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Numerical verification of the
Cohen—Lenstra—Martinet heuristics

and of Greenberg’s p-rationality conjecture

par RAzvAN BARBULESCU et JisSHNU RAY

RESUME. Dans cet article, nous entreprenons une expérimentation numérique
pour donner des arguments en faveur de la conjecture de p-rationalité de
Greenberg. Nous donnons une famille de corps biquadratiques p-rationnels
et trouvons de nouveaux exemples numériques de corps p-rationnels multi-
quadratiques. Dans le cas des corps multiquadratiques et multicubiques, on
montre que la conjecture de Greenberg est une conséquence de I'heuristique
de Cohen—Lenstra—Martinet et d’'une conjecture de Hofmann et Zhang sur
le régulateur p-adique. Nous apportons de nouveaux résultats numériques en
faveur de ces conjectures. Nous comparons les outils algorithmiques existants
et proposons certaines améliorations.

ABSTRACT. In this paper we make a series of numerical experiments to sup-
port Greenberg’s p-rationality conjecture, we present a family of p-rational bi-
quadratic fields and we find new examples of p-rational multiquadratic fields.
In the case of multiquadratic and multicubic fields we show that the con-
jecture is a consequence of the Cohen—Lenstra—Martinet heuristic and of the
conjecture of Hofmann and Zhang on the p-adic regulator, and we bring new
numerical data to support the extensions of these conjectures. We compare
the known algorithmic tools and propose some improvements.

1. Introduction

Let K be a number field, S, the set of prime ideals of K above p, K, the
compositum of all finite p-extensions of K which are unramified outside .S),.
We call 7, the torsion subgroup of the abelianization of Gal(Kg,/K). The
study of 7, is a major question in Iwasawa theory. If K satisfies Leopoldt’s
conjecture at p and 7, ~ 0 we say that K is p-rational. A. Movahhedi and
T. Nguyen Quang Do, in [21], discussed this notion of p-rational fields and
showed that if K is p-rational, then Gal(Ks,/K) is a free pro-p group (see
also the PhD thesis of Movahhedi [19, Chap. II]). Movahhedi also proved
an equivalent characterization of p-rational fields depending on the class
number of K and the unit groups of its p-adic completions (cf. [19]). We
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recommend Gras’ book [8] for a presentation of numerous results in the
topic of p-rational fields.

The existence of p-rational fields allows us to obtain algorithms and
proofs. For example, Schirokauer [23] proposed an algorithm to compute
discrete logarithms in the field of p elements which uses a p-rational number
field. A more recent application due to Greenberg [10, Prop. 6.7] is the
following. If there exists a totally complex p-rational number field K such
that Gal(K/Q) ~ (Z/2Z)! for some t, then for all integers n such that
4 < n < 271 — 3 there exists an explicit continuous representation with
open image

pnp : Gal(Q/Q) — GL(n,Zp).
Note that for n = 2 one has such a construction using elliptic curves. Yet,
the only other results before Greenberg’s construction correspond to n = 3
(due to Hamblen and Upton according to [10]).

Greenberg conjectured that for any pair (p,t) there exists a p-rational
number field K such that Gal(K/Q) ~ (Z/27)!. Let us consider the gener-
alization of this conjecture to any abelian field.

Problem 1.1. Given a finite abelian group G and a prime p, decide if the
following statements hold: there exists one (resp. infinitely many) p-rational
number field(s) of Galois group G; in this case we say that Greenberg’s
conjecture (resp. the infinite version of Greenberg’s conjecture) holds for G
and p or simply that GC(G, p) (resp. GCo (G, p)) holds.

The scope of this article is to investigate this problem. In Section 2, we
propose a family of p-rational biquadratic fields and prove GC((Z/2Z)t, p)
for all primes p € [5,97] and t € [7,11] depending on p. In Section 3 we
prove that GCy ((Z/qZ)!,p) for ¢ = 2 and 3 and for any t > 1 and p > 5
are consequences of the Cohen—Lenstra—Martinet heuristic and of a recent
conjecture of Hofmann and Zhang. Finally, in Section 4 we present a com-
parison and modifications of the algorithms used to obtain the experimental
data.

Acknowledgments. We are very grateful to Ralph Greenberg who en-
couraged us to do this study. We also thank the referees for very careful
reading of our manuscript and for correcting several errors and inaccuracies
in the previous versions of this paper.

2. Some examples of p-rational fields for Greenberg’s conjecture

Let ng, hx, Dg and Ex be the degree, the class number, the discrim-
inant and the unit group of K. If K is abelian, we denote its conductor
by CK -

The first objective of this article is to present an infinite family of p-
rational fields and to find examples of multiquadratic p-rational fields that
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are larger than the results in [10]. For this we use a characterization of
p-rational fields as follows.
Proposition 2.1 ([19, Prop. II.1]). We use the notations given above and
call (r1,r2) the signature of K. The following statements are equivalent:
(1) K is p-rational (i.e. K satisfies Leopoldt’s conjecture at p and 7, is
trivial) or equivalently Gal(Kg, /K)* ~ Z.t"2;
(2) Gal(Ks,/K) is a free pro-p group with 73 + 1 generators;
(3) Gal(Ks,/K) is a free pro-p group.
By [20], the above conditions on p-rationality are also equivalent to
aOp = a? for some fractional ideal a
x = (K™)P,
and o € (K,°)F for all p € S, }
(b) and the map p(K)p — Ilpes, #(Kyp)p is an isomorphism,
where K, is the completion of K at a prime ideal p € S, and pu(K),
is the set of p-th roots of unity in K.

(4) (a) {aEKX’

We note that the condition (4b) is automatically satisfied for primes
p > +1 as [Qp((p) : Qp] = p— 1 and therefore no p-adic completion of K
can contain p-th roots of unity.

