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Computation of étale cohomology on curves in
single exponential time

par Jinbi JIN

Résumé. Dans ce texte, on décrit un algorithme calculant, pour une courbe
lisse et connexeX sur un corps k et un faisceau localement constant de groupes
abéliens de torsion inversible dans k, le premièr groupe de cohomologie étale
H1(Xksep,ét,A) et le premièr groupe de cohomologie étale à support propre
H1

c(Xksep,ét,A) comme ensembles de torseurs.
La complexité arithmétique de cet algorithme est exponentielle en nlog n,

pa(X), et pa(A), où pa(X) est le genre arithmétique de la complétion normale
de X sur k, pa(A) est le genre arithmétique de la complétion normale de la
courbe Y répresentant le faisceau A, et n est le degré de Y sur X.

L’algorithme passe par le calcul d’un schéma en groupoïdes classifiant les
A-torseurs étales avec quelques structures additionnelles rigidifiantes.

Abstract. In this paper, we describe an algorithm that, for a smooth
connected curve X over a field k, a finite locally constant sheaf A on Xét
of abelian groups of torsion invertible in k, computes the first étale coho-
mology H1(Xksep,ét,A) and the first étale cohomology with proper support
H1

c(Xksep,ét,A) as sets of torsors.
The complexity of this algorithm is exponential in nlog n, pa(X), and pa(A),

where pa(X) is the arithmetic genus of the normal completion of X, pa(A) is
the arithmetic genus of the normal completion Y of the smooth curve repre-
senting A, and n is the degree of Y over X.

The computation in this algorithm is done via the computation of a group-
oid scheme classifying the A-torsors with some extra rigidifying data.

1. Introduction
The motivating question for this paper is the following; this question is

posed e.g. by Poonen, Testa, and van Luijk in [22].

Question 1.1. Is there an algorithm that takes an algebraic variety X over
a field k, and a positive integer n invertible in k, and computes Gal(ksep/k)-
modules isomorphic to the étale cohomology groups Hq(Xksep,ét,Z/nZ) for
q = 0, 1, . . . , 2 dimX?

Manuscrit reçu le 20 novembre 2017, révisé le 2 septembre 2019, accepté le 3 juin 2020.
2020 Mathematics Subject Classification. 14F20, 14Q05, 14Q20.
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We assume affine schemes of finite presentation over some base ring R
to be given by generators and relations over R, and we assume X to be
given by a gluing datum of affine varieties over k. The output will be given
as a pair (l,X) of a Galois extension l/k and a finite Gal(l/k)-set X. [5,
Thm. finitude] guarantees that in the situation of this question, the groups
Hq(Xksep,ét,Z/nZ) are indeed finite.

The existence of an algorithm as in the question computing the étale
cohomology groups in time polynomial in n for a fixed variety over Q im-
plies, via the Lefschetz trace formula [5, Rapport] and by the argument
of [3, Thm. 15.1.1], the computation of the number of Fq-points of some
fixed finite type scheme X (over Z) in time polynomial in log q. Here, we
note that the problem of computing #X(Fq) has many efficient solutions in
practice, see e.g. [14, 17, 19]; however, none of them run in time polynomial
in the characteristic of the finite field. One other application of a positive
answer to the question above is the computation of Néron–Severi groups
by Poonen, Testa, and van Luijk in [22] using the computation of the étale
cohomology groups.

Question 1.1 is already known to have a positive answer. In 2015, Poo-
nen, Testa, and van Luijk, in the aforementioned article [22], showed that
the étale cohomology groups are computable if X is a smooth, projec-
tive, geometrically irreducible variety over a field of characteristic 0. Later
that year, Madore and Orgogozo [21] showed that they are computable for
any variety over any field, and, assuming computations with constructible
sheaves can be performed, with coefficient sheaf any constructible sheaf of
abelian groups (of torsion invertible in the base field). However, both of
these results are fundamentally merely computability results, without any
bounds on the complexity, even for a fixed instance.

So a natural extension of Question 1.1 is (in addition to allowing more
general coefficients) to also ask for explicit upper bounds for the complex-
ity; beyond the classical case of smooth curves with constant coefficients,
the author doesn’t know of any such result. In this paper, we will describe
an algorithm computing, for smooth connected curves, the first étale coho-
mology group (proper support or not) with coefficients in a finite locally
constant sheaf of abelian groups (of torsion invertible in k), together with
theoretical upper bounds for the complexity.

We will assume the field k is given together with black box field opera-
tions (see Section 3 for more details) and we measure the complexity only in
the number of field operations performed. While this is a good approxima-
tion for the time complexity in case k is finite, for infinite k this is usually
not the case because of coefficient size growth. Algorithms will be determin-
istic (except for the use of the black boxes); for an actual implementation
of the algorithm to be presented, it may be more efficient in practice to use
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randomised algorithms. Moreover, the choice of algorithms is motivated by
their theoretical worst-case complexities; for an actual implementation, it
may be significantly more efficient in practice to use different algorithms
than the ones used in this paper.

With this in mind, let us state this paper’s main theorem, deferring the
description of the in- and output mainly to Section 4 and Section 9.

Theorem 1.2. There exist an algorithm that takes as input a smooth con-
nected curve X over k, and a (curve representing a) finite locally constant
sheaf A of abelian groups of degree n over X with n invertible in k, and re-
turn as output H1(Xksep ,A|Xksep ) (resp. H1

c(Xksep ,A|Xksep )) as Gal(ksep/k)-
modules in a number of field operations exponential in nlogn, pa(X), and
pa(A), where pa denotes the arithmetic genus of the normal completion.

More precise (and slightly more general) versions of this theorem will be
given in Section 6 and Section 9.

Acknowledgments. This paper is in part based on Chapter 3 of the au-
thor’s dissertation, which was funded by the Netherlands Organisation for
Scientific Research (project no. 613.001.110), and the author thanks his su-
pervisors Bas Edixhoven and Lenny Taelman for their guidance during the
author’s PhD candidacy. The author also thanks the Max-Planck-Institut
für Mathematik in Bonn for their support during the production of this
paper, and the anonymous referee for providing many useful comments on
this paper.

2. The idea and structure of the algorithm
Let X be a smooth connected curve over a field k, and let G be a finite

locally constant sheaf of groups on X. Then the set H1(Xksep ,G|Xksep ),
resp. H1

c(Xksep ,G|Xksep ), is the set of isomorphism classes of G|Xksep -torsors
on Xksep , resp. the set of isomorphism classes of j!G|Xksep -torsors on Xksep .
Here, j : X → X is the open immersion of X into its normal completion X.

Remark 2.1. If G is a sheaf of abelian groups, a priori we have two possible
definitions of j!G; one arising from viewing j! as the left adjoint of j−1 on
the category of sheaves of groups, and one arising from viewing j! as the
left adjoint of j−1 on the category of sheaves of abelian groups. Let us call
these jG! G and jA! G for now. There is a natural map jG! G → jA! G, which
induces an isomorphism on stalks since j is an open immersion (and direct
sums of zero, resp. one object in the category of groups and that of abelian
groups have the same underlying sets). Hence jG! G = jA! G, so there is no
confusion possible if we just write j!G in this case, like we did above.

The global idea behind the algorithm of Theorem 1.2 is to give a de-
scription of our target objects, being the (isomorphism classes of) G|Xksep -
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(resp. j!G|Xksep -)torsors on Xksep , that is susceptible to a parametrisation,
and to compute and use this parametrisation to compute the first cohom-
ology.

In this paper, we choose to describe all occurring curves overXksep (which
includes the torsors of which we wish to compute the set of isomorphism
classes) in terms of vector bundles on P1

ksep ; all vector bundles over P1
ksep

are isomorphic to finite direct sums of Serre twists, and we have a simple
parametrisation of every Hom-set between two such vector bundles. We
recall this in more detail in Section 4. To this end, we want to view the
curve X as an open subscheme of a smooth proper curve X, together with
a finite, generically étale morphism X → P1

k such that the complement of
X in X is either empty or the pre-image of a single rational point on P1

k.
If k were perfect, then the construction of such a finite cover is classical,

using the explicit computation of Riemann–Roch spaces, e.g. as in [15].
However, since we don’t require the field k to be perfect, there are some
technicalities that come up. Namely, the normal completion of X may not
be smooth, and it may not admit a finite, generically étale morphism to
P 1
k . We evade this problem by passing to a finite purely inseparable base

change l of k; by the topological invariance of the small étale site there
is a bijection between H1(Xksep ,G|Xksep ) and H1(Xlsep ,G|Xlsep ) (and also
a bijection between their proper support counterparts), and we use (and
make explicit) this bijection in order to be in the desired situation.
Problem 2.2. Given a field k, a smooth curve X over it, a finite, generi-
cally étale morphism from the smooth normal completion X to P1

k such that
X−X is either empty or the pre-image of a single rational point of P1

k, and
a finite locally constant sheaf G of groups on X, compute H1(Xksep ,G|Xksep ),
resp. H1

c(Xksep ,G|Xksep ).
For a more uniform treatment, we will actually consider the following,

slightly more general problem.
Problem 2.3. Suppose given a field k, a smooth proper curve X over it,
and a finite, generically étale morphism f : X → P1

k. For p = 0,∞ ∈ P1(k),
suppose given a subset Sp of {p}. Let X = X − f−1(S∞) and U = X −
f−1(S0), and let j : U → X be the inclusion. Then, given a finite locally
constant sheaf G of groups on U , compute H1(Xksep , j!G|Uksep ).

The two chosen rational points 0 and ∞ of P1
k serve two distinct roles;

we will use additional data above ∞ to encode smoothness of curves finite
over X (that are étale over X), and we will use additional data above 0 to
encode elements of H1(Xksep , j!G|Uksep ).

Note that taking S0 = ∅ and S∞ = {∞} in Problem 2.3 gives us the
computation of the first étale cohomology in Problem 2.2 with the rational
point ∞, and that taking S0 = {0} and S∞ = ∅ in Problem 2.3 gives
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us the computation of the first étale cohomology with proper support in
Problem 2.2 with the rational point 0.

Finally, we reduce to the case in which G is constant by computing a finite
Galois cover g : Y → X for which g−1G is constant. The description of G-
torsors in terms of the constant sheaf g−1G is given in Section 5. Therefore,
after another base change along a finite purely inseparable field extension
if necessary, we have reduced Problem 2.3 to the following.

Situation 2.4. We are given a field k, a finite group Γ, for p = 0,∞ ∈
P1(k), a subset Sp of {p}, and a diagram

V //

g

��

Y //

��

Y

��
U

j //

��

X //

��

X

��
P1
k − S0 − S∞ // P1

k − S∞ // P1
k

in which:
• all squares are cartesian;
• X and Y are smooth, proper, and finite and generically étale
over P1

k;
• g : V → U is Galois with group Γ.

Moreover, we are given a finite locally constant sheaf G of groups on U such
that g−1G is constant, and denote by G its group of connected components;
the Galois action of Γ on V induces an action of Γ on G by automorphisms.

Problem 2.5. In Situation 2.4, compute H1(Xksep , j!G|Uksep ).

The computational details of this reduction step to Situation 2.4 is de-
scribed in Section 9.

The algorithm solving Problem 2.5 consists of two steps. The core step
involves translating the definition of a j!G-torsor to a description purely in
terms of morphisms of vector bundles on P1

k and commutativity relations
between them. The parametrisation described in Section 4 then allows us
to readily translate that into an explicit description of a groupoid scheme
R⇒ U , of which the most important property is that the Gal(ksep/k)-set of
geometric connected components of U is isomorphic to H1(Xksep , j!G|Uksep )
in a natural way. This is detailed in Section 6, and the correctness of this
part of the algorithm is proved in Section 7; these two sections form the
core of this paper.
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After this, we finish by using effective Noether normalisation as in e.g. [7,
§1] to compute the set of isomorphism classes of j!G|Uksep -torsors by com-
puting representatives for each of the isomorphism classes. Details of this
step are found in Section 8.

3. Preliminaries
In this paper we will mainly consider generic field algorithms; i.e. algo-

rithms that take a finite number of bits and a finite number of a field k,
which are only allowed to operate on the field elements through a number of
black box operations, and, aside from the black box operations, are deter-
ministic. The assumptions that follow here are essentially the assumptions
as mentioned in [2, p. 1843, 1846].

First, we assume the constants 0 and 1 (in k) and the characteristic
exponent p (in Z) are given. Moreover, we assume the imperfectness degree
pe of k to be finite, and that k1/p/k is given explicitly as a finite k-algebra
(i.e. as a k-vector space with given unit and multiplication table).

In this paper these black box operations are:
• =, which takes x, y ∈ k, and returns 1 if x = y, and 0 if x 6= y;
• −, which takes x ∈ k, and returns −x;
• ·−1, which takes x ∈ k, and returns nothing if x = 0, and x−1 if
x 6= 0;
• +, which takes x, y ∈ k, and returns x+ y;
• ×, which takes x, y ∈ k, and returns xy;
• ·1/p, which takes x ∈ k, and returns x1/p ∈ k1/p;
• F , which takes a polynomial f ∈ k[x], and returns its factorisation
into irreducibles in k[x].

