions.



358 Matthew Schmidt

2. Preliminaries
2.1. Witt Vectors. Let R be a commutative ring with unity. Denote by
W (R) the ring of Witt vectors over R and Wm(R) the ring of truncated
Witt vectors. Let the nth ghost vector component of a Witt vector x =
(xi)i≥0 ∈W (R) be

g(n)(x) =
n∑
i=0

pixp
n−i

i ,

and when p is invertible inR, let the bijection g := (g(0), g(1), . . . ) : W (R)→
RZ≥0 be the ghost vector map.

For an a ∈ R, define the Teichmüller lift of a in W (R) to be [a] =
(a, 0, . . . ), and for a Witt vector (x0, x1, . . . ) ∈ W (R), define the shifting
map V by mapping (x0, x1, . . . ) to (0, x0, x1, . . . ).

For a detailed exposition of Witt vectors see [16, Section II.6].

2.2. Higher Local Fields. For any complete discrete valuation field K,
denote by K the residue field of K. A complete discrete valuation field K
is said to be an n-dimensional local field if there is a sequence of complete
discrete valuation fields K0, . . . ,Kn = K such that:

(1) K0 is a finite field.
(2) Ki = Ki−1 for 1 ≤ i ≤ n.

The field K = k((S))((T )) of iterated Laurent series over the finite field k
is a two dimensional local field with tower of complete discrete valuation
fields k((S))((T )) ⊇ k((S)) ⊇ k. If F is any unramified extension of Qp
with valuation vF , let F{{S}} be the set of doubly infinite power series:

F{{S}} =


∞∑

i=−∞
aiS

i

∣∣∣∣∣∣ ai ∈ F, inf
i
vF (ai) > −∞, ai → 0 as i→ −∞

 .
One can show that F{{S}} is itself a complete discrete valuation field and
can iteratively define F{{S1}} . . . {{Sn}} (see [12, Section 2] for details).
For example, if F = Qp, then the tower of complete discrete valuation fields
of Qp{{S}}{{T}} is given by:

Qp{{S}}{{T}} ⊇ Fp((S))((T )) ⊇ Fp((S)) ⊇ Fp.
While we will utilize this higher local field later on, our focus will be on the
positive characteristic case.

For the rest of this paper let K = k((S))((T )) be the two dimensional
local field of positive characteristic. Place an order on Z2 as follows: for
~i = (i1, i2),~j = (j1, j2) ∈ Z2,

~i ≤ ~j ⇐⇒
{
i1 ≤ j1, i2 = j2 or
i2 ≤ j2.

(2.1)
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We can give the field K a rank two valuation vK : K → Z2 with Z2 ordered
as above. With respect to this valuation, K has valuation ring and maximal
ideal:

OK = {x ∈ K | vK(x) ≥ (0, 0)}
mK = {x ∈ K | vK(x) > (0, 0)},

so that OK/mK
∼= k. For a detailed construction of the valuation vK ,

see [20, p. 7], and for a more thorough treatment of rings of integers of
higher local fields, see [12, Section 3].

We will close this section with a couple structure theorems regarding K
and W (K). Fix an α ∈ k with Trk/Fp

(α) 6= 0 so that {α} is an Fp-basis
for k/℘k. Let C be an Fp-basis of k and let β = [α] ∈ W (k). Define the
indexing set:

I = {~i ∈ Z2
<0 | p - gcd~i }.

Proposition 2.1. The set
D = {α} ∪ {cSiT j | c ∈ C, (i, j) ∈ I}

is an Fp-basis for K/℘K.

Proof. See [13, Lemma 2, Section 1]. �

Corollary 2.2. Every x ∈W (K) has a unique representative of the form

cβ +
∑

(i,j)∈I
cij [Si][T j ] ∈W (K)/℘W (K),

where c ∈ W (Fp) and cij ∈ W (k) with cij → 0 as i → ∞ or i → −∞ for
every fixed j and limj→−∞maxi ‖cij‖ = 0, where ‖·‖ is the norm on W (k).