We call p-primary any unit of K which is not a p-th power in K but it’s
a p-th power in all the p-adic completions of K. Assume that K satisfies
Leopoldt’s conjecture (e.g. Gal(K/Q) is abelian) and that p is such that the
map p(K)p = [lyes, #(Kp)p is an isomorphism (e.g. p > ng +1). Then we
have a simple criterion for p-rationality: if p t hx and K has no p-primary
units then K is p-rational.

In particular, for all primes p > 5, all imaginary quadratic fields K such
that p t hi are p-rational. Hence GC(Z/2Z, p) is a consequence of a result
due to Hartung.

Proposition 2.2 ([12]). For all odd primes p there exist infinitely many
square-free integers D < 0 such that hQ( Nk D # 0 (mod p). Therefore,
there exist infinitely many p-rational imaginary quadratic fields. As a con-
sequence, GCo(Z/2Z, p) holds.

The existence of p-primary units is easily tested using p-adic logarithms
([26, Sec. 5.1]). Let K be a number field (not necessarily abelian) and p a
prime which is unramified in K and such that K has no p-th roots of unity.
In the following O, = Z,®Ok and we set ), := lem({Norm(p)—1 : p € S,})
and K), := {z € K*: V p € Sp,calp(x) = 0}. Since x — 2 injects K,
into {z € C,: Vp € Sp,calp(z — 1) > 1}, we can extend log, to K, by
log,(7) := é log,(z°7).

Note that an element of O is a p-th power in K, for all p € S, if and
only if log,(z) € p*O,. Hence, a unit € € K\K? is p-primary if and only if
log,(¢) =0 (mod p*Op).
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Assume that K is totally real. If U is a set of ng — 1 units, we denote
by R,(U) the p-adic regulator ([26, Sec. 5.5] and [13, Sec. 2.1]); if U is
a system of fundamental units we simply write R ,. We call normalized
p-adic regulator the quotient R’Km = Ry p/p"¥ —! and note that if K has
p-primary units then Ry € pO,.

If on the contrary, p is ramified at K we don’t have necessarily that
R;, € O, and we don’t have an equivalence for existence of p-primary units.
However, when p-primary units are present it remains true that Calp(R;) >
L. In the sequel we write “p | R,” for “cal,(R) > 17 in the both cases when
p is ramified and unramified in K.

In the case of multiquadratic fields we shall need a result of Greenberg;:

Lemma 2.3 ([10, Prop. 3.6]). Let K be an abelian extension of Q and p
is a prime which does not divide the degree [K : Q|. Then K is p-rational
if and only if all its cyclic subfields are p-rational.

A study of the p-adic logarithm of the fundamental unit allows to con-
struct a p-rational biquadratic number field for a fixed prime p, i.e. to show
that GC(Z/2Z x Z/2Z,p) holds for any p.

Theorem 2.4. For any prime p, the field K = Q(i/p—1,iy/p+1) is
p-rational.

Proof. Let us call k; = Q(v/p? — 1), ko = Q(in/p — 1) and k3 = Q(i/p + 1)
the three quadratic subfields of K. We treat first the case where p > 5
using the p-rationality criterion presented above: we show that p 1 hy,
(Step 1) and that the fundamental unit of k; is not p-primary (Step 2), so
Q(+/p? — 1) is p-rational. Then we show that max(hy,, hi,) < p (Step 3),
which shows that ko and ks are p-rational. This completes the proof for
p > b using Lemma 2.3. The cases p = 2 and p = 3 are treated at the end

(Step 4).

Proof of Step 1. We distinguish two cases depending whether p is of the
form %a2 + 1 for some a € Z.

The case when p # %aQ +1 for any a € Z. Let us show that ¢ = p +
Vp? — 1 is a fundamental unit. Note first that Dy, = 4Q or @) where Q is
the square free part of (p? —1)/4, so Dy, is a positive divisor of p? — 1. Also
note that the minimal polynomial of € is . = 2> — 2px + 1. If ¢ is a square
in k1 then x* — 2px? + 1 is divisible in Q[z] by a polynomial of the form
Bz = 22 —2ax+1 with a € Z, which is forbidden by the assumption that p
is not of the form %aQ +1. As areal field, k; has no roots of unity other than
+1 so there exists an odd integer n such that ¢ = efj where €¢ is the funda-
mental unit greater than 1. Note that v := —(e8+¢,™)/(c0+¢; ') belongs to
Zleo] and therefore to O, . Since v = Tr(e)/ Tr(eo) (Tr denotes the trace),
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it belongs to Q and therefore + is an integer, so Tr(eg) € {£2p, +p, £1, +2}.
Hence the minimal polynomial of g is equal to 2 + 2pxr + 1, 22 + pr + 1,
224+ 2x 4+ 1 or 22 + z + 1. We rule out 22 & 2z + 1 because they are not
irreducible and we rule out the cases 2 + 2z — 1 and 22 + 2 & 1 because
their roots belong to Q(v/2), Q(v/3) or Q(v/5), which can only belong to k;
if p2 —1 = %aQ, p?> —1 = 3a? or p> — 1 = 5a®. The first case is forbidden by
our assumption on p and the other two are forbidden because the systems
of equations {p+1=3b% and pF 1 =c?} and {p£+1=>5b? and pF 1 = %}
have no solutions modulo 4 for odd p and hence no solutions in Z. Among
the remaining polynomials, the only irreducible polynomial whose discrim-
inant divides p? — 1 (and satisfying ¢ = &}}) is ., so g = ¢ (i.e. n = 1) or
equivalently p + /p% — 1 is a fundamental unit.

By a result of Louboutin [17, Thm. 1] we have the following effective
bound
elog(Dy,)

hi, < /D
ky = ey 4loge
Since Dy, < p? — 1, we conclude that hi, < p and hence p{ hy, .

The case when p = %az + 1 with a € Z. Let d be the square free part of
p? —1and ¢ := a + bw with a,b € Z be a fundamental unit of Q(y/p? — 1),
where w = V/d or 1+T\/& depending on the residue of d mod 4. Without loss
of generality we can assume that @ > 0 and |¢| > 1. Since the conjugate of
g, a — bw is also a fundamental unit we have |a + bw| > |a — bw|, so b > 1.
Hence we have

e>1+1-w>1+min(Vd, ) >1++3.

