

Rémi LODH

On Tate's conjecture for the elliptic modular surface of level N over a prime field of characteristic $1 \bmod N$

Tome 32, nº 1 (2020), p. 193-204.

 $\verb|\c| ttp://jtnb.centre-mersenne.org/item?id=JTNB_2020__32_1_193_0> | ttp://jtnb.centre-mersenne.org/item.org/ite$

© Société Arithmétique de Bordeaux, 2020, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.centre-mersenne.org/

On Tate's conjecture for the elliptic modular surface of level N over a prime field of characteristic 1 mod N

par Rémi LODH

RÉSUMÉ. Modulo une hypothèse de semi-simplicité partielle, on démontre le conjecture de Tate pour la surface elliptique modulaire E(N) de niveau N sur un corps premier de cardinalité $p \equiv 1 \mod N$ et on montre que le rang du groupe de Mordell–Weil est nul dans ce cas. Pour $N \leq 4$ c'est un résultat de Shioda. De plus, on démontre que l'hypothèse de semi-simplicité vaut en dehors d'un ensemble de nombres premiers p de densité nulle.

ABSTRACT. Assuming partial semisimplicity of Frobenius, we show Tate's conjecture for the reduction of the elliptic modular surface E(N) of level N at a prime p satisfying $p \equiv 1 \mod N$ and show that the Mordell–Weil rank is zero in this case. This extends a result of Shioda to N>4. Furthermore, we show that for every number field L partial semisimplicity holds for the reductions of $E(N)_L$ at a set of places of density 1.

1. Introduction

In this note we study cohomology classes of divisors on the elliptic modular surface E(N) of level N, where $N \geq 3$. By definition, E(N) is the universal object over the moduli space X(N) of generalised elliptic curves with level N structure. Fix a prime p which does not divide N. Our main result is the following theorem, which goes back to Shioda [20, Appendix] for $N \leq 4$.

Theorem 1.1 (Corollary 3.8). Assume the partial semisimplicity conjecture is true for $E(N)_{\mathbb{F}_p}$. If $p \equiv 1 \mod N$, then Tate's conjecture holds for $E(N)_{\mathbb{F}_p}$. Moreover, the Mordell-Weil group of a generic fibre of $E(N)_{\mathbb{F}_p} \to X(N)_{\mathbb{F}_p}$ is isomorphic to $(\mathbb{Z}/N)^2$.

If k is a finite field with $q=p^n$ elements and D is a φ -module over $K_0=W(k)[1/p]$, then we have an inclusion $D^{\varphi^n=1}\subset D^{(\varphi^n-1)^2=0}$ and we may ask if there is equality, i.e.

(PS)
$$D^{(\varphi^n - 1)^2 = 0} = D^{\varphi^n = 1}$$

Manuscrit reçu le 13 mai 2019, accepté le 29 novembre 2019. 2020 Mathematics Subject Classification. 11G05, 11F11, 14F30. Mots-clefs. elliptic curves, modular forms, p-adic cohomology, zeta function.

The partial semisimplicity conjecture for a smooth projective surface S over k is the validity of (PS) when $D = H_{\text{cris}}^2(S/K_0)$ is the second crystalline cohomology group of S, and $\varphi = F/p$ where F is the p-power crystalline Frobenius endomorphism. It is a consequence of Tate's conjecture for S. Using a result of Serre [19] on the l-adic representation of newforms, we show that it holds for $E(N)_{\mathbb{F}_p}$ for a set of primes p of density 1, thereby obtaining

Corollary 1.2 (Corollary 3.10). The conclusions of Theorem 1.1 hold for all $p \equiv 1 \mod N$ outside of a set of primes of density zero.

In fact, for any number field L we show partial semisimplicity for $E(N)_v$ for all finite places v of L outside of a set of density zero (dependent on N and L), see Theorem 3.9. We remark that for $N \leq 4$ the (full) semisimplicity conjecture is known for $E(N)_v$ since it is either a rational (N=3) or a K3 (N=4) surface.

The starting point of the proof of Theorem 1.1 is the following exceptional property of E(N):

(HT) $V_p\operatorname{Br}(E(N)_{ar{\mathbb{Q}}})$ is a Hodge–Tate representation with weights $\pm\,1$

Here $\operatorname{Br}(-) := H^2_{\operatorname{\acute{e}t}}(-,\mathbb{G}_m)$ denotes the cohomological Brauer group and for any abelian group A we write $V_pA := \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, A) \otimes \mathbb{Q}$ (the p-adic Tate module of A tensored with \mathbb{Q}). (HT) is a consequence of a result of Shioda [20] on the Néron–Severi group of $E(N)_{\mathbb{C}}$ and the Hodge–Tate decomposition; alternatively, we shall deduce it from Faltings' p-adic Eichler–Shimura isomorphism [7].

The proof of Theorem 1.1 uses the theory of Hecke operators, in particular the Eichler–Shimura congruence relation between the pth Hecke operator T_p and Frobenius endomorphism. Our method can be summarised as follows. Let I_p be the automorphism of X(N) given by multiplying the level structure by $p \in (\mathbb{Z}/N)^*$ and let $U \subset V_p \operatorname{Br}(E(N)_{\overline{\mathbb{Q}}})$ be the subset on which I_p acts trivially. Then (modulo (PS)) (HT) and the action of T_p imply $D_{\operatorname{cris}}(U)^{\varphi=1}=0$, where φ is the Frobenius. For $p\equiv 1 \mod N$, I_p is the identity and the theorem follows.

