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On Tate’s conjecture for the elliptic modular
surface of level N over a prime field of

characteristic 1 mod N

par Rémi LODH

Résumé. Modulo une hypothèse de semi-simplicité partielle, on démontre le
conjecture de Tate pour la surface elliptique modulaire E(N) de niveau N
sur un corps premier de cardinalité p ≡ 1 mod N et on montre que le rang
du groupe de Mordell–Weil est nul dans ce cas. Pour N ≤ 4 c’est un résultat
de Shioda. De plus, on démontre que l’hypothèse de semi-simplicité vaut en
dehors d’un ensemble de nombres premiers p de densité nulle.

Abstract. Assuming partial semisimplicity of Frobenius, we show Tate’s
conjecture for the reduction of the elliptic modular surface E(N) of level N
at a prime p satisfying p ≡ 1 mod N and show that the Mordell–Weil rank
is zero in this case. This extends a result of Shioda to N > 4. Furthermore,
we show that for every number field L partial semisimplicity holds for the
reductions of E(N)L at a set of places of density 1.

1. Introduction
In this note we study cohomology classes of divisors on the elliptic mod-

ular surface E(N) of level N , where N ≥ 3. By definition, E(N) is the
universal object over the moduli space X(N) of generalised elliptic curves
with level N structure. Fix a prime p which does not divide N . Our main
result is the following theorem, which goes back to Shioda [20, Appendix]
for N ≤ 4.
Theorem 1.1 (Corollary 3.8). Assume the partial semisimplicity conjec-
ture is true for E(N)Fp. If p ≡ 1 mod N , then Tate’s conjecture holds for
E(N)Fp. Moreover, the Mordell–Weil group of a generic fibre of E(N)Fp →
X(N)Fp is isomorphic to (Z/N)2.

If k is a finite field with q = pn elements and D is a ϕ-module over
K0 = W (k)[1/p], then we have an inclusion Dϕn=1 ⊂ D(ϕn−1)2=0 and we
may ask if there is equality, i.e.

(PS) D(ϕn−1)2=0 = Dϕn=1
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The partial semisimplicity conjecture for a smooth projective surface S over
k is the validity of (PS) when D = H2

cris(S/K0) is the second crystalline
cohomology group of S, and ϕ = F/p where F is the p-power crystalline
Frobenius endomorphism. It is a consequence of Tate’s conjecture for S.
Using a result of Serre [19] on the l-adic representation of newforms, we
show that it holds for E(N)Fp for a set of primes p of density 1, thereby
obtaining

Corollary 1.2 (Corollary 3.10). The conclusions of Theorem 1.1 hold for
all p ≡ 1 mod N outside of a set of primes of density zero.

In fact, for any number field L we show partial semisimplicity for E(N)v
for all finite places v of L outside of a set of density zero (dependent on N
and L), see Theorem 3.9. We remark that forN ≤ 4 the (full) semisimplicity
conjecture is known for E(N)v since it is either a rational (N = 3) or a K3
(N = 4) surface.

The starting point of the proof of Theorem 1.1 is the following exceptional
property of E(N):
(HT) Vp Br(E(N)Q̄) is a Hodge–Tate representation with weights± 1

Here Br(−) := H2
ét(−,Gm) denotes the cohomological Brauer group and

for any abelian group A we write VpA := Hom(Qp/Zp, A) ⊗ Q (the p-adic
Tate module of A tensored with Q). (HT) is a consequence of a result of
Shioda [20] on the Néron–Severi group of E(N)C and the Hodge–Tate de-
composition; alternatively, we shall deduce it from Faltings’ p-adic Eichler–
Shimura isomorphism [7].

