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The distribution of sums and products of
additive functions

par Greg MARTIN et Lee TROUPE

Résumé. Le célèbre théorème d’Erdős–Kac dit, en substance, que les valeurs
d’une fonction additive satisfaisant certaines hypothèses faibles, sont normale-
ment distribuées. Au cours des dernières décennies, il a été démontré que des
lois similaires de distribution normale s’appliquent à certaines fonctions non
additives et à des fonctions arithmétiques adaptées à certains sous-ensembles
de l’ensemble des nombres naturels. En poursuivant dans cette veine, nous
montrons que si g1(n), . . . , gk(n) est un ensemble de fonctions satisfaisant
certaines hypothèses légères pour lesquelles une loi de distribution normale
de type Erdős–Kac est valide, et si Q(x1, . . . , xk) est un polynôme à coef-
ficients non négatifs, alors Q(g1(n), . . . , gk(n)) obéit également à une loi de
distribution normale. Nous montrons également qu’un résultat similaire peut
être obtenu si l’ensemble des entrées n est limité à certains sous-ensembles de
nombres naturels, tels que les nombres premiers décalés. Notre preuve utilise
la méthode des moments. Nous concluons en illustrant notre théorème sur
quelques exemples.

Abstract. The celebrated Erdős–Kac theorem says, roughly speaking, that
the values of additive functions satisfying certain mild hypotheses are nor-
mally distributed. In the intervening years, similar normal distribution laws
have been shown to hold for certain non-additive functions and for amenable
arithmetic functions over certain subsets of the natural numbers. Continuing
in this vein, we show that if g1(n), . . . , gk(n) is a collection of functions satisfy-
ing certain mild hypotheses for which an Erdős–Kac-type normal distribution
law holds, and if Q(x1, . . . , xk) is a polynomial with nonnegative real coeffi-
cients, then Q(g1(n), . . . , gk(n)) also obeys a normal distribution law. We also
show that a similar result can be obtained if the set of inputs n is restricted to
certain subsets of the natural numbers, such as shifted primes. Our proof uses
the method of moments. We conclude by providing examples of our theorem
in action.

Manuscrit reçu le 31 janvier 2019, révisé le 16 décembre 2019, accepté le 22 décembre 2019.
2020 Mathematics Subject Classification. 11N60, 11N37.
Mots-clefs. loi de distribution, fonction additive, méthode des moments.
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1. Introduction
In 1939, Erdős and Kac [3] used probabilistic methods to prove a strik-

ing fact concerning a class of strongly additive functions, establishing the
following foundational result in the field of probabilistic number theory.
Theorem 1.1 (Erdős/Kac). Let g be a strongly additive function with
|g(p)| ≤ 1 for all primes p. Define

(1.1) Ag(x) =
∑
p≤x

g(p)
p

and Bg(x) =
(∑
p≤x

g2(p)
p

(
1− 1

p

))1/2

,

and assume that Bg(x) is unbounded. Then for every real number u,

(1.2) lim
x→∞

1
x

#
{
n ≤ x : g(n) < Ag(x) + uBg(x)

}
= 1√

2π

∫ u

−∞
e−t

2/2 dt.

Here, as usual, a function g : N→ R is additive if g(mn) = g(m) + g(n)
whenever (m,n) = 1; an additive function g is strongly additive if g(pα) =
g(p) for every prime p and positive integer α. In particular, a strongly
additive function is completely determined by its values on prime inputs.
For example, ω(n), the number of distinct prime factors of n, is a strongly
additive function.

Theorem 1.1 tells us that the values of the normalized version
(
g(n) −

Ag(n)
)
/Bg(n) of g are distributed, in the limit, exactly like random real

numbers chosen from the standard normal distribution of mean 0 and vari-
ance 1. We codify this type of distributional law with the following termi-
nology:
Definition 1.2. Let g : N → R and Ag, Bg : R≥0 → R be functions. We
say that g satisfies an Erdős–Kac law with mean Ag and variance B2

g if
equation (1.2) holds for every real number u.

Different proofs and generalizations of Erdős and Kac’s theorem abound.
In a 1955 paper, Halberstam [5] calculated the mth moments of the quan-
tity

(
g(n) − Ag(x)

)
/Bg(x) for m ≥ 1, deducing the Erdős–Kac theorem

from these calculations. In 2007, Granville and Soundararajan [4] calcu-
lated these moments using a technique both simpler and more adaptable
than Halberstam’s methods; as a result, one can prove Erdős–Kac laws
for strongly additive functions g restricted to certain subsets of the nat-
ural numbers. An example of a result in this direction (though predating
the work of Granville and Soundararajan) is due to Alladi [2], who proved
an analogue of the Erdős–Kac theorem for the usual prime-factor-counting
functions ω and Ω over friable integers.

In this paper, we adapt the methods of [4] to establish an Erdős–Kac law
for arbitrary sums and products of strongly additive functions satisfying
certain standard hypotheses:
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Theorem 1.3. Let Q(T1, . . . , T`) be a polynomial with nonnegative real
coefficents. Let g1, g2, . . . , g` be nonnegative strongly additive functions such
that:

(1) each gj(p)�j 1 uniformly for all primes p;
(2) for each 1 ≤ j ≤ `, the series

∑
p g

2
j (p)/p diverges.

Define

(1.3) µ(gj) =
∑
p≤x

gj(p)
p

and κ(gi, gj) =
∑
p≤x

gi(p)gj(p)
p

(
1− 1

p

)
and σ2(gi) = κ(gi, gi),

and suppose that σ2(gi)� µ(gj) for sufficiently large x for all 1 ≤ i, j ≤ `.
Then Q(g1(n), . . . , g`(n)) satisfies an Erdős–Kac law with mean

(1.4) AQ(x) = Q
(
µ(g1), . . . , µ(g`)

)
and variance

(1.5) BQ(x)2 =
∑̀
i=1

∑̀
j=1

∂Q

∂Ti

(
µ(g1), ..., µ(g`)

) ∂Q
∂Tj

(
µ(g1), ..., µ(g`)

)
κ(gi, gj).

While all of the hypotheses of the theorem are necessary for our proof
in its full generality, the assumptions on the relative sizes of the µ(gj)
and σ2(gi) could usually be relaxed in specific situations; moreover, the
assumption that the gj be pointwise nonnegative is hardly used, other than
to ensure that the covariances κ(gi, gj) are nonnegative so that the right-
hand side of equation (1.5) has a square root in general. In the same vein,
we work with strongly additive functions for simplicity, but in principle the
methods could establish Theorem 1.3 for additive functions whose values
on prime powers can depend upon the power as well as the prime.

In the last section of this paper, we give examples of some special cases of
this theorem, such as the Erdős–Kac law for a product of additive functions
(including the integer powers of an additive function); these results, which
are justified in Section 6, continue to use the notation from equation (1.3).

Corollary 1.4. Let g be a strongly additive function satisfying the hypothe-
ses of Theorem 1.3. For any positive integer δ, the function gδ satisfies an
Erdős–Kac law with mean µδ(g) and variance δ2µ(g)2δ−2σ2(g).

Corollary 1.5. Let g1, . . . , g` be strongly additive functions satisfying the
hypotheses of Theorem 1.3. Then for any ` ≥ 1, the function g1(n) · · · g`(n)
satisfies an Erdős–Kac law with mean µ(g1) · · ·µ(g`) and variance(

µ(g1) · · ·µ(g`)
)2 ∑

1≤i,j≤`

κ(gi, gj)
µ(gi)µ(gj)

.