14+d
2

Note as before that Dy, = 4Q or @ where Q is the free part of p* — 1.
Since p = %a2 +1, Q is a divisor of (p+1)/2, so Dy, < 2(p+ 1). We apply
Louboutin’s bound once again and obtain
elog(v/2(p +1))

4loge

hi, </2(p+1)
because p > 7, s0 p 1 hg, .

Proof of Step 2. To test if € is p-primary we test if P’ -1_1=0 (mod p*0,).
Indeed, log,(e) = ]ﬁlogp(epzfl) =1-—¢"""! (mod p*0,). Then modulo

p?Z[\/p*> — 1 we have

1= (- )P 1 p(p? — 1) 2 — 1 (P*Z]\/p* — 1))
=4py/p2 -1 (pQZ[\/ p? —1]).
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Since p?Z[\/p? — 1] C p*Ok, C p*O,, this shows that the p-adic logarithm
of ¢ is not a multiple of p?, so € is not p-primary.

Proof of Step 3. Recall Hua’s bound for the class numbers of imaginary
quadratic fields k& (Remark 4. in [16], where a sharper inegality is proven
in Theorem 3.):

V2% log(/ i) + 1),

where wy, is the number of roots of unity in k; note that wy > 2. Since for
i = 2,3, Dy, < 4(p+1) and for all z > 5 it holds £ /4(z + 1)(log(v4z + 1)+
1) < z, we conclude that max(hy,, hi,) < p.

Finally, note that ko and k3 are imaginary, so they have no p-primary
units. In the case where p > 5, the p-rationality criterion above applies and
we conclude that ko and ks are p-rational. Hence, all the quadratic subfields
of K are p-rational and so does K.

hy, <

Proof of Step 4. Let us consider the case of p = 2 and p = 3. Note that
Sy associated to Q(v/3) corresponds to a singleton K, and u(Q(v/3))s =
{#1} = u(Q(V/3)2)2. Also note that S3 associated to Q(v/2) is an inert
ideal and for the corresponding completion K, has no 3-rd roots of unity.
In both cases, the condition (4b) in Proposition 2.1 is satisfied and one
can apply the p-rationality criterion. The unit € := p — \/p? — 1 is not a
p-th power locally, by the same argument as above. Since ¢ is a power of
the fundamental unit, Q(1/p? — 1) has no p-primary units. Since the class
number of Q(v/2) and Q(+/3) is 1 we obtain that k; is p-rational.

As the class numbers of Q(v/—1), Q(v/—2) and Q(v/-3) is 1, the Exam-
ple (c) of [19, Chap. II] applies : assuming the class number is not divisible
by p, the imaginary field Q(v/—d) is 2-rational if and only if d # 7 (mod 8)
and it is 3-rational if and only if d = 3 or d # 3 (mod 9). Indeed, for p = 2
the squarefree parts of p — 1 and p + 1 are 1 and 3 which are not congrent
to 7 mod 8. For p = 3 the squarefree parts of p — 1 and p + 1 are 2 and
1 which are not congruent to 3 modulo 9. Hence, ks and k3 are p-rational
and we conclude that K is p-rational. O

2.1. Some numerical examples of p-rational multiquadratic fields.
In Table 2.1 we give examples of complex p-rational fields K of Galois group
G = (Z/2Z)! for all primes p € [5,97] and greater values of ¢ than those
found by Greenberg and Pollack [10, Sec. 4.2]. We emphasize the fact that
every example proves the existence of open continuous representations of
Gal(Q/Q) in GL(n,Z,) by including the values of n corresponding to each
field (cf. [10, Prop. 6.7]).

The fields Q(v/d1,...,/d;) in the examples were found by searching
minimal values of d; for each value of i: we took d; equal to the smallest
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TABLE 2.1. Examples of p-rational complex number fields
of the form K = Q(v/di,...,\/d;) such that Gal(K) =~
(Z/27)" and their consequences on the existence of contin-
uous representations of Gal(Q/Q) with open image.

p t dy,...,d; open image of Gal(Q/Q) in
5 7 2311,47,97,4691,-178290313 Vn e [4,61], GL(n,Zs)

7T 7 25,11,17,41,619,-816371, vV n e [4,61], GL(n,Z7)

1 8 2,3,5,7,37,101,5501,-1193167 vV n € [4,125], GL(n,Z11)
13 8 3,5,7,11,19,73,1097,-85279 vV n € [4,125], GL(n,Z13)
17 8 2,3,5,11,13,37,277,-203 YV n € [4,125], GL(n, Z17)
19 9 2,3,57,29,31,59,12461, 7663849 Y n € [4,253], GL(n, Zo)
23 9 2.35.11,13,19,59,2803,-194377 YV n € [4,253], GL(n, Z3)
29 9 2.35,7,13,17,59,293 -11 YV n € [4,253], GL(n, Zag)
31 9 3,5,7,11,13,17,53,326,-8137 YV n € [4,253], GL(n, Z31)
37 9 2.35.19,23.31,43,569,-523 YV n € [4,253], GL(n, Zs7)
41 9 235,11,13,17,19,241 -1 YV n € [4,253], GL(n, Z4;)
43 10 2,3,5,13,17,20,31,127,511,-2465249 ¥ n € [4,509], GL(n, Z43)
A7 10 2,3,5,7,11,13,17,113,349 -1777 YV n € [4,509], GL(n, Zs7)
53 10 2,3,5,7,11,13,17,73,181,-1213 YV n € [4,509], GL(n, Zs3)
50 10 2,3,5,11,13,17,31,257,1392,-185401 ¥ n € [4,509], GL(n, Zso)
61 10 2,3,5,7,13,17,20,83,137, -24383 V¥ n € [4,509], GL(n, Zg1)
67 11 2,3,5,7,11,13,17,31,47,5011,-2131 ¥V n € [4,1023], GL(n, Zg7)
71 10 2,3,5,11,13,17,19,59, 79,-943 Y n € [4,509], GL(n, Z7)
73 10 2,3,5,7,13,17,23,37,61,-1 YV n € [4,509], GL(n, Z73)
79 10 2,3,5,7,11,23,29,103,107,-1 YV n € [4,509], GL(n, Z7)
83 10 2,3,5,7,11,13,17,43,97,-1 YV n € [4,509], GL(n, Zs3)
89 11 2,3,5,7,11,23,31,41,97,401,-425791 ¥ n € [4,1023], GL(n, Zsy)
97 11 2,3,5,7,11,13,19,23,43,73 -1 ¥ n € [4,1023], GL(n, Zo7)