Proof. The unique representation follows from Proposition 3.10 in [9] and
Proposition 2.1. �

2.3. Milnor K-groups. Denote the second Milnor K-group of K by
K2(K). We write K2(K) as a multiplicative abelian group on symbols
{a, b}, with a, b ∈ K×. Define the topological Milnor K-group, Ktop

2 (K),
to be the quotient of K2(K) by the intersection of all its neighborhoods
of zero (see [2]). Our use of the topological Milnor K-group is due to our
reliance on Parshin’s class field theory.

Take ~i ∈ Z2 with ~i > (0, 0). Following Hyodo ([3, p. 291]), define the ~ith
unit group of Ktop

2 (K) to be:

U
~iKtop

2 (K) = {{u, x} |u, x ∈ K×, vK(u− 1) ≥~i }.

Similarly, let VK = 1 + mK ⊂ K and denote by VK top
2 (K) the subgroup

of Ktop
2 (K) generated by elements of the form {u, x}, u ∈ VK and x ∈ K.
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That is,

VK top
2 (K) = {{u, x} |u, x ∈ K×, vK(u− 1) > (0, 0)},

and we see that for any ~i > (0, 0), U~iKtop
2 (K) ⊆ VK top

2 (K). Define two
indexing sets:

JS = {(i, j) ∈ Z2
>0 | gcd(i, p) 6= 1, gcd(j, p) = 1}

JT = {(i, j) ∈ Z2
>0 | gcd(i, p) = 1},

so that VK top
2 (K) has the following decomposition:

Proposition 2.3. Every y ∈ VK top
2 (K) can be written uniquely in the

form: ∏
(i,j)∈JS
k≥0

{1 + bijkS
iT j , S}dijkp

k ∏
(i,j)∈JT
k≥0

{1 + aijkS
iT j , T}cijkp

k
,

for some aijk, bijk ∈ k and cijk, dijk ∈ [0, p− 1].

Proof. See [1, Proposition 2.4]. �

Proposition 2.4. There is a group isomorphism:

VK top
2 (K) ∼= lim←−

n

VK top
2 (K)/(VK top

2 (K))pn
.

Proof. By Remark 1 in in [2, Section 4, p. 496], the natural map

VK top
2 (K)→ lim←−

n

VK top
2 (K)/(VK top

2 (K))pn

is surjective. Moreover, by an earlier remark following 4.2 in [2, p. 493],

∩n(VK top
2 (K))pn = {1},

so the natural map must also be injective. �

Corollary 2.5. Let K̂top
2 (K) = lim←−nK

top
2 (K)/(Ktop

2 (K))pn. Every y ∈

K̂top
2 (K) can be written uniquely in the form:

y = {Se, T}
∏

(i,j)∈JS
k≥0

{1 + bijkS
iT j , S}dijkp

k ∏
(i,j)∈JT
k≥0

{1 + aijkS
iT j , T}cijkp

k
,

for some e ∈ Zp, aijk, bijk ∈ k and cijk, dijk ∈ [0, p− 1].

Proof. It is known that Ktop
2 (K) ∼= 〈{S, T}〉 × (k×)2 × VK top

2 (K) (see [2,
p. 493]). So let {S, T}i ∈ 〈{S, T}〉. Then for any i > 0, {S, T}i = {Si, T},
and we see the map 〈{S, T}〉 → Z given by {Si, T} 7→ i is an isomorphism.
This implies 〈{S, T}〉/〈{S, T}〉pn ∼= Z/pnZ.
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Because kp = k, k×/(k×)pn = 1 and lim←−n k
×/(k×)pn = 1. Then, by

Proposition 2.4, we see that:

K̂top
2 (K) ∼= lim←−

n

〈{S, T}〉/〈{S, T}〉pn ×VK top
2 (K)/(VK top

2 (K))pn

∼= Zp × lim←−
n

VK top
2 (K)/(VK top

2 (K))pn

∼= Zp ×VK top
2 (K).

The Corollary then follows from Proposition 2.3. �

3. The Explicit Local Symbol
Before proving Theorem 1.1, we assemble all the pieces required to define

the Artin–Schreier–Witt–Parshin symbol.

3.1. The Artin–Schreier–Witt–Parshin Symbol. Let OF = W (k),
F = Fr(OF ) and K̃ = F ((S))((T )). There is a natural lifting from K to
K̃ which induces liftings on both W (K) and K̂top

2 (K) in the following way.
We will write both liftings by .̂

Definition 3.1. One can lift W (K) to W (K̃) by the map:

x = (xi)i≥0 7→ x̂ = (x̂i)i≥0,

where x̂i ∈ OF ((S))((T )) is any lifting of xi under the canonical projection
OF ((S))((T ))→ K.