Remark 3.1. For any field finitely generated over a finite field or Q, there
are algorithms for each of the above black box operations, however, the most
efficient implementations of the factorisation algorithm for finite fields are
randomised.

To such a generic field algorithm we attach a number of functions (from
the set of inputs to N).

• The bit-complexity Nbit; for an input I, the number Nbit(I) is the
number of bit-operations the algorithm performs when given I.
• The arithmetic complexity Nar; for an input I, the number Nar(I)
is the number of black box operations the algorithm performs when
given I.

We will usually not mention the bit-complexity of the algorithms in this
paper; in all cases, the bit-complexity will be small compared to the arith-
metic complexity. As is customary, as a measure of size for inputs, we take
the pair (b, f), where b is the number of bits in the input, and f is the



Computation of étale cohomology on curves 317

number of field elements in the input; so for Φ a function from the set of
inputs to N, we will denote by Φ(b, f) the maximum of the Φ(I) with I
ranging over all the inputs with at most b bits and f field elements.

We note that a lot of linear algebraic operations, like matrix addition,
matrix multiplication, computation of characteristic polynomial, and by ex-
tension, reduced row echelon form, rank, kernels, images, quotients, etc. can
all be performed in arithmetic complexity polynomial in the size of the in-
put.

By [18, §7], the primary decomposition of a finite k-algebra A can also be
computed in arithmetic complexity polynomial in [A : k], and if k is perfect,
the same holds for the computation of nilradicals. In fact, in our case [18,
§7] computes an l-basis (and therefore a k-basis) for the nilradical of A⊗k l
(where l = k1/pblogp[A:k]c

), and therefore also a k-basis for the nilradical of
A, in arithmetic complexity polynomial in [A : k]e+1.

Moreover, using the criteria that a reduced finite k-algebra A is separable
if [A : k] < p, and if and only if A is spanned over k by tpi for ti any k-basis
for A, one can compute separable closures of k in finite field extensions l
in arithmetic complexity polynomial in [l : k], using the obvious recursive
algorithm.

By [2, §1.1] we have algorithms which compute for a finite field exten-
sion l/k the extension l1/p/l and the operations listed above; aside from
the computation of l1/p/l, that of characteristic roots, which have arith-
metic complexity polynomial in [l : k]e+1, and that of factorisation, which
has arithmetic complexity polynomial in [l : k]e+1 and the degree of the
polynomial to be factored, every operation has arithmetic complexity poly-
nomial in [l : k]. Moreover, l has the same characteristic exponent and
imperfectness degree as k.

Now consider the purely transcendental extension k(x)/k. We present
its elements by pairs of polynomials; for f, g ∈ k[x] we set the height of
f
g to be h(fg ) = max(deg f,deg g). Then note that for k(x)/k, we have
k(x)1/p = k1/p(x1/p) and therefore an obvious k(x)-basis for k(x)1/p, and
we can compute the listed operations for elements of k(x) of height at most h
in arithmetic complexity polynomial in h(x). (Again, with the exceptions of
characteristic roots, which has arithmetic complexity polynomial in h(x)e+2

and polynomial factorisation, which has arithmetic complexity polynomial
in h(x)e+2 and the degree of the polynomial to be factored, see e.g. [16].)

As is customary, we will use the standard big-oh notation when bounding
complexities; moreover, we will use O(x, y) as a shorthand for O

(
max(x, y)

)
.
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4. Parametrising morphisms of modules
We first give a parametrisation of the set of morphisms between two

vector bundles on P1
k with k a field. To this end, we will use the following

characterisation of isomorphism classes of vector bundles over P1
k.

Proposition 4.1 ([4]). Let k be a field, and let E be a vector bundle on
P1
k. Then there exists an up to permutation unique finite sequence (ai)si=1

of integers such that

E ∼=
s⊕
i=1
OP1

k
(ai).

This motivates the following definition.

Definition 4.2. Let S be a scheme, and let a be a finite sequence of integers
of length s. The standard module of type a on S is the OP1

S
-module

OP1
S
(a) =

s⊕
i=1
OP1

S
(ai).

So every vector bundle E over P1
k is isomorphic to a standard module

over k, say of type a; in this case, we simply say that E has type a.
Let, for finite sequences a, b of integers, of lengths s, t, respectively, Ha,b

define the functor Schop → Set sending S to HomOP1
S

(
OP1

S
(b),OP1

S
(a)
)
.

Moreover, let N(a, b) =
∑s,t
i=1,j=1 max(ai − bj + 1, 0).

Then the functor Ha,b is representable by AN(a,b): in fact, as

HomOP1
S

(
OP1

S
(bj),OP1

S
(ai)

)
= O(S)[x, y]ai−bj

functorial in S, we get an identification

HomOP1
S

(
OP1

S
(b),OP1

S
(a)
)

=
{
M ∈ Mats×t

(
O(S)[x, y]) : Mij ∈ O(S)[x, y]ai−bj

}
,

and under this identification, all the relevant operations on morphisms of
standard modules (i.e. identity map, composition, direct sum, tensor prod-
uct, dual, exterior powers) correspond to their usual counterparts on ma-
trices. In particular, if these operations are viewed as operations on the
representing scheme AN(a,b), then the degrees of the polynomials defining
them are as expected.

To an element of Ha,b(S), one way to give its fibre at 0 ∈ P1
S is by

substituting (0, 1) for (x, y), and one way to give its fibre at ∞ ∈ P1
S is by

substituting (1, 0) for (x, y). Moreover, a way to give the first infinitesimal
neighbourhood at ∞ ∈ P1

S is by substituting x = 1 and setting y2 = 0.
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5. Torsors
A curve over a field k in this paper is a separated k-scheme of finite type,

of pure dimension 1 over k.
Let f : X → Spec k be a smooth connected curve over a field k, and let

G be a finite locally constant étale sheaf of groups on an open subscheme
U of X. In this section, we give, in abstract terms, a description of the
category of j!G-torsors on X in terms of a finite étale Galois cover V of U
trivisalising G (compare with Situation 2.4).

5.1. j!G-torsors and recollement. The main tool we will use in the
description mentioned directly above is recollement, which we recall below.

Definition 5.1. Let X be a scheme, let i : Z → X be a closed immersion,
and let j : U → X be its open complement.

Define the category ShZ,U (Xét) as follows. The set of objects of the cate-
gory ShZ,U (Xét) is the set of triples (FZ ,FU , φ) of a sheaf FZ on Zét, a sheaf
FU on Uét, and a morphism φ : FZ → i−1j∗FU . For objects (FZ ,FU , φ)
and (F ′Z ,F ′U , φ′) of ShZ,U (Xét), the set of morphisms from (FZ ,FU , φ) to
(F ′Z ,F ′U , φ′) is the set of pairs (fZ , fU ) of a morphism fZ : FZ → F ′Z and a
morphism fU : FU → F ′U such that the following diagram commutes.

FZ
φ

��

fZ // F ′Z
φ′

��
i−1j∗FU

i−1j∗(fU )
// i−1j∗F ′U

Theorem 5.2 (Recollement, e.g. [10, §5.4]). Let X be a scheme, let i : Z →
X be a closed immersion, and let j : U → X be its open complement.

Then the functor Sh(Xét) → ShZ,U (Xét) sending the sheaf F to the
triple

(
i−1F , j−1F , i−1(υ)

)
, where υ : F → j∗j

−1F is the unit map of the
adjoint pair (j−1, j∗) of functors, is an equivalence of categories, and a
quasi-inverse ShZ,U (Xét) → Sh(Xét) is given by sending (FZ ,FU , φ) to
i∗FZ ×i∗(φ),i∗i−1j∗FU ,υ j∗FU , where υ : j∗FU → i∗i

−1j∗FU is the unit map
of the adjoint pair (i−1, i∗) of functors.

Note that the functor i−1j∗ is left exact, hence commutes with finite
limits.

Let us apply this to our category of torsors. So let T denote the category
of j!G-torsors on Xét, and let TZ,U denote the category of which the objects
are pairs (F , s) of a G-torsor F on Uét, and a section s ∈ i−1j∗F(Z), and in
which the morphisms (F , s)→ (F ′, s′) are the morphisms f : F → F ′ such
that i−1j∗(f) sends s to s′.
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Lemma 5.3. Let X be a scheme, let i : Z → X be a closed immersion,
and let j : U → X be its open complement. Let G be a sheaf of groups on
Uét. The rule attaching to a j!G-torsor F on Xét the pair

(
j−1F , i−1(υ)

)
,

where υ : F → j∗j
−1F denotes the unit map of the adjoint pair (j−1, j∗) of

functors, defines an equivalence T → TZ,U of categories.
Proof. First, note that the sheaf j!G is under recollement equivalent to the
triple (1,G, 1).

Now giving a j!G-action ρ on a sheaf F on Xét is equivalent to giving
(i−1F , j−1F , i−1(υ)) together with an action of G on j−1F ; the commuta-
tivity of

1× i−1F

1×i−1(υ)
��

ρZ // i−1F
i−1(υ)
��

i−1j∗G × i−1j∗j
−1F

i−1j∗(ρU )
// i−1j∗j

−1F

is automatic since both ρZ and i−1j∗(ρU ) are group actions. (Of course, one
can also deduce this equivalence by noting that a morphism j!G → Aut(F)
is equivalent to a morphism G → j−1Aut(F) = Aut(FU ).)

Now F is a j!G-torsor if and only if the map j!G × F → F × F given
on local sections by (g, s) 7→ (s, gs) is an isomorphism, and F locally has a
section. This is equivalent to the following.

• i−1F is the terminal sheaf on Zét; therefore i−1(υ) is an element
of i−1j∗F(Z), and it follows that the given rule indeed defines a
functor;
• j−1F is a G-torsor on Uét,

so the given rule defines an equivalence, as desired. �

5.2. Pushforward and normalisation. Next, we consider a description
of the pushforward of a finite locally constant sheaf along certain open
immersions. This is mostly well-known, but the author doesn’t know of a
reference, so proofs are included here for completeness.

Recall that, for a scheme X, the category of sheaves on Xét is equivalent
to that of algebraic spaces étale over X. Quasi-inverses are given by the
functor sending an algebraic space étale over X to its functor of points,
and the functor sending a sheaf on Xét to its espace étalé. By descent, finite
locally constant sheaves on Xét are precisely those of which the espace étalé
is a finite étale X-scheme.
Proposition 5.4. Let X be a scheme, and let j : U → X be a quasi-compact
open immersion such that the normalisation of X in U is X. Let F be a
finite locally constant sheaf on Uét, or equivalently, a finite étale U -scheme.
Let F be the normalisation of X in F . Then for all étale X-schemes T , we
have j∗F(T ) = F(T ) functorial in T .
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Proof. First of all, note that we may restrict ourself to étale X-schemes T
that are affine, and therefore to quasi-compact separated étale X-schemes
T . So let T be an étale quasi-compact separated X-scheme. Let T be the
normalisation of X in T , and let U ×X T be the normalisation of X in
U ×X T . Then j∗F(T ) = F(U ×X T ), and we have a map F(U ×X T ) →
F(U ×X T ). Since for every Y -morphism U ×X T → F , the composition
with U×XT → U ×X T factors through F (as F is a finite étaleX-scheme),
it follows that F(U ×X T ) = F(U ×X T ).

Now note that since normalisation commutes with smooth base change
(see e.g. [23, Tag 082F]), it follows that the normalisation of T in U ×X
T is simply T . Therefore U ×X T → T is an isomorphism, and we have
F(U ×X T ) = F(T ) = F(T ), as desired. �

Corollary 5.5. Let X be a scheme, and let j : U → X be a quasi-compact
open immersion such that the normalisation of X in U is X. Then for all
finite sets F , we have j∗F = F .

Lemma 5.6. Let k be a field, let X be a k-scheme of finite type, and let
j : U → X be an open immersion such that the normalisation of X in
U is X. Let F be a finite locally constant sheaf on Uét, or equivalently, a
finite étale U -scheme. Then j∗F is representable by an étale, quasi-compact,
separated X-scheme.

Proof. First note that by [5, Thm. finitude] j∗F is constructible, i.e. of
finite presentation as an X-space.

Note that F is finite locally constant, so F × F is the disjoint union of
the diagonal and its complement, inducing a morphism F × F → Z/2Z
such that the equaliser with the constant map with value 0 is the diagonal.
Applying the left exact functor j∗ to this gives a morphism j∗F × j∗F →
j∗(Z/2Z) = Z/2Z such that the equaliser with the constant map with value
0 is the diagonal. Therefore j∗F is separated as an X-space.