The proof of Theorem 1.1 uses the theory of Hecke operators, in partic-
ular the Eichler–Shimura congruence relation between the pth Hecke op-
erator Tp and Frobenius endomorphism. Our method can be summarised
as follows. Let Ip be the automorphism of X(N) given by multiplying the
level structure by p ∈ (Z/N)∗ and let U ⊂ Vp Br(E(N)Q̄) be the subset
on which Ip acts trivially. Then (modulo (PS)) (HT) and the action of Tp
imply Dcris(U)ϕ=1 = 0, where ϕ is the Frobenius. For p ≡ 1 mod N , Ip is
the identity and the theorem follows.

In the case p 6≡ 1 mod N we only know of Shioda’s result [21] for N = 4.
Our arguments do not apply to this case. In fact, Shioda shows that the
Mordell–Weil group of the K3 surface E(4)Fp has rank 2 for p ≡ 3 mod 4,
so the conclusion of Theorem 1.1 cannot hold. On the other hand, it is
possible that our method can be applied to other types of modular varieties.

Notation. We denote by k a finite field of characteristic p, W = W (k)
its ring of Witt vectors, K0 = W [1/p], k̄ an algebraic closure of k, K̄ an
algebraic closure of K0, GK0 = Gal(K̄/K0), ˆ̄K the completion of K̄ for the
p-adic norm. All cohomology is étale unless stated otherwise.
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2. A general result
We assume familiarity with the basics of Fontaine’s theory of p-adic

Galois representations [4, 8, 9].

2.1. Self-dual crystalline representations. Let V be a p-adic repre-
sentation of GK0 . We say that V is self-dual if it is isomorphic to its dual,
i.e. it has a non-degenerate bilinear form

V ⊗Qp V → Qp

which is a homomorphism of GK0-modules.

Proposition 2.1. Let V be a self-dual crystalline representation of GK0
and let D := Dcris(V ) be the associated filtered ϕ-module. Suppose the en-
domorphism T := ϕ + ϕ−1 of D satisfies T (F 1D) ⊂ F 1D. If D(ϕ−1)2=0 =
Dϕ=1 and V GK0 = 0, then Dϕ=1 = 0.

Proof. The bilinear form on V induces a non-degenerate bilinear form · on
D. Endow Dϕ=1 with the filtration induced from D. Since V is crystalline
we have F 0Dϕ=1 = V GK0 = 0. If Dϕ=1 = F 0Dϕ=1, then we are done. If
not, then there is i < 0 and x ∈ F iDϕ=1 \ F i+1Dϕ=1. Since V is self-dual,
the map c : D → D∗ := HomK0(D,K0) induced by · is an isomorphism of
filtered ϕ-modules, so we have x∗ := c(x) ∈ F iD∗ \ F i+1D∗. Note that x∗
is the map D 3 y 7→ x · y ∈ K0. Since by definition

F iD∗ = {f ∈ D∗ : f(F jD) ⊂ F j+iK0 ∀ j ∈ Z}

the condition x∗ /∈ F i+1D∗ means that there is j such that x∗(F jD) 6⊂
F j+i+1K0, where K0 has the trivial filtration, i.e.

F kK0 =
{
K0 k ≤ 0
0 k > 0.

If x∗(F jD) 6⊂ F j+i+1K0, then we must have x∗(F jD) 6= 0, i.e. x∗(F jD) =
K0. So to say that x∗(F jD) 6⊂ F j+i+1K0 but x∗(F jD) ⊂ F i+jK0 is equiv-
alent to the condition i+ j = 0. Hence j = −i > 0, and there is an element
y ∈ F 1D such that x · y 6= 0.

Now, up to dividing y by x · y we may assume that x · y ∈ Qp. Let
0 6= P (t) ∈ Qp[t] be such that P (T )y = 0. Since ϕ(x) = x we have x·T (d) =
T (x · d) for all d ∈ D, hence

0 = x · P (T )y = P (T )(x · y) = (x · y)P (2).