Definition 3.2. By Corollary 2.5, every y ∈ K̂top
2 (K) can be written

uniquely in the form:

y = {Se, T}
∏
{1 + aijS

iT j , S} ·
∏
{1 + bijS

iT j , T}.

We denote by ŷ the lifting of y to K̂top
2 (K̃) given by

ŷ = {Se, T}
∏
{1 + [aij ]SiT j , S} ·

∏
{1 + [bij ]SiT j , T}.

Parshin’s map also makes use of the residue and logarithmic derivative
maps:

Definition 3.3. Let ω =
∑
i,j aijS

iT jdS ∧ dT ∈ Ω2
K̃/F

where aij ∈ F .
Define the map:

res : Ω2
K̃/F

→ F

res(ω) = a−1,−1.
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Definition 3.4. For {a1, a2} ∈ K2(K̃) let

d log : K2(K̃)→ Ω2
K̃/F

d log({a1, a2}) = da1
a1
∧ da2
a2

,

and note that this map is well-defined by the argument on p. 166 of [13].

It is now possible to define the higher dimensional Schmid–Witt symbol
(see [13, Section 3]):

Definition 3.5 (Parshin’s Formula). The Artin–Schreier–Witt–Parshin
symbol is given by:

[ · , · )n :Wn(K)/℘Wn(K)×Ktop
2 (K)/(Ktop

2 (K))pn →Wn(Fp) = Z/pnZ

[x, y)n = TrWn(k)/Wn(Fp)(g−1((res(g(i)(x̂) · d log ŷ))n−1
i=0 ) mod p),

where the mod p is taken component-wise. Note that res(g(i)(x̂) · d log ŷ)
lies in the subring W (k) ⊂ F so the mod p makes sense.

3.2. Generalized Schmid’s Formula. In this section we will prove The-
orem 1.1. Let R = F{{S}}{{T}} so that R is the 3-dimensional local field of
characteristic zero with residue field K. Note that R can be equipped with
an analogous mapping res : R→W (k) by sending

∑
i,j aijS

iT j 7→ a−1,−1.

Definition 3.6. If x ∈W (K)/℘W (K), there is a reduction map to x ∈ R
by sending

x = cβ +
∑

(i,j)∈I
cij [Si][T j ] mod ℘W (K)

to:
x = cβ +

∑
(i,j)∈I

cijS
iT j ,

where c ∈ W (Fp) and cij ∈ W (k). (The existence and uniqueness of the
representation follows from Corollary 2.2.)

Remark 3.7. For notational convenience, define the rings
O
K̃

= OF ((S))((T )) ⊂ K̃
OR = OF {{S}}{{T}} ⊂ R.

For any f ∈ O
K̃
and g ∈ OR, it’s easy to see that fg ∈ OR. By construction,

ŷ is generated by symbols of the form {1 + aSiT j , S} and {1 + bSiT j , T}
with a, b ∈ OF . Therefore, since x ∈ OR and d log(ŷ) ∈ Ω2

OK̃/OF
, we see

x · d log(ŷ) ∈ Ω2
OR/OF

and so res(x · d log(ŷ)) ∈ OF . Thus, taking a trace
from OF = W (k) to W (Fp) is well-defined and our formula in Theorem 1.1
is consequently well-defined.
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Before proving the main theorem, we start with a lemma:

Lemma 3.8. Suppose that i, j, `1, `2 ∈ Z≥0 with ij 6= 0 such that p -
gcd(i, j) and p - gcd(`1, `2). Then for all h ∈ Z≥0,

`1p
h

i
= `2p

h

j
∈ Z≥0 ⇐⇒

`1
i

= `2
j
∈ Z≥0.