106 Greg Martin, Lee Troupe

As it turns out, the proof of Theorem 1.3 is no harder if we replace
{p ≤ x} with any finite set P of primes. Similarly, we may replace the set
of inputs {n ≤ x} with a finite set A, at the cost of introducing further
multiplicative functions h(n) that measure the local densities of A but
with no other significant changes. As remarked in [4], this added flexibility
allows for the derivation of several variants of the Erdős–Kac theorem.
As an example, we establish the following analogue of Theorem 1.3 for
polynomials evaluated at additive functions on shifted primes:

Theorem 1.6. Let a be a fixed nonzero integer. Under the hypotheses of
Theorem 1.3, the function Q(g1(p−a), . . . , g`(p−a)) satisfies an Erdős–Kac
law with AQ(x) and BQ(x) as defined in equations (1.4) and (1.5). In other
words, for every real number u,

(1.6) lim
x→∞

1
π(x)#

{
p ≤ x : Q(g1(p− a), ..., g`(p− a))<AQ(x)+uBQ(x)

}
= 1√

2π

∫ u

−∞
e−t

2/2 dt.

In the next section we describe the generalized setting, with arbitrary
finite sets P and A as mentioned above and other notation used throughout
the paper, and establish a general distributional limit law (Theorem 2.8)
from the calculation of the appropriate mth moments (Theorem 2.7). Fur-
ther, in that section, we also derive Theorems 1.3 and 1.6 from Theorem 2.8.
The remainder of the paper will then be devoted to establishing Theo-
rem 2.7, other than giving some examples in Section 6 that in particular
establish Corollaries 1.4 and 1.5.

2. Notation and restatement of main theorem
Following the methods established in [4], we begin by setting up a sieve-

theoretic framework within which we will recast Theorem 1.3.

Definition 2.1. Let A denote a finite set (or multiset) of positive integers.
For every positive integer d, set Ad = {a ∈ A : d | a}. As is usual in sieve
theory, we suppose that there exists a positive real number X that is a
good approximation to the cardinality of A, and a multiplicative function
h(d) (satisfying 0 ≤ h(d) ≤ d) such that h(d)

d X is a good approximation to
#Ad. More explicitly, we define the remainder terms Ed by

#Ad = h(d)
d

X + Ed,(2.1)

and we suppose that we have some suitable control over Ed, individually
or on average. It would certainly suffice for our purposes to have Ed � dc

for some fixed c < 1.
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In the setting of Theorem 1.3, for example, we will have Ed � 1. In
general, one needs only to know the behavior of the terms Ed on average;
for example, in the proof of Theorem 1.6 we will handle the terms Ed via
the Bombieri–Vinogradov theorem.

Definition 2.2. Let P denote a finite set of primes. For any nonnegative
integer m, define

Dk(P) =
k⋃
`=0
{p1 · · · p` : p1, . . . , p` are distinct elements of P};

note that the elements of Dk(P) are squarefree integers contained in the
interval [1, (maxP)k]. In particular, D0(P) = {1}.

For any function g : N → R (but usually for strongly additive func-
tions g), we write

gP(a) =
∑
p∈P
p|a

g(p).

(We remark that this notation would be sensible even if P were an infinite
set of primes, since any given integer a has only finitely many prime factors.)
In keeping with the terminology and notation established in [4], we define
the mean of g over P as

(2.2) µP(g) =
∑
p∈P

g(p)h(p)
p

;

for example, µP(1) =
∑
p∈P h(p)/p. We continue to borrow from proba-

bilistic terminology by defining the standard deviation of g over P as

σP(g) =
(∑
p∈P

g(p)2h(p)
p

(
1− h(p)

p

))1/2

,

and we call the quantity σP(g)2 the variance of g over P. Furthermore,
for two functions g1, g2 : N→ R we define the covariance of g1 and g2 over
P by

κP(g1, g2) =
∑
p∈P

g1(p)g2(p)h(p)
p

(
1− h(p)

p

)
.

Note that σP(g)2 = κP(g, g).

It is perhaps worth emphasizing that here the set P represents the “good”
primes whose contribution to the values of g(n) we want to include, for all
integers n ∈ A; this is as opposed to sieve theory, where one usually names
the set of “bad” primes to exclude, for the goal of seeking special elements
of A free of such prime factors.
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For example, consider the case where P is the set of all primes up to x,
and g(n) = ω(n). A result of Mertens then says that the mean µP(ω) ∼
log log x and the variance σP(ω)2 ∼ log log x, which are the quantities that
we recognize from the classical Erdős–Kac theorem.

In the following few definitions, the objects being defined will depend
upon ` additive functions g1, . . . , g` : N → R; we suppress the dependence
upon these functions from the notation.

Definition 2.3. We let K denote the maximum variance among the func-
tions gj :

K = max
1≤i,j≤`

|κP(gi, gj)| = max
1≤i≤`

σP(gi)2.

The latter equality is justified by the Cauchy–Schwarz inequality, which
implies that

|κP(gi, gj)| ≤ max{σP(gi)2, σP(gj)2}
Similarly, we let M denote the maximum mean among the functions gj :

M = max
1≤i≤`

µP(gi).

Note that if there exists a positive constant G such that 0 ≤ gj(p) ≤ G for
all 1 ≤ j ≤ ` and all p ∈ P, then trivially K ≤ GM.

Definition 2.4. Suppose that the functions g1, . . . , g` take nonnegative
values. Given any polynomial Q(T1, . . . , T`) in ` variables with positive
coefficients, we define
(2.3) AQ(P) = Q(µP(g1), . . . , µP(g`))
and

(2.4) BQ(P) =
(∑̀
i=1

∑̀
j=1

∂Q

∂Ti

(
µP(g1), . . . , µP(g`)

)

× ∂Q

∂Tj

(
µP(g1), . . . , µP(g`)

)
κP(gi, gj)

)1/2

.

Definition 2.5. For any polynomial Q(t1, . . . , t`) in ` variables and any
nonnegative integer m, define the mth moment

Mm =
∑
a∈A

(
Q(gP1 (a), . . . , gP` (a))−AQ(P)

)m
.

Definition 2.6. For an integer m ≥ 0, let

Cm =


m!

2m/2(m/2)!
, if m is even,

0, if m is odd
denote the mth moment of the standard normal distribution.
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These last two definitions foreshadow our strategy of deducing a normal
limiting distribution from asypmtotic formulas for the mth moments of a
centered version of our quantity of interest. Indeed, under all of the notation
above, we establish the following formula for the Mm:
Theorem 2.7. Let Q(T1, . . . , T`) be a polynomial of degree δ with non-
negative real coefficients, let m be a positive integer, and let P be a finite
set of primes. Let g1, g2, . . . , g` be nonnegative strongly additive functions
such that, for some fixed G > 0, we have gj(p) ≤ G for each j and for all
primes p ∈ P. Let A be a finite multiset of positive integers such that, in
the notation of Definition 2.1,
(2.5) µP(1)δm

∑
d∈Dδm(P)

|Ed| � XKδm/2−1

If m is even, then
Mm = CmXBQ(P)m +O(XMδm−(m+1)/2),

while if m is odd, then
Mm � XBQ(P)m−1 +XMδm−(m+1)/2.

Here, the implied constants may depend on the polynomial Q, the moment
index m, the constant G, and the finite set A.

Proving this theorem is the primary goal of this paper, and we will begin
the proof in the next section. For the remainder of this section, however,
we expound upon the consequences of Theorem 2.7 to various Erdős–Kac
laws.

Let Ã denote an infinite set of positive integers, and define
(2.6) A(x) = {a ∈ Ã : a ≤ x}
(indeed, Ã may even be a multiset, as long as A(x) is finite for every x).
Furthermore, let P̃ denote an infinite set of primes, and define P(z) = {p ∈
P̃ : p ≤ z}. Using Theorem 2.7, we can prove the following result, which (as
we subsequently show) implies Theorems 1.3 and 1.6.
Theorem 2.8. Let Q(T1, . . . , T`) be a polynomial of degree δ with nonneg-
ative real coefficients. Let Ã and P̃ be infinite sets as described above, and
assume that there exists a positive constant η such that

µP(t)(1) =
∑
p≤t

h(p)
p
∼ η log log t.