It follows by [23, Tag 03XX] that j∗F is representable by an étale, quasi-
compact, separated X-scheme. �

Lemma 5.7. Let k be a field, let X be a k-scheme of finite type, and let
j : U → X be an open immersion such that the normalisation of X in U is
X. Let F be a finite locally constant sheaf on Uét, or equivalently, a finite
étale U -scheme. Let F be the normalisation of X in F . Then F is the
normalisation of X in j∗F .

Proof. First note that we have a canonical morphism j∗F → F correspond-
ing to the identity section of j∗F . Let j∗F → Y → X be a factorisation
with Y → X integral. As F is the normalisation of X in F , it follows that
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there exists a unique morphism F → Y such that the diagram

F

��

// F

����
Y // X

commutes. We show that this morphism also makes the diagram

(5.1) j∗F //

��

F

~~
Y

commute. Let T be an étale quasi-compact separated X-scheme, and con-
sider the following diagram.

j∗F(T ) //

��

F(T )

zz
Y (T )

As the normalisations of X in T and U ×X T are equal, as in the proof
of Proposition 5.4, the commutativity of this diagram is equivalent to the
commutativity of the following one.

F(U ×X T ) //

��

F(U ×X T )

ww
Y (U ×X T )

It follows that the commutativity of (5.1) holds when restricted to Xét.
Therefore, applying this to the identity section on j∗F , it follows that

(5.1) itself commutes. �

By Zariski’s Main Theorem, we have the following.

Corollary 5.8. The canonical morphism j∗F → F is an open immersion
identifying j∗F with the étale locus of F over X.

Proof. The étale locus V of F over X is open in F and étale over X,
therefore factors through j∗F . By maximality of V we get j∗F = V . �

5.3. Galois actions on finite locally constant sheaves. Let X be a
scheme, and let Γ be a group acting on X. Then recall that a Γ-sheaf on
Xét is a sheaf F on Xét of which the espace étalé is a Γ-equivariant X-space.

Let X be a connected scheme, let Γ be a finite group, and let f : Y → X
be a finite étale connected Galois cover with Galois group Γ. Note that
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pullback of sheaves defines an equivalence from the category of sheaves on
Xét to that of Γ-sheaves on Yét. A quasi-inverse is given in terms of sheaves
by sending F to the sheaf of Γ-invariants of f∗F ; in terms of espaces étalés,
it sends an algebraic space Z étale over Y to the quotient Γ\Z.

If G is a finite locally constant sheaf of groups on Xét such that f−1G is
constant, let G be the group of connected components of f−1G, and note
that Γ acts on G by automorphisms. Therefore we see that a finite locally
constant sheaf on Xét with G-action corresponds to a Γ- and G-equivariant
finite étale Y -scheme.

Let us now apply this to the following situation (compare with Situa-
tion 2.4).

Situation 5.9. Let k be a field. Suppose we have a finite group Γ, and a
diagram of schemes of finite type over k

V

g

��

j′ // Y

f

��

W

h
��

i′oo

U
j
// X Z

i
oo

where U and X are connected, g is finite étale Galois with Galois group
Γ, Y is the normalisation of X in V , W = Y ×X Z, and j is the open
complement of i. Let G be a finite locally constant sheaf of groups on U
such that g−1G is constant, say with group of connected components G.

Let TZ,U be as in the previous section, and let T Γ
W,Y be the category of

which the objects are pairs (F , s) of a Γ-equivariant G-torsor F on Yét,
and a Γ-equivariant section s ∈ (i′)−1F(W ), and in which the morphisms
(F , s) → (F ′, s′) are the Γ-equivariant morphisms f : F → F ′ such that
(i′)−1(f) sends s to s′.

Lemma 5.10. In Situation 5.9, the rule attaching to a pair (F , s) of a
G-torsor F and a section s ∈ i−1j∗F(Z) the pair (j′∗g−1F , s) defines an
equivalence TZ,U → T Γ

W,Y of categories.

Proof. First note that giving a G-torsor F on Uét is equivalent to giv-
ing the Γ-equivariant G-torsor g−1F on Vét. Moreover, giving the sec-
tion s : Z → i−1j∗F is the same as giving a Γ-invariant section Z →
i−1j∗g∗g

−1F = i−1f∗j
′
∗g
−1F = h∗(i′)−1j′∗g

−1F , where the last step uses
proper base change. This is the same as giving a Γ-equivariant section
W → (i′)−1j′∗g

−1F .
Now j′∗g

−1F is a Γ-equivariant G-pseudotorsor which étale locally has a
section, i.e. a Γ-equivariant G-torsor. Therefore giving the pair (g−1F , s) is
equivalent to giving (j′∗g−1F , s), as desired. �
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6. Computation of a groupoid scheme
In this section, we describe the core of our algorithm. (Though the core

of this paper isn’t the part of the algorithm described in this section, but
rather its correctness.)

First, recall the following situation (Situation 2.4).

Situation 6.1. We are given a field k, a finite group Γ, for p = 0,∞ ∈
P1(k), a subset Sp of {p}, and a diagram

V //

g

��

Y //

��

Y

��
U

j //

��

X //

��

X

��
P1
k − S0 − S∞ // P1

k − S∞ // P1
k

in which:
• all squares are cartesian;
• X and Y are smooth, proper, and finite and generically étale
over P1

k;
• g : V → U is Galois with group Γ.

Moreover, we are given a finite locally constant sheaf G of groups on U such
that g−1G is constant, and denote by G its group of connected components;
the Galois action of Γ on V induces an action of Γ on G by automorphisms.

Then our algorithm proceeds by first reducing to Situation 2.4, and com-
puting H1(Xksep , j!G|Uksep ) in Situation 2.4.

The core of our algorithm then is the computation of a groupoid k-scheme
R⇒ U that satisfies the following properties.

• Both morphisms R → U are smooth and have geometrically con-
nected fibres.
• Both R and U are affine and of finite type over k.
• There exists a functor from the category U(S) to the category of
j!G|US

-torsors, functorial in the k-scheme S, that is an equivalence
if S is the spectrum of a perfect field extension of k.

These conditions will imply that the set π0(Uksep) of geometric connected
components of U is, as a Gal(ksep/k)-set, isomorphic to H1(Xksep , j!G|Uksep ).
The proof of this is the subject of Section 7. We will also derive complexity
bounds for this part of our algorithm.

As for how we represent Situation 2.4 and the output groupoid:
• As stated in Section 3, we will construct a generic field algorithm,
so the representation of field elements, and all algorithms for the
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“basic” operations are assumed to be given, and are used as black
boxes.
• Finite locally free curves over P1

k are given in terms of the descrip-
tion in Section 4, i.e. as standard modules together with the struc-
ture of a ring.
• Finite groups are given by their multiplication tables and finite
group actions on finite locally free curves are given by a sequence
of automorphisms.

Note that we haven’t explained yet how to decide whether such an input is
valid, but the characterisations in this section and the introduction of the
next section will allow us to do so. The output groupoid will be given using
generators and relations for their underlying coordinate rings.

We briefly recall the strategy outlined in Section 2 for the computation of
the target groupoid k-scheme, but with slightly more details. This strategy
is to translate the concept of a j!G-torsor (and isomorphisms between two of
them) on Xét to a description purely in terms of linear maps between vector
bundles on P1

k and commutativity relations between them. Since we have a
parametrisation of sets of morphisms between two such vector bundles as
an affine space (Section 4), this will readily translate into a presentation of
our groupoid scheme that satisfies the desired properties.

As a first step, let us describe, for a field extension l of k, the category
T (l) of j!G-torsors on (Xl)ét more closely. By Lemma 5.10, T (l) is equivalent
to that of Γ-equivariant G-torsors on (Yl)ét, together with a Γ-equivariant
section from Yl ×P1

l
S0. (We note that in case S0 = ∅, the empty morphism

is Γ-equivariant.) By taking normal completions, we obtain the following.
Proposition 6.2. Let l be a perfect field extension of k. Then the category
T (l) is equivalent to that of finite locally free P1

l -schemes T , smooth over l,
together with a Γ-equivariant G-action, a Γ-equivariant morphism T → Yl
and a Γ-equivariant section Yl ×P1

l
S0 → T ×P1

l
S0, such that T ×P1

l
(P1
l −

S∞) is a G-torsor on (Yl)ét; here, the morphisms are the Γ-equivariant,
G-equivariant morphisms of Yl-schemes.

So aside from the conditions “smooth over l” and “T ×P1
l

(P1
l − S∞)

is a G-torsor on (Yl)ét”, the data in the description above can readily be
expressed in terms of morphisms of vector bundles on P1

l , and the relations
in the description above can be easily expressed in terms of commutativity
relations between these morphisms.
Example 6.3. As an example, we work out the equations of some of the
commutativity relations mentioned above, in terms of the parametrisa-
tion given in Section 4. In the context of Situation 2.4, we take X = P1,
S0 = {0}, S∞ = {∞}, Γ trivial, and for G the constant group sheaf with
group Z/2Z. Moreover, we will restrict ourselves to describing (some of
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the) equations for torsors of which the underlying OP1-module is a stan-
dard module of type (0,−1).

Let k be a field. We will write O = OP1
k
throughout this example. We

first consider the space of algebra structures on a standard module of type
a = (0,−1). Note that an algebra structure is given by a unit morphism

ι ∈ HomO
(
O,O ⊕O(−1)

)
and a multiplication morphism

µ ∈ HomO
(
(O ⊕O(−1))⊗ (O ⊕O(−1)),O ⊕O(−1)

)
satisfying the usual relations. Under the identification of Section 4, ι is
equivalent to a pair (ι1, ι2) with ι1 ∈ O(P1

k) = k and ι2 ∈ O(−1)(P1
k) = {0},

or equivalently, an element ι10 ∈ k. Note that ι1 and ι10 define the same
element of k; however, we will view ι1 as a homogeneous polynomial of
degree 0, and ι10 as its unique coefficient.

Similarly, µ is equivalent to a tuple (µijk)2
i,j,k=1 with

µijk =
ak−ai−aj∑
α=0

µijkαx
ak−ai−aj−αyα ∈ O(ak − ai − aj) = k[x, y]ak−ai−aj ,

which is equivalent to a 12-tuple

(µ1110, µ1210, µ1211, µ1220, µ2110, µ2111, µ2120, µ2210, µ2211, µ2212, µ2220, µ2221)

of elements of k.
We now consider the relations. Commutativity of µ is easily expressed

by the relations µijk = µjik for all i, j, k, giving non-trivial relations

µ1210 = µ2110,

µ1211 = µ2111,

µ1220 = µ2120.

Working out the condition that ι is a left unit for µ yields the relations
µ1ijι1 = 0 if i 6= j and µ1iiι1 = 1, which gives the non-trivial relations

µ1110ι10 = 1,
µ1210 = µ1211 = 0,

µ1220ι10 = 1,

and therefore by commutativity also the relations

µ2110 = µ2111 = 0,
µ2120ι10 = 1,

Finally, the associativity of µ amounts to the relations

µi1lµjk1 + µi2lµjk2 = µ1klµij1 + µ2klµij2
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for all i, j, k, l. This doesn’t give any new relations on the µijkl. One way
of seeing this, is the following. Note that over the function field k(x) of
P1, the induced symmetric k(x)-bilinear map m : k(x)2 × k(x)2 → k(x)2

has a unit e, and for any z ∈ k(x)2 linearly independent of e, any choice of
m(z, z) = az+be makes k(x) isomorphic to k(x)[α]/(α2−aα−b). Hence for
any choice of ι1 6= 0, µ221, µ222, the resulting map µ is already associative.

Next, we add the structure of a Z/2Z-action on the resulting algebra,
which is simply an O-linear map ρ : O ⊕O(−1)→ O ⊕O(−1) compatible
with the algebra structure and such that ρ2 is the identity. In the same way
as before, we see that giving ρ is equivalent to giving

ρij =
aj−ai∑
α=0

ρijαx
aj−ai−αyα ∈ k[x, y]aj−ai ,

i.e. to a 4-tuple (ρ110, ρ210, ρ211, ρ220) of elements of k.
The identity ρ2 = id gives us relations ρ1jρi1 +ρ2jρi2 = 0 for all i, j such

that i 6= j, and ρ1iρi1 + ρ2iρi2 = 1 for all i. Working this out, we get

ρ2
110 = ρ2

220 = 1,
ρ210(ρ110 + ρ220) = 0,
ρ211(ρ110 + ρ220) = 0.

Finally, we consider the compatibility of ρ with the algebra structure. First,
the condition ρι = ι gives us the relation ρ11ι1 = ι1, or equivalently, the
relation ρ110 = 1. The condition µ ◦ (ρ⊗ ρ) = ρµ gives us the relations

(6.1) µ11kρi1ρj1 +µ12kρi1ρj2 +µ21kρi2ρj1 +µ22kρi2ρj2 = ρ1kµij1 + ρ2kµij2

for all i, j, k. Of these relations, we see that only the relations for i = j = 2,
being

µ111ρ
2
21 = ρ21µ222,

µ122ρ21ρ22 + µ212ρ22ρ21 + µ222ρ
2
22 = ρ22µ222

(which are simplified a bit), cannot be obtained from previously mentioned
relations. Comparing coefficients, we obtain the following equations:

µ1110ρ
2
210 = ρ210µ2220,

2µ1110ρ210ρ211 = ρ210µ2221 + ρ211µ2220,

µ1110ρ
2
211 = ρ211µ2221,

µ1220ρ210 + µ2120ρ210 + µ2220ρ220 = µ2220,

µ1220ρ211 + µ2120ρ211 + µ2221ρ220 = µ2221.