Proof. The reverse direction is trivial. So suppose `1ph

i = `2ph

j ∈ Z≥0 and
i | `1ph but i - `1. Taking the p-adic valuation of `1p

h

i = `2ph

j gives:

vp(`1) + h− vp(i) = vp(`2) + h− vp(j).(3.1)

Noting that p - j, (3.1) becomes:

vp(`1)− vp(i) = vp(`2).(3.2)

The condition p - gcd(`1, `2) implies that vp(`1) = 0 or vp(`2) = 0. In
the first case, vp(i) = −vp(`2), which cannot happen since i ∈ Z≥0. So
vp(`2) = 0. But then (3.2) yields vp(`1) = vp(i), and because we assumed
i | `1ph, we must have i | `1, a contradiction. Finally, if vp(`1) = 0 = vp(`2),
then vp(i) = 0, also a contradiction. �

Proof of Theorem 1.1. Because we know the structure of W (K)/℘W (K)
and K̂top

2 (K) via Proposition 2.1 and Corollary 2.5 respectively, and by
the continuity and Zp-bilinearity of [ · , · ) from Parshin ([13, Propositions 6
and 7]), it suffices to prove the claim for the following cases:

(1) [c[S`1T `2 ], {S, T}), c ∈W (k), `1, `2 ∈ Z, p - gcd(`1, `2).
(2) [b[S`1T `2 ], {1 + aSiT j , S}), [b[S`1T `2 ], {1 + aSiT j , T}), a ∈ k, b ∈

W (k), `1, `2, i, j ∈ Z, p - gcd(`1, `2) and p - gcd(i, j).

Proof of (1). Here d log({S, T}) = dS
S ∧

dT
T = S−1T−1dS ∧ dT and x =

cS`1T `2 . Then,

x · d log(ŷ) = cS`1T `2 · S−1T−1dS ∧ dT = cS`1−1T `2−1dS ∧ dT.

Therefore if `1 6= 0 or `2 6= 0, [c[S`1T `2 ], {S, T}) = 0. If `1 = `2 = 0,

TrW (k)/W (Fp)(res(cS`1−1T `2−1dS ∧ dT )) = TrW (k)/W (Fp)(c).

On the other hand if c = (ck)∞k=0, then by Proposition 1.10 in [17],

c[S`1T `2 ] = (ckS`1p
k
T `2p

k)∞k=0,
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and so ̂c[S`1T `2 ] = ([ck]S`1p
k
T `2p

k)∞k=0. Hence:

g(h)(([ck]S`1p
k
T `2p

k)∞k=0) =
h∑
k=0

pk([ck]S`1p
k
T `2p

k)ph−k

=
(

h∑
k=0

pk[ck]p
h−k

)
S`1p

h
T `2p

h
.

But then:

g(h)(x̂) · S−1T−1dS ∧ dT =
(

h∑
k=0

pk[ck]p
h−k

)
S`1p

h−1T `2p
h−1dS ∧ dT,(3.3)

and consequently (3.3) has nonzero residue if and only if `1 = `2 = 0. If
`1 = `2 = 0, we get

g−1
((

h∑
k=0

pk[ck]p
h−k

)∞
h=0

)
= g−1((gh(c′))∞h=0) = c′,

where c′ = ([ck])∞k=0 ∈ W (W (k)). Because c′ ≡ c mod p, Parshin’s formula
finally gives:

TrW (k)/W (Fp)(g−1((res(g(i)x̂ · S−1T−1dS ∧ dT ))m−1
i=0 ) mod p)

= TrW (k)/W (Fp)(c).

Proof of (2). For simplicity, we will assume ij 6= 0. The other cases are
easier and can be proven similarly. We first compute

d log({1 + aSiT j , S}) = d(1 + aSiT j)
1 + aSiT j

∧ dS
S

= −aj
∞∑
k=0

(−a)kS(k+1)i−1T (k+1)j−1dS ∧ dT.

Likewise, d log({1 + aSiT j , T}) = ai(1 + aSiT j)−1Si−1T j−1dS ∧ dT . Then
as before, x = cS`1T `2 , so

x · d log({1 + aSiT j , S}) = −ajc
∞∑
k=0

(−a)kS(k+1)i+`1−1T (k+1)j+`2−1.