positive non-square non divisible by p such that p { hQ( V) and its fun-
damental unit is not p-primary. For ¢ = 2,3...,¢ — 1 we computed the
smallest d; > d;—1 + 1 relatively prime to p H;;ll d; such that all the 20— 1
quadratic subfields of Q(1/dy, . .., v/d;) have class numbers non divisible by
p and fundamental units which are not p-primary. Finally, d; < 0 is the
negative integer of smallest absolute value such that ged(dy, pr;% di)=1
and the 2~! imaginary quadratic subfields of Q(v/d1,...,v/d;) have class
numbers non divisible by p (the corresponding scripts are available in the
online complement [2, search-example.sage]).

Note that the difference d; — d;_1 increases rapidly so that the cost of
finding p-rational fields with larger ¢ increases in accordance. This raises
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the question of the existence of a natural density of p-rational number fields
having a given Galois group.

3. The Cohen—Lenstra—Martinet heuristic and the conjectured
density of p-rational fields

Cohen and Lenstra [5] and Cohen and Martinet [6] conjectured that there
exists a natural density of number fields whose class number is divisible by a
prime p among the set of number fields of given Galois group and signature.
We bring new numeric data in favor of the conjecture in Section 3.1. We
recall and extend a conjecture of Hofmann and Zhang about the valuation of
the p-adic regulator (Section 3.2) and then we prove that these conjectures
imply Greenberg’s p-rationality conjecture (Section 3.3).

3.1. New numerical data to verify the Cohen—Lenstra—Martinet
heuristics. The Cohen—Lenstra—Martinet conjecture on cyclic cubic fields
[5, Conj. C14], [6, Sec. 2, Ex. 2(b)] was initially supported by the data
computed on the 2536 cyclic cubic fields of conductor less than 16000,
i.e., discriminant less than 2.56 - 109, (cf. [6]). Malle [18] noted that the
aforementioned data fit equally well the value and the double of the value
predicted by the Cohen—Lenstra—Martinet conjectures. This ambiguity is
solved if the computations are pushed up to larger conductors.

We used PARI/GP [24] to test the Cohen—Lenstra-Martinet heuristic on
the 1585249 cyclic cubic fields of conductor less than 107, e.g., discriminant
less than 10'. The results are summarized in Table 3.1 and the complete
data are available in the online complement [2, table4.txt.gz]. The data in
Table 3.1 show that the relative error between the computed density and
the one predicted by Conjecture 3.1 is between 0.2% and 78.3%.

If Gal(K) ~ (Z/qZ)! for some prime g # p, then Kuroda’s formula [14,
Eq. (17)] states that hx = ¢% 1k, subfield of degree ¢ tk; for some a € N. In
the Cohen—Lenstra—Martinet philosophy, the class numbers of the subfields
in Kuroda’s formula behave “independently”, e.g. compare the values pre-
dicted for the Galois group Z/27 x 7Z,/27 to the cube of that of Z/27 as
well as the value for Z/37Z x Z/3Z to the 4-th power of that for Z/3Z. This
allows us to extend Conjectures C-7 and C-14 in [5] as follows.

Conjecture 3.1. Set (p)oo == [I;>1(1 —p ") and (p)1 := (1 —p~).
(1) If K is a real field such that Gal(K/Q) ~ (Z/2Z)! for some t and

p is an odd prime, then

Prod(pthk) =
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TABLE 3.1. Comparison, for primes p between 5 and 29, be-
tween the proportion of cyclic cubic fields of conductor less
than X = 16000 (resp. 107) whose class number is divisible
by p, denoted by Prod(p | hi : Dx < X?), and the density
in Conjecture C-14 in [5].

. Prod(p|hx,D g <X?)—Prod(p|h
, Conj. C-14 [5] Prod(p | hy, : Dx < X2) iy g A Lol B
Prod(p | hg) | X =1.6-10° X =107 X=16-103| X =107
5] 1.67-107° 5055 a2 A~ 1.91-107% | —5.4% 15.1%
7 4.69-1072 S 2~ 4551072 | —26.9% 3.0%
11| 6.89-107° 0 sl ~8.01-107° 100% 16.3%
13| 1.28-1072 0 2~ 1281072 | —29.7% 0.2%
17| 1.20-107° 0 s A~ 1451077 100% 20.8%
19| 584-1073 o= 6 s~ 9.41-1073 8.1% 1.6%
23| 3.58-107° 0 Tsaazis ~ 5.67-1076 100% 58.6%
29| 1.41-107° 0 Tsgamg & 2.52- 1076 100% 78.3%

(2) If Gal(K/Q) ~ (Z/3Z)" for some t and p > 5 is a prime then

3t—1

Prod(p{ hk) = ( 2t1 , ifp=1 (mod 3);

(&2)‘? ',  difp=2 (mod 3).

()2
()3
%)

In the case of Galois group Z/3Z x 7. /37 we support Conjecture 3.1 with
numerical data which are summarized in Table 3.2 are available online at |2,
tableb.txt.gz|.

3.2. Numerical verification of a conjecture on the p-adic regula-
tor. In a heuristic, Schirokauer [23, p. 415] obtained that the density of
number fields which contain p-primary units is O(%). The same heuristic

implies that the density of fields such that p divides R/K,p is also O(%).