In the case $p \not\equiv 1 \mod N$ we only know of Shioda's result [21] for N=4. Our arguments do not apply to this case. In fact, Shioda shows that the Mordell–Weil group of the K3 surface $E(4)_{\mathbb{F}_p}$ has rank 2 for $p \equiv 3 \mod 4$, so the conclusion of Theorem 1.1 cannot hold. On the other hand, it is possible that our method can be applied to other types of modular varieties.

Notation. We denote by k a finite field of characteristic p, W = W(k) its ring of Witt vectors, $K_0 = W[1/p]$, \bar{k} an algebraic closure of k, \bar{K} an algebraic closure of K_0 , $G_{K_0} = \text{Gal}(\bar{K}/K_0)$, $\hat{\bar{K}}$ the completion of \bar{K} for the p-adic norm. All cohomology is étale unless stated otherwise.

2. A general result

We assume familiarity with the basics of Fontaine's theory of p-adic Galois representations [4, 8, 9].

2.1. Self-dual crystalline representations. Let V be a p-adic representation of G_{K_0} . We say that V is self-dual if it is isomorphic to its dual, i.e. it has a non-degenerate bilinear form

$$V \otimes_{\mathbb{Q}_p} V \to \mathbb{Q}_p$$

which is a homomorphism of G_{K_0} -modules.

Proposition 2.1. Let V be a self-dual crystalline representation of G_{K_0} and let $D := D_{\text{cris}}(V)$ be the associated filtered φ -module. Suppose the endomorphism $T := \varphi + \varphi^{-1}$ of D satisfies $T(F^1D) \subset F^1D$. If $D^{(\varphi-1)^2=0} = D^{\varphi=1}$ and $V^{G_{K_0}} = 0$, then $D^{\varphi=1} = 0$.

Proof. The bilinear form on V induces a non-degenerate bilinear form \cdot on D. Endow $D^{\varphi=1}$ with the filtration induced from D. Since V is crystalline we have $F^0D^{\varphi=1} = V^{G_{K_0}} = 0$. If $D^{\varphi=1} = F^0D^{\varphi=1}$, then we are done. If not, then there is i < 0 and $x \in F^iD^{\varphi=1} \setminus F^{i+1}D^{\varphi=1}$. Since V is self-dual, the map $c: D \to D^* := \operatorname{Hom}_{K_0}(D, K_0)$ induced by \cdot is an isomorphism of filtered φ -modules, so we have $x^* := c(x) \in F^iD^* \setminus F^{i+1}D^*$. Note that x^* is the map $D \ni y \mapsto x \cdot y \in K_0$. Since by definition

$$F^iD^* = \{ f \in D^* : f(F^jD) \subset F^{j+i}K_0 \ \forall \ j \in \mathbb{Z} \}$$

the condition $x^* \notin F^{i+1}D^*$ means that there is j such that $x^*(F^jD) \not\subset F^{j+i+1}K_0$, where K_0 has the trivial filtration, i.e.

$$F^k K_0 = \begin{cases} K_0 & k \le 0\\ 0 & k > 0. \end{cases}$$

If $x^*(F^jD) \not\subset F^{j+i+1}K_0$, then we must have $x^*(F^jD) \neq 0$, i.e. $x^*(F^jD) = K_0$. So to say that $x^*(F^jD) \not\subset F^{j+i+1}K_0$ but $x^*(F^jD) \subset F^{i+j}K_0$ is equivalent to the condition i+j=0. Hence j=-i>0, and there is an element $y \in F^1D$ such that $x \cdot y \neq 0$.

Now, up to dividing y by $x \cdot y$ we may assume that $x \cdot y \in \mathbb{Q}_p$. Let $0 \neq P(t) \in \mathbb{Q}_p[t]$ be such that P(T)y = 0. Since $\varphi(x) = x$ we have $x \cdot T(d) = T(x \cdot d)$ for all $d \in D$, hence

$$0 = x \cdot P(T)y = P(T)(x \cdot y) = (x \cdot y)P(2).$$

So P(2) = 0 and we deduce that $P(t) = (t-2)^e Q(t)$ for some $e \in \mathbb{N}$ and some $Q(t) \in \mathbb{Q}_p[t]$ not divisible by t-2. Let z := Q(T)y. Note that $x \cdot z = (x \cdot y)Q(2) \neq 0$. Multiplying the equation $(T-2)^e z = 0$ by φ^e we find $(\varphi - 1)^{2e} z = 0$, hence $\varphi(z) = z$ since $D^{(\varphi - 1)^2 = 0} = D^{\varphi = 1}$. As F^1D is stable

under T by assumption, we have $z \in F^1D$. Thus, $z \in F^1D^{\varphi=1} \subset V^{G_{K_0}} = 0$, a contradiction.

- **Remark 2.2.** The above argument no longer works if one replaces φ by a power φ^r . The problem is related to the fact that, unlike the case r=1, for r>1 we may have $F^1B_{\mathrm{cris}}^{\varphi^r=1}\neq 0$.
- **2.2.** Application to surfaces. Let $E \to \operatorname{Spec}(W)$ be a smooth projective morphism with geometrically connected fibres of dimension 2. Let K_0^{ur} be the maximal unramified extension of K_0 in \bar{K} . The Kummer sequence gives an exact sequence of G_{K_0} -representations

$$0 \to NS(E_{\bar{K}}) \otimes \mathbb{Q}_p \to H^2_{\text{\'et}}(E_{\bar{K}}, \mathbb{Q}_p)(1) \to V_p \operatorname{Br}(E_{\bar{K}}) \to 0$$