This has nonzero residue if and only if k + 1 = − `1
i = − `2

j ∈ Z≥1, that is,
k = −i−`1

i = −j−`2
j ∈ Z≥0. (If `1 = `2 = 0, then (k+1)i−1 = (k+1)j−1 =

−1, so that i = j = 0. The following implies that the resulting residue is
zero regardless.) In this case, we get

(3.4) TrW (k)/W (Fp)(res(x · d log({1 + aSiT j , S})))

= TrW (k)/W (Fp)(−jc(−a)
`1
i ).
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Now, we compute the symbol using Parshin’s formula. As before,
g(h)(x̂) = g(h)(c′)S`1ph

T `2p
h . Then

g(h)(x̂) · d log({1 + aSiT j , S})

= −ajg(h)(c′)
∞∑
k=0

(−a)kS(k+1)i+`1ph−1T (k+1)j+`2ph−1dS ∧ dT.

This term has nonzero residue if and only if k = − `1ph

i − 1 = − `2ph

j − 1 ∈
Z≥0. (By Lemma 3.8, this occurs exactly when − `1

i − 1 = − `2
j − 1 ∈ Z≥0.)

For this k, we get a residue −ajg(h)(c′)(−a)−
`1ph

i
−1 = −jg(h)(c′)(−a)−

`1ph

i .

Then, because ((−a)−
`1ph

i )∞h=0 = (((−a)−
`1
i )ph)∞h=0 = g([(−a)−

`1
i ]), we

see that:

g−1((−jg(h)(c′)(−a)−
`1ph

i )∞h=0) = −jg−1(g(c′)g([(−a)−
`1
i ]))

= −jc′[(−a)−
`1
i ] ≡ −jc(−a)−

`1
i mod p.

Comparing this with (3.4), the claim follows. �

Remark 3.9. Computations like those in the proof of Theorem 1.1 can
show that for `, i ∈ Z>0,

[cS`, {1 + aSi, T}) = [cS`, 1 + aSi)
[cT `, {1 + aT i, S}) = [cT `, 1 + aT i),

where the symbol [ · , · ) on the right hand side is the one-dimensional
Schmid–Witt symbol from [9] and [18] over a local field K = k((S)) and
K = k((T )), respectively.

Some further explicit computations using Theorem 1.1 yield:

Corollary 3.10. If x = cβ +
∑

(i,j)∈I cij [S]−i[T ]−j and

y = {Se, T}
∏

(i,j)∈JS

{1 + aijS
iT j , S} ·

∏
(i,j)∈JT

{1 + bijS
iT j , T},



366 Matthew Schmidt

then:

[x, y) = ecTrW (k)/W (Fp)(β)

+
∑

(m,n)∈I

 ∑
(i,j)∈JS ,

m
i

= n
j
∈Z≥0

( ∞∑
k=0

ckp
k TrW (k)/W (Fp)(−jcm,n([−aijk]m/i))

)

+
∑

(i,j)∈JT ,
m
i

= n
j
∈Z≥0

( ∞∑
k=0

dkp
k TrW (k)/W (Fp)(icm,n([−bijk]m/i))

).

4. Computation of G
~i

Let GK = Gal(Kab/K) be the Galois group of the maximal abelian
extension of K, Gpn = GK/(GK)pn be the Galois group of the maximal
abelian extension of exponent pn of K, and Gp∞ = lim←−nGpn be the Galois
group of the maximal abelian pro-p extension of K. For any n-dimensional
local field, Hyodo [3] and Lomadze [11] studied analogues to the classical
upper ramification groups. Here, we will apply Theorem 1.1 to compute the
ramification groups of Gp∞ in the two-dimensional case. In order to define
these groups, however, we need to introduce the reciprocity map.

In [13], Parshin defines the reciprocity map by pasting together three
compatible maps corresponding to the tame, unramified, and pro-p ex-
tensions of K. Here, we sketch the formulation of the pro-p part of the
reciprocity map, which is the only part we will use. Let

M(K) = lim−→Wn(K)/℘Wn(K),

with the direct limit taken with respect to the shifting maps V : Wn(K)→
Wn+1(K). Define the natural maps:

φn : K̂top
2 (K)→ Ktop

2 (K)/(Ktop
2 (K))pn

ψn : Wn(K)/℘Wn(K)→M(K).