So P (2) = 0 and we deduce that P (t) = (t − 2)eQ(t) for some e ∈ N
and some Q(t) ∈ Qp[t] not divisible by t − 2. Let z := Q(T )y. Note that
x ·z = (x ·y)Q(2) 6= 0. Multiplying the equation (T −2)ez = 0 by ϕe we find
(ϕ− 1)2ez = 0, hence ϕ(z) = z since D(ϕ−1)2=0 = Dϕ=1. As F 1D is stable
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under T by assumption, we have z ∈ F 1D. Thus, z ∈ F 1Dϕ=1 ⊂ V GK0 = 0,
a contradiction. �

Remark 2.2. The above argument no longer works if one replaces ϕ by a
power ϕr. The problem is related to the fact that, unlike the case r = 1,
for r > 1 we may have F 1Bϕr=1

cris 6= 0.

2.2. Application to surfaces. Let E → Spec(W ) be a smooth projective
morphism with geometrically connected fibres of dimension 2. Let Kur

0 be
the maximal unramified extension of K0 in K̄. The Kummer sequence gives
an exact sequence of GK0-representations

0→ NS(EK̄)⊗Qp → H2
ét(EK̄ ,Qp)(1)→ Vp Br(EK̄)→ 0

where NS := Pic /Pic0 is the Néron–Severi group. By p-adic Hodge theory,
applying the functor Dcris we get an exact sequence

0→ Dcris(NS(EK̄)Qp)→ H2
cris(Ek/K0)[1]→ Dcris(Vp Br(EK̄))→ 0

where for a filtered ϕ-moduleD we denoteD[1] the filtered ϕ-module whose
underlying K0-module is D with ϕD[1] := p−1ϕD and F iD[1] := F i+1D.
On the other hand, there is the specialisation map [3, Exp. X, appendice,
7.12]

sp : NS(EK̄)→ NS(Ek̄)
which is GK0-equivariant and injective up to torsion. So NS(EK̄) ⊗ Qp

is an unramified discrete representation of GK0 hence is Kur
0 -admissible.

Thus, Dcris(NS(EK̄)Qp) = (NS(EK̄)⊗Kur
0 )Gal(Kur

0 /K0) (and similarly for
Dcris(NS(Ek̄)Qp)) and we have a commutative diagram

Dcris(NS(EK̄)Qp) //

sp
��

H2
cris(Ek/K0)[1]

Dcris(NS(Ek̄)Qp)

c1
55

where c1 is the first Chern class. In fact, c1 is injective since

NS(Ek̄)Qp ⊂
(
H2

cris(Ek/K0)[1]⊗K0 K
ur
0

)ϕ=1

(cf. [11, II.5]). Therefore, defining C := H2
cris(Ek/K0)[1]/Dcris(NS(Ek̄)Qp),

we have a commutative diagram with exact rows

0 // Dcris(NS(EK̄)Qp) //

��

H2
cris(Ek/K0)[1] // Dcris(Vp Br(EK̄)) //

��

0

0 // Dcris(NS(Ek̄)Qp) // H2
cris(Ek/K0)[1] // C // 0
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and setting M := Dcris(NS(Ek̄)Qp)/Dcris(NS(EK̄)Qp) we deduce an exact
sequence of ϕ-modules

0→M → Dcris(Vp Br(EK̄))→ C → 0.

Theorem 2.3. Let D := Dcris(Vp Br(EK̄)) and T := ϕ+ ϕ−1. If

D(ϕ−1)2=0 = Dϕ=1, T (F 1D) ⊂ F 1D and Vp Br(EK̄)GK0 = 0,

then Mϕ=1 = 0 = Cϕ=1.