where $NS := \text{Pic} / \text{Pic}^0$ is the Néron–Severi group. By p-adic Hodge theory, applying the functor D_{cris} we get an exact sequence

$$0 \to D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p}) \to H^2_{\mathrm{cris}}(E_k/K_0)[1] \to D_{\mathrm{cris}}(V_p\operatorname{Br}(E_{\bar{K}})) \to 0$$

where for a filtered φ -module D we denote D[1] the filtered φ -module whose underlying K_0 -module is D with $\varphi_{D[1]} := p^{-1}\varphi_D$ and $F^iD[1] := F^{i+1}D$. On the other hand, there is the specialisation map [3, Exp. X, appendice, 7.12]

$$\operatorname{sp}: NS(E_{\bar{K}}) \to NS(E_{\bar{k}})$$

which is G_{K_0} -equivariant and injective up to torsion. So $NS(E_{\bar{K}}) \otimes \mathbb{Q}_p$ is an unramified discrete representation of G_{K_0} hence is K_0^{ur} -admissible. Thus, $D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p}) = (NS(E_{\bar{K}}) \otimes K_0^{\mathrm{ur}})^{\mathrm{Gal}(K_0^{\mathrm{ur}}/K_0)}$ (and similarly for $D_{\mathrm{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})$) and we have a commutative diagram

where c_1 is the first Chern class. In fact, c_1 is injective since

$$NS(E_{\bar{k}})_{\mathbb{Q}_p} \subset \left(H^2_{\mathrm{cris}}(E_k/K_0)[1] \otimes_{K_0} K_0^{\mathrm{ur}}\right)^{\varphi=1}$$

(cf. [11, II.5]). Therefore, defining $C := H^2_{\text{cris}}(E_k/K_0)[1]/D_{\text{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})$, we have a commutative diagram with exact rows

$$0 \longrightarrow D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p}) \longrightarrow H^2_{\mathrm{cris}}(E_k/K_0)[1] \longrightarrow D_{\mathrm{cris}}(V_p \operatorname{Br}(E_{\bar{K}})) \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow D_{\mathrm{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p}) \longrightarrow H^2_{\mathrm{cris}}(E_k/K_0)[1] \longrightarrow C \longrightarrow 0$$

and setting $M:=D_{\mathrm{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})/D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p})$ we deduce an exact sequence of φ -modules

$$0 \to M \to D_{\mathrm{cris}}(V_p \operatorname{Br}(E_{\bar{K}})) \to C \to 0.$$

Theorem 2.3. Let $D := D_{\text{cris}}(V_p \operatorname{Br}(E_{\bar{K}}))$ and $T := \varphi + \varphi^{-1}$. If

$$D^{(\varphi-1)^2=0}=D^{\varphi=1},\quad T(F^1D)\subset F^1D\quad and\quad V_p\operatorname{Br}(E_{\bar{K}})^{G_{K_0}}=0,$$
 then $M^{\varphi=1}=0=C^{\varphi=1}.$

Proof. By Poincaré duality, cup product is non-degenerate on $H^2_{\text{\'et}}(E_{\bar{K}})(1)$ and, since numerical and algebraic equivalence coincide up to torsion for divisors [12, 9.6.17], it is also non-degenerate on $NS(E_{\bar{K}})_{\mathbb{Q}_p}$ and $NS(E_{\bar{k}})_{\mathbb{Q}_p}$. It follows that $V_p \operatorname{Br}(E_{\bar{K}}) \cong (NS(E_{\bar{K}})_{\mathbb{Q}_p})^{\perp}$ has a canonical non-degenerate symmetric bilinear form we may apply Proposition 2.1 to obtain $D^{\varphi=1}=0$. Moreover, the restriction of this form to M is non-degenerate since cup product is non-degenerate on both $D_{\operatorname{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p})$ and $D_{\operatorname{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})$. Thus, $C \cong M^{\perp}$ and hence $C^{\varphi=1}=0$.

Corollary 2.4. Under the assumptions of Theorem 2.3, Tate's conjecture holds for E_k and we have

$$NS(E_{\bar{K}})^{G_{K_0}} \otimes \mathbb{Q} = NS(E_{\bar{k}})^{G_{K_0}} \otimes \mathbb{Q}.$$

Proof. Note that we have an exact sequence

$$0 \to D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p})^{\varphi=1} \to D_{\mathrm{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})^{\varphi=1} \to M^{\varphi=1}$$

so since $M^{\varphi=1}=0$ we find

$$(NS(E_{\bar{K}}) \otimes \mathbb{Q}_p)^{G_{K_0}} = D_{\mathrm{cris}}(NS(E_{\bar{K}})_{\mathbb{Q}_p})^{\varphi=1}$$
$$= D_{\mathrm{cris}}(NS(E_{\bar{k}})_{\mathbb{Q}_p})^{\varphi=1}$$
$$= (NS(E_{\bar{k}}) \otimes \mathbb{Q}_p)^{G_{K_0}}$$

as claimed. Tate's conjecture is well known [15] to be equivalent to the statement $C^{\varphi=1}=0$.

3. Elliptic modular surfaces

We fix throughout a positive integer N and a prime number p which does not divide N.

3.1. Definition. For $N \geq 3$, let Y(N) to be moduli $\mathbb{Z}[1/N]$ -scheme of elliptic curves with (full) level N structure and let X(N) be its modular compactification. X(N) classifies generalised elliptic curves with level N structure whose singular fibres are Néron N-gons. X(N) is smooth over $\mathbb{Z}[1/N]$ and the normalisation of $\mathbb{Z}[1/N]$ in X(N) is $\mathbb{Z}[\zeta_N, 1/N]$, where ζ_N

is a primitive Nth root of unity. See [6] for details. We denote the universal generalised elliptic curve by

$$g: E(N) \to X(N)$$
.