Starting with the Artin–Schreier–Witt–Parshin symbol

[ · , · )n : Wn(K)/℘Wn(K)×Ktop
2 (K)/(Ktop

2 (K))pn →Wn(Fp) = Z/pnZ,

Parshin applies a standard argument ([8, p. 373]) to yield the pairing

P : M(K)× K̂top
2 (K)→ Q/Z,
P (x, y) = [xn, φn(y)]n,
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where n is any integer such that xn ∈ Wn(K)/℘Wn(K) with x = ψn(xn).
From this symbol, we then get a map:

K̂top
2 (K)→ Hom(M(K),Q/Z)(4.1)

y 7→ (x 7→ P (x, y)).
However, because M(K) is the Pontryagin dual of Gp∞ via Artin–Schreier–
Witt theory, the map on line (4.1) yields a map ωK from K̂top

2 (K) to Gp∞ .
This defines the pro-p part of Parshin’s reciprocity map. It can be further
shown that this map is actually an isomorphism:

Proposition 4.1. For n ≥ 1, Ktop
2 (K)/(Ktop

2 (K))pn ∼= Gpn and therefore

K̂top
2 (K) = lim←−

n

Ktop
2 (K)/(Ktop

2 (K))pn ∼= Gp∞ .

Proof. By Artin–Schreier–Witt theory, Wn(K)/℘Wn(K) and Gpn are Pon-
tryagin dual to each other. However, by Proposition 1 in [14],

Ktop
2 (K)/(Ktop

2 (K))pn ∼= Hom(Wn(K)/℘Wn(K),Q/Z),
and so Pontryagin duality yields the isomorphism. The second isomorphism
follows by taking the projective limit. �

Now, with the isomorphism ωK : K̂top
2 (K) → Gp∞ , the ramification

groups of Gp∞ can be defined:

Definition 4.2. For ~i ∈ Z2 with ~i > (0, 0), define:

G
~i
p∞ = ωK(U~iKtop

2 (K)).

Like [18] and [9], we do not compute G~ip∞ directly, but instead compute
its image in a decomposition of H = Hom(W (K)/℘W (K),Zp). First, ob-
serve that by Artin–Schreier–Witt theory and a well known property of
direct and projective limits:

Gp∞ ∼= Hom(M(K),Q/Z) = Hom
(
lim−→
n

Wn(K)/℘Wn(K),Q/Z
)

(4.2)

∼= lim←−
n

Hom(Wn(K)/℘Wn(K),Z/pnZ) ∼= H,

and so following the isomorphisms above, it is easy to see that ωK has the
equivalent form:

ωHK : K̂top
2 (K)→ Hom(W (K)/℘W (K),Zp)(4.3)

y 7→ (x 7→ [x, y)).
We can then consider a decomposition of Hom(W (K)/℘W (K),Zp) in which
to compute G~ip∞ :
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Lemma 4.3. There is a group isomorphism

Hom(W (K)/℘W (K),Zp) ∼= W (Fp)×
∏

(i,j)∈JS

W (k)
∏

(i,j)∈JT

W (k).

Proof. For χ ∈ H, observe that for any x = cβ +
∑

(i,j)∈I cij [S]−i[T ]−j ∈
W (K)/℘W (K),

χ(cβ +
∑

(i,j)∈I
cij [S]−i[T ]−j) = χ(cβ) +

∑
(i,j)∈I

χ(cij [S]−i[T ]−j),

so an element of H is determined entirely by its values on the elements cβ
and cij [S]−i[T ]−j , and

H ∼= Hom(W (Fp),W (Fp))×
∏

(i,j)∈I
Hom(W (k),W (Fp)).

But since W (k) ∼= Hom(W (k),W (Fp)) by the well known trace map iso-
morphism (see [9, Remark 4.10]),

H ∼= W (Fp)×
∏

(i,j)∈I
W (k).