Note that in this small example, we already get quite a lot of equations.
It may be more enlightening to write out 6.1 in a more general form in
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terms of the coefficients ρijλ, µijkλ, which is given by the equations∑
a,b

∑
α+β+γ=λ

µabkαρiaβρjbγ =
∑
a

∑
α+β=λ

ρakαµijaβ

for all i, j, k, λ (where λ = 0, 1, . . . , ak − ai − aj).

6.1. Torsors. Let us first consider the condition “T ×P1
l

(P1
l − S∞) is a

G-torsor on (Yl)ét”. To this end, we first express the condition “T is finite
locally free over P1

l of constant rank”, using the fibre of Yl above 0 ∈ P1
l ;

this is not automatic as we didn’t assume Y to be geometrically connected.

Lemma 6.4. Let S be a scheme, let X be a finite locally free P1
S-scheme

that is smooth over S. Let Y be an X-scheme that is finite locally free over
P1
S, such that Y ×P1

S
0 is finite locally free over X ×P1

S
0 of constant rank

n. Then Y is a finite locally free X-scheme of constant rank n.

Proof. We can check fibrewise on S that X×P1
S

0 intersects all components
of X, from which our claim follows. �

Since finite locally free modules over an Artinian ring are free, we have
the following.

Corollary 6.5. Let l be a perfect field extension of k. Then the category
of finite locally free Yl-schemes of constant rank is equivalent to that of
finite locally free P1

l -schemes T together with a morphism T → Yl and an
O(Yl ×P1

l
0)-basis for O(T ×P1

l
0) (morphisms in this category are simply

morphisms of Yl-schemes).

Next, we want to express the condition “T ×P1
l
(P1
l −S∞) is étale over Yl”

in terms of vector bundles on P1
l . To this end, we will use the transitivity

of the discriminant.
First, we recall the definitions of the discriminant and the norm of a

finite locally free morphism Y → X. Recall that, for a finite locally free
morphism Y → X of schemes, we view OY as a (finite locally free) OX -
algebra.

Definition 6.6. Let f : Y → X be a finite locally free morphism of schemes
of constant rank, and let µ be the multiplication map OY ⊗OX

OY → OY .
The trace form τf of f is the morphism OY → HomOX

(OY ,OX) corre-
sponding to the composition Trf µ : OY ⊗OX

OY → OX . The discriminant
∆f of f is the determinant (over OX) of the trace form τf .

Definition 6.7 (cf. [9]). Let f : Y → X be a finite locally free morphism
of schemes of constant rank, and let L be a line bundle on Y . The norm
Nf L of L is the line bundle

HomOX
(detOX

f∗OY ,detOX
f∗L).
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Let f : Y → X be a finite locally free morphism of schemes of constant
rank, and let E and F be finite locally freeOY -modules of the same constant
rank. By [6, Eq. 7.1.1] and the fact that norms (of line bundles) commute
with tensor products and duals (see [12, §6.5] and [9, Prop. 3.3]), we see
that there is a unique isomorphism

HomOX
(detOX

E , detOX
F) = HomOX

(Nf detOY
E ,Nf detOY

F)
satisfying the following properties.

• It is compatible with base change by open immersions.
• For any isomorphism α : F → E , we have induced isomorphisms

HomOX
(detOX

E ,detOX
F)→ EndOX

(detOX
E)

and
HomOX

(Nf detOY
E ,Nf detOY

F)→ EndOX
(Nf detOY

E).
Therefore they induce isomorphisms
IsomOX

(detOX
E ,detOX

F)→ AutOX
(detOX

E) = Gm,X

and
IsomOX

(Nf detOY
E ,Nf detOY

F)→ AutOX
(Nf detOY

E) = Gm,X .

These isomorphisms are equal under the given identification.
Therefore, we have the following.

Corollary 6.8. Let f : Y → X be a finite locally free morphism of schemes
of constant rank, and let E be a finite locally free OY -module of constant
rank r. Then

detOX
E = Nf detOY

E ⊗OX
(detOX

OY )⊗r

HomOX
(detOX

E ,OX) = Nf detOY
HomOY

(E ,OY )

⊗OX

(
HomOX

(detOX
OY ,OX)

)⊗r
Using the two identifications above, we may now state the transitivity of

the discriminant. A proof can be found in e.g. [20, §4.1].

Theorem 6.9 (Transitivity of the discriminant). Let f : Y → X and
g : Z → Y be finite locally free morphisms of schemes of constant rank,
and suppose that g has rank r. Then

∆fg = Nf ∆g ⊗∆⊗rf .

Corollary 6.10. Let f : Y → X and g : Z → Y be finite locally free mor-
phisms of schemes of constant rank, and suppose that g has rank r. Then
g is étale if and only if we have detOX

OZ ∼= (detOX
OY )⊗r and ∆fg and

∆⊗rf differ by a unit.

Therefore we have the following.
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Proposition 6.11. Let l be a perfect extension of k. Then the category of
finite étale Yl-schemes is equivalent to the full subcategory of that of finite
locally free Yl-schemes T of constant rank (say r) such that detOP1

l

OT ∼=
(detOP1

l

OYl
)⊗r and ∆T/P1

l
and ∆⊗r

Yl/P1
l

differ by a unit.

Note that the condition on the determinants is simply a condition on
the types of the standard modules over l isomorphic to OT and OYl

, so if
S∞ = ∅, this gives an expression of the desired form. If S∞ = ∞, then we
use the following instead.

Proposition 6.12. Let l be a perfect extension of k, and assume that
S∞ =∞. Then the category of finite locally free Yl-schemes étale over Yl is
equivalent to the full subcategory of that of finite locally free Yl-schemes T
of constant rank (say r) such that ∆T/P1

l
and ∆⊗r

Yl/P1
l

differ by a unit times
a power of y.

Proof. It suffices to show that for integers a, b, a map φ : OP1
l
(b)→ OP1

k
(a)

is an isomorphism when restricted to A1
l if and only if it is given by multi-

plication by sya−b with s ∈ l×. Since y becomes invertible after restricting
to A1

l , it follows that if φ is multiplication by sya−b, then φ|A1
l
is an isomor-

phism. Conversely, φ is multiplication by some f ∈ l[x, y]a−b, which after
restriction becomes the multiplication by f(x, 1) map l[x] → l[x]. Since
this map is an isomorphism, f(x, 1) must be an invertible constant in l[x],
i.e. f = sya−b for some s ∈ l×. �

We are almost ready to express the condition “T ×P1
l

(P1
l − S∞) is a

G-torsor on (Yl)ét” in terms of vector bundles on P1
l .

Lemma 6.13. Let f : Y → X be a morphism of schemes, and let G be
a finite group acting on Y/X. Then Y is a G-torsor on X if and only if
f is flat, surjective, locally of finite presentation, and G acts freely and
transitively on geometric fibres.

Proof. The necessity of the condition is clear. Hence suppose that f is flat,
surjective, locally of finite presentation, and G acts freely and transitively
on geometric fibres. Then for any geometric point x of S, Yx is the trivial
G-torsor, hence étale. As the property of being étale is fpqc local on the
base, it follows that all fibres of f are étale, and since f is flat and locally
of finite presentation, it follows that f is finite étale.

Now consider the morphism φ : G × Y → Y ×X Y of finite étale Y -
schemes given on the functor of points by (g, y) 7→ (gy, y), where the oc-
curring schemes are viewed as Y -schemes via the projection on the second
coordinate. Then φ is itself finite étale surjective, and as G×Y and Y ×X Y
have the same rank over Y , it follows that φ is an isomorphism. After base
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change with itself, it admits a section, so as f is finite étale, it also follows
that Y is a G-torsor, as desired. �

Lemma 6.14. Let f : Y → X be a finite étale morphism of schemes of
constant rank n, and let G be a finite group of order n acting on Y/X.
Then the locus in X where f is a G-torsor is open and closed in X.

Proof. Consider the locus U in Y ×X Y on which the morphism G× Y →
Y ×X Y given on the functor of points by (g, y) 7→ (gy, y) is an isomorphism
(i.e. where the rank is equal to 1). It is an open and closed subset of Y ×X Y
as this morphism is finite étale. As the rank of f is equal to n, the X-locus
where the same morphism is an isomorphism is the image of U in X, and
hence is open and closed as well. This locus equals the X-locus where f is
a G-torsor, as desired. �

Therefore we have the following.

Corollary 6.15. Let l be a perfect extension of k. Then the category of
finite locally free G-equivariant Yl-schemes T such that T ×P1

l
(P1
l − S∞)

is a G-torsor on (Yl)ét is equivalent to the category of finite locally free G-
equivariant Yl-scheme T such that T ×P1

l
(P1
l − S∞) is étale, and such that

T ×P1
l

0 is a G-torsor on (Yl ×P1
l

0)ét.

Since in the description of finite locally free Yl-schemes T , an O(Yl×P1
l
0)-

basis forO(T×P1
l
0) occurred, in terms of which we can express the condition

that T ×P1
l

0 is a G-torsor on (Yl ×P1
l

0)ét.

6.2. Smoothness at ∞. Finally, we consider the condition “T is smooth
over l”. If S∞ = ∅, then this follows automatically from T having to be
étale over Yl, so assume that S∞ =∞. As T ×P1

l
A1
l has to be étale over Yl,

it suffices to consider the condition “T is smooth over l at T ×P1
l
∞”.

To this end, assume that we have a scheme S, a positive integer r,
and the structure of an algebra A on OrS , given by, for the standard ba-
sis e1, . . . , er on OrS , eiei′ =

∑
j µjii′ej and 1 =

∑
j εjej . Then the rela-

tive differentials ΩA/OS
over S are generated by the dej , with relations

ei′ dei+ei dei′−
∑
j µjii′ dej = 0 for all i, i′ and

∑
j εj dej = 0. Therefore we

get a canonical presentation ωA/OS
: Ar2+1 → Ar of the A-module ΩA/OS

,
which is compatible with base change.

Proposition 6.16. Let l be any extension of k. The category of finite
locally free P1

l -schemes T smooth over l at T ×P1
l
∞ is equivalent to that of

finite locally free P1
l -schemes T , together with morphisms

i : OT×P1
l
∞(2) → O2r

T×P1
l
∞(2) , j : O2r

T×P1
l
∞(2) → O

(2r)2+2
T×P1

l
∞(2)
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of OT×P1
l
∞(2)-modules such that the morphism (ωO

T×P1
l

∞(2)/l ⊕ i)j is the

identity on O2r
T×P1

l
∞(2); the morphisms in the latter category are simply the

morphisms of P1
l -schemes.

Proof. We will first show that T is smooth over l at T ×P1
l
∞ if and only

there exist i and j as in the proposition.
Write B for the ring of global sections of T ×P1

l
(P1
l − 0), and note that

it is a finite locally free l[y]-algebra. Then T ×P1
l
∞(2) = SpecB/y2B. First

suppose that there exist morphisms

i : (B/y2B)→ (B/y2B)2r, j : (B/y2B)2r → (B/y2B)(2r)2+2

such that for the canonical presentation

ω(B/y2B)/l : (B/y2B)(2r)2+1 → (B/y2B)2r

of Ω(B/y2B)/l as a (B/y2B)-module, we have (ω(B/y2B)/l ⊕ i)j = id. It
immediately follows that Ω(B/y2B)/l is generated by one element as B/y2B-
module.

Conversely, if Ω(B/y2B)/l is generated by one element, we let i be a mor-
phism from (B/y2B) to (B/y2B)2r sending 1 to (a lift of) a generator of
Ω(B/y2B)/l. Hence (ω(B/y2B)/l⊕i) is a surjective morphism to a free B/y2B-
module, so it has a section j, as desired.

It remains to show that Ω(B/y2B)/l is generated as a B/y2B-module by
one element if and only if T is smooth over l at all points lying over∞ ∈ P1

l .
Note that we have an isomorphism

ΩB/l ⊗B (B/yB)→ Ω(B/y2B)/l ⊗B/y2B (B/yB),

and that by Nakayama’s lemma, the right hand side (and therefore the
left hand side) is generated as a B/yB-module by one element if and only
if Ω(B/y2B)/l is generated as a B/y2B-module by one element. Therefore,
again by Nakayama’s lemma, there exists some f ∈ 1 + yB such that
ΩB/l ⊗B Bf is generated as a Bf -module by one element. So the left hand
side is a B/yB-module generated by one element if and only if there exists
a neighbourhood of T ×P1

l
∞ that is smooth over l, which holds if and only

if T is smooth over l at all points lying over ∞ ∈ P1
l .