E(N) is the *elliptic modular surface of level N* studied in [20]. That it is smooth over $\mathbb{Z}[1/N]$ follows from the results of [6, VII].

3.2. Application of Hodge theory. Assume $\zeta_N \in W$ (note that this is always true if $p \equiv 1 \mod N$, for then $\zeta_N^p = \zeta_N$, so $\zeta_N \in \mathbb{Z}_p$). To simplify the notation write

$$E := E(N) \otimes_{\mathbb{Z}[\zeta_N]} W, \qquad X := X(N) \otimes_{\mathbb{Z}[\zeta_N]} W,$$

$$Y := Y(N) \otimes_{\mathbb{Z}[\zeta_N]} W, \qquad \Sigma := X \setminus Y.$$

Let L be the conormal sheaf of the zero section of $g: E \to X$, and let $\omega = \Omega^1_X(\log \Sigma)$ denote the line bundle of differential forms on X with logarithmic poles along Σ .

Theorem 3.1 (Faltings [7]). There are G_{K_0} -equivariant isomorphisms

$$H^{1}(Y_{\bar{K}}, R^{1}g_{*}\mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \hat{K} = H^{1}(X, L^{\otimes -1}) \otimes_{W} \hat{K} \oplus H^{0}(X, L \otimes \omega) \otimes_{W} \hat{K}(-2)$$

$$\tilde{H}^{1}(Y_{\bar{K}}, R^{1}g_{*}\mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \hat{K} = H^{1}(X, L^{\otimes -1}) \otimes_{W} \hat{K} \oplus H^{0}(X, L \otimes \Omega_{X}^{1}) \otimes_{W} \hat{K}(-2)$$

$$where \ \tilde{H}^{1} := \operatorname{im}(H_{c}^{1} \to H^{1}) \ is \ the \ parabolic \ cohomology.$$

We shall use this result to determine the Hodge–Tate decomposition of $V_p\operatorname{Br}(E_{\bar{K}})$. Let $I\subset G_{K_0}$ be the inertia group.

Corollary 3.2. $H^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1))$ is a Hodge-Tate representation with weights ± 1 . In particular, $H^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1))^I = 0$.

Corollary 3.3. Let $E' = E \times_X Y$. Then

- (i) $H^2(E'_{\bar{K}}, \mathbb{Q}_p(1)) = H^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1)) \oplus \mathbb{Q}_p e$, where e denotes the characteristic class of the zero section of g
- (ii) $H^2(E_{\bar{K}}, \mathbb{Q}_p(1))^I$ is generated as a \mathbb{Q}_p -vector space by the characteristic classes of the irreducible components of singular fibres of g together with e.

Proof. Since $Y_{\bar{K}}$ is an affine curve, the Leray spectral sequence

$$H^{i}(Y_{\bar{K}}, R^{j}g_{*}\mathbb{Q}_{p}(1)) \Rightarrow H^{i+j}(E'_{\bar{K}}, \mathbb{Q}_{p}(1))$$

gives an exact sequence

$$0 \to H^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1)) \to H^2(E'_{\bar{K}}, \mathbb{Q}_p(1)) \to H^0(Y_{\bar{K}}, R^2g_*\mathbb{Q}_p(1)) \to 0$$

so $H^2(E'_{\bar{K}}, \mathbb{Q}_p(1))^I \subset H^0(Y_{\bar{K}}, R^2g_*\mathbb{Q}_p(1)) = \mathbb{Q}_p$. In fact we must have equality since the class e of the zero section of g cannot be trivial. So e gives a splitting of the sequence, proving (i). For (ii) it suffices to note that

the kernel of the map $H^2(E_{\bar{K}}, \mathbb{Q}_p(1)) \to H^2(E'_{\bar{K}}, \mathbb{Q}_p(1))$ is generated by the classes of the components of the fibres over the cusps.

Note that combined with the Shioda–Tate formula [20, 1.5] this implies that the rank of the Mordell–Weil group of the generic fibre of g is zero, a result of Shioda [20, 5.1].

Corollary 3.4. We have

$$V_p\operatorname{Br}(E_{\bar{K}})\otimes_{\mathbb{Q}_p}\hat{\bar{K}}=H^2(E,\mathcal{O}_E)\otimes\hat{\bar{K}}(1)\oplus H^0(E,\Omega_E^2)\otimes\hat{\bar{K}}(-1).$$

In particular, $V_p \operatorname{Br}(E_{\bar{K}})^I = 0$.

Proof. We have $V_p \operatorname{Br}(E_{\bar{K}}) \subset V_p \operatorname{Br}(E'_{\bar{K}})$ (cf. [10, II, 1.10]) and the latter is a quotient of $H^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1))$ by the last corollary, hence $V_p \operatorname{Br}(E_{\bar{K}})$ is a Hodge–Tate representation with weights contained in $\{\pm 1\}$. In particular, the map $H^1(E, \Omega_E^1) \otimes \hat{K} \to V_p \operatorname{Br}(E_{\bar{K}}) \otimes_{\mathbb{Q}_p} \hat{K}$ is zero, and so

$$H^2(E, \mathcal{O}_E) \otimes \hat{\bar{K}}(1) \oplus H^0(E, \Omega_E^2) \otimes \hat{\bar{K}}(-1) \to V_p \operatorname{Br}(E_{\bar{K}}) \otimes_{\mathbb{Q}_p} \hat{\bar{K}}$$