Hofmann and Zhang [13, Conj. 1.1] go beyond the O(%) upper bound and
make a conjecture on the precise density of cyclic cubic fields such that
p | R, the density is % — z% if p=1 (mod 3) and 1% if p=2 (mod 3).
In the same philosophy, the normalized p-adic regulator of a real quadratic
field K is heuristically considered to be random element of Z;, and therefore

the probability that p divides Rj , is 1/p.
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TABLE 3.2. Statistics on the density of fields of Galois group
7./37 x 7./ 37 whose class number is divisible by p for primes
p between 5 and 19.

» theorgtic stat. density relative
density conductor < 10° error
0.00334 | 523 ~0.0066458  31%
0.17481 | 2812 ~(.11746 33%

11| 0.00028 | 552o=5 ~ 0.00013 54%

13| 0.02316 | 553225 ~0.03160 36%
17 | 0.000048 | 53z ~ 0.0000197  59%

19| 0.02315 | 2236~ 0.01737 25%

If K is a number field such that Gal(K) ~ (Z/qZ)* for a prime ¢ and an
integer ¢ and if p # ¢ is a prime, then Kuroda [14, Eq. (18)] showed that
Rk = ¢° [ 1%, subfield of degree ¢ Fok; for some 3 € N where Rx and respectively
Ry, denote the regulator of K and of the fields k;, respectively. Their proof
translates in a verbatim manner to the p-adic regulators and the normalized
p-adic regulators.

We make the heuristic that the p-adic regulators of the cyclic subfields
of a field of Galois group (Z/qZ)! behave “independently” and extend Con-
jecture 1.1 in [13].

Conjecture 3.2. Let ¢ = 2 or 3, p > q+ 1 a prime and t an integer.
The probabilities below are among the field K where p is unramified. Then
the density of totally real number fields K such that Gal(K) = (Z/qZ) for
which the normalized p-adic requlator is divisible by p s

(1) Prod(p divides Rj¢, : K real, Gal(K)~ (Z/2Z)t) = 1—(1—%)?_1.

t_1

(2) Prod(p divides Rj,, : Gal(K) ~ (Z/3Z)t) =1-(1 —73)3T, where

2_ 1L ifp=1 (mod 3)
73—{”1 P
P2

, ifp=1 (mod 3)
Ifq=3,p=1 (mod 3), t =1 and the probability concerns the set of fields
K which are ramified at p, then P = %. Qverall, if ¢ = 2 or 3, with no
condition on K, P < sz
We numerically verified the Conjecture 3.2 as summarized in Table 3.3;

the programme can be downloaded from the online complement [2, ta-
ble6.txt.gz].



Greenberg’s p-rationality conjecture 169

TABLE 3.3. Numerical verification of Conjecture 3.2 on the
set of fields K such that Gal(K) = (Z/2Z)!, t = 1,2,3, and
conductor c¢x < 108 for ¢t = 1 and c¢x < 150000 for t = 2, 3.

6all5) | » | “iensiy | density | comor
L9057 ~0.20 | 0.20 1%
227 | 7 | B2~ 014 014 | <1%
11| F825 ~0.09| 009 | <1%
10 ~ 042 | 049 17%
(Z/2z)* | 7 | 30916 ~0.32 | 0.37 14%
11| B% ~023 | 0.25 7%
EL~067 | 0.79 16%
(z/2z)* | 7 | 291 ~0.54 0.66 15%
11| 231 ~0.41 0.49 17%

3.3. Greenberg’s conjecture as a consequence of previous con-
jectures. The Cohen—Lenstra—Martinet heuristic received the attention
of many authors and is supported by strong numerical data. Similarly, the
Hofmann—Zhang conjecture is backed by the numerical experiments in their
paper. In this light, it is interesting to note that these two conjectures imply
Greenberg’s p-rationality conjecture.

Theorem 3.3. Let t be an integer, ¢ = 2 or 3 and p a prime such that
D> 4%. Under Conjecture 3.2 and Conjecture 3.1, there exist infinitely
many p-rational number fields of Galois group (Z/qZ)!, or equivalently
GCux((Z/22)t,p) and GCw((Z/37Z)t, p) hold.

Proof. Let K(D) denote the set of totally real number fields of Galois group
(Z/qZ)! of conductor less than D. Then we have

lim su #{K € ’C(D> non p-rational)
D—>oop #]C(D)

< limsup #{K € K(D) :p| hx R ,}
T Do #K(D)
< Prod(p | hi) + Prod(p | Rk ).

Under Conjecture 3.2 we have

Prod(p | Rk,) = [ Prod(p|Ri,),
k cyclic subfield
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which is upper bounded by %7’ where
P :=Prod(p | Ry, : kis real and Gal(k) = Z/qZ).
Since in each case of the conjecture P < %, we have

t
¢ —1 2
Prod(p | R < — 0 -
( ’ K,p) q _ 1 p
Under Conjecture 3.1 we have

Prod(p | hix) = H Prod(p | hi),
k cyclic subfield

which is upper bounded by %D where

D :=Prod(p | h : k is real and Gal(k) =Z/qZ).
In each case of the conjecture we have D < 1—[[p2o(1— #) which is upper

bounded by [[7eo(>-52, I%) —-1=3% % where n(j) is the number of
partitions of j as sums of distinct integers larger than 1. Since n(j) < 27

we obtain that D < Z;’iz(%)j < 1%. Putting all together we obtain

#{K € K(D) non p-rational) < ¢-12 8

lim sup < + —
D00 #K (D) q—1 (p p2)
t
—1
ce-1d 0
qg—1p

To conclude this section, we note that Pitoun and Varescon [22, Sec. 5]
brought numerical data on the density of p-rational quadratic fields.