Proof. By Poincaré duality, cup product is non-degenerate on H2
ét(EK̄)(1)

and, since numerical and algebraic equivalence coincide up to torsion for
divisors [12, 9.6.17], it is also non-degenerate on NS(EK̄)Qp and NS(Ek̄)Qp .
It follows that Vp Br(EK̄) ∼=

(
NS(EK̄)Qp

)⊥ has a canonical non-degenerate
symmetric bilinear form we may apply Proposition 2.1 to obtain Dϕ=1 = 0.
Moreover, the restriction of this form to M is non-degenerate since cup
product is non-degenerate on bothDcris(NS(EK̄)Qp) andDcris(NS(Ek̄)Qp).
Thus, C ∼= M⊥ and hence Cϕ=1 = 0. �

Corollary 2.4. Under the assumptions of Theorem 2.3, Tate’s conjecture
holds for Ek and we have

NS(EK̄)GK0 ⊗Q = NS(Ek̄)
GK0 ⊗Q.

Proof. Note that we have an exact sequence

0→ Dcris(NS(EK̄)Qp)ϕ=1 → Dcris(NS(Ek̄)Qp)ϕ=1 →Mϕ=1

so since Mϕ=1 = 0 we find

(NS(EK̄)⊗Qp)GK0 = Dcris(NS(EK̄)Qp)ϕ=1

= Dcris(NS(Ek̄)Qp)ϕ=1

= (NS(Ek̄)⊗Qp)GK0

as claimed. Tate’s conjecture is well known [15] to be equivalent to the
statement Cϕ=1 = 0. �

3. Elliptic modular surfaces
We fix throughout a positive integer N and a prime number p which does

not divide N .

3.1. Definition. For N ≥ 3, let Y (N) to be moduli Z[1/N ]-scheme of
elliptic curves with (full) level N structure and let X(N) be its modular
compactification. X(N) classifies generalised elliptic curves with level N
structure whose singular fibres are Néron N -gons. X(N) is smooth over
Z[1/N ] and the normalisation of Z[1/N ] in X(N) is Z[ζN , 1/N ], where ζN
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is a primitive Nth root of unity. See [6] for details. We denote the universal
generalised elliptic curve by

g : E(N)→ X(N).
E(N) is the elliptic modular surface of level N studied in [20]. That it is
smooth over Z[1/N ] follows from the results of [6, VII].

3.2. Application of Hodge theory. Assume ζN ∈W (note that this is
always true if p ≡ 1 mod N , for then ζpN = ζN , so ζN ∈ Zp). To simplify
the notation write

E := E(N)⊗Z[ζN ] W, X := X(N)⊗Z[ζN ] W,

Y := Y (N)⊗Z[ζN ] W, Σ := X \ Y.
Let L be the conormal sheaf of the zero section of g : E → X, and let
ω = Ω1

X(log Σ) denote the line bundle of differential forms on X with
logarithmic poles along Σ.

Theorem 3.1 (Faltings [7]). There are GK0-equivariant isomorphisms

H1(YK̄ , R
1g∗Qp)⊗Qp

ˆ̄K = H1(X,L⊗−1)⊗W ˆ̄K⊕H0(X,L⊗ω)⊗W ˆ̄K(−2)

H̃1(YK̄ , R
1g∗Qp)⊗Qp

ˆ̄K = H1(X,L⊗−1)⊗W ˆ̄K⊕H0(X,L⊗Ω1
X)⊗W ˆ̄K(−2)

where H̃1 := im(H1
c → H1) is the parabolic cohomology.

We shall use this result to determine the Hodge–Tate decomposition of
Vp Br(EK̄). Let I ⊂ GK0 be the inertia group.

Corollary 3.2. H1(YK̄ , R1g∗Qp(1)) is a Hodge–Tate representation with
weights ±1. In particular, H1(YK̄ , R1g∗Qp(1))I = 0.

Corollary 3.3. Let E′ = E ×X Y . Then
(i) H2(E′

K̄
,Qp(1)) = H1(YK̄ , R1g∗Qp(1)) ⊕ Qpe, where e denotes the

characteristic class of the zero section of g
(ii) H2(EK̄ ,Qp(1))I is generated as a Qp-vector space by the charac-

teristic classes of the irreducible components of singular fibres of g
together with e.