is surjective. Since

$$\dim_{\mathbb{Q}_p} V_p \operatorname{Br}(E_{\bar{K}}) = \dim_{\mathbb{Q}_p} H^2(E_{\bar{K}}, \mathbb{Q}_p(1)) - \dim_{\mathbb{Q}_p} NS(E_{\bar{K}}) \otimes \mathbb{Q}_p$$

$$\geq \dim_{\mathbb{Q}_p} H^2(E_{\bar{K}}, \mathbb{Q}_p(1)) - \dim_{\hat{K}} H^1(E, \Omega_E^1) \otimes \hat{\bar{K}}$$

$$= \dim_{\hat{K}} H^2(E, \mathcal{O}_E) \otimes \hat{\bar{K}}(1) + \dim_{\hat{K}} H^0(E, \Omega_E^2) \otimes \hat{\bar{K}}(-1)$$

this implies the result.

Corollary 3.5. There is a canonical isomorphism

$$V_p \operatorname{Br}(E_{\bar{K}}) = \widetilde{H}^1(Y_{\bar{K}}, R^1 g_* \mathbb{Q}_p(1)).$$

Proof. Let $E':=E\times_X Y$, $NS(E'_{\mathbb{C}}):=\operatorname{im}\left(NS(E_{\mathbb{C}})\to H^2(E'(\mathbb{C}),\mathbb{Z}(1))\right)$, and write $V:=\tilde{H}^1(Y(\mathbb{C}),R^1g_*\mathbb{Z}(1))$. By the classical Eichler–Shimura isomorphism (cf. Theorem 3.1), V is a weight 0 Hodge structure of type $\{(1,-1),(-1,1)\}$. We have $V\subset H^1(Y(\mathbb{C}),R^1g_*\mathbb{Z}(1))\subset H^2(E'(\mathbb{C}),\mathbb{Z}(1))$ and since $NS(E_{\mathbb{C}})$ is a Hodge structure of type (0,0) (cf. Corollary 3.4) we have $(V\cap NS(E'_{\mathbb{C}}))\otimes \mathbb{Q}=0$, hence $V\otimes \mathbb{Q}\subset H^2(E'(\mathbb{C}),\mathbb{Q}(1))/NS(E'_{\mathbb{C}})\otimes \mathbb{Q}$.

Now, from the usual localisation sequence in singular cohomology we deduce an exact sequence

$$0 \to H^2(E(\mathbb{C}), \mathbb{Z}(1))/NS(E_{\mathbb{C}}) \to H^2(E'(\mathbb{C}), \mathbb{Z}(1))/NS(E'_{\mathbb{C}})$$
$$\to \bigoplus_{x \in \Sigma(\mathbb{C})} H^3_{g^{-1}(x)}(E(\mathbb{C}), \mathbb{Z}(1)).$$

By Poincaré duality $H^3_{g^{-1}(x)}(E(\mathbb{C}),\mathbb{Q}(1))^* = H^1(g^{-1}(x)(\mathbb{C}),\mathbb{Q}(1)) = \mathbb{Q}(1)$ (since $g^{-1}(x)$ is a Néron polygon), hence $\bigoplus_{x\in\Sigma(\mathbb{C})}H^3_{g^{-1}(x)}(E(\mathbb{C}),\mathbb{Z}(1))$ is a Hodge structure of weight 2 and therefore the map

$$V \to \bigoplus_{x \in \Sigma(\mathbb{C})} H^3_{g^{-1}(x)}(E(\mathbb{C}), \mathbb{Q}(1))$$

is zero. Thus,

$$V \otimes \mathbb{Q} \subset H^2(E(\mathbb{C}), \mathbb{Q}(1))/NS(E_{\mathbb{C}})_{\mathbb{Q}}.$$

Finally, by the Eichler–Shimura isomorphism (and Serre duality) we have $\dim V \otimes \mathbb{Q} = 2 \dim H^0(X, L \otimes \Omega_X^1)$, and since $H^0(X, L \otimes \Omega_X^1) = H^0(E, \Omega_E^2)$ (cf. [18, Thm. 6.8]), from Corollary 3.4 (and Serre duality) we get $\dim V = \dim V_p \operatorname{Br}(E_{\bar{K}})$. As $(H^2(E(\mathbb{C}), \mathbb{Z}(1))/NS(E_{\mathbb{C}})) \otimes \mathbb{Q}_p = V_p \operatorname{Br}(E_{\bar{K}})$, we get $V \otimes \mathbb{Q}_p = V_p \operatorname{Br}(E_{\bar{K}})$.

Remark 3.6. Shioda [20] shows that $H^1(E, \Omega_E^1) \otimes \hat{K}$ is generated by the classes of divisors, which together with the Hodge–Tate decomposition gives another proof of Corollary 3.4. Combining this with Corollary 3.5, this gives another proof that $\tilde{H}^1(Y_{\bar{K}}, R^1g_*\mathbb{Q}_p(1))$ is a Hodge–Tate representation with weights ± 1 .

3.3. Application of Hecke operators. The Eichler–Shimura congruence relation relates the pth Hecke operator T_p to the Frobenius morphism at p. We exploit this relationship to obtain the following

Theorem 3.7. If $p \equiv 1 \mod N$ and $k = \mathbb{F}_p$, then $T := \varphi + \varphi^{-1}$ is an endomorphism of $D := D_{\mathrm{cris}}(V_p \operatorname{Br}(E_{\bar{K}}))$ which satisfies $T(F^1D) \subset F^1D$.