4. Algorithmic tools

Let us make a summary of the algorithms used in the computations of
the previous section. The main algorithmic tool in the study of p-rational
fields is the algorithm of Pitoun and Varescon [22] to test p-rationality.
Their algorithm is not restricted to abelian fields and allows to easily ob-
tain examples of non-abelian p-rational fields; in Table 4.1 we list quartic
number fields obtained with our implementation of the algorithm [2]. Since
it requires to compute the ray class group, this algorithm is at least as
costly as computing the class number. We discuss the complexity of class
number algorithms below and conclude that they are computationally ex-
pensive. Therefore, in this section we present algorithms which apply to a
partial set of number fields but could be much faster in practice. Hence we
develop a strategy to decide whether the number fields in a given list are
p-rational by making as little as possible use of the complete p-rationality
test of Pitoun and Varescon.
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TABLE 4.1. Examples of p-rational quartic fiels for each
possible Galois group and each prime p < 100.

Galois group | V p < 100, p — rational non 7-rational
7./AZ st o1 |2t —2323 — 622+ 232+ 1
Vi zt— 2?2+ 1 z + 1022 + 1
Dy xt—3 2t —6
Ay ot + 8z + 12 at — 2% — 1622 — 7o + 27
Si 441 x4+ 352 + 1

4.1. Enumerating all the groups of conductor up to X and

Gal(K) = (Z/3Z)! for some t. Density computations require to list

all the number fields up to isomorphism having a given abelian Galois

group. Thanks to the conductor-discriminant formula [26, Thm. 3.11], for

any prime ¢ and integer ¢, if Gal(K) ~ (Z/qZ)! then the conductor of K is
1

CKg = D;gil)qt_l .

For instance, to enumerate the number fields of Galois group Z/3ZxZ/3Z
of discriminant less than X, we consider the fields Q(¢.) for each ¢ < X 1/6
such that ¢ is product of 3 with exponent 0 or 2 and of a set of distinct
primes congruent to 1 modulo 3 with exponent 1. For each subgroup H of
(Z/cZ)* such that (Z/cZ)*/H ~ 7./37 x Z/3Z, we compute the fixed field
of H.

Cyclic cubic fields of conductor ¢ (and discriminant ¢?) are obtained
by direct formulae in terms of the integer solutions of the equation u? +
27v% = 4c (cf [4, Thm. 6.4.6]). Note that one cannot use the classical
parametrization P,(r) = 23 — ax? — (a + 3)x — 1 of the fields of Galois
group Z/3Z as small conductors can correspond to fields Q[z]/P,(z) of
large parameters a, e.g. the parameters corresponding to the conductors
c1 = 6181 and co = 4971871639 are actually nearly equal: a; = 70509 and
az = 70510.

4.2. Testing if p divides hg. In the context of the Cohen—Lenstra—
Martinet heuristic, one has to test if hyx is divisible by p. It is remarkable
that for fields of fixed given degree there is no algorithm to compute class
numbers faster than computing the value of hx. Indeed, Buchmann’s al-
gorithm [4, Alg. 6.5.9] to compute hx has an unconditional complexity
O(y/Dg) and a conjectural complexity L(Dg)¢ for a constant ¢, where
L(X) := exp(y/log X+/loglog X).

A second approach due to Fieker and Zhang [7] tests the divisibility
),

of hg by p using the p-adic class number formula in time O(D
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This is O(v/Dx) for cyclic cubic fields, which is equal to the proven upper
bound on the complexity of Buchmann’s algorithm, but slower than the
conjectural complexity.

A third approach is that of Marie-Nicole Gras [9], which was improved
in [15] and [11, Eq. (5.1)], and was used to compute the p-class group in [1].
Based on a result of Hasse, these algorithms compute cyclotomic units
(see [26, Chap. 8]) and have a complexity O(ck) (according to Schwarz’s
thesis, see [11]). Due to the conductor-discriminant formula, for cyclic cubic
fields this is once again O(v/Dy ). Hence, the cyclotomic unit methods have
a complexity which is exponential in log D and therefore larger than the
conjectural complexity of Buchmann’s algorithm. Obviously, the cost of
computations is at least greater than the cost of the binary size of the
cyclotomic units, which we compute in the following result.

Lemma 4.1. Let K belong to an infinite family of cyclic cubic fields. Let
o #id be an automorphism and u a unit such that {u,o(u)} generates the
group of cyclotomic units C' of norm 1. We identify u with one of its two
embeddings in R. Then we have

14001
max(|log [u]], [log |o(uw)||) = D",

where o(1) is a function which tends to zero when Dy tends to infinity.

Proof. Let € be a generator of E which is the group of units of K of norm 1
seen as a Z[(3]-module (cf. [9, Sec. 2]). Since Z[(3] is a P.I.D., there exists
w € Z[(3] such that u = ¢ and therefore [E : C] = Normgc,)/q(w)
(see Proposition 1 and the paragraph following it of [9]). Here C is the
group of cyclotomic units of K of norm 1. By Hasse’s theorem (see [9]),
[E:C] = hg, so

logful  loglo(u)| | _
log | ()| log|o?(u)] | ~ 1N
B . _ 1/240(1)
y the Brauer-Siegel theorem [4, Thm. 4.9.15] we have hx R = D}/ .
The determinant above equals —(a? 4 ab + b?) where a = log|u| and b =
log |o(w)]. Since 2 max(|al, [b])? < a® 4+ ab+ b? < 3max(|al, |b])?, we obtain
the desired result.

Note that in [4, Sec. 5.8.3], units are represented in a shorter manner than
llog |ul], |log |o(w)||. However it is not known how to represent cyclotomic
units as a product of a number of factors which is polynomial in log Dy
Also, note that there exist effective lower bounds on the residues at 1 of the
L functions (see for example Louboutin’s works), which replace the Brauer—
Siegel theorem and imply effective lower bounds on |log |u|| + [log o|(u)]|.
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4.3. Testing the existence of p-primary units. Schirokauer [23] pro-
posed a fast method to test if K contains p-primary units. In this section
p is unramified in K. With K, and O, as in page 3, let A\ : Ox " K, —
O,/pOp ~ Ok /pOk, T = log,(z)/p mod pOp. Given a basis (w;)1<i<ny of
an order of O, one can write A = >, \;w; where \; are maps into F,; we
call them Schirokauer maps. Note that if f is a monic polynomial and « is
a root of f in its number field, then Z[«] is an order of Ok-.