So now we have a forgetful functor from the category of finite locally free
P1
l -schemes T together with morphisms i and j as in the proposition, to

that of finite locally free P1
l -schemes T smooth over l at T ×P1

l
∞, which is

essentially surjective by the above, and fully faithful by construction. �
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6.3. Bounds on types. In order to construct a groupoid scheme with the
desired properties using the above, we first need to bound the number of
possible types.

Lemma 6.17. Let S be a scheme, let a be a finite sequence of integers, let
X be a finite locally free P1

S-scheme of which the underlying OP1
S
-modules

is standard of type a, and suppose that X has geometrically reduced fibres
over S. Then a is non-positive (i.e. all of its elements are non-positive).

Proof. By taking a geometric fibre if necessary, we assume without loss of
generality that S is the spectrum of an algebraically closed field k. Let
X1, . . . , Xt be the connected components of X. Then there exist finite se-
quences a1, . . . , at such that for all i, the algebra OXi is of type ai. These
have the property that their concatenation is equal to a up to a permuta-
tion. Hence we assume without loss of generality thatX is connected. In this
caseX is a reduced curve over S, soOX(P1

S) = OX(X) = OS(S) = k, where
π is the structure morphism of X, so we deduce that a is non-positive. �

Remark 6.18. Of course, the converse is not true; a counterexample is
the OP1

k
-module OP1

k
⊕OP1

k
(−1)ε with multiplication given by ε2 = 0.

In Situation 2.4, let l be a perfect extension of k, and let T be the normal
completion of a j′!G-torsor on (Yl)ét. Let a be the type of OY , let b be the
type of OT , and let s, t be their respective lengths. Then by the above, both
a and b are non-negative. As the degree of the finite locally free morphism
T → Yl is equal to #G, we see that t = s ·#G. Moreover, if S∞ = ∅, then
by Corollary 6.10, we have

∑
j bj = #G ·

∑
i ai; so up to permutation, we

only have finitely many possibilities for b. So suppose that S∞ =∞.

Lemma 6.19. Let S be a scheme, let a be a finite sequence of integers, and
let X be finite locally free P1

S-scheme such that OX is a standard module
over S of type a, where a has length s, and such that X is smooth over S.
Then X is a family of curves over S of Euler characteristic s+

∑
i ai.

Proof. It suffices to check this on geometric fibres, so we may assume that
S is the spectrum of an algebraically closed field k. Then

dimk H0(X,OX)− dimk H1(X,OX)

= dimk H0
(
P1
k,OP1

k
(a)
)
− dimk H1(P1

k,OP1
k
(a)
)

=
∑
i

(1 + ai)

= s+
∑
i

ai. �
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Proposition 6.20. Let S be a scheme, and let Y → X be a morphism of
finite locally free P1

S-schemes, with OX and OY standard modules over S of
respective types a and b, which have respective lengths s, t. Let G be a finite
group of order invertible in S acting on Y over X, such that Y ×P1

S
A1
S is

a G-torsor over X ×P1
S
A1
S. Then∑
j

bj ≥ #G
∑
i

ai − 1
2 t.

Proof. It suffices to check this on geometric fibres, so we may assume that
S is the spectrum of an algebraically closed field k. As G acts transitively
on Y over X, and the order of G is invertible in k, it follows that Y is
tamely ramified over X. Therefore the ramification degree of Y over X is
at most t, as Y ×P1

k
A1
k is étale over X ×P1

k
A1
k, and Y has degree t over P1

k.
So by the Riemann–Hurwitz formula, we have

−2t− 2
∑
j

bj ≤ −2 tss− 2 ts
∑
i

ai + t,

as desired (note that t = s ·#G). �

So therefore, also in the case that S∞ = ∞, we see that there are only
finitely many possibilities for the type b of T .

6.4. Complexity. Now we see that, in Situation 2.4, the description of
the category of j!A-torsors on Xét in terms of vector bundles on P1

k gives,
for each of the (finitely many) possibilities for the type b, a groupoid scheme
Rb ⇒ Ub of which Rb and Ub are (explicitly given) closed subschemes of
some ANk . Let R =

∐
bRb and U =

∐
b Ub.

We now have an algorithm which, given Situation 2.4, computes R and
U simply by writing out all equations attached to the relations occurring in
this section. We call this algorithm the core algorithm. The remainder of this
section will be devoted to bounding the complexity of the core algorithm,
or in this case equivalently, the size of the output of this algorithm. We
will in the following restrict ourselves to the case in which S0 = {0} and
S∞ = {∞}; the bounds we obtain in this case will also hold in the other
cases.

Let us start by introducing the parameters in terms of which the com-
plexity bound is computed. Let a be the type of Y , say of length s, and write
γ =

∑
i−ai. Note that by Lemma 6.19, γ = s− 1 + pa(Y ), where pa denote

the arithmetic genus. Also note that #Γ ≤ s, so by Corollary 6.23 below,
the number of field elements needed to give Situation 2.4 is polynomial in
s, γ, and #G.

Let us now bound the number of possible types b that can occur as the
type of an object of U .
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Proposition 6.21. The logarithm of the number of b that can occur as the
type of an object of U is O

(
s ·#G log(sγ ·#G)

)
.

Proof. For convenience, write N =
⌈
#G

(1
2s+ γ

)⌉
.

By Lemma 6.17, a possible type b must be non-positive. By Proposi-
tion 6.20, a possible type b must satisfy

∑
j −bj ≤ #G

(1
2s+γ

)
. Such a type

corresponds to a unique tuple (c0, . . . , cN ) of non-negative integers with∑N
k=0 ck = t and

∑N
k=0 kck ≤ N by setting ck to be the number of −bj

equal to k. The number of tuples satisfying the first of these conditions is(N+t
t

)
≤ (N + t)t. �

Next, we will bound the size of Rb, i.e. for the given closed immersion
Rb → ANk , the number N , the number of polynomials generating the defin-
ing ideal, and the degree of these polynomials. Note that bounds for Rb
will also hold for Ub. To this end, note that we have the following trivial
bound.

Lemma 6.22. Let a and b be finite sequences of non-positive integers, of
lengths s and t, respectively. Then dimk HomOP1

k

(OP1
k
(a),OP1

k
(b)) ≤ st +

t
∑
i(−ai).

Corollary 6.23. Let a be a finite sequence of non-positive integers, of
length s. Then

dimk HomOP1
k

(
OP1

k
,OP1

k
(a)
)
≤ s+

∑
i

(−ai)

dimk HomOP1
k

(
OP1

k
(a),OP1

k
(a)
)
≤ s2 + s

∑
i

(−ai)

dimk HomOP1
k

(
OP1

k
(a)⊗2,OP1

k
(a)
)
≤ s3 + 2s2∑

i

(−ai)

dimk HomOP1
k

(
OP1

k
(a)⊗3,OP1

k
(a)
)
≤ s4 + 3s3∑

i

(−ai).

Therefore, working out everything, which is straightforward but tedious,
gives the following.

Proposition 6.24. For the given closed immersion Rb → ANk , we have
N = O

(
s4(#G)4γ), its defining ideal is given by O

(
s4(#G)4γ

)
polynomials,

which have degree at most s ·#G.

Note that a polynomial ring in N variables has
(N+d

d

)
monomials of

degree at most d; so by the proposition above, we see that the size of the
output is

exp
(
O
(
s ·#G log(sγ ·#G)

))
.
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Now that we have bounds for the sizes of R and U , we now turn to the
degrees of the defining polynomials of the morphisms defining the structure
of a groupoid scheme.

Recall for this that points of Rb are given by two objects of Ub, together
with an OP1-linear map connecting the two objects. So the source and
target maps Rb → Ub are induced by projections between their ambient
affine spaces. Therefore the affine k-scheme Rb ×Ub

Rb of finite type is
given by O

(
s4(#G)4γ

)
variables, O

(
s4(#G)4γ

)
relations of degree at most

s ·#G. Moreover, the composition map Rb×Ub
Rb → Rb forgets the middle

object and composes the two OP1-linear maps, so it is given by polynomials
of degree at most 2.
Theorem 6.25. The core algorithm computes the groupoid scheme R⇒ U
given Situation 2.4 as input, and has arithmetic complexity

exp
(
O
(
s ·#G log(sγ ·#G)

))
.

Proof. Simply note that every individual coefficient can be computed in
arithmetic complexity bounded by a fixed polynomial in s, γ,#G. �

7. Connected components of U

Recall the following situation (Situation 2.4).
Situation 7.1. We are given a field k, a finite group Γ, for p = 0,∞ ∈
P1(k), a subset Sp of {p}, and a diagram

V //

g

��

Y //

��

Y

��
U

j //

��

X //

��

X

��
P1
k − S0 − S∞ // P1

k − S∞ // P1
k

in which:
• all squares are cartesian;
• X and Y are smooth, proper, and finite and generically étale
over P1

k;
• g : V → U is Galois with group Γ.

Moreover, we are given a finite locally constant sheaf G of groups on U such
that g−1G is constant, and denote by G its group of connected components;
the Galois action of Γ on V induces an action of Γ on G by automorphisms.

In Section 6, as the core part of our algorithm, we computed a groupoid
scheme R ⇒ U as a disjoint union of groupoid schemes Rb ⇒ Ub, and
postulated the following properties of it.
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• Both morphisms R → U are smooth and have geometrically con-
nected fibres.
• Both R and U are affine and of finite type over k.
• There exists a functor from the category U(S) to the category of
j!G|US

-torsors, functorial in the k-scheme S, that is an equivalence
if S is the spectrum of a perfect field extension of k.

By the construction of Section 6, we see that R ⇒ U satisfy the latter
two properties. In this section, we will prove the first property, and show
that these properties imply that the set π0(Uksep) of geometric connected
components of U is, as a Gal(ksep/k)-set, isomorphic to H1(Xksep , j!G|Uksep ).

7.1. Smoothness and geometric connectedness of fibres. The first
property above will follow from the following.

Proposition 7.2. Fix a finite sequence b of integers. In Situation 2.4, let
Rb ⇒ Ub be the groupoid scheme attached to b defined in Section 6.4. Then
the two morphisms Rb → Ub are smooth and have geometrically irreducible
fibres, and every isomorphism class in Ub,kalg has the same dimension.

Proof. Let a be the type of the underlying P1
k-vector bundle of Y , and s

its length, and let t be the length of b. Denote the morphisms Rb ⇒ Ub by
αb, ωb, with αb sending a morphism to its source, and with ωb sending a
morphism to its target. For this, it suffices to show that for all x ∈ Ub(kalg),
the geometric fibre H of αb above x is irreducible, since the image ωb(H)
in Ub,kalg is by definition the isomorphism class of x.

Note that, for any kalg-scheme S, giving an isomorphism with fixed source
(say with underlying Y S-scheme T ) in the groupoid Rb(S) ⇒ Ub(S) is, by
transport of structure, the same as giving:

• an OP1
S
-linear automorphism of OP1

S
(b);

• an OY S×P1
S

0-linear automorphism of O#A
Y S×P1

S
0;

• if S∞ =∞, morphisms

i : OT×P1
S
∞(2) → O2#A

T×P1
S
∞(2) , j : O2#A

T×P1
S
∞(2) → O

(2#A)2+2
T×P1

S
∞(2)

such that (ωT×P1
S
∞(2)/S ⊕ i)j = id.

In case S∞ = ∅, we obtain an obvious isomorphism H → H1 ×H2, and
in case S∞ = {∞}, we obtain an obvious map H → H1 ×H2 ×H3, where

• H1 is the functor sending a kalg-scheme S to AutOP1
S

(
OP1

S
(b)
)
;
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• H2 is the functor sending a kalg-scheme S to AutO
Y S×P1

S
0

(
O#G
Y S×P1

S
0
)
;

• H3 is the functor sending a kalg-scheme S to the subset of

HomO
T×P1

S
∞(2) (OT×P1

S
∞(2) ,O2·#G

T×P1
S
∞(2))

of i such that ωT×P1
S
∞(2) ⊕ i is surjective.

First note that using the description of standard modules, we easily see
that H1 is representable by a finite product of factors of the form Gm,k and
A1
k, so therefore by a smooth, irreducible kalg-scheme. Moreover, note that

H2 is isomorphic to the functor sending a kalg-scheme S to HomS(Y S ×P1
S

0,GL#G,S), which, as OY S×P1
S

0 is finite free over OS with a given basis

functorial in S, is representable by a non-empty open subscheme of As(#G)2

kalg .
Hence H2 is a smooth, irreducible kalg-scheme as well. Similarly, we see
that H3 is representable by a non-empty open subscheme of A4t·#G

kalg , and
therefore by a smooth, irreducible kalg-scheme.