Proof. Since YK̄ is an affine curve, the Leray spectral sequence

H i(YK̄ , R
jg∗Qp(1))⇒ H i+j(E′

K̄
,Qp(1))

gives an exact sequence
0→ H1(YK̄ , R

1g∗Qp(1))→ H2(E′
K̄
,Qp(1))→ H0(YK̄ , R

2g∗Qp(1))→ 0

so H2(E′
K̄
,Qp(1))I ⊂ H0(YK̄ , R2g∗Qp(1)) = Qp. In fact we must have

equality since the class e of the zero section of g cannot be trivial. So e
gives a splitting of the sequence, proving (i). For (ii) it suffices to note that
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the kernel of the map H2(EK̄ ,Qp(1)) → H2(E′
K̄
,Qp(1)) is generated by

the classes of the components of the fibres over the cusps. �

Note that combined with the Shioda–Tate formula [20, 1.5] this implies
that the rank of the Mordell–Weil group of the generic fibre of g is zero, a
result of Shioda [20, 5.1].

Corollary 3.4. We have

Vp Br(EK̄)⊗Qp

ˆ̄K = H2(E,OE)⊗ ˆ̄K(1)⊕H0(E,Ω2
E)⊗ ˆ̄K(−1).

In particular, Vp Br(EK̄)I = 0.

Proof. We have Vp Br(EK̄) ⊂ Vp Br(E′
K̄

) (cf. [10, II, 1.10]) and the latter is
a quotient of H1(YK̄ , R1g∗Qp(1)) by the last corollary, hence Vp Br(EK̄) is a
Hodge–Tate representation with weights contained in {±1}. In particular,
the map H1(E,Ω1

E)⊗ ˆ̄K → Vp Br(EK̄)⊗Qp

ˆ̄K is zero, and so

H2(E,OE)⊗ ˆ̄K(1)⊕H0(E,Ω2
E)⊗ ˆ̄K(−1)→ Vp Br(EK̄)⊗Qp

ˆ̄K

is surjective. Since

dimQp Vp Br(EK̄) = dimQp H
2(EK̄ ,Qp(1))− dimQp NS(EK̄)⊗Qp

≥ dimQp H
2(EK̄ ,Qp(1))− dim ˆ̄K H

1(E,Ω1
E)⊗ ˆ̄K

= dim ˆ̄K H
2(E,OE)⊗ ˆ̄K(1) + dim ˆ̄K H

0(E,Ω2
E)⊗ ˆ̄K(−1)

this implies the result. �

Corollary 3.5. There is a canonical isomorphism

Vp Br(EK̄) = H̃1(YK̄ , R
1g∗Qp(1)).

Proof. Let E′ := E ×X Y , NS(E′C) := im
(
NS(EC)→ H2(E′(C),Z(1))

)
,

and write V := H̃1(Y (C), R1g∗Z(1)). By the classical Eichler–Shimura iso-
morphism (cf. Theorem 3.1), V is a weight 0 Hodge structure of type
{(1,−1), (−1, 1)}. We have V ⊂ H1(Y (C), R1g∗Z(1)) ⊂ H2(E′(C),Z(1))
and since NS(EC) is a Hodge structure of type (0, 0) (cf. Corollary 3.4) we
have (V ∩NS(E′C))⊗Q = 0, hence V ⊗Q ⊂ H2(E′(C),Q(1))/NS(E′C)⊗Q.

Now, from the usual localisation sequence in singular cohomology we
deduce an exact sequence

0→ H2(E(C),Z(1))/NS(EC)→ H2(E′(C),Z(1))/NS(E′C)

→
⊕

x∈Σ(C)
H3
g−1(x)(E(C),Z(1)).
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By Poincaré duality H3
g−1(x)(E(C),Q(1))∗ = H1(g−1(x)(C),Q(1)) = Q(1)

(since g−1(x) is a Néron polygon), hence
⊕

x∈Σ(C)H
3
g−1(x)(E(C),Z(1)) is a

Hodge structure of weight 2 and therefore the map

V →
⊕

x∈Σ(C)
H3
g−1(x)(E(C),Q(1))

is zero. Thus,
V ⊗Q ⊂ H2(E(C),Q(1))/NS(EC)Q.