Let x and z = z(x) be parameters tending to infinity, with z chosen so that
for all integers k ≥ 0,
(2.7) µP(z)(1)k

∑
d∈Dk(P(z))

|Ed| �k XKk/2−1,
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where K is as in Definition 2.3 with P replaced by P(z). Let g1, g2, . . . , g`
be nonnegative strongly additive functions such that for each 1 ≤ j ≤ `:

(a) gj(p)� 1 uniformly for all primes p ∈ P̃;
(b) the series

∑
p∈P̃ g

2
j (p)/p diverges;

(c) σP(z)(gj)2�M, with Mas in Definition 2.3 with P replaced by P(z).
Further, assume that

(2.8) log x
log z = o(M1/2).

Then the values Q(g1(a), . . . , g`(a)), as a runs through the elements of
A, satisfy an Erdős–Kac law with mean AQ(P(x)) from equation (2.3) and
variance BQ(P(x))2 from equation (2.4); in other words, for every u ∈ R,

(2.9) lim
x→∞

#
{
a ∈ A(x) : Q

(
g1(a), ..., g`(a)

)
<AQ(P(x))+uBQ(P(x))

}
#A(x)

= 1√
2π

∫ u

−∞
e−t

2/2 dt.

Before we show that Theorem 2.8 is a consequence of Theorem 2.7, we
make the following convention regarding constants implicit in O, �, and
� notation: these constants may always depend upon the polynomial Q
and its number of arguments (usually `), the pointwise bound G for the
additive functions gj , the integer m dictating which moment we are looking
at, and the finite sets A and P where appropriate. (We remind the reader
that we write f � g if there exist absolute constants C > c > 0 such that
cf(x) ≤ g(x) ≤ Cf(x) throughout the domain of f and g.) On the other
hand, these implicit constants will never depend upon the parameters x
and z, and therefore will be independent of all quantities that depend upon
these parameters, such as Mm, µP(gj) and M, and κP(gi, gj) and K.

Deduction of Theorem 2.8 from Theorem 2.7. For this proof, we will set
A = A(x) and P = P(z) (and will write out P(x) explicitly when nec-
essary). We begin by noting some consequences of the assumptions of The-
orem 2.8. First, thanks to assumption (a), there exists a constant G > 0
such that gj(p) ≤ G for each j and for all primes p ∈ P̃. In particular, all
of the hypotheses of Theorem 2.7 are satisfied for any positive integer m.

Next, for each 1 ≤ j ≤ ` we have M ≥ µP(gj) ≥ 1
Gσ
P(gj)2 � M by

assumption (c), so that each µP(gj) �M and hence K �M; furthermore,
M → ∞ as x → ∞ thanks to assumption (b). In summary, for every
1 ≤ j ≤ `,

(2.10) σP(gj)2 � µP(gj) � K �M→∞.
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Furthermore, by Cauchy–Schwarz, we also have 0 ≤ κP(gi, gj)�M. Note
also that when m = 0, the assumption (2.7) becomes simply |E1| � X

K ;
this implies that #A = #A1 = h(1)

1 X+E1 = X(1+O( 1
K)) ∼ X as x→∞.

Since Q is of degree δ, there exists 1 ≤ j0 ≤ ` such that ∂Q
∂Tj0

(T1, . . . , T`)2

is of degree 2δ− 2. It follows from the nonnegativity of the covariances and
of the coefficients of Q that

BQ(P)2 =
∑̀
i=1

∑̀
j=1

∂Q

∂Ti

(
µP(g1), ..., µP(g`)

) ∂Q
∂Tj

(
µP(g1), ..., µP(g`)

)
κP(gi, gj)

≥ ∂Q

∂Tj0

(
µP(g1), ..., µP(g`)

)2
κP(gj0 , gj0)�M2δ−2σP(gj0)2�M2δ−1(2.11)

by equation (2.10). If m is even, then Theorem 2.7 (with A = A(x) and
P = P(z)) implies

Mm

XBQ(P)m = Cm +O(M−1/2) = Cm + o(1);

on the other hand, if m is odd, then Theorem 2.7 implies
Mm

XBQ(P)m � BQ(P)−1 + M−1/2 �M−2δ+1 + M−1/2 = o(1).

These estimates establish the limits

(2.12) lim
x→∞

Mm

#A ·BQ(P)m = lim
x→∞

Mm

XBQ(P)m =
{
Cm, if m is even,
0, if m is odd,

where Mm is as in Definition 2.5; the first equality is due to the fact that
#A ∼ X as x→∞. Note thatM0 = #A, and so the limit (2.12) is trivially
true when m = 0 as well.

It follows from the limits (2.12), by the method of moments (in a way that
is standard in these applications to Erdős–Kac theorems; see [7, Section 7]
for more details on this type of deduction), that

(2.13) lim
x→∞

#
{
a ∈ A(x) : Q

(
gP1 (a), . . . , gP` (a)

)
<AQ(P)+uBQ(P)

}
#A(x)

= 1√
2π

∫ u

−∞
e−t

2/2 dt,

Note that this deduction is not exactly the same as the conclusion of
the theorem we are proving: we would rather that the polynomial Q were
being evaluated at the original additive functions gj(a) rather than their
truncations gPj (a), and that both occurrences of P = P(z) on the right-
hand side of the inequality were instead P(x). However, it is easy to see
(essentially by the continuity of the integral as a function of u) that we can
make these adjustments provided that:
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(i) AQ(P(x))−AQ(P(z)) = o
(
BQ(P(z))

)
;

(ii) BQ(P(x))−BQ(P(z)) = o
(
BQ(P(z))

)
;

(iii) Q
(
g1(a), . . . , g`(a)

)
− Q

(
g
P(z)
1 (a), . . . , gP(z)

` (a)
)

= o
(
BQ(P(z))

)
for

every a ∈ A(x).
First, note that AQ(P(z)) � Mδ by equations (2.3) and (2.10). Further-
more, equation (2.11) gives the lower bound BQ(P(z))�Mδ−1/2, and the
corresponding upper bound follows from equation (2.10) and the estimate
κP(gi, gj)�M. Also note that for each 1 ≤ j ≤ `,

0 ≤ µP(x)(gj)− µP(z)(gj) =
∑

z<p≤x
gj(p)

h(p)
p

≤ G
∑

z<p≤x

h(p)
p

= Gη log log x
log z +O(1)� logM

by the assumption (2.8); by a similar calculation, κP(gi, gj) � logM for
all 1 ≤ i, j ≤ `. The difference

AQ(P(x))−AQ(P(z))

= Q
(
µP(x)(g1), . . . , µP(x)(g`)

)
−Q

(
µP(z)(g1), . . . , µP(z)(g`)

)
can therefore be bounded, using the multivariable mean value theorem, by

Mδ−1 logM = o(Mδ−1/2) = o
(
BQ(P(z))

)
,

establishing (i).
An analogous argument shows that the differenceBQ(P(x))2−BQ(P(z))2

can be bounded by M2δ−2 logM; since

BQ(P(x))−BQ(P(z)) = BQ(P(x))2 −BQ(P(z))2

BQ(P(x)) +BQ(P(z))

� BQ(P(x))2 −BQ(P(z))2

Mδ−1/2 ,

we see that BQ(P(x))−BQ(P(z))�Mδ−3/2 logM = o
(
BQ(P(z))

)
, estab-

lishing (ii).
Finally, for any a ∈ A(x) and any 1 ≤ j ≤ `,

g(a)− gP(z)(a) =
∑

z<p≤x
p|a

g(p)

since a ≤ x; the number of summands in this sum is at most log x
log z , whence

gP(x)(a)− gP(z)(a) ≤ G log x
log z = o(M1/2) by the assumption (2.8). Again the
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multivariable mean value theorem gives the estimate Q
(
g1(a), . . . , g`(a)

)
−

Q
(
g
P(z)
1 (a), . . . , gP(z)

` (a)
)
� Mδ−1 · o(M1/2) = o

(
BQ(P(z))

)
, establish-

ing (iii).
These estimates confirm that we can deduce equation (2.9) from equa-

tion (2.13), which concludes the proof of Theorem 2.8. �

Theorem 1.3 follows quickly from Theorem 2.8.