Proof. Recall ([6, V, 1.14]) that there is a regular proper $\mathbb{Z}[1/N]$ -scheme X(N,p) (denoted $\mathcal{M}_{\Gamma(N)\cap\Gamma_0(p)}$ in loc. cit.; in [5] one only considers the dense open $M_{N,p} = \mathcal{M}^0_{\Gamma(N)\cap\Gamma_0(p)}$ classifying isomorphism classes of p-isogenies $\phi: (\mathcal{E}, \alpha) \to (\mathcal{E}', \alpha')$ of generalised elliptic curves with level N structure. It is smooth away from p and has semistable reduction at p. It is equipped with two canonical (finite flat degree p+1) morphisms

$$q_1: X(N,p) \to X(N): \phi \mapsto (\mathcal{E}, \alpha)$$

 $q_2: X(N,p) \to X(N): \phi \mapsto (\mathcal{E}', \alpha').$

The universal object over X(N, p) is a p-isogeny

$$\phi: q_1^*E \to q_2^*E$$

where $E \to X(N)$ is the universal curve. X(N,p) is regular and has semistable reduction at p: its reduction is isomorphic to two copies of $X(N)_k$ meeting transversally at the supersingular points.

By definition (cf. [5, 3.18]), the Hecke correspondence T_p on E is the finite correspondence

(read from left to right). That is, T_p is the composition of the graph of $q_2 \circ \phi$ with the transpose of the graph of q_1 (these can be composed as in [14, 1A]).

Consider the open subsets $Y^h \subset X_k$ and $Y(p)^h \subset X(N,p)_k$, complement of the cusps (i.e. Σ) and the supersingular locus, and let $E^h := E \times_X Y^h$. Recall ([5, §4]) that $Y(p)^h$ is the disjoint union of two copies of Y^h . On one of these copies $T_p = F$ and on the other $T_p = I_p \,^{\mathrm{t}} F$, where F is the Frobenius of E^h , $^{\mathrm{t}} F$ is its transpose as a correspondence, and I_p is the (canonical extension to E of the) morphism of X(N) defined $I_p(\mathcal{E}, \alpha) := (\mathcal{E}, p\alpha)$ (loc. cit.). Thus, we have the Eichler–Shimura relation

$$T_p|_{E^h} = F + I_p^{\text{t}} F.$$

Let $\Sigma^h := X_k \setminus Y^h$ and $Z := E_{\Sigma^h} \subset E_k$. We have a canonical exact sequence of rigid cohomology groups [2, 2.3.1]

$$H_{Z,\mathrm{rig}}^2(E_k/K_0) \to H_{\mathrm{rig}}^2(E_k/K_0) \xrightarrow{\lambda} H_{\mathrm{rig}}^2(E^h/K_0)$$

and by Poincaré duality [1] we have $H^2_{Z,\mathrm{rig}}(E_k/K_0)=H^2_{\mathrm{rig}}(Z/K_0)^*$. Moreover, since dim Z=1, for any smooth dense open $U\subset Z$ by loc. cit. we have

$$H_{\mathrm{rig}}^{2}(Z/K_{0}) = H_{c,\mathrm{rig}}^{2}(U/K_{0}) = H_{\mathrm{rig}}^{0}(U/K_{0})^{*} = \prod_{C \in \pi_{0}(U)} H_{\mathrm{rig}}^{0}(C/K_{0})^{*}$$

the product being over the irreducible components of Z. Thus, the kernel of λ is generated by the characteristic classes of the components of the fibres over the cusps and the supersingular locus. Note that these classes are specialisations of divisor classes of E_{K_0} : indeed, this is true for the components of the fibres over Σ by [6, VII, 2.5], and it is clear for the (smooth) supersingular fibres. Since $H^2_{\text{cris}}(E_k/K_0) = H^2_{\text{rig}}(E_k/K_0)$, $D_{\text{cris}}(V_p \operatorname{Br}(E_{\bar{K}}))$ is therefore a quotient of $\operatorname{im}(\lambda)$. As $T_p = F + I_p{}^{\mathrm{t}}F$ on $H^2_{\text{rig}}(E^h/K_0)$, this equality also holds on $D_{\text{cris}}(V_p \operatorname{Br}(E_{\bar{K}}))$.

Now, since $p \equiv 1 \mod N$, I_p is the identity map and we obtain the relation

$$T_p|_{E^h} = F + {}^{\operatorname{t}}F.$$

Note that $p\varphi = F$ and ${}^{\mathrm{t}}FF = p^{\dim E_k} = p^2$, so $pT = T_p$ as endomorphisms of $D_{\mathrm{cris}}(V_p \operatorname{Br}(E_{\bar{K}}))$. Being defined over $\mathbb{Z}[1/N]$, the action of T_p

on $H^2_{dR}(E_{K_0})$ respects the Hodge filtration, hence so does $\frac{1}{p}T_p = T$, which completes the proof.

As a corollary we obtain Theorem 1.1.

Corollary 3.8. Assume the partial semisimplicity conjecture for $E(N)_{\mathbb{F}_p}$. If $k = \mathbb{F}_p$ and $p \equiv 1 \mod N$, then

- (i) Tate's conjecture holds for E_k
- (ii) $NS(E_{\vec{K}})^{G_{K_0}} \otimes \mathbb{Q} = NS(E_{\vec{k}})^{G_{K_0}} \otimes \mathbb{Q}$
- (iii) the Mordell-Weil group of the generic fibre of $E_k \to X_k$ is isomorphic to $(\mathbb{Z}/N)^2$.