As the sets I and JS ∪ JT are bijective,∏
(i,j)∈I

W (k) =
∏

(i,j)∈JS

W (k)
∏

(i,j)∈JT

W (k),

and the lemma follows. �

Hence Parshin’s reciprocity map in (4.3) induces an isomorphism

φ : K̂top
2 (K) ∼−→W (Fp)×

∏
(i,j)∈JS

W (k)
∏

(i,j)∈JT

W (k).(4.4)

Using Corollary 3.10, we will explicitly compute φ. For X = S or T ,
define two subsets of VK top

2 (K):

VK top
2,X(K) =


∏

(i,j)∈JX
k∈Z≥0

{1 + aijkS
iT j , X}cijkp

k

∣∣∣∣∣∣∣∣∣ aijk ∈ k, cijk ∈ [0, p− 1]

,
so that by Proposition 2.3,

VK top
2 (K) ∼= VK top

2,S(K)×VK top
2,T (K).
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Define the map φS : VK top
2,S(K)→

∏
(i,j)∈JS

W (k) by sending
∏

(i,j)∈JS ,
k∈Z≥0

{1 +

aijkS
iT j , S}cijkp

k to
∞∑
k=0

cijkp
k

∑
(i,j)∈JS

m
i

= n
j
∈Z≥0

(−j)[−aijk]m/i


(m,n)∈JS

,

and define φT : VK top
2,T (K) →

∏
(i,j)∈JT

W (k) by mapping
∏

(i,j)∈JT ,
k∈Z≥0

{1 +

bijkS
iT j , T}dijkp

k to
∞∑
k=0

dijkp
k

∑
(i,j)∈JT

m
i

= n
j
∈Z≥0

i[−bijk]m/i


(m,n)∈JT

.

Proposition 4.4. Parshin’s reciprocity map induces an isomorphism:

φ : K̂top
2 (K)→W (Fp)×

∏
(i,j)∈JS

W (k)
∏

(i,j)∈JT

W (k).

Writing each y ∈ K̂top
2 (K) as in Corollary 2.5, the map φ is given by sending

y = {Se, T}
∏
{1 + aijS

iT j , S} ·
∏
{1 + bijS

iT j , T}

to the tuple(
TrW (k)/W (Fp)(eβ), φS

(∏
{1 + aijS

iT j , S}
)
, φT ({1 + bijS

iT j , T})
)
.

Proof. The proposition follows by starting with the map (4.3) and Corol-
lary 3.10, and following the isomorphisms in Lemma 4.3. As an example,
we will show how this process works for the {Se, T} term. The other two
components are similar.

Write χ(x) = (ωHK ({Se, T}))(x) = [x, {Se, T}) ∈ H. If we write x =
cβ+

∑
(i,j)∈I cij [S]−i[T ]−j as in Corollary 2.2, we see by Corollary 3.10 that

χ(x) = χ(cβ). We can therefore just consider the case when x = cβ and so:
χ(cβ) = TrW (k)/W (Fp)(cβe) = cTrW (k)/W (Fp)(βe).(4.5)

We can consider χ to be an element in Hom(W (Fp),W (Fp)), mapping c to
cTrW (k)/W (Fp)(βe). But then recall the isomorphism:

Hom(W (Fp),W (Fp))→W (Fp)
(x 7→ xa) 7→ a,



370 Matthew Schmidt

and so under this map, χ corresponds to TrW (k)/W (Fp)(βe) by (4.5). Overall,
we see that

φ({Se, T}) =
(
TrW (k)/W (Fp)(βe), 0, 0

)
.

�

Example 4.5. To see how the above maps compare with the map in [9,
Remark 4.10], we shall compute a couple of examples. Observe that,

{1 + a1,1,0S
1T 1, S} φS−→

({
0 if m 6= n

[a1,1,0]n if m = n

)
(m,n)∈JS

{1 + a1,p,0S
1T p, T} φT−−→

({
[−a1,p,0]m if n = pm

0 otherwise

)
(m,n)∈JT

.

To compare, the map in [9] (and more generally Lemma 2.1 in [7]) yields:

(1− a10T
1)p0 7→ ([a10]i)gcd(i,p)=1.

Proof of Theorem 1.2. The proof will follow from computing φ(U~rKtop
2 (K))

via Proposition 4.4.
Let y∈VK top

2 (K), and write y as in Proposition 2.3. Then y∈U~rKtop
2 (K)

if and only if for all (pki, pkj) < ~r, aijk = 0 and for all (pki, pkj) < ~r,
bijk = 0. Hence

φ(U~rKtop
2 (K)) ⊂

(
p`(~r,~m)W (k)

)
~m∈Z2

>0
p-gcd ~m

.

The other inclusion is clear from the explicit definition of the maps φS
and φT . �
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