Finally, we show that H is a smooth, irreducible kalg-scheme. We do
this by showing that H is Zariski locally on H1 ×H2 ×H3 isomorphic to
H1 ×H2 ×H3 × AN

kalg for some fixed N .
First note that we have a morphism H3 → AM

kalg of kalg-schemes, which
is given on the functor of points by sending i ∈ H3(S) to the corresponding
4t ·#G×

(
2t(2 ·#G)2 + 4t

)
-matrix with coefficients in O(S), with respect

to the basis subordinate to both the standard bases and the given k-basis
of T ×P1

k
∞(2), so that M = 4t2

(
(2 · #G)3 + 4 · #G

)
. So let i ∈ H3(kalg),

and view it as a 4t · #G ×
(
2t(2 · #G)2 + 4t

)
-matrix over kalg. As this

matrix corresponds to a surjective map of kalg-vector spaces, there is a
4t ·#G× 4t ·#G-minor which is invertible. Let U ⊆ AM

kalg be the locus on
which this minor is invertible, and let V be the inverse image of U in H3;
V is an open neighbourhood of i.

Now let j ∈ H3(V ) be the open inclusion. By construction, the kernel
of ωT×P1

V
∞(2) ⊕ j is free over OV . Since an OT×P1

V
∞(2)-linear section of

this map is well-defined up to a unique tuple of elements from this kernel,
it follows that the inverse image of H1 × H2 × V in H is isomorphic to
H1 × H2 × V × AN

kalg for some fixed N that is independent of the choices
made. Hence H is a smooth, irreducible kalg-scheme, as desired.

Finally note that the dimension ofH only depends on the type b, and that
the induced morphism H → Ub,kalg has finite fibres, so every isomorphism
class in Ub,kalg has the same dimension. �
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7.2. Stacks of torsors. We now set out to prove that the three properties
mentioned in the introduction of this section imply that the set π0(Uksep) of
geometric connected components of U is, as a Gal(ksep/k)-set, isomorphic
to H1(Xksep , j!G|Uksep ), in a more general setting, which we will formulate in
the language of stacks in the next subsection. Before that, in this subsection,
we will prove a lemma on the fppf stack of torsors under a finite group that
we will need.

Let S be a scheme. A topologically finite étale S-scheme T is a morphism
T → S that factors as a composition T → T ′ → S with T ′ → S finite étale
and T → T ′ a universal homeomorphism.

Let f : X → S be a proper smooth curve, let i : Y → X be a closed
immersion, topologically finite étale over S, and let j : U → X denote its
open complement. Write h = fi and g = fj. Let G be a finite group; if Y
is non-empty, we also assume that the order of G is invertible on S.

Let T denote the fppf stack of G-torsors on Uét; i.e. its objects are pairs
(T,F) of an S-scheme T and a G-torsor F on (U ×S T )ét, and the mor-
phisms (T,F) → (T ′,F ′) are the pairs of a morphism φ : T → T ′ and an
isomorphism φ−1F ′ → F . We show that T has a representable and finite
étale diagonal, or equivalently, the relevant Isom-sheaves are representable
by finite étale schemes.

Without loss of generality, and to ease notation a bit, we will only con-
sider the Isom-sheaves on S. More precisely, let F and F ′ be G-torsors on
Uét, and let I denote the sheaf on (Sch/U)fppf sending φ : T → U to the
set IsomT (φ−1F , φ−1F ′) of isomorphisms of G-torsors. We denote by gbig,∗
the big pushforward functor (Sch/U)fppf → (Sch/S)fppf.

Lemma 7.3. The sheaf gbig,∗I on (Sch/S)fppf is representable by a finite
étale S-scheme.

Proof. By [23, Tag 0D01, 0D1A], the fppf sheaf gbig,∗I is representable by
an algebraic space, locally of finite presentation over S, since both F and
F ′ are representable by finite étale algebraic spaces over U . Moreover, we
easily see that it is formally étale over S, therefore étale over S. Hence it
is representable by the espace étalé of (gbig,∗I)|Sét = g∗(I|Uét).

Now we note that I|Uét is a G-torsor on Uét, so its pushforward under
g is finite locally constant by [13, Exp. XIII; Prop. 1.14, Thm. 2.4]; this
uses the additional assumption on the order of G if Y is non-empty. Hence
gbig,∗I is representable by a finite étale S-scheme. �

In addition, let Γ be a finite group acting on G, and on X over S, such
that Y (and therefore U) is stable under Γ, and let k : Z → U be a closed
immersion stable under Γ, and let l : V → U be its open complement.

Let T ′ denote the fppf stack of Γ-equivariant l!G-torsors on Uét; i.e. its
objects are pairs (T,F) of an S-scheme T and a Γ-equivariant l!A-torsor
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F on (U ×S T )ét, and the morphisms (T,F) → (T ′,F ′) are the pairs of a
morphism φ : T → T ′ and a Γ-equivariant isomorphism φ−1F ′ → F . We
show that T ′ too has a representable and finite étale diagonal.

Again, without loss of generality, we will only consider the relevant Isom-
sheaves on S. Let F and F ′ be Γ-equivariant l!G-torsors on Uét, and let I ′
denote the sheaf on (Sch/U)fppf sending φ : T → U to the set of Γ-invariant
isomorphisms φ−1F → φ−1F ′ of l!G-torsors.

Corollary 7.4. The sheaf gbig,∗I ′ on (Sch/S)fppf is representable by a finite
étale S-scheme.

Proof. By the last step in the proof of Lemma 5.10, we see that we can
write gbig,∗I ′ as a finite limit of finite étale S-schemes, which therefore is
finite étale over S as well. �

7.3. Connected components. We first reformulate the context of the
computations of Section 6, using the language of stacks.

Let T be the stack on (Sch /X)fppf of G-torsors, resp. the stack on
(Sch /X)fppf of j!G-torsors; note that this stack is presented by the groupoid
scheme G → X, resp. j!G → X. Let f be the structure morphism X →
Spec k, resp. the structure morphism X → Spec k, and let p denote the
morphism from the big étale topos to the small étale topos for which p∗
is the restriction to the small site. Note that for this p, the functor p−1 is
the espace étalé functor. Let fbig,∗ and fsmall,∗ denote the big and small
pushforward, respectively.

We then have a stack fsmall,∗p∗T = p∗fbig,∗T on (Spec k)ét, to which
we can attach the sheaf π0(fsmall,∗p∗T ) on (Spec k)ét, and a morphism
fsmall,∗p∗T → π0(fsmall,∗p∗T ) of stacks on (Spec k)ét. The Galois set to
be computed now corresponds to the sheaf π0(fsmall,∗p∗T ) on (Spec k)ét, or
in other words, to the étale k-scheme p−1π0(fsmall,∗p∗T ).

In the previous subsection, we have shown that the diagonal of fbig,∗T is
representable and finite étale, which simply means that for any k-scheme S
and any two objects X,Y of fbig,∗T (S), the sheaf Homfbig,∗T (S)(X,Y ) on
(Sch /k)ét is representable by a finite étale S-scheme.

In Section 6, we have computed a groupoid scheme R⇒ U with R and U
affine schemes of finite type over k, together with an obvious (non-explicit)
morphism [U/R] → fbig,∗T of stacks on (Sch /k)ét. There, we also show
that p−1p∗[U/R] → p−1fsmall,∗p∗T is an equivalence (after some purely
inseparable base change, but we ignore this technical point for now), and
that the morphisms R⇒ U are smooth and have geometrically irreducible
fibres.

Hence we are (after some purely inseparable base change) in the situation
of the following proposition.
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Proposition 7.5. Let T be a stack on (Sch /k)fppf of which the diagonal
is representable and finite étale. Let R ⇒ U be a groupoid scheme such
that both morphisms R → U are smooth and have geometrically connected
fibres, and such that R and U are of finite type over k. Let [U/R]→ T be a
morphism of stacks on (Sch /k)fppf such that p−1p∗[U/R] → p−1p∗T is an
equivalence, or in other words, such that for each separable extension l/k,
the functor [U/R](l) → T (l) is an equivalence. Then the map U(ksep) →
π0(T )(ksep) is a Gal(ksep/k)-equivariant surjection, and factors through an
isomorphism π0(U)→ π0(T ).

If in addition the morphisms R → U have geometrically irreducible fibres,
then the connected components of Uksep are irreducible.

Proof. First note that the equivalence p−1p∗[U/R] → p−1p∗T induces a
surjective Gal(ksep/k)-equivariant map U(ksep)→ π0(T )(ksep).

Let x ∈ U(ksep) and let j : U → Uksep be the open immersion of the
connected component U containing x into Uksep . Moreover, let f : U →
Spec ksep denote the structure morphism, and let p : Uksep → U be the
projection morphism. Let Y ∈ U(U) denote the “universal object”; i.e. the
object corresponding to the identity map on U .

Define Y1 = j−1p−1Y, Y2 = f−1x−1Y ∈ U(U), and consider their images
in Ob T (U). Then IsomT (U)(Y1, Y2) is representable by a finite étale U -
scheme by assumption.

Moreover, it is surjective as by construction HomT (U)(Y1, Y2)(x) is non-
empty and U is connected. Hence for any point x′ ∈ U(ksep), the set
HomT (U)(Y1, Y2)(x′) is non-empty as well. Therefore we see that the mor-
phism U(ksep) → π0(T )(ksep) factors through a surjective Gal(ksep/k)-
equivariant map π0(U)(ksep)→ π0(T )(ksep). In other words, the morphism
π0(U)→ π0(T ) of sheaves on (Spec k)ét is surjective.

Denote the morphisms R → U by α and ω. As α and ω have geometri-
cally connected fibres, it follows that the morphism π0(U) → π0(T ) is an
isomorphism; if x, x′ ∈ U(ksep) are isomorphic, then x′ ∈ α

(
ω−1(x)

)
, hence

x, x′ lie in the same geometric connected component of U .
Finally, if α and ω have geometrically irreducible fibres, then the

same argument implies that every geometric connected component of U
is irreducible. �

As a corollary, we see that in Proposition 7.5 any setX of points Spec li →
U (with li/k finite algebraic) such that every connected component of U
contains a point X induces a finite cover of π0(T ). We describe in Section 8
how to use such a set X to compute π0(T ).

Corollary 7.6. There is a canonical bijection from π0(Uksep) to the set of
isomorphism classes of G-torsors on Xksep. Moreover, all Ub are equidimen-
sional.
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8. Geometric points and first cohomology
Next, we will use the groupoid scheme R⇒ U to compute H1(Xét, j!G).

We will do this in a slightly more general situation, namely the following
(compare with the conditions of Proposition 7.5).

Situation 8.1. Let k be a field, let R⇒ U be a groupoid scheme in which
the morphisms R → U are smooth with geometrically irreducible fibres,
and with R,U affine and equidimensional, given by at most r polynomi-
als (which are of degree at most d) in at most N variables. Let T be a
stack on (Sch /k)fppf with representable and finite étale diagonal, and let
[U/R]→ T be a morphism such that p−1p∗[Ukperf/Rkperf ]→ p−1p∗Tkperf is
an equivalence. Here, for any field k, p : (Sch /k)fppf → (Spec k)ét denotes
the change-of-site morphism for which p∗ is the restriction.

Let us, for a finite reduced k-algebra A, denote by A† the separable
closure of k in A. Moreover, if A is a finite product

∏
i ki of fields, denote

by Aperf the product
∏
i k

perf
i . Suppose we are in Situation 8.1. Then to

any morphism x : Spec l → U with l/k finite, we can attach an induced
morphism Spec lperf → U . This in turn induces a morphism Spec lperf →
p−1p∗Tkperf , which is étale as both Spec lperf and p−1p∗Tkperf are étale over
Spec kperf . We hence get a morphism Spec l† → p−1p∗T .

We prove a couple of lemmas regarding this construction.

Lemma 8.2. In Situation 8.1, let {xi : Spec li → U} be a family of points
on U . Then the image of

∐
i Spec li → U intersects every geometric con-

nected component of U if and only if
∐
i Spec l†i → p−1p∗T is surjective.

Proof. We note that the image of
∐
i Spec li → U intersects every geometric

connected component if and only if the image of
∐
i Spec lperf

i → U does so.
This is equivalent to

∐
i Spec lperf

i → p−1p∗Tkperf being surjective, i.e. to∐
i Spec l†i → p−1p∗T being surjective. �

Lemma 8.3. In Situation 8.1, let x : Spec l → U and y : Specm → U be
two points on U . Let A be the coordinate ring of α−1x ×R ω−1y. Then A†
is the coordinate ring of Spec l ×p−1p∗T Specm.