Proof. Note that the partial semisimplicity conjecture implies (PS) for $D_{\text{cris}}(V_p \operatorname{Br}(E(N)_{\bar{K}}))$. So by Corollary 3.4 and Theorem 3.7, (i) and (ii) follow from Corollary 2.4. For (iii) it is enough to note that the torsion subgroup of the Mordell–Weil group is N-torsion, which follows from [18, Cor. 7.5].

3.4. Validity of (PS). We show that (PS) holds for $D_{\text{cris}}(V_p \operatorname{Br}(E(N)_{\bar{K}}))$ for p in a set of density 1. Let $Y_1(N)$ denote the Deligne–Mumford moduli stack of triples $(\mathcal{E} \to S, P, P')$ where $\mathcal{E} \to S$ is an elliptic curve over a $\mathbb{Z}[1/N]$ -scheme $S, P \in \mathcal{E}[N](S)$ a point of exact order N and $P' \in (\frac{\mathcal{E}[N]}{\langle P \rangle})(S) \cong \mu_N(S)$ a point of exact order N (cf. [6]). For $N \geq 5$ it is known to be a $\mathbb{Z}[1/N,\zeta_N]$ -scheme with geometrically connected fibres. Let $g: E_1(N) \to Y_1(N)$ be the universal elliptic curve and consider $V_N := \widetilde{H}^1(Y_1(N)_{\bar{K}}, R^1g_*\mathbb{Q}_p)(1)$. This makes sense for all $N \geq 1$ as the étale cohomology of a Deligne–Mumford stack; alternatively, if N|M and $N \geq 5$ we have a canonical injective map $V_N \to V_M$ induced the inclusion of congruence subgroups $\Gamma_1(M) \subset \Gamma_1(N)$, and for N < 5 we can define $V_N := V_{Nl} \times_{V_{Nlm}} V_{Nm}$ for coprime integers l, m such that Nl and Nm are at least 5. We first explain why (PS) holds for $D_{\text{cris}}(V_N)$ for p outside a set of primes of density zero, and then we shall see why this implies the same for $D_{\text{cris}}(V_p \operatorname{Br}(E(N)_{\bar{K}}))$.

First of all, recall the Eichler-Shimura isomorphism (cf. [5, 2.10])

$$V_N \otimes \mathbb{C} = S_3(\Gamma_1(N)) \oplus \overline{S_3(\Gamma_1(N))}$$

giving the Hodge decomposition of V_N in terms of weight 3 cusp forms for $\Gamma_1(N)$. The Hodge structure V_N is canonically polarised (cf. [5, 3.20]), and the polarisation induces the Petersson product on $S_3(\Gamma_1(N))$.

Now, for every proper divisor d of N there are pairs of maps $\pi_i: V_{N/d} \to V_N$ (i = 1, 2) defined just like for modular forms. (One map arises from the inclusion $\Gamma_1(N) \subset \Gamma_1(N/d)$ and the other from $\begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix} \Gamma_1(N) \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}^{-1} \subset \Gamma_1(N/d)$; cf. [13, VIII].) The image of these maps is a subspace V_N^{old} of V_N . The perfect pairing on V_N is non-degenerate on V_N^{old} and its orthogonal

complement $V_N^{\rm new}$ corresponds to newforms. This follows from the analogous fact for cusp forms (loc. cit.) via Hodge theory. Furthermore, $V_N^{\rm new}$ splits under the action of the Hecke algebra as a direct sum

$$V_N^{\text{new}} = \bigoplus_{i=1}^m V(f_i)$$

where f_1, \ldots, f_m are a choice of representatives of the $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -conjugacy classes of weight 3 normalised newforms for $\Gamma_1(N)$, and $V(f_i)(-1)$ is the p-adic representation of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ associated to f_i by Deligne [5]. The space $V(f_i)$ is free of rank 2 over $K_{f_i} \otimes \mathbb{Q}_p$, where K_{f_i} is the field of coefficients of f_i . Now, by induction on the number of prime divisors of N we may assume (PS) to hold for $D_{\operatorname{cris}}(V_N^{\operatorname{old}})$ for all p outside of a set of density zero, and it remains to consider $D_{\operatorname{cris}}(V_N^{\operatorname{new}}) = \bigoplus_{i=1}^m D_{\operatorname{cris}}(V(f_i))$.

Fix an integer $n \geq 1$. We claim that

$$D_{\text{cris}}(V(f_i))^{(\varphi^n-1)^2=0} = D_{\text{cris}}(V(f_i))^{\varphi^n=1}$$

for a set of primes p of density 1. It suffices to show this for $e \cdot V(f_i)$, where $e \in K_{f_i} \otimes \mathbb{Q}_p$ is a primitive idempotent; then $D_{\text{cris}}(e \cdot V(f_i))$ is a 2-dimensional vector space over the field $e \cdot K_{f_i} \otimes \mathbb{Q}_p$ with linear Frobenius φ . Moreover, one easily sees that it is enough to show this with n replaced by a multiple; in particular we can assume that n is even. Assume for a contradiction that the claim does not hold. Then the minimal polynomial of φ^n is $(t-1)^2$. If f_i has CM, then φ^2 is diagonalisable (cf. [16, p. 41]), a contradiction. So we may assume f_i does not have CM. As both eigenvalues of φ^n are equal to 1 and the trace of φ is equal to $\frac{a_p}{p}$ where a_p is the pth coefficient of f_i (cf. [17, 1.2.4(ii)]), we deduce that $a_p = (\zeta + \zeta')p$ for some nth roots of unity ζ, ζ' . By [19, Thm. 15] this can only happen for a set of primes of density zero (dependent on n). This proves the claim, which in turn implies the equality

(3.1)
$$D_{\text{cris}}(V_N)^{(\varphi^n - 1)^2 = 0} = D_{\text{cris}}(V_N)^{\varphi^n = 1}$$

for p in a set of density 1. We have nearly shown

Theorem 3.9. Let $\mathbb{Q}[\zeta_N] \subset L$ be a finite extension. Then for every place v of L outside of set of density zero, the partial semisimplicity conjecture holds for the reduction of $E(N) \otimes_{\mathbb{Z}[\zeta_N]} L$ at v.