Deduction of Theorem 1.3 from Theorem 2.8. Let P̃ be the set of all primes
and Ã the set of all positive integers; then #Ad = x

d + O(1), and so set-
ting X = x and h(d) = 1 for all d ≥ 1 yields |Ed| � 1, as well as
µP(t)(1) =

∑
p≤t

1
p ∼ log log t. Let the polynomial Q(T1, . . . , T`) and the

additive functions g1, . . . , g` satisfy the hypotheses of Theorem 1.3; note
that one of those hypotheses, namely κ(gi, gi) � µ(gj) (with the implicit
parameter x replaced by z), implies that σP(z)(gj)2 �M.

Let z= z(x) be the smallest positive real number satisfying zmax{1,M1/3}≥
x, with M as in Definition 2.3 with P replaced by P(z). Since M1/3 is an in-
creasing, right-continuous function of z, this minimum is well-defined and
tends to infinity with x. Also, z �ε x

ε for any ε > 0 since M tends to
infinity as well (again because

∑
p≤z

gj(p)
p ≥ 1

G

∑
p≤z

gj(p)2

p , with the lat-
ter series diverging by assumption as z → ∞). We verify quickly that the
hypothesis (2.7) is satisfied for all k ≥ 0 via the calculation

µP(z)(1)k
∑

d∈Dk(P(z))
|Ed| � (log log x)k#Dk(P(z))

≤ (log log x)kzk �ε x
ε �ε

X

log log x � XKk/2−1,

since each κP(z)(gi, gj) ≤ κP(x)(gi, gj) ≤
∑
p≤x

G2

p (1 − 1
p) � log log x. We

also confirm that log x
log z = max{1,M1/3} = o(M1/2), which completes the

verification of the hypotheses of Theorem 2.8.
Therefore the conclusion of Theorem 2.8 holds, and it is easy to see that

this is identical to the conclusion of Theorem 1.3 since µP(x)(gj) = µ(gj)
and κP(x)(gi, gj) = κ(gi, gj). �

Theorem 1.6 follows in almost exactly the same way, other than requir-
ing a more powerful tool in the Bombieri–Vinogradov theorem to con-
trol the accumulation of the sieve error terms. See for example [6, The-
orem 17.1] for the statement of the Bombieri–Vinogradov theorem for the
function ψ(x; q, a), from which it is simple to derive the analogous version
for π(x; q, a) (an example of such a derivation is the proof of [1, Corol-
lary 1.4]):
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Proposition 2.9. For any positive real number A, there exists a positive
real number B = B(A) such that for all x ≥ 2,∑

2≤q≤x1/2(log x)−B

max
(a,q)=1

∣∣∣∣π(x; q, a)− li(x)
ϕ(q)

∣∣∣∣�A
x

(log x)A ,(2.14)

where li(x) =
∫ x

2
dt

log t is the usual logarithmic integral.

Deduction of Theorem 1.6 from Theorem 2.8. Let P̃ be the set of all prime
numbers, and set Ã = {p − a : p prime, p > a}. Define a (strongly) multi-
plicative function h(d) by setting h(p) = p

p−1 if p - a and h(p) = 0 if p | a.
Then, with X = li(x) ∼ π(x), we have

#Ad = π(x; d, a) = h(d)
d

li(x) + Ed(x)

where, if (a, d) = 1, then Ed(x) = π(x; d, a)− li(x)
ϕ(d) is the error term in the

prime number theorem for arithmetic progressions, while if (a, d) > 1, then
|Ed(x)| ≤ 1. Therefore, for any parameter z = xo(1),

µP(1)k
∑

d∈Dk(P)
|Ed(x)| ≤

(∑
p≤z

1
p− 1

)k ∑
d≤zk
|Ed(x)|

� (log log x)k x

(log x)2 � XKk/2−1

by the Bombieri–Vinogradov bound (2.14). The rest of the proof is the
same as the deduction of Theorem 1.3 from Theorem 2.8 above. �

From now on, we concern ourselves entirely with the proof of Theo-
rem 2.7; in particular, we assume for the rest of this paper that the finite
sets A and P and the additive functions g1, . . . , g` satisfy all the hypotheses
of Theorem 2.7.

3. Polynomial accounting
We attack the mth moment Mm by expanding the mth power in each

summand. In this section we present the system we use for writing down
this expansion, starting by defining a few helpful objects and pieces of nota-
tion. For any given a ∈ A, define fr(a) to be the completely multiplicative
function of r (not of a) that satisfies

(3.1) fp(a) =
{

1− h(p)/p, if p | a,
−h(p)/p, if p - a.

(We note that this function was first introduced by Granville and Soundara-
rajan in [4], where it served largely the same role as it will for us.) For any
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strongly additive function g, define the notation

(3.2) FPg (a) =
∑
p∈P

g(p)fp(a),

and note that equation (2.2) implies that gP(a) = µP(g)+FPg (a). Therefore,
from Definition 2.5 and equation (2.3),

(3.3)

Mm =
∑
a∈A

(
Q(gP1 (a), . . . , gP` (a))−AQ(P)

)m
=
∑
a∈A

(
Q
(
FPg1(a) + µP(g1), . . . , FPg` (a) + µP(g`)

)
−Q

(
µP(g1), . . . , µP(g`)

))m
.

We are now ready to expand themth power. In addition to setting out the
necessary notation for writing down this expansion, this section establishes
a key result, Proposition 3.3, which allows us to simplify the main term
of the moments Mm into the form of Theorem 2.7. We note that this part
of our proof is extremely similar to [7, Section 4]; indeed, we need only
quote two relevant definitions and two relevant results from that section,
beginning with [7, Definition 4.1]:

Definition 3.1. For any positive even integer k, define Tk to be the set
of all 2-to-1 functions from {1, . . . , k} to {1, . . . , k/2}. A typical element of
Tk will be denoted by τ . For τ ∈ Tk and j ∈ {1, . . . , k/2}, define Υ1(j) and
Υ2(j) to be the two preimages in {1, . . . , k}; we will never be in a situation
where we need to distinguish them from each other.

We also quote [7, Definition 4.5]:

Definition 3.2. Given a polynomial Q(y1, . . . , y`) ∈ R[y1, . . . , y`] of de-
gree δ, and a positive integer m, define a polynomial in the 2` variables
x1, . . . , x`, y1, . . . , y` by

Rm(x1, . . . , x`, y1, . . . , y`) =
(
Q(x1 + y1, . . . , x` + y`)−Q(y1, . . . , y`)

)m
.

To expand this out in gruesome detail, Rm can be written as the sum of
Bm monomials, the βth of which will have total x-degree equal to kmβ and
total y-degree equal to k̃mβ:

(3.4) Rm(x1, . . . , x`, y1, . . . , y`) =
Bm∑
β=1

rmβ

kmβ∏
i=1

xv(m,β,i)

k̃mβ∏
j=1

yw(m,β,j).

Here each v(m,β, i) and w(m,β, j) is an integer in {1, . . . , `}. Note that
the total x-degree of the βth monomial in the sum is kmβ, while its total
y-degree is k̃mβ. We note that, in particular, each kmβ is at least m. Note
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also that each kmβ + k̃mβ is at most δm, and that there exists at least one
β for which kmβ = k̃mβ = m.