Finally, by the Eichler–Shimura isomorphism (and Serre duality) we have
dimV ⊗Q = 2 dimH0(X,L⊗Ω1

X), and since H0(X,L⊗Ω1
X) = H0(E,Ω2

E)
(cf. [18, Thm. 6.8]), from Corollary 3.4 (and Serre duality) we get dimV =
dimVp Br(EK̄). As

(
H2(E(C),Z(1))/NS(EC)

)
⊗ Qp = Vp Br(EK̄), we get

V ⊗Qp = Vp Br(EK̄). �

Remark 3.6. Shioda [20] shows that H1(E,Ω1
E)⊗ ˆ̄K is generated by the

classes of divisors, which together with the Hodge–Tate decomposition gives
another proof of Corollary 3.4. Combining this with Corollary 3.5, this gives
another proof that H̃1(YK̄ , R1g∗Qp(1)) is a Hodge–Tate representation with
weights ±1.

3.3. Application of Hecke operators. The Eichler–Shimura congru-
ence relation relates the pth Hecke operator Tp to the Frobenius morphism
at p. We exploit this relationship to obtain the following

Theorem 3.7. If p ≡ 1 mod N and k = Fp, then T := ϕ + ϕ−1 is an
endomorphism of D := Dcris(Vp Br(EK̄)) which satisfies T (F 1D) ⊂ F 1D.

Proof. Recall ([6, V, 1.14]) that there is a regular proper Z[1/N ]-scheme
X(N, p) (denotedMΓ(N)∩Γ0(p) in loc. cit.; in [5] one only considers the dense
open MN,p = M0

Γ(N)∩Γ0(p)) classifying isomorphism classes of p-isogenies
φ : (E , α)→ (E ′, α′) of generalised elliptic curves with level N structure. It
is smooth away from p and has semistable reduction at p. It is equipped
with two canonical (finite flat degree p+ 1) morphisms

q1 : X(N, p)→ X(N) : φ 7→ (E , α)
q2 : X(N, p)→ X(N) : φ 7→ (E ′, α′).

The universal object over X(N, p) is a p-isogeny

φ : q∗1E → q∗2E

where E → X(N) is the universal curve. X(N, p) is regular and has
semistable reduction at p: its reduction is isomorphic to two copies ofX(N)k
meeting transversally at the supersingular points.
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By definition (cf. [5, 3.18]), the Hecke correspondence Tp on E is the
finite correspondence

q∗1E
q1

}}

q2◦φ

!!
E E

(read from left to right). That is, Tp is the composition of the graph of
q2 ◦ φ with the transpose of the graph of q1 (these can be composed as
in [14, 1A]).

Consider the open subsets Y h ⊂ Xk and Y (p)h ⊂ X(N, p)k, complement
of the cusps (i.e. Σ) and the supersingular locus, and let Eh := E ×X Y h.
Recall ([5, §4]) that Y (p)h is the disjoint union of two copies of Y h. On one of
these copies Tp = F and on the other Tp = Ip

tF , where F is the Frobenius
of Eh, tF is its transpose as a correspondence, and Ip is the (canonical
extension to E of the) morphism of X(N) defined Ip(E , α) := (E , pα) (loc.
cit.). Thus, we have the Eichler–Shimura relation

Tp|Eh = F + Ip
tF.