Proof. Let n be a positive integer divisible by $[L(\zeta_{N^2}):\mathbb{Q}]$. There is a finite étale morphism $Y_1(N^2)\otimes\mathbb{Q}\to Y(N)\otimes\mathbb{Q}$ arising from the inclusion $\binom{N}{0}\binom{0}{1}\Gamma_1(N^2)\binom{N}{0}\binom{0}{1}^{-1}\subset\Gamma(N)$. Thus, $D_{\mathrm{cris}}(\widetilde{H}^1(Y(N)_{\bar{K}},R^1g_*\mathbb{Q}_p(1)))=D_{\mathrm{cris}}(V_p\operatorname{Br}(E(N)_{\bar{K}}))$ is contained in $D_{\mathrm{cris}}(V_{N^2})$. From (3.1) we deduce that $D_{\mathrm{cris}}(V_p\operatorname{Br}(E(N)_{\bar{K}}))^{(\varphi^n-1)^2=0}=D_{\mathrm{cris}}(V_p\operatorname{Br}(E(N)_{\bar{K}}))^{\varphi^n=1}$ for a set of primes p of density 1. This easily implies partial semisimplicity. \square

Corollary 3.10. The conclusions of Corollary 3.8 hold for all $p \equiv 1 \mod N$ outside of a set of density zero.

References

- P. BERTHELOT, "Dualité de Poincaré et formule de Künneth en cohomologie rigide", C. R. Math. Acad. Sci. Paris 325 (1997), no. 5, p. 493-498.
- [2] ——, "Finitude et pureté cohomologique en cohomologie rigide (avec un appendice par Aise Johan de Jong)", Invent. Math. 128 (1997), p. 329-377.
- [3] P. BERTHELOT, A. GROTHENDIECK & L. ILLUSIE (eds.), Théorie des intersections et théorème de Riemann-Roch (SGA 6), Lecture Notes in Mathematics, vol. 225, Springer, 1971.
- [4] P. COLMEZ & J.-M. FONTAINE, "Construction des représentations p-adiques semi-stables", Invent. Math. 140 (2000), p. 1-43.
- [5] P. Deligne, "Formes modulaires et représentations l-adiques", in Séminaire Bourbaki 1968/69, Lecture Notes in Mathematics, vol. 179, Springer, 1971.
- [6] P. Deligne & M. Rapoport, "Les schémas de modules de courbes elliptiques", in Modular functions of one variable II, Lecture Notes in Mathematics, vol. 349, Springer, 1973.
- [7] G. FALTINGS, "Hodge-Tate structures and modular forms", Math. Ann. 278 (1987), p. 133-149.
- [8] J.-M. FONTAINE, "Le corps des périodes p-adiques", in Périodes p-adiques, Astérisque, vol. 223, Société Mathématique de France, 1994, p. 59-111.
- [9] , "Représentations p-adiques semi-stables", in Périodes p-adiques, Astérisque, vol. 223, Société Mathématique de France, 1994, p. 113-184.
- [10] A. GROTHENDIECK, "Le groupe de Brauer", in Dix exposés sur la cohomologie des schémas, Advanced Studies in Pure Mathematics (Amsterdam), vol. 3, North-Holland, 1968.
- [11] L. ILLUSIE, "Complexe de de Rham-Witt et cohomologie cristalline", Ann. Sci. Éc. Norm. Supér. 12 (1979), p. 501-661.
- [12] S. L. KLEIMAN, "The Picard scheme", in Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, 2005.
- [13] S. LANG, Introduction to Modular Forms (With two appendices, by D. B. Zagier and by W. Feit), Grundlehren der Mathematischen Wissenschaften, vol. 222, Springer, 1976.
- [14] C. MAZZA, V. VOEVODSKY & C. WEIBEL, Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, 2006.
- [15] J. S. MILNE, "On a conjecture of Artin and Tate", Ann. Math. 102 (1975), p. 517-533.
- [16] K. A. RIBET, "Galois representations attached to eigenforms with Nebentypus", in Modular functions of one variable V, Lecture Notes in Mathematics, vol. 601, Springer, 1977.
- [17] A. J. SCHOLL, "Motives for modular forms", Invent. Math. 100 (1990), no. 2, p. 419-430.
- [18] M. Schütt & T. Shioda, "Elliptic Surfaces", in *Algebraic geometry in East Asia Seoul* 2008, Advanced Studies in Pure Mathematics, vol. 60, Mathematical Society of Japan, 2010, p. 51-160.
- [19] J.-P. SERRE, "Quelques applications du théorème de densité de Chebotarev", Publ. Math., Inst. Hautes Étud. Sci. 54 (1981), p. 123-201.
- [20] T. Shioda, "On elliptic modular surfaces", J. Math. Soc. Japan 24 (1972), p. 20-59.
- [21] ——, "Algebraic cycles on certain K3 surfaces in characteristic p", in Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), University of Tokyo Press, 1975, p. 357-364.

Rémi Lodh Springer 4 Crinan St. London N1 9XW, UK E-mail: remi.shankar@gmail.com