Remark. Comparing Definition 3.2 with the expression (3.3), in our cal-
culation we will take xi = FPgi (a) and yi = µP(gi), for each 1 ≤ i ≤ `. Thus
the right-hand side of equation (3.4) becomes a sum of products of µP(gi)
and FPgj (a) for various choices of 1 ≤ i, j ≤ `.

Note that the monomial in Rm of smallest x-degree has x-degree equal
to m. It turns out that these terms contribute to the main term of the
moments Mm. The following proposition will allow us to prove this fact; it
appears as [7, Proposition 4.7], and its proof can be found there. We use
Qj(y1, . . . , y`) to denote the partial derivative of Q(y1, . . . , y`) with respect
to the jth variable.

Proposition 3.3. Let m be a positive even integer, and let zij (1 ≤ i, j ≤ `)
be real numbers. In the notation of Definitions 3.1 and 3.2,

(3.5) 1
(m/2)!

∑
β≤Bm
kmβ=m

rmβ

k̃mβ∏
j=1

yw(m,β,j)
∑
τ∈Tm

m/2∏
i=1

zv(m,β,Υ1(i))v(m,β,Υ2(i))

= Cm

(∑̀
i=1

∑̀
j=1

Qi(y1, . . . , y`)Qj(y1, . . . , y`)zij

)m/2
,

where Cm is as in Definition 2.6.

4. Preliminary calculations
As we have seen, expanding the mth power in Mm will result in a sum

of terms, each of which takes the shape of a product of means µP(gi) and
functions FPgj (a) for various choices 1 ≤ i, j ≤ `. In this section, we obtain
formulas for these products. When m is even, those terms which contribute
to the main term of the mth moment will involve a product of m/2 of the
functions FPgi (a). Proposition 4.8 allows us to write such products in terms
of covariances κ(gi, gj), thereby (after some rearranging) recovering, via
Proposition 3.3, the main term stated in Theorem 2.7. We also obtain upper
bounds for those terms not contributing to this main term. Our method
here is deeply inspired by the work of Granville and Soundararajan in [4].

We begin by defining two new functions which serve important technical
roles (these functions were called G(n) and E(r, s) in [4], but we have
renamed them to avoid a clash of notation herein). Recall that h is the
sieve-theoretic function from Definition 2.1.
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Definition 4.1. Let H(n) be the multiplicative function defined by

H(n) =
∏
pα‖n

(
h(p)
p

(
1− h(p)

p

)α
+
(
−h(p)

p

)α(
1− h(p)

p

))
.

For a given natural number s, let J(r, s) be the multiplicative function of
r defined by

J(r, s) =
∏
pα‖r
p|s

((
1− h(p)

p

)α
−
(
−h(p)

p

)α) ∏
pα‖r
p-s

(
−h(p)

p

)α
.

The following two lemmas list some properties of these two functions
that will be useful in later proofs.

Lemma 4.2. For all primes p and all positive integers m, s, and α:
(a) H(p) = 0, and H(n) = 0 unless n is squarefull.
(b) |H(pα)| ≤ H(p2).
(c) |J(pα, s)| ≤ 1; furthermore, if p - s then |J(pα, s)| ≤ h(p)/p.

Proof. Part (a) is obvious; in what follows, we only need to consider α ≥ 2.
As for part (b), the triangle inequality yields

|H(pα)| ≤ h(p)
p

(
1− h(p)

p

)α
+
(
h(p)
p

)α(
1− h(p)

p

)
.

Since 0 ≤ h(p)/p ≤ 1, both terms on the right-hand side are decreasing
functions of α, and so

(4.1) |H(pα)| ≤ h(p)
p

(
1− h(p)

p

)2
+
(
h(p)
p

)2(
1− h(p)

p

)
= h(p)

p

(
1− h(p)

p

)
= H(p2).

Finally, we consider

J(pα, s) =
{

(1− h(p)/p)α − (−h(p)/p)α , if p | s,
(−h(p)/p)α , if p - s.

As h(p) ≤ p, the second assertion of part (c) is immediate; and, by the
triangle inequality, if p | s then

|J(pα, s)| ≤
∣∣∣∣1− h(p)

p

∣∣∣∣α +
∣∣∣∣h(p)
p

∣∣∣∣α .
The right-hand side is a decreasing function of α ≥ 1 which takes the value
1 if α = 1, which establishes the last remaining assertion. �



118 Greg Martin, Lee Troupe

Lemma 4.3. Let r be a positive integer and let R be the largest squarefree
divisor of r. Then for any divisor s of R,∑
d|R

fr(d)h(d)
d

∏
p|R/d

(
1− h(p)

p

)
= H(r) and

∑
de=s

fr(d)µ(e) = J(r, s).

Here, µ denotes the Möbius function.

Proof. For each prime factor p of r, let αp denote the exponent of p in the
factorization of r, so that pαp‖r. We start with the first claimed equation.
By Definition 4.1,

H(r) =
∏
p|R

(
h(p)
p

(
1− h(p)

p

)αp
+
(
−h(p)

p

)αp(
1− h(p)

p

))
.

Expanding this product results in a sum where each summand is a product
over all the prime divisors of R. To each summand we assign a squarefree
divisor d | R by setting d equal to the product of those primes contributing
a factor of the form (h(p)/p)(1− h(p)/p)αp to the summand; this accounts
for all such divisors d of R. Therefore,

H(r) =
∑
d|R

(∏
p|d

h(p)
p

(
1− h(p)

p

)αp)( ∏
p|R/d

(
−h(p)

p

)αp(
1− h(p)

p

))

=
∑
d|R

h(d)
d

(∏
p|d

(
1− h(p)

p

)αp ∏
p|R/d

(
−h(p)

p

)αp) ∏
p|R/d

(
1− h(p)

p

)

=
∑
d|R

h(d)
d

fr(d)
∏
p|R/d

(
1− h(p)

p

)
as claimed, where the last equality uses the definition (3.1) of fr(d).

Now, suppose that s is a divisor of R (hence itself squarefree). From
Definition 4.1,

J(r, s) =
∏
p|R/s

(
−h(p)

p

)αp∏
p|s

((
1− h(p)

p

)αp
−
(
−h(p)

p

)αp)
.

Expanding the second product using the same method as above, we obtain

J(r, s) =
∏
p|R/s

(
−h(p)

p

)αp∑
d|s

(∏
p|d

(
1− h(p)

p

)αp)( ∏
p|s/d
−
(
−h(p)

p

)αp)

=
∑
d|s

(∏
p|d

(
1− h(p)

p

)αp)( ∏
p|R/d

(
−h(p)

p

)αp)( ∏
p|s/d
−1
)

=
∑
d|s

fr(d)µ(s/d)
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(using equation (3.1) again), which is equivalent to the second assertion of
the lemma. �

We now present several lemmas which will aid in the proof of Proposi-
tion 4.8, which is the main result of this section. Proposition 4.8 handles
expressions of the form ∑

a∈A

k∏
j=1

FPgj (a),

providing an asymptotic formula when k is even and an upper bound when
k is odd. Lemmas 4.4 through 4.6 serve to streamline the proof of Propo-
sition 4.8.

In the following formulas and proofs, all implied constants may depend
on the positive integer k, which in practice will satisfy k ≤ δm (recall that
δ is the degree of the polynomial Q), in addition to the finite sets A and P
and the constant G.