Proof. Let x′ : Spec lperf → U and y′ : Specmperf → U . Then Aperf is the
coordinate ring of α−1x′ ×R ω−1y′ = Spec lperf ×p−1p∗Tkperf Specmperf , so
A† is the coordinate ring of Spec l†×p−1p∗T Specm†, being the unique finite
k-subalgebra of Aperf of which the base change to kperf is Aperf . �

So in Situation 8.1, by finding enough points on U , one can construct a
presentation of the stack p−1p∗T , which then can be used to compute π0
of this. Let us do so explicitly below.
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Proposition 8.4. Algorithm 8.5 takes as input Situation 8.1 and computes
a finite set X of morphisms xi : Spec li → U with li/k finite, such that the
induced map

∐
i Spec li → π0(p∗T ) is surjective. Moreover, it does so in

arithmetic complexity

exp
(
O
(
N2 log(d), eN log(d), log(r)

))
Algorithm 8.5. Compute a Noether normalisation ν : U → AdimU using
e.g. [7, §1]. Note that this also works for finite fields, but only after a base
change to a finite field extension; so for finite fields, one needs to keep track
of the Galois action as well.

Then set R = O
(
ν−1(0)

)
. Compute a k-basis for R using a Gröbner basis

computation for the ideal defining R. Compute the primary decomposition
of R and for each local factor S of R, compute the composition of O(U)→
R, R→ S, and S → Sred.

Proof. First note that, as U is equidimensional, every geometric connected
component maps surjectively to AdimU . Hence R is the ring of global sec-
tions of a closed subscheme of U that intersects every geometric connected
component, so this procedure indeed computes a set X as desired. It re-
mains to prove the claims on the arithmetic complexity.

By [7, §1; §3] (for Noether normalisation and the zero-dimensional Gröb-
ner basis computation, respectively),R can be computed as finite k-algebras
in arithmetic complexity

exp
(
O
(
N2 log(d), log(r)

))
.

Let us bound the k-vector space dimension of the R. First note that
U ≤ N . Therefore R is given by at most N generators, and by relations
that are of degree at most d. Hence

dimk R = exp
(
O
(
N log(d)

))
.

So by the methods of [18, §7], we see that the primary decomposition of R
can be computed in arithmetic complexity

exp
(
O
(
N log(d)

))
.

Moreover, for each of the local factors, the degree of the purely insepa-
rable extension l/k to be taken doesn’t exceed (dimk R)e, as the degree of
the polynomials to be factored doesn’t exceed dimk R. It then follows by
that the maps R→ Sred can be computed in arithmetic complexity

exp
(
O
(
(e+ 1)N log(d)

))
.

as dimk(S ⊗k l) ≤ (dimk R)e+1. �
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Proposition 8.6. Algorithm 8.7 takes as input Situation 8.1, x : Spec l→
U , and y : Specm → U and computes the finite k-scheme α−1x ×R ω−1y
in arithmetic complexity

exp
(
O
(
N2
x,y log(dx,y), log(r)

))
,

where Nx,y = max(N, log[l : k], log[m : k]) and dx,y = max(d, [l : k], [m : k]).

Algorithm 8.7. We first compute for l and m a “small” set of generators.
Start by setting X = F = ∅. For s in a k-basis for l, compute k[X][s] ⊆ l
and the minimal polynomial f of s over k[X] ⊆ l, and then, if f is linear, do
nothing, otherwise add s to X and f to F . Write l = k[X]/(F ) afterwards,
and repeat this for m.

Now compute x, y in terms of the “small” descriptions of l and m ob-
tained above, and compute α−1x ×R ω−1y. Finally, compute a k-basis for
its coordinate ring via Gröbner bases, and the unit and multiplication table
with respect to this basis.

Proof. Note that in the first step, we write l (resp. m) using O(log[l : k])
(resp. O(log[m : k])) generators and relations, of degree at most [l : k]
(resp. [m : k]). Moreover, U and R are given by at most N generators
and r relations, of degree at most d. Therefore α−1x ×R ω−1y is given
by O

(
log[l : k], log[m : k], N

)
generators, O

(
log[l : k], log[m : k], N, r

)
relations, of degree at most max

(
[l : k], [m : k], d

)
. Hence the arithmetic

complexity follows from [7, §3] in the same way as before. �

As a corollary, using Lemma 8.2 and Lemma 8.3, we have the following.

Corollary 8.8. There exists an algorithm that takes Situation 8.1 as input
and computes a diagram

Y † //// X†

X

OO

��
U

with X†, Y † finite étale over k, Y † ⇒ X† a presentation for p−1p∗T , X →
X† a finite purely inseparable morphism between finite k-schemes, and X →
U having image intersecting every geometric connected component of U , in
arithmetic complexity

exp
(
O
(
(e+ 1)N3 log(d)3, log(r)

))
.
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In the corollary above, we can assume that if U , V are two distinct
connected components ofX†, then α−1U×Y †ω−1V is empty, since whenever
we encounter distinct connected components U , V for which α−1U ×Y †
ω−1V is not empty, then we may simply omit one of U , V . It follows that
the groupoid scheme Y † ⇒ X† is a finite disjoint union of groupoid schemes
Y †i ⇒ X†i with finite étale arrows in which each Xi is the spectrum of a
finite separable field extension of k. Therefore the problem of computing
π0(p−1p∗T ) reduces to computing π0 of each of these groupoid schemes.

The following lemma suggests how to compute π0 in this case.

Lemma 8.9. Let S be a connected scheme, and let Y ⇒ X be groupoid
scheme over S with X and Y finite étale S-schemes. Then the image R of
Y → X×SX is an étale equivalence relation on X, and π0([X/Y ]) = X/R.

Proof. This is trivial once we view X and Y as finite π1(S)-sets. �

Corollary 8.10. Algorithm 8.11 takes a groupoid scheme Y ⇒ X over k
with X and Y finite étale k-schemes, and outputs π0([X/Y ]) in arithmetic
complexity polynomial in the degrees of X and Y over k.

Algorithm 8.11. Let l, B be the respective coordinate rings of X, Y , and
let A = l ⊗k l. Let A =

∏
iAi be the primary decomposition of A; since A

is separable over k, all Ai are fields.
Compute the morphism A → B, and compute the set I of indices i for

which the induced map Ai → B is non-zero. Set AI =
∏
i∈I Ai. Compute

the morphisms l → AI sending s ∈ l to s ⊗ 1 and 1 ⊗ s, respectively, and
return their equaliser k′.

Proof. Note that, since SpecAI is the image of Y in X ×Spec k X by con-
struction, Spec k′ is the coequaliser of the two morphisms SpecAI → X
constructed, in other words, it is the quotient of X by the étale equivalence
relation SpecAi on X, as desired. �

Applying the above to the groupoid scheme obtained in Section 6, we
get the following.

Corollary 8.12. There exists an algorithm that takes as input Situation 2.4
and computes a finite étale k-scheme representing H1(Xksep,ét, j!G) in arith-
metic complexity

exp
(
O
(
(e+ 1)s12(#G)12γ3 log(s ·#G)3)).

In order to be able to compute additional structures on H1(Xksep,ét, j!G),
it will turn out to be useful to compute this set as a finite Gal(ksep/k)-set,
together with some additional structure. The first step in this is to compute
a finite Galois extension l/k such that the Galois action on H1(Xksep,ét, j!G)
factors through Gal(l/k). This is done in the standard recursive way.
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Lemma 8.13. Algorithm 8.14 takes as input a finite separable k-algebra A,
and computes the minimal Galois extension l/k such that A⊗k l is a product
of copies of l, in arithmetic complexity polynomial in (dimk A)!. If SpecA
is the underlying scheme of a group scheme over k, then the arithmetic
complexity is

exp
(
O
(
log(dimk A)2)).

Algorithm 8.14. Set A′ = A, and compute a primary decomposition
A′ =

∏
iA
′
i. Set l = k. While the number of factors is not dimk A, choose

A′i of maximal dimension, and set A′ = A′ ⊗l A′i, l = A′i, and compute a
primary decomposition A′ =

∏
iA
′
i. Return l.

Corollary 8.15. There exists an algorithm that takes as input a finite
separable k-algebra A, and computes the corresponding finite Gal(ksep/k)-
set in arithmetic complexity polynomial in (dimk A)! (or

exp
(
O
(
log(dimk A)2))

if SpecA is the underlying scheme of a group scheme over k).

Now by base change to l, we get the following.

Corollary 8.16. There exists an algorithm that takes as input Situation 2.4
and computes:

• a finite Galois extension l/k such that the Gal(ksep/k)-action on
the finite set H1(Xksep,ét, j!G) factors through Gal(l/k),
• the finite Gal(l/k)-set H1(Xksep,ét, j!G),
• for each h ∈ H1(Xksep,ét, j!G), a finite extension lh/l and a mor-
phism Spec lh → U representing h,

in arithmetic complexity

exp
(
O
(
(e+ 1)s12(#G)12γ3 log(s ·#G)3, (e+ 1) log[l : k]

))
.

9. Reductions and applications
In the previous sections, we assumed normal proper curves to be pre-

sented as finite locally free P1
k-schemes as described in Section 4. Alterna-

tively, normal proper connected curves can be presented using their function
fields, as a finite extension of k(x), and in this case, we will present mor-
phisms between normal proper connected curves by morphisms between
their function fields.

Passing from the presentation as finite locally free P1
k-scheme to that as

a finite extension of k(x) is simple: given a finite locally free P1
k-scheme X

with type a of length s, one can compute the finite k(x)-algebra k(X) corre-
sponding to it in arithmetic complexity polynomial in s and

∑
i−ai, simply
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by, in the conventions of Section 4, substituting y = 1 in the multiplication
table and unit defining OX ; this computation is functorial in X.

Conversely, given a finite field extension A of k(x) of degree d defined
by elements of height at most h, one can compute α1, . . . , αn ∈ A such
that A = k(x, α1, . . . , αn), and, for all i, minimal polynomials for αi+1
over k(x, α1, . . . , αi) in arithmetic complexity polynomial in d, h, using
the methods of [1]; note that n ≤ log2 d, and the minimal polynomials
have degree at most d, and their coefficients have height at most d3h. By
multiplying by suitable polynomials in k[x], one can make each αi+1 have
a minimal polynomial of which the coefficients lie in k[x, α1, . . . , αi], in
arithmetic complexity polynomial in d, h; the minimal polynomials in this
case will have x-degree at most d5h. Therefore we obtain a k[x]-order in A
consisting of products of the αi. Similarly, we can compute a k[x−1]-order
in A, in arithmetic complexity polynomial in d and h.

Then, by [8, §2.7] (which we can apply since we are able to compute
nilradicals of finite k-algebras) one can compute the corresponding maximal
orders over k[x] and k[x−1] in arithmetic complexity polynomial in de+1 and
h. Moreover, they define the same k[x, x−1]-submodule of A, so it follows
from [11, Lem. 11.50] that one can compute a sequence (ai) of integers, and
bases (bi) and (ci) of the respective maximal orders such that bi = xaici for
all i, and therefore a presentation of the normal proper connected curve as
a finite locally free P1

k-scheme, in arithmetic complexity polynomial in de+1

and h as well.
In fact, as the computation of nilradicals of finite k-algebras as described

in Section 3 proceeds by first computing the nilradical of the base change
to kperf , it follows that one can compute a purely inseparable extension
l of k and a smooth proper connected curve with function field k(x)l in
arithmetic complexity polynomial in de+1 and h; we will refer to this as the
construction of a smooth completion.

As for functoriality, given a morphism K → L of function fields, with
K given as a finite k(x)-algebra, and L as a finite k(y)-algebra, one can
compute a k(x)-basis of L (and therefore a K-basis of L) by successively
computing a k(x)-basis of k(x, y) and a k(x, y)-basis of L; with respect to
this k(x)-basis of L, the computation given above is functorial.
Remark 9.1. The above gives us an algorithm for the computation of the
normalisation (over k and over kperf) of a finite locally free P1

k-scheme of
type a of length s, in arithmetic complexity polynomial in se+1 and

∑
i−ai;

for the type a′ (of length s′) of the resulting normal proper curve, we have
s = s′ and

∑
i−a′i ≤

∑
i−ai.

To present divisors on proper normal curves, we will mainly use the
so-called free ideal presentation. Roughly speaking, in this presentation,
divisors on a proper normal curve X are given as formal sums of closed
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points of X, which in turn are given by maximal ideals of OX . For more
details on this and other related presentations, see e.g. [15], or [8, Ch. 2] for
a more detailed exposition. For the purposes of this paper, we simply note
that we can compute images and pre-images of closed points of a morphism
of proper normal curves in arithmetic complexity polynomial in the size of
the input.

Now an arbitrary normal curve X will be presented by the product of
the function fields of its connected components, and the finite complement
of X in its normal completion X; as a measure for the size of an affine
curve, we take the k(x)-degree of the corresponding k(x)-algebra, an upper
bound h for the height of the elements of k(x) defining this algebra, the
number of closed points in X−X, and the maximum degree of these closed
points over k. Morphisms Y → X between normal curves will be presented
by morphisms between their normal completions, such that for every closed
point in the complement of X in X there is a closed point of Y in Y lying
over it.

9.1. Topological invariance of the small étale site. In our reduction
to Situation 2.4, we will make use of finite locally free, purely inseparable
morphisms between normal proper curves and the topological invariance
of the small étale site, which states that for a universal homeomorphism
f : Y → X, the functors f∗ and f−1 are quasi-inverse functors between
Sh(Xét) and Sh(Yét). Given a finite locally free, purely inseparable mor-
phism f : Y → X between normal proper connected curves, we will make
this explicit for étale sheaves representable by étale separated X-schemes
(resp. Y -schemes), i.e. by normal curves.