Lemma 4.2. Let p be an odd unramified prime in the number field K.
Let r be the unit rank of K and let U = {uq,...,u,} be a set of units.
Assume that \i,..., )\, are Schirokauer maps corresponding to a basis of
the mazimal order. We set M(U) := (Ai(uj))i,;-

(1) If U is a system of fundamental units then K has no p-primary
units if and only if rank M(U) = r.

(2) If U is an arbitrary set of r units and rank M (U) = r then K has
no p-primary units.

Proof. (1). Since p is odd and unramified, an element z € K is a p-th
power if and only if log, (x) € p*O,. This is equivalent to A(x) = 0 and also
to Ai(z) = ... = Ay (x) = 0. The existence of p-primary units is hence
equivalent to ker M (U) # 0 and to rank M (U) # r.

(2). If £ = (gj)j=1,...r is a system of fundamental units and Q is the ma-
trix such that, for each i, u; = [[j e?i’j, then M(U) = Q- M(E) so
rank M (&) > rank M (U) =r. O

4.3.1. Fast computation of a unit in cyclic cubic fields. The re-
maining question is that of computing a system of generators for Fi / Ef(.
In the case of cyclic cubic fields the best known method is Buchmann’s
algorithm [4, Alg. 6.5.9], which has a high cost as discussed in the previous
section. We propose a new algorithm to compute units which, although
does not work in all the cases, allows us to reduce the total time of the
computations when tackling millions of fields.

Lemma 4.3. Let K be a number field such that Gal(K) ~ Z/qZ for an
odd prime q. Let £ be a prime factor of the conductor cx of K such that
L #£ q. Then the following assertions hold:

(1) there exists an ideal | of K such that 19 = (O
(2) if U is principal, for any generator w € O of | and any generator

o of Gal(K/Q), 2) s g unit.

w
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Proof. (1). Since ¢ is ramified in the Galois field K, we have (Og = [° for
some divisor e # 1 of deg K. But deg K = ¢ is prime, so £ = [4.

(2). The ideal generated by o) g o()I71. Since o € Gal(K), o(l) is a

prime ideal above ¢. But ¢ is totoélly ramified in K, so o(l) = [ and therefore

ow) is a unit. O
w

Algorithm 4.4 is a direct consequence of this lemma; a sage implemen-
tation ([25]) is available in the online complement [2, algorithm?2.sage].

Algorithm 4.4. Fast computation of unit in cyclic cubic number fields.

Require: a cyclic cubic field K and a factorization of its conductor m
Ensure: a unit of K
for / =1 mod g factor of m do
factor ¢ in O to obtain [ using [4, Sec. 4.8.2]
search a generator wy of the ideal [ using LLL [4, Alg. 2.6.3].
end for
return a product of the units 7y := o(wy)/we

We tested Algorithm 4.4 on 630 cyclic cubic number fields listed in Ta-
ble 1 of [9], having conductor between 1 and 4000. Among them for 272
fields, (i.e. 43.1% of 630 fields), [ is principal and Algorithm 4.4 succeeds.
One such example is the field obtained by defining polynomial z3 + z? —
2x — 1. Here we write that [ is principal when there exists a prime factor £
of the conductor m of the number field K such that [ is principal.

5. Conclusion and open questions

Greenberg’s p-rationality conjecture for multiquadratic fields and its ex-
tension to multicubic fields is suppoted by extensive numerical data and
is a consequence of existing conjectures of Cohen—Lenstra—Martinet and
Hofmann—Zhang.

We exhibited an infinite family of cyclic cubic fields without p-primary
units for a set of primes analoguous to the Wieferich primes. It is an open
question to decide if this family has an infinite subset of p-rational fields.

Although we limited our study to abelia fields, one can extend the prob-
lem of finding p-rational fields to the case of any Galois group.

Finally, the algorithmic tools for multiquadratic fields which are listed
and improved in this work are not restricted to the applications shown
in this work. For example, the cyclotomic units computations in multi-
quadratic fields play an important role in the analysis of the lattice-based

cryptography [3].
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- by Rabindranath Tagore.
English Translation:

Who is to come into my world?

Driving out my cloud of ignorance, you fill me up with knowledge.
Beyond any doubt, I have got you with my deep unsung passion.

I like to forget everything else and plunge into you.

Sometimes I miss, sometimes I follow the correct path to get near you.
But you play cruel and move out from me.

If you are still in want of happiness, you can explore elsewhere.

But I need nothing else than your immortal presence in my heart.

This is a compilation with extracts from five different incredible songs of
Rabindranath Tagore. These lines are chosen to depict four main emotional
moods of a mathematician’s love for mathematics. These four emotional
moods are the following.

(1) Premature curiosity; first 2 lines.

(2) Curiosity turning into passion; 3"¢ and 4** lines.

(3) Barriers and obstacles mixed with transcendental rays of hope; 5"
and 6 lines.

(4) Gratification with a hint of further exploration; last 2 lines.

See “Geetabitan” by Rabindranath Tagore, published by Viswa Bharati
Granthana Vibhaga, (1978-1979) for the complete songs.

References

[1] M. Aok1 & T. FUKUDA, “An Algorithm for Computing p-Class Groups of Abelian Number
Fields”, in Algorithmic Number Theory — ANTS VII, Lecture Notes in Computer Science,
vol. 4076, 2006.

[2] R. BARBULESCU & J. RAy, “Electronic manuscript of computations of “Numerical
verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p-rationality
conjecture””, 2017, available online at https://webusers.imj-prg.fr/~razvan.barbaud/
pRational/pRational.html.