Remark. We note that the lemmas below are nearly identical to those
in [7, Section 5], with slightly different notation; for example, the expres-
sion cov(g1, g2) in [7] is replaced by the slightly more general κ(g1, g2) here,
which is defined in nearly the same way, save for the multiplicative factor
h(p) measuring the local densities in our sieve setup. Similarly, the function
H(n) in this manuscript is nearly the same as H(n) in [7], save for the pres-
ence of this same h(p). However, we give the proofs of these formulas here,
as the situation in [7] (involving one additive function with much larger
mean than the others) required somewhat more complicated handling.

Lemma 4.4. Let k be a positive even integer and let g1, . . . , gk be any
strongly additive functions. Then

(4.2)
∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

= 1
(k/2)!

∑
τ∈Tk

k/2∏
j=1

κP(gΥ1(j), gΥ2(j)) +O
(
Kk/2−1),

where Tk, Υ1, and Υ2 are as in Definition 3.1, κP(gi, gj) is the covariance
of gi and gj as defined in Section 2, and K is the maximum (co)variance
among the functions gi as in Definition 2.3.

Proof. To each k-tuple (p1, . . . , pk) counted by the sum on the left-hand
side, we can uniquely associate a (k/2)-tuple (q1, . . . , qk/2) of primes satis-
fying q1 < · · · < qk/2 and each qj equals exactly two pi (at least two because
p1 · · · pk is squarefull, and then exactly two because #{p1, . . . , pk} = k/2).
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This defines a unique τ ∈ Tk, namely τ(i) equals the integer j such that
pi = qj . Therefore

∑
p1,...,pk∈P

p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
∑
τ∈Tk

∑
q1<···<qk/2

qj∈P

H(q2
1 · · · q2

k/2)g1(qτ(1)) · · · gk(qτ(k))(4.3)

= 1
(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2∈P

q1,...,qk/2 distinct

H(q2
1 · · · q2

k/2)g1(qτ(1)) · · · gk(qτ(k)).

By the multiplicativity of H and its values (4.1) on squares of primes, we
see that

∑
p1,...,pk∈P

p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

= 1
(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2∈P

q1,...,qk/2 distinct

( k/2∏
j=1

h(qj)
qj

(
1−h(qj)

qj

))
g1(qτ(1)) · · · gk(qτ(k))

= 1
(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2∈P

q1,...,qk/2 distinct

k/2∏
j=1

gΥ1(j)(qj)gΥ2(j)(qj)
h(qj)
qj

(
1− h(qj)

qj

)
.

(4.4)

If we fix τ and q1, . . . , qk/2−1, the innermost sum over qk/2 is

∑
qk/2∈P

qk/2 /∈{q1,...,qk/2−1}

gΥ1(k/2)(qk/2)gΥ2(k/2)(qk/2)
h(qk/2)
qk/2

(
1−

h(qk/2)
qk/2

)

= κP(gΥ1(k/2), gΥ2(k/2)) +O(1).
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Summing in turn over qk/2−1, . . . , q1 in the same way, equation (4.4) be-
comes ∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

= 1
(k/2)!

∑
τ∈Tk

k/2∏
j=1

(
κP(gΥ1(j), gΥ2(j)) +O(1)

)

= 1
(k/2)!

∑
τ∈Tk

( k/2∏
j=1

κP(gΥ1(j), gΥ2(j)) +O(Kk/2−1)
)

(4.5)

as desired, since each κP(gΥ1(j), gΥ2(j))� K by Definition 2.3. �

Lemma 4.5. Let k be an integer, and let g1, . . . , gk be strongly additive
functions satisfying 0 ≤ gj(p) ≤ G for all primes p and all 1 ≤ j ≤ k.
When k is even,∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)� Kk/2−1,

while when k is odd,∑
p1,...,pk∈P

p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)� K(k−1)/2.

Proof. To each k-tuple (p1, . . . , pk) counted by the sum, we associate the
positive integer denoted s = #{p1, . . . , pk}, the primes q1 < · · · < qs in P
such that {q1, . . . , qs} = {p1, . . . , pk}, and the integers α1, . . . , αs ≥ 2 such
that qj equals exactly αj of the pi. Let Tα denote the set of functions from
{1, . . . , k} to {1, . . . , s} such that for each 1 ≤ j ≤ s, exactly αj elements
of {1, . . . , k} are mapped to j. Define Υ1(j) and Υ2(j) to be two of the
preimages in {1, . . . , k}; we will never put ourselves in a situation where we
need to know which two. We then have∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
∑

1≤s<k/2

∑
α1,...,αs≥2
α1+···+αs=k

∑
τ∈Tα

∑
q1<···<qs
qj∈P

H(qα1
1 · · · q

αs
s )g1(qτ(1)) · · · gk(qτ(k)).
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By Lemma 4.2(b), |H(qα1
1 · · · qαss )| ≤ H(q2

1 · · · q2
s); note also that

∑
τ∈Tα

g1(qτ(1)) · · · gk(qτ(k)) ≤ Gk−2s
s∏
j=1

gΥ1(j)(qj)gΥ2(j)(qj).

Therefore

∑
p1,...,pk∈P

p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

�
∑

1≤s<k/2

∑
α1,...,αs≥2
α1+···+αs=k

∑
τ∈Tα

∑
q1<···<qs
qj∈P

H(q2
1 · · · q2

s)gΥ1(j)(qj)gΥ2(j)(qj).

The innermost double sum can be evaluated just as in equations (4.3)
and (4.5), yielding

∑
p1,...,pk∈P

p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

�
∑

1≤s<k/2

∑
α1,...,αs≥2
α1+···+αs=k

1
s!
∑
τ∈Tα

s∏
j=1

(
κP(gΥ1(j), gΥ2(j)) +O(1)

)

�
∑

1≤s<k/2

∑
α1,...,αs≥2
α1+···+αs=k

1
s!
∑
τ∈Tα

Ks � Kmax{s∈N : s<k/2}

as desired, since the implicit constant is allowed to depend upon k. �

Lemma 4.6. For any positive integer r, we have

∑
a∈A

fr(a) = H(r)X +
∑
s|r
µ2(s)J(r, s)Es,

where Es is defined by equation (2.1). Here µ again denotes the Möbius
function.

Proof. This is [4, equation (13)]; for completeness, we give the full argu-
ment here. Let R denote the largest squarefree divisor of r, and note from
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equation (3.1) that fr(a) = fr(d) whenever (a,R) = d. Then

∑
a∈A

fr(a) =
∑
d|R

fr(d)
∑
a∈A

(a,R)=d

1 =
∑
d|R

fr(d)
∑
a∈A
d|a

∑
e|(a/d,R/d)

µ(e)

=
∑
d|R

fr(d)
∑
e|R/d

µ(e)
∑
a∈A
de|a

1

=
∑
d|R

fr(d)
∑
e|R/d

µ(e)
(
h(de)
de

X + Ede

)

by equation (2.1). Since R is squarefree, we have h(de) = h(d)h(e), and
therefore

∑
a∈A

fr(a) = X
∑
d|R

fr(d)h(d)
d

∑
e|R/d

µ(e)h(e)
e

+
∑
d|R

fr(d)
∑
e|R/d

µ(e)Ede

= X
∑
d|R

fr(d)h(d)
d

∏
p|R/d

(
1− h(p)

p

)
+
∑
s|R

Es
∑
de=s

fr(d)µ(e)

= H(r)X +
∑
s|R

EsJ(r, s)

by Lemma 4.3, which is equivalent to the assertion of the lemma. �

Lemma 4.7. Let k be a positive integer, and let g1, . . . , gk be strongly
additive functions satisfying 0 ≤ gj(p) ≤ G for all primes p and all 1 ≤
j ≤ k. Then

∑
p1,...,pk∈P

g1(p1) · · · gk(pk)
∑

s|p1···pk

µ2(s)J(p1 · · · pk, s)Es

� µP(1)k
∑

d∈Dk(P)
|Ed|,

where Es and Ed are defined in equation (2.1).