For F an étale sheaf representable by an étale and separated X-scheme,
the pullback is simply Y ×XF , which clearly can be computed in arithmetic
complexity polynomial in the size of the input.

Proposition 9.2. Algorithm 9.3 takes a finite locally free, purely insepa-
rable morphism f : Y → X between normal proper connected curves, and a
normal curve F , étale over Y , and computes f∗F , in arithmetic complexity
polynomial in the size of the input.

Algorithm 9.3. Write K, L, for the function fields of X, Y , respectively,
let F be an étale and separated Y -scheme (with normal completion F),
and let B denote its corresponding L-algebra. Let A be the Weil restriction
of B from L to K. Compute the L-algebra isomorphism A ⊗K L → B,
and therefore a morphism A→ B. Let F ′ denote the corresponding normal
proper curve, and F → F ′ be the corresponding morphism. Output F ′
together with the image of the complement of F in F .
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Proof. The output is correct since the output F ′ needs to satisfy F ′×X Y =
F , and since taking Weil restrictions sends finite separable L-algebras to
finite separable K-algebras, and is left adjoint to base changing from K
to L. �

9.2. Presentation of torsors. In Section 9 we have given the complexity
of our algorithm computing the first cohomology as a Galois-set. In case
the input group sheaf is abelian, the first cohomology also has the structure
of an abelian group. In this subsection, we explain how to compute this
structure. So write in Situation 2.4 A = G and A = G, which are both
abelian.

Note that in Situation 2.4, we have a second presentation of a j!A-torsor
onXksep,ét (the first being as a geometric point on the groupoid schemeR⇒
U constructed in the previous section). First, any j!A-torsor is representable
by an étale separated X-scheme and therefore by a normal curve, so we can
present a j!A-torsor T by a normal curve together with the group action
j!A ×X T → T . In fact, j!A is representable by the disjoint union of X
(acting as the zero section) and A − 1 (which is finite étale over U). We
indicate how to pass between these presentations.

Starting with x ∈ U(l), we let k′ be the separable closure of k in l.
Note that x defines a Γ-equivariant A-torsor T on Y l,ét together with
a Γ-equivariant section Y ×P1

k
S0 → T . Using the function field presen-

tations, one can then compute quotients under Γ using linear algebra,
which gives us a j!A-torsor T on Xl,ét. Therefore we can compute the
corresponding j!A-torsor on Xk′,ét in arithmetic complexity polynomial in
se+1, (#A)e+1, γe+1, [l : k]e+1.

Conversely, let T be a j!A-torsor on Xk′,ét with k′/k separable. Pull
T back to a Γ-equivariant G-torsor on Yk′,ét, together with Γ-equivariant
section Yk′ ×P1

k
S0 → Yk′ , and compute a smooth completion. Now some

linear algebra suffices to compute the additional data (see Section 6.1 and
Section 6.2) required to obtain a point of U(kalg) in arithmetic complexity
polynomial in se+1, (#A)e+1, γe+1, [k′ : k]e+1.

Therefore, using this, Corollary 8.16 and Proposition 8.6, we have the
following.

Corollary 9.4. Algorithm 9.5 takes as input Situation 2.4 (but with A = G
a sheaf of abelian groups, so that A = G is abelian) and computes the
Gal(ksep/k)-module H1(Xksep,ét, j!A) in arithmetic complexity

exp
(
O
(
(e+ 1)3s16(#A)16γ4 log(s#A)3)).

Algorithm 9.5. It remains to compute addition of classes of j!A-torsors
on Xksep,ét. For this, it suffices to note that if T1, T2 are j!A-torsors on
Xk′,ét with k′/k separable, then the sum of the classes of T1 and T2 in
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H1(Xksep,ét, j!A) is given by the quotient of T1 ×Xk′ T2 by the j!A-action
given by a(t1, t2) = (at1, a−1t2); compute this using linear algebra over
k′(x), and find the element in H1(Xksep,ét, j!A) isomorphic to it using Al-
gorithm 8.7.

Proof. It remains to find an upper bound for log[l : k]. Note that the
cardinality of the set H1(Xksep,ét, j!A) is

exp
(
O
(
s8(#A)8γ2 log(s#A), es4(#A)4γ log(s#A)

))
by Proposition 8.4. As this set is an abelian group, it follows that

log[l : k] = O
(
(e+ 1)2s16(#A)16γ4 log(s#A)2),

from which the arithmetic complexity follows. �

9.3. Reduction to Situation 2.4. We will now indicate how to reduce
to Situation 2.4 for “most” smooth connected curves X over k, non-empty
open subschemes U of X, and finite locally constant sheaves A on Uét. We
would like to use explicit computation of Riemann–Roch spaces as in [15] to
compute a suitable cover of X over P1

k, however, this requires the curve to
be given as a generically étale finite locally free P1

k-scheme (or equivalently,
a separating element for the function field of X must be given).

Proposition 9.6. Algorithm 9.7 takes as input a normal proper connected
curve X over k of type a, and computes a finite purely inseparable extension
l/k, a finite locally free purely inseparable morphism X ′ → X of degree
at most [X : P1

k]e+2, and a generically étale finite locally free morphism
X ′ → P1

l of degree at most [X : P1
k], in arithmetic complexity polynomial in∑

i−ai and [X : P1
k]e+2.

Algorithm 9.7. By computing the separable closure K ′ of k(x) in K,
compute the minimal p-power q such that f q ∈ K ′ for all f ∈ K. Let
L = K ·k1/q(x1/q), which is the reduction of K⊗k(x) k

1/q(x1/q), and output
l = k1/q and x1/q, together with a K-basis of L.

Proof. We note that q is bounded from above by [K : k(x)], and that
therefore L can be computed in arithmetic complexity polynomial in

∑
i−ai

and [K : k(x)]e+2. �

Proposition 9.8. Algorithm 9.9 takes as input a smooth connected curve
X generically étale over P1

k, given by its normal completion X, a finite set
{Q1, . . . , Qt} of closed points of X, and an open immersion j : U → X,
given by a finite set {P1, . . . , Ps} of closed points of X, and computes a
finite locally free morphism π : X → P1

k with π−1(∞) = {Q1, . . . , Qt} and
π−1(0) ⊇ {P1, . . . , Ps} in arithmetic complexity polynomial in the size of
the input.
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Algorithm 9.9. Write Z0 =
∑s
i=1 Pi, Z∞ =

∑t
j=1Qj , and let g be the

genus of X. Let m be the smallest integer such that m(t− 1)− s > 2g − 2
and 2m > t. Using [15], compute a k-basis B for OX(−Z0 + mZ∞), and
compute the subspaces OX(−Z0 + mZ∞ −mQj) for j = 1, . . . , t. Find a
linear combination f =

∑
b∈B εbb with εb ∈ {0, 1} for all b ∈ B such that f

is not in any of the OX(−Z0 +mZ∞ −mQj) for j = 1, . . . , t.
Compute a minimal polynomial for f over k(x), and write it as a mini-

mal polynomial for x over k(f), and compute successively a k(f)-basis for
k(x, f) and a k(f)-basis for k(X). Output the corresponding map X → P1

k.
Proof. Note that by choice of m, we see that OX(−Z0 + mZ∞ − mQj)
has dimension #B −m, so f ranges over a set of 2#B elements, of which
at most t2#B−m lie in one of the given subspaces. By choice of m, we
have t2#B−m < 2#B, so there exists such f not lying in any of the given
subspaces. �

In particular, if either U = X or X = X, then we can get a finite locally
free morphism X → P1

k with U and X inverse images of P1
k, P1

k − 0, or
P1
k − ∞. Therefore, using smooth completions, we now have an obvious

reduction to Situation 2.4, and therefore the following corollary, which in
turn implies Theorem 1.2.
Corollary 9.10. Let S0 ∈

{
∅, 0
}
and S∞ ∈

{
∅,∞

}
. There is an algorithm

that takes a finite locally free P1
k−S∞-scheme X, smooth over k, and a finite

étale commutative group scheme A over U = X ×P1
k

(P1
k − S0 − S∞), and

computes the Gal(ksep/k)-module H1(Xksep,ét, j!A) in arithmetic complexity
exponential in e, [X : P1

k − S∞], [A : U ]log[A:U ], γX , and γA. Here, γX
(resp. γA) is

∑
i−ai, where a is the type of the normal completion of X

(resp. A).
Proof. We need to prove that the size of the cover Y constructed is poly-
nomial in [X : P1

k − S∞], [A : U ]log[A:U ], γX , and γA. Recall that Y is
constructed by setting X ′ = X, A′ = A and then repeatedly base changing
A′/X ′ to a non-trivial connected component of A′.

For each such base change, let a be the type of A′, let a′ be the type of the
chosen connected component ofA′, and let a′′ be the type of their fibre prod-
uct A′′ over X. Note that as then OP1

k
(a′) is a direct summand of OP1

k
(a),

we have maxj −a′j ≤ maxi−ai. Moreover, as OP1
k
(a)⊗OP1

k

OP1
k
(a′) surjects

onto OP1
k
(a′′), it follows that maxk−a′′k ≤ maxi,j −ai − a′j ≤ 2 maxi−ai.

Since log2[A : U ] such base changes suffice for the construction of a finite
locally free X-scheme of which the normalisation is Y , it follows that for
the type b of Y , its length t is at most [X : P1

k − S∞][A : U ]log2[A:U ], and∑
j −bj ≤ tmaxj bj ≤ t[A : U ]γA.
The result now follows from Corollary 9.4. �
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9.4. Application to computation for constructible sheaves. In this
section, we will indicate how to compute H1(Xksep,ét,A) for X a smooth
connected curve and A an arbitrary constructible sheaf of abelian groups,
of torsion invertible in k, under the following assumptions. We will assume
a presentation of constructible sheaves (and morphisms between them) to
be given, with respect to which one can perform certain operations. These
operations are:

• one can compute finite direct sums of constructible sheaves;
• one can compute kernels and cokernels of morphisms;
• for a constructible sheaf A, one can compute a non-empty open
subscheme U of X such that A|U is finite locally constant;
• for a closed immersion i : Z → X and its open complement j : U →
X, one can compute the functors i−1, i∗, i

!, j!, j
−1, j∗ and the cor-

responding units and counits of adjunction; given AZ on Zét, AU
on Uét, and φ : AZ → i∗j

−1AU , one can compute the corresponding
constructible sheaf on Xét.

In theory, one should be able to give such a presentation using recolle-
ment (as done in Section 5 for j!A-torsors), but we will not work this out
in this paper.

So suppose X is a smooth connected curve, and A is a constructible sheaf
of abelian groups on Xét, of torsion invertible in k. Let U be a non-empty
open subscheme for which A|U is finite locally constant. Use Algorithm 9.7
and Algorithm 9.9 to find l/k finite purely inseparable, V ⊆ Ul open and a
finite locally free morphism X l → P1

l such that V and Xl are finite locally
free over their images in P1

l . Write j : V → Xl for the inclusion, and write
i : Z → Xl for its closed complement.

Compute the canonical short exact sequence
0→ j!j

−1A → A→ i∗i
−1A → 0,

and the morphism
δ(i, j) : H0(Xksep,ét, i∗i

−1A)→ H1(Xksep,ét, j!j
−1A)

which sends a section of i−1A to the constructible sheaf defined by j−1A
on Vét, 0 on Zét, and the section of i−1j∗j

−1A obtained from the given
section of i−1A by composition with i−1A → i−1j∗j

−1A. Then, as we have
H1(Xksep,ét, i∗i

−1A) = 0, we see that H1(Xksep,ét,A) = coker δ(i, j).
This is independent of the choice of (i, j) in the following sense. If

j′ : V ′ → Xl and i′ : Z ′ → Xl are given, with V ′ ⊆ V and a given mor-
phism Z → Z ′ over Xl, then we can compute a commutative diagram

0 // j′!(j′)−1A //

��

A // i′∗(i′)−1A //

��

0

0 // j!j
−1A // A // i∗i

−1A // 0
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a commutative diagram

H0(Xksep,ét, i
′
∗(i′)−1A) //

��

H1(Xksep,ét, j
′
!(j′)−1A)

��
H0(Xksep,ét, i∗i

−1A) // H1(Xksep,ét, j!j
−1A)

and therefore the morphism coker δ(i′, j′) → coker δ(i, j) corresponding to
the identity map on H1(Xksep,ét,A).

In the same way, we see that for constructible sheaves A, B on Xét, and a
morphismA → B, we can compute the induced morphism H1(Xksep,ét,A)→
H1(Xksep,ét,B), and that for a morphism f : Y → X of smooth connected
curves, we can compute the pullback H1(Xksep,ét,A)→ H1(Yksep,ét, f

−1A).
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