Let Σh := Xk\Y h and Z := EΣh ⊂ Ek. We have a canonical exact sequence
of rigid cohomology groups [2, 2.3.1]

H2
Z,rig(Ek/K0)→ H2

rig(Ek/K0) λ→ H2
rig(Eh/K0)

and by Poincaré duality [1] we have H2
Z,rig(Ek/K0) = H2

rig(Z/K0)∗. More-
over, since dimZ = 1, for any smooth dense open U ⊂ Z by loc. cit. we
have

H2
rig(Z/K0) = H2

c,rig(U/K0) = H0
rig(U/K0)∗ =

∏
C∈π0(U)

H0
rig(C/K0)∗

the product being over the irreducible components of Z. Thus, the kernel
of λ is generated by the characteristic classes of the components of the fi-
bres over the cusps and the supersingular locus. Note that these classes are
specialisations of divisor classes of EK0 : indeed, this is true for the compo-
nents of the fibres over Σ by [6, VII, 2.5], and it is clear for the (smooth)
supersingular fibres. Since H2

cris(Ek/K0) = H2
rig(Ek/K0), Dcris(Vp Br(EK̄))

is therefore a quotient of im(λ). As Tp = F + Ip
tF on H2

rig(Eh/K0), this
equality also holds on Dcris(Vp Br(EK̄)).

Now, since p ≡ 1 mod N , Ip is the identity map and we obtain the
relation

Tp|Eh = F + tF.

Note that pϕ = F and tFF = pdimEk = p2, so pT = Tp as endomor-
phisms of Dcris(Vp Br(EK̄)). Being defined over Z[1/N ], the action of Tp
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on H2
dR(EK0) respects the Hodge filtration, hence so does 1

pTp = T , which
completes the proof. �

As a corollary we obtain Theorem 1.1.

Corollary 3.8. Assume the partial semisimplicity conjecture for E(N)Fp.
If k = Fp and p ≡ 1 mod N , then

(i) Tate’s conjecture holds for Ek
(ii) NS(EK̄)GK0 ⊗Q = NS(Ek̄)

GK0 ⊗Q
(iii) the Mordell–Weil group of the generic fibre of Ek → Xk is isomor-

phic to (Z/N)2.

Proof. Note that the partial semisimplicity conjecture implies (PS) for
Dcris(Vp Br(E(N)K̄)). So by Corollary 3.4 and Theorem 3.7, (i) and (ii)
follow from Corollary 2.4. For (iii) it is enough to note that the torsion
subgroup of the Mordell–Weil group is N -torsion, which follows from [18,
Cor. 7.5]. �

3.4. Validity of (PS). We show that (PS) holds for Dcris(Vp Br(E(N)K̄))
for p in a set of density 1. Let Y1(N) denote the Deligne–Mumford mod-
uli stack of triples (E → S, P, P ′) where E → S is an elliptic curve over
a Z[1/N ]-scheme S, P ∈ E [N ](S) a point of exact order N and P ′ ∈
(E[N ]
〈P 〉 )(S) ∼= µN (S) a point of exact order N (cf. [6]). For N ≥ 5 it is

known to be a Z[1/N, ζN ]-scheme with geometrically connected fibres. Let
g : E1(N) → Y1(N) be the universal elliptic curve and consider VN :=
H̃1(Y1(N)K̄ , R1g∗Qp)(1). This makes sense for all N ≥ 1 as the étale co-
homology of a Deligne–Mumford stack; alternatively, if N |M and N ≥ 5
we have a canonical injective map VN → VM induced the inclusion of
congruence subgroups Γ1(M) ⊂ Γ1(N), and for N < 5 we can define
VN := VNl ×VNlm

VNm for coprime integers l,m such that Nl and Nm
are at least 5. We first explain why (PS) holds for Dcris(VN ) for p outside
a set of primes of density zero, and then we shall see why this implies the
same for Dcris(Vp Br(E(N)K̄)).

First of all, recall the Eichler–Shimura isomorphism (cf. [5, 2.10])

VN ⊗ C = S3(Γ1(N))⊕ S3(Γ1(N))
giving the Hodge decomposition of VN in terms of weight 3 cusp forms for
Γ1(N). The Hodge structure VN is canonically polarised (cf. [5, 3.20]), and
the polarisation induces the Petersson product on S3(Γ1(N)).