[3] J. BaucH, D. J. BERNSTEIN, H. DE VALENCE, T. LANGE & C. VAN VREDENDAAL, “Short
generators without quantum computers: the case of multiquadratics”, in Advances in cryp-
tology — EUROCRYPT 2017, Lecture Notes in Computer Science, vol. 10210, Springer,
2017, p. 27-59.


https://webusers.imj-prg.fr/~razvan.barbaud/pRational/pRational.html
https://webusers.imj-prg.fr/~razvan.barbaud/pRational/pRational.html

176

(4]
(5]
[6]
(7]
(8]

(9]

(10]
11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
19]
20]
(21]
(22]
(23]
[24]
25]

[26]

Razvan BARBULESCU, Jishnu RAY

H. COHEN, A course in computational algebraic number theory, Graduate Texts in Mathe-
matics, vol. 138, Springer, 2013.

H. CoHEN & H. W. LENSTRA, JR., “Heuristics on class groups”, in Number theory (New
York, 1982), Lecture Notes in Mathematics, vol. 1052, Springer, 1984, p. 26-36.

H. CoHEN & J. MARTINET, “Class groups of number fields: numerical heuristics”, Math.
Comput. 48 (1987), no. 177, p. 123-137.

C. FIEKER & Y. ZHANG, “An application of the p-adic analytic class number formula”, LMS
J. Comput. Math. 19 (2016), no. 1, p. 217-228.

G. GRraAS, Class Field Theory: from theory to practice, Springer monographs of mathematics,
Springer, 2013.

M.-N. GRraAs, “Méthodes et algorithmes pour le calcul numérique du nombre de classes et
des unités des extensions cubiques cycliques de Q”, J. Reine Angew. Math. 277 (1975),
no. 89, p. 116.

R. GREENBERG, “Galois representations with open image”, Ann. Math. Qué. 40 (2016),
no. 1, p. 83-119.

T. HAKKARAINEN, “On the computation of class numbers of real abelian fields”, Math.
Comput. 78 (2009), no. 265, p. 555-573.

P. HARTUNG, “Proof of the existence of infinitely many imaginary quadratic fields whose
class number is not divisible by 3”7, J. Number Theory 6 (1974), no. 4, p. 276-278.

T. HOFMANN & Y. ZHANG, “Valuations of p-adic regulators of cyclic cubic fields”, J. Number
Theory 169 (2016), p. 86-102.

S. Kuropa, “Uber die Klassenzahlen algebraischer Zahlkérper”, Nagoya Math. J. 1 (1950),
p. 1-10.

F. J. vAN DER LINDEN, “Class number computations of real abelian number fields”, Math.
Comput. 39 (1982), no. 160, p. 693-707.

S. LOUBOUTIN, “L-functions and class numbers of imaginary quadratic fields and of quadratic
extensions of an imaginary quadratic field”, Math. Comput. 59 (1992), no. 199, p. 213-230.
, “Majorations explicites du résidu au point 1 des fonctions zéta de certains corps de
nombres”, J. Math. Soc. Japan 50 (1998), no. 1, p. 57-69.

G. MALLE, “Cohen-Lenstra heuristic and roots of unity”, J. Number Theory 128 (2008),
no. 10, p. 2823-2835.

A. MOVAHHEDI, “Sur les p-extensions des corps p-rationnels”, PhD Thesis, Université Paris
VII (France), 1988.

, “Sur les p-extensions des corps p-rationnels”, Math. Nachr. 149 (1990), p. 163-176.
A. MovaHHEDI & T. NGUYEN QUANG Do, “Sur l'arithmétique des corps de nombres p-
rationnels”, in Séminaire de Théorie des Nombres, Paris 1987-88, Progress in Mathematics,
vol. 81, Birkhduser, 1990, p. 155-200.

F. PitouN & F. VARESCON, “Computing the torsion of the p-ramified module of a number
field”, Math. Comput. 84 (2015), no. 291, p. 371-383.

O. SCHIROKAUER, “Discrete logarithms and local units”, Philosophical Transactions of the
Royal Society of London A: Math., Phys. and Eng. Sci. 345 (1993), no. 1676, p. 409-423.

THE PARI Group, “PARI/GP version 2.9.0”, 2016, available from http://pari.math.
u-bordeaux.fr/.

THE SAGE DEVELOPERS, “SageMath, the Sage Mathematics Software System (Version
7.5.1)”, 2016, http://www.sagemath.org/.

L. C. WASHINGTON, Introduction to cyclotomic fields, second ed., Graduate Texts in Math-
ematics, vol. 83, Springer, 1997, xiv+487 pages.



http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org/

Greenberg’s p-rationality conjecture

Razvan BARBULESCU

UMR 5251, CNRS, INP

Université de Bordeaux,

351, cours de la Libération

33400 Talence, France

E-mail: razvan.barbulescu@u-bordeaux.fr

Jishnu RAy

Department of Mathematics

The University of British Columbia
Room 121, 1984 Mathematics Road
V6T 172, Vancouver, BC, Canada
E-mail: jishnuray19920gmail.com


mailto:razvan.barbulescu@u-bordeaux.fr
mailto:jishnuray1992@gmail.com

	1. Introduction
	Acknowledgments

	2. Some examples of p-rational fields for Greenberg's conjecture
	2.1. Some numerical examples of p-rational multiquadratic fields

	3. The Cohen–Lenstra–Martinet heuristic and the conjectured density of p-rational fields
	3.1. New numerical data to verify the Cohen–Lenstra–Martinet heuristics
	3.2. Numerical verification of a conjecture on the p-adic regulator
	3.3. Greenberg's conjecture as a consequence of previous conjectures

	4. Algorithmic tools
	4.1. Enumerating all the groups of conductor up to X andGal(K)=(Z/3 Z)t for some t
	4.2. Testing if p divides hK
	4.3. Testing the existence of p-primary units

	5. Conclusion and open questions
	References