Proof. By Lemma 4.2(c),

|J(p1 · · · pk, s)| ≤
∏

1≤i≤k
pi-s

h(pi)
pi

.
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Since gj(pj)�G 1 for all j,∑
p1,...,pk∈P

g1(p1) · · · gk(pk)
∑

s|p1···pk

J(p1 · · · pk, s)Es

�
k∑
`=0

∑
s=q1···q`≥1
q1<···<q`∈P

|Es|
∑

p1,...,pk∈P
s|p1···pk

∏
1≤i≤k
pi-s

h(pi)
pi

.

At the cost of a constant depending only on k, we can arrange the primes
p1, . . . , pk so that p1 = q1, . . . , p` = q`. Summing the factor h(pi)/pi over
the remaining primes pi for `+ 1 ≤ i ≤ k yields µP(1)k−` � µP(1)k. Each
term |Es| is equal to |Ed| for some integer d ∈ Dk(P), and therefore the
total error term is � µP(1)k

∑
d∈Dk(P) |Ed|, as desired. �

WIth these preliminary calculations out of the way, we may now establish
the main proposition of this section, which will feature prominently in the
proof of Theorem 2.7 in the next section.

Proposition 4.8. Let g1, . . . , gk be strongly additive functions satisfying
0 ≤ gj(p) ≤ G for all primes p and all 1 ≤ j ≤ k. Let FPg be as in
equation (3.2), and let k be a positive integer. If k is even, then

∑
a∈A

k∏
j=1

FPgj (a) = X

(k/2)!
∑
τ∈Tk

k/2∏
j=1

κP(gΥ1(j), gΥ2(j))

+O

(
XKk/2−1 + µP(1)k

∑
d∈Dk(P)

|Ed|
)
.

If k is odd, then

∑
a∈A

k∏
j=1

FPgj (a)� XK(k−1)/2 + µP(1)k
∑

d∈Dk(P)
|Ed|.

Proof. Expanding out the definition,

∑
a∈A

k∏
j=1

FPgj (a) =
∑
a∈A

k∏
j=1

∑
p∈P

g(p)fp(a)

=
∑

p1,...,pk∈P
g1(p1) · · · gk(pk)

∑
a∈A

fp1···pk(a).
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By Lemma 4.6,∑
a∈A

k∏
j=1

FPgj (a)

=
∑

p1,...,pk∈P
g1(p1) · · · gk(pk)

(
H(p1 · · · pk)X+

∑
s|p1···pk

µ2(s)J(p1 · · · pk, s)Es

)

= X
∑

p1,...,pk∈P
H(p1 · · · pk)g1(p1) · · · gk(pk) +O

(
µP(1)k

∑
d∈Dk(P)

|Ed|
)
,

using Lemma 4.7 to obtain the error term. SinceH(p1 · · · pk) vanishes unless
p1 · · · pk is squarefull by Lemma 4.2(a), there are at most k/2 distinct primes
among p1, . . . , pk, and so we can write∑

p1,...,pk∈P
H(p1 · · · pk)g1(p1) · · · gk(pk)

=
∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

+
∑

p1,...,pk∈P
p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk).

The proposition now follows upon appeals to Lemmas 4.4 and 4.5 (and
the observation that the first sum on the right-hand side is empty if k is
odd). �

Corollary 4.9. Under the hypotheses of Theorem 2.7, for any positive
integer k, ∑

a∈A

k∏
j=1

∣∣FPgj (a)
∣∣� {

XKk/2, if k is even,
XK(k−1)/2, if k is odd.

Proof. First, note that if the estimate (2.5) holds, then it holds with δm
replaced throughout by any integer k ≤ δm. Indeed, under the hypotheses
of Theorem 2.7, we have µP(1) ≥ 1

Gµ
P(gj) � K for any 1 ≤ j ≤ k (as in

the deduction of Theorem 2.8). Since Dk(P) ⊆ Dδm(P), we see that

µP(1)k
∑

d∈Dk(P)
|Ed| ≤

1
µP(1)δm−k · µ

P(1)δm
∑

d∈Dδm(P)
|Ed|

� 1
µP(1)δm−k ·XKδm/2−1

� XKk−δm/2−1 ≤ XKk/2−1.
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If k is even, then by Proposition 4.8 and the triangle inequality,

∑
a∈A

k∏
j=1

∣∣FPgj (a)
∣∣ ≤ X

(k/2)!
∑
τ∈Tk

k/2∏
j=1

K +O

(
XKk/2−1 + µP(1)k

∑
d∈Dk(P)

|Ed|
)

� XKk/2 +O

(
XKk/2−1 + µP(1)k

∑
d∈Dk(P)

|Ed|
)
� XKk/2

by equation (2.5). On the other hand, if k is odd, then again by Proposi-
tion 4.8 and equation (2.5),

∑
a∈A

k∏
j=1

∣∣FPgj (a)
∣∣� XK(k−1)/2 + µP(1)k

∑
d∈Dk(P)

|Ed| � XK(k−1)/2,

as desired. �

5. Calculating the moments
We are finally ready to compute the moments, using the technology built

up in prior sections. The reader will observe that the computation ends
up being rather brief, thanks to this earlier work. By equation (3.3) and
Definition 3.2,

Mm =
∑
a∈A

(
Q(FPg1(a) + µP(g1), . . . ,

FPg` (a) + µP(g`))−Q(µP(g1), . . . , µP(g`))
)m

=
∑
a∈A

Rm
(
FPg1(a), . . . , FPg` (a), µP(g1), . . . , µP(g`)

)

=
∑
a∈A

Bm∑
β=1

rmβ

kmβ∏
i=1

FPgv(m,β,i)
(a)

k̃mβ∏
j=1

µP(gw(m,β,j))

=
Bm∑
β=1

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a),(5.1)

where we used equation (3.4) in the middle equality.
We analyze the expression (5.1) to obtain Theorem 2.7, splitting our

work into two cases depending on whether m is even or odd. We remind
the reader that all implied constants may depend on the polynomial Q, the
constant G from the hypotheses of Theorem 2.7, the positive integer m,
and the finite set A.
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Proof of Theorem 2.7 when m is even. Our goal is to show that

Mm = CmXBQ(P)m +O
(
XMδm−(m+1)/2).

We first isolate the terms in the expression (5.1) with khβ = m, the min-
imum possible (see the discussion following Definition 3.2), with the goal
of showing that these terms contribute the main term of Mm. By Proposi-
tion 4.8, we have for these terms

kmβ∏
i=1

FPgv(m,β,i)
(a)

= X

(m/2)!
∑
τ∈Tm

m/2∏
i=1

κP(gv(m,β,Υ1(i)), gv(m,β,Υ2(i)))

+O

(
XKm/2−1 + µP(1)m

∑
d∈Dm(P)

|Ed|
)

= X

(m/2)!
∑
τ∈Tm

m/2∏
i=1

κP(gv(m,β,Υ1(i)), gv(m,β,Υ2(i))) +O
(
XKm/2−1)

since we assume the error bound (2.5) (which, as discussed in the proof of
Corollary 4.9, holds for the smaller integer m since it is assumed to hold
for δm). Therefore

∑
β≤Bm
kmβ=m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)

=
∑
β≤Bm
khβ=m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))

×
(

X

(m/2)!
∑
τ∈Tm

m/2∏
i=1

κP(gv(m,β,Υ1(i)), gv(m,β,Υ2(i))) +O
(
XKm/2−1))

= X

(m/2)!
∑
β≤Bm
kmβ=m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
τ∈Tm

m/2∏
i=1

κP(gv(m,β,Υ1(i)), gv(m,β,Υ2(i)))

+O
(
XM(δ−1)mKm/2−1),(5.2)
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since k̃mβ ≤ δm− kmβ = (δ − 1)m. By Proposition 3.3, where yj has been
replaced by µP(gj) and zij by κP(gi, gj), this main term equals

(5.3) CmX

(∑̀
i=1

∑̀
j=1

Qi
(
µP(g1), . . . , µP(g`)

)
Qj
(
µP(g1),

. . . , µP(g`)
)
κP(gi, gj)

)m/2
= CmX

(
BQ(P)2)m/2

by equation (2.4). As for the error term, since we assume K ≤ GM,

(5.4) XM(δ−1)mKm/2−1 � XMδm−m/2−1.