Now, for every proper divisor d of N there are pairs of maps πi : VN/d →
VN (i = 1, 2) defined just like for modular forms. (One map arises from
the inclusion Γ1(N) ⊂ Γ1(N/d) and the other from

(
d 0
0 1
)
Γ1(N)

(
d 0
0 1
)−1 ⊂

Γ1(N/d); cf. [13, VIII].) The image of these maps is a subspace V old
N of VN .

The perfect pairing on VN is non-degenerate on V old
N and its orthogonal
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complement V new
N corresponds to newforms. This follows from the analo-

gous fact for cusp forms (loc. cit.) via Hodge theory. Furthermore, V new
N

splits under the action of the Hecke algebra as a direct sum

V new
N =

m⊕
i=1

V (fi)

where f1, . . . , fm are a choice of representatives of the Gal(Q̄/Q)-conjugacy
classes of weight 3 normalised newforms for Γ1(N), and V (fi)(−1) is the p-
adic representation of Gal(Q̄/Q) associated to fi by Deligne [5]. The space
V (fi) is free of rank 2 over Kfi

⊗ Qp, where Kfi
is the field of coefficients

of fi. Now, by induction on the number of prime divisors of N we may
assume (PS) to hold for Dcris(V old

N ) for all p outside of a set of density zero,
and it remains to consider Dcris(V new

N ) =
⊕m

i=1Dcris(V (fi)).
Fix an integer n ≥ 1. We claim that

Dcris(V (fi))(ϕn−1)2=0 = Dcris(V (fi))ϕ
n=1

for a set of primes p of density 1. It suffices to show this for e · V (fi),
where e ∈ Kfi

⊗ Qp is a primitive idempotent; then Dcris(e · V (fi)) is a
2-dimensional vector space over the field e ·Kfi

⊗Qp with linear Frobenius
ϕ. Moreover, one easily sees that it is enough to show this with n replaced
by a multiple; in particular we can assume that n is even. Assume for a
contradiction that the claim does not hold. Then the minimal polynomial
of ϕn is (t− 1)2. If fi has CM, then ϕ2 is diagonalisable (cf. [16, p. 41]), a
contradiction. So we may assume fi does not have CM. As both eigenvalues
of ϕn are equal to 1 and the trace of ϕ is equal to ap

p where ap is the pth
coefficient of fi (cf. [17, 1.2.4(ii)]), we deduce that ap = (ζ + ζ ′)p for some
nth roots of unity ζ, ζ ′. By [19, Thm. 15] this can only happen for a set of
primes of density zero (dependent on n). This proves the claim, which in
turn implies the equality

(3.1) Dcris(VN )(ϕn−1)2=0 = Dcris(VN )ϕn=1

for p in a set of density 1. We have nearly shown

Theorem 3.9. Let Q[ζN ] ⊂ L be a finite extension. Then for every place
v of L outside of set of density zero, the partial semisimplicity conjecture
holds for the reduction of E(N)⊗Z[ζN ] L at v.

Proof. Let n be a positive integer divisible by [L(ζN2) : Q]. There is a
finite étale morphism Y1(N2) ⊗ Q → Y (N) ⊗ Q arising from the inclu-
sion

(
N 0
0 1
)
Γ1(N2)

(
N 0
0 1
)−1 ⊂ Γ(N). Thus, Dcris(H̃1(Y (N)K̄ , R1g∗Qp(1))) =

Dcris(Vp Br(E(N)K̄)) is contained in Dcris(VN2). From (3.1) we deduce that
Dcris(Vp Br(E(N)K̄))(ϕn−1)2=0 = Dcris(Vp Br(E(N)K̄))ϕn=1 for a set of
primes p of density 1. This easily implies partial semisimplicity. �
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Corollary 3.10. The conclusions of Corollary 3.8 hold for all p ≡ 1
mod N outside of a set of density zero.
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