The remaining terms in the expression (5.1) have m < kmβ ≤ δm. For
these terms,

∑
β≤Bm
kmβ>m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)

�
∑
β≤Bm
kmβ>m

|rmβ|
k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

∣∣FPgv(m,β,i)
(a)
∣∣

�
∑
β≤Bm
kmβ>m

|rmβ|
k̃mβ∏
j=1

µP(gw(m,β,j))XKkmβ/2

by Corollary 4.9 (recalling again that equation (2.5) holds for the integers
kmβ under consideration), giving

∑
β≤Bm
khβ>m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)

� X
∑
β≤Bm
kmβ>m

|rmβ|Mk̃mβKkmβ/2.

Since we assume K ≤ GM, this estimate becomes

(5.5)
∑
β≤Bm
kmβ>m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)� XMδm−(m+1)/2
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since k̃mβ + kmβ
2 = k̃mβ + kmβ −

kmβ
2 ≤ k̃mβ + kmβ − m+1

2 ≤ δm− m+1
2 for

all terms in the sum.
Gathering the results of the calculations (5.2)–(5.5) into the expres-

sion (5.1) yields

Mm = CmXBQ(P)m +O
(
XMδm−(m+1)/2)

as desired. �

A slight modification of the above proof suffices for odd integers m.

Proof of Theorem 2.7 when m is odd. Now, our goal is to show thatMm �
XMδm−(m+1)/2. The estimate (5.5) still holds for those terms in expres-
sion (5.1) with kmβ > m. For the remaining terms with kmβ = m, we use
Corollary 4.9 to write

∑
β≤Bm
kmβ=m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)

� XK(m−1)/2 ∑
β≤Bm
kmβ=m

|rmβ|
k̃mβ∏
j=1

µP(gw(m,β,j))

� XK(m−1)/2Mk̃mβ ≤ XK(m−1)/2M(δ−1)m

as before. Since K ≤ GM, we obtain

∑
β≤Bm
kmβ=m

rmβ

k̃mβ∏
j=1

µP(gw(m,β,j))
∑
a∈A

kmβ∏
i=1

FPgv(m,β,i)
(a)� XMδm−(m+1)/2

as desired. �

6. Examples
We conclude by providing examples of Theorem 1.3 applied to certain

choices of the polynomial Q which may be of independent interest. Ex-
ample 6.1 (which establishes Corollary 1.4) pertains to powers of strongly
additive functions; Example 6.2 (which establishes Corollary 1.5) pertains
to products of strongly additive functions; and Example 6.3 pertains to
linear combinations of strongly additive functions.
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Example 6.1. Let δ be a positive integer and set Q(T ) = T δ, so that
Q′(T ) = δT δ−1. Then, for any strongly additive function g(n) satisfying
the hypotheses of Theorem 1.3, the function g(n)δ satisfies an Erdős–Kac
law with mean AQ(x) = µ(g)δ and variance

BQ(x)2 =
(
Q′(µ(g))

)2
κ(g, g) = δ2µ(g)2δ−2σ2(g).

For a concrete example, if g(n) = ω(n), the number-of-distinct-prime-
divisors function, then ω(n)δ satisfies an Erdős–Kac law with mean
(log logn)δ and variance δ2(log logn)2δ−2; and more generally, the same
holds for Q(g(n)) for any polynomial Q(T ) with nonnegative coefficients
and leading term T δ.

Example 6.2. Let g1(n) and g2(n) be strongly additive functions satisfying
the hypotheses of Theorem 1.3, and set Q(T ) = T1T2, so that ∂Q

∂T1
= T2 and

∂Q
∂T2

= T1. Then the product g1(n)g2(n) satisfies an Erdős–Kac law with
mean AQ(x) = µ(g1)µ(g2) and variance

BQ(x)2 =
2∑
i=1

2∑
j=1

∂Q

∂Ti

(
µ(g1), µ(g2)

) ∂Q
∂Tj

(
µ(g1), µ(g2)

)
κ(gi, gj)

= µ(g1)2σ2(g2) + 2µ(g1)µ(g2)κ(g1, g2) + µ(g2)2σ2(g1).

For example, suppose P1 and P2 are sets of primes of positive relative
densities α and β, such that P1 ∩ P2 has relative density γ in the primes;
and set ωj(n) = #{p | n : p ∈ Pj} for j = 1, 2. Using the definitions (1.3),
it is easy to calculate that

µ(g1) ∼ σ2(g1) ∼ α log log x, µ(g2) ∼ σ2(g2) ∼ β log log x,
κ(g1, g2) ∼ γ log log x.

Therefore ω1(n)ω2(n) satisfies an Erdős–Kac law with mean αβ(log log x)2

and variance αβ(α+2γ+β)(log log x)3. In particular, note that the variance
depends not just on the two additive functions g1 and g2 individually but
also upon the correlations in their values.

More generally, let g1(n), . . . , g`(n) be strongly additive functions sat-
isfying the hypotheses of Theorem 1.3, and set Q(T ) = T1 · · ·T`, so that
∂Q
∂Tj

= (T1 · · ·T`)/Tj for all 1 ≤ j ≤ `. Then the function g1(n) · · · g`(n)
satisfies an Erdős–Kac law with mean AQ(x) = µ(g1) · · ·µ(g`) and variance

BQ(x)2 =
∑̀
i=1

∑̀
j=1

∂Q

∂Ti

(
µ(g1), . . . , µ(g`)

) ∂Q
∂Tj

(
µ(g1), . . . , µ(g`)

)
κ(gi, gj)

=
(
µ(g1) · · ·µ(g`)

)2 ∑
1≤i,j≤`

κ(gi, gj)
µ(gi)µ(gj)

.
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Example 6.3. Again let g1(n) and g2(n) be strongly additive functions
satisfying the hypotheses of Theorem 1.3; this time, set Q(T1, T2) = vT δ1 +
wT δ2 for a positive integer δ and nonnegative real numbers v and w, so that
∂Q
∂T1

= δvT δ−1
1 and ∂Q

∂T2
= δwT δ−1

2 . Then the function vg1(n)δ + wg2(n)δ

satisfies an Erdős–Kac law with mean vµ(g1)δ + wµ(g2)δ and variance

BQ(x)2 =
2∑
i=1

2∑
j=1

∂Q

∂Ti

(
µ(g1), µ(g2)

) ∂Q
∂Tj

(
µ(g1), µ(g2)

)
κ(gi, gj)

= v2δ2µ(g1)2δ−2σ2(g1)

+ 2vwδ2(µ(g1)µ(g2)
)δ−1

κ(g1, g2) + w2δ2µ(g2)2δ−2σ2(g2).
In particular, when δ = 1, the function g(n) = vg1(n) + wg2(n) satisfies

an Erdős–Kac law with mean vµ(g1) + wµ(g2) and variance v2σ2(g1) +
2vwκ(g1, g2) + w2σ2(g2). But notice that g itself is an additive function.
Using the definitions (1.3), it is trivial to check that µ(g) = vµ(g1)+wµ(g2),
and still easy to check that σ2(g) = v2σ2(g1) + 2vwκ(g1, g2) + w2σ2(g2).
Therefore our theorem is self-consistent in this case.
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