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The endomorphism ring of projectives and the
Bernstein centre

par Alexandre PYVOVAROV

Résumé. Soient F un corps local non-archimédien et OF son anneau des
entiers. Soit Ω une composante de Bernstein de la catégorie des représentations
lisses de GLn(F ). Soient (J, λ) un Ω-type de Bushnell–Kutzko et ZΩ le centre
de Bernstein de la composante Ω. Soit σ un facteur direct de IndGLn(OF )

J λ.
Nous commençons par calculer c–IndGLn(F )

GLn(OF )σ⊗ZΩ κ(m), où κ(m) est le corps
résiduel de ZΩ en un idéal maximal m, et m appartient à un ensemble Zariski
dense dans Spec ZΩ.

Ce résultat nous permet ensuite de déduire que l’anneau des endomor-
phismes EndGLn(F )(c–IndGLn(F )

GLn(OF )σ) est isomorphe à ZΩ, si σ apparait avec
multiplicité un dans IndGLn(OF )

J λ.

Abstract. Let F be a local non-archimedean field andOF its ring of integers.
Let Ω be a Bernstein component of the category of smooth representations of
GLn(F ), let (J, λ) be a Bushnell–Kutzko Ω-type, and let ZΩ be the centre of
the Bernstein component Ω. Let σ be a direct summand of IndGLn(OF )

J λ. We
will begin by computing c–IndGLn(F )

GLn(OF )σ ⊗ZΩ κ(m), where κ(m) is the residue
field at maximal ideal m of ZΩ, and the maximal ideal m belongs to a Zariski-
dense set in Spec ZΩ.

This result will allow us to deduce that the endomorphism ring
EndGLn(F )(c–IndGLn(F )

GLn(OF )σ) is isomorphic to ZΩ, when σ appears with multi-
plicity one in IndGLn(OF )

J λ.

1. Introduction
Let G = GLn(F ), where F is a non-archimedean local field and let

E be an algebraically closed field of characteristic zero. We will consider
smooth E-representations of G and of its subgroups. Let Ω be a Bernstein
component of the category of smooth representations of G, let (J, λ) be a
Bushnell–Kutzko Ω-type, such that J is contained in a maximal compact
subgroup K. We refer the reader to notation section for the definitions.
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In [17, Section 6, just above Proposition 2] the authors define irreducible
K-representations σP(λ), where P is partition valued functions with finite
support (cf. [17, Section 2]). One has the decomposition :

(1.1) IndKJ λ =
⊕
P
σP(λ)⊕mP,λ ,

where the summation runs over all partition valued functions with finite
support. The integers mP,λ are finite and we call them multiplicities of
σP(λ)’s.

There is a natural partial ordering, as defined in [17], on the set of par-
tition valued functions. Let Pmax be the maximal partition valued function
and let Pmin the minimal one. Define σmax(λ) := σPmax(λ) and σmin(λ) :=
σPmin(λ). Both σmax(λ) and σmin(λ) occur in IndKJ λ with multiplicity 1
(see Remark 7.3).

The simplest example of a type is (I, 1), where I is Iwahori subgroup of
G and 1 is the trivial representation of I. In this case Ω = [T, 1]G, where
T is the subgroup of diagonal matrices. We will refer to example as the
Iwahori case.

In the Iwahori case, σmin(λ) is st, which is the inflation of Steinberg
representation of GLn(kF ) to K and σmax(λ) is the trivial representation.
In this simplest case, it follows from [11, Theorem 4.1] that the action of
ZΩ on c–IndGK 1 induces a ring isomorphism ZΩ ' EndG(c–IndGK 1). The
isomorphism ZΩ ' EndG(c–IndGK st) is a special case of [13, Corollary 6.1].
It was pointed out to us by an anonymous referee that the case σ = st
can be easily deduced from the case σ = 1 via the Iwahori–Matsumuto
involution (cf. [14, Section 2.2]).

The purpose of this paper is to generalize the isomorphisms above to
other Bernstein components and to other multiplicity one direct summands
of IndKJ λ. In the Iwahori case, σmax(λ) = 1 and σmin(λ) = st are the only
multiplicity free summands of IndKJ λ. However, when the type is semi-
simple there can be more than 2 multiplicity one direct summands of IndKJ λ
(see Remark 7.3).

In order to get such an isomorphism we will study the ZΩ-module
HomG(c–IndGK σP(λ), c–IndGK σP ′(λ)) for any partition valued functions P
and P ′ with finite support.

Before we state precisely our main results we will introduce some more
notation. Recall that K is a maximal compact open subgroup of G con-
taining J . Let pK denote the set of all isomorphism classes of irreducible
representations of K. In order to simplify the notation, the decomposi-
tion (1.1):

IndKJ λ =
⊕
P
σP(λ)⊕mP,λ ,
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will be written as,
(1.2) IndKJ λ =

⊕
σ∈ pK

σ⊕mσ .

The integers mσ are the multiplicities of σ’s in IndKJ λ. It follows that :

(1.3) c–IndGJ λ = c–IndGK(IndKJ λ) =
⊕
σ∈ pK

(c–IndGK σ)⊕mσ .

We will state now our main result:

Theorem 1.1. Let σ1, σ2 ∈ pK with multiplicities mσ1, mσ2 respectively.
Then HomG(c–IndGK σ1, c–IndGK σ2) is a free ZΩ-module of rank mσ1mσ2.

As a corollary of the result above we get:

Corollary 1.2. Let σ ∈ pK, such that mσ = 1. Then the canonical map
ZΩ → EndG(c–IndGK σ) induces a ring isomorphism:

ZΩ ' EndG(c–IndGK σ).

This is the statement of Corollary 7.2.
Let me finish this introduction by saying that the representation-theoretic

results proven here will be used by [15] to establish the Breuil–Schneider
conjecture in many new cases, following the method of [10].

This paper is organised in the following manner. In Section 2 we will
recall some facts about representations of G and prove a few easy lemmas.
Next, in Section 3, we will prove some results about the Bernstein centre.
These results will allow us to study the specialization of a projective gener-
ator at maximal ideals that belong to some dense set. This will be achieved
in Section 4. Then in Sections 5 and 6 we collect some technical results that
will be needed to prove the main result of this paper in Section 7.

Notation. Let G be p-adic reductive group and let E be an algebraically
closed field of characteristic zero. Let R(G) be the category of all smooth
E-representations of G. We denote by iGP : R(M) −→ R(G) the normalized
parabolic induction functor, where P = MN is a parabolic subgroup of
G with Levi subgroup M . Let P be the opposite parabolic with respect
to M . Let J ⊆ K be two compact open subgroups of G and let H be
an open subgroup of G. We use the notation IndKJ : R(J) −→ R(K)
and c–IndGH : R(H) −→ R(G) to denote the induction and the compact
induction functors respectively. The compact induction is not normalized
by modulus character. When π is a smooth representation of G, let π|K be
the restriction of π to K.

The Bernstein decomposition expresses the category R(G) as the prod-
uct of certain indecomposable full subcategories, called Bernstein compo-
nents. These components are parametrized by inertial classes. Let me now
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recall the definition of an inertial class. Let M be a Levi subgroup of some
parabolic subgroup of G and let ρ be an irreducible supercuspidal repre-
sentation of M and consider a set of pairs (M,ρ) as above. We say that
two pairs (M1, ρ1) and (M2, ρ2) are inertially equivalent if and only if there
is g ∈ G and an unramified character χ of M2 such that, M2 = Mg

1 and
ρ2 ' ρg1 ⊗ χ, where M

g
1 := g−1M1g and ρg1(x) = ρ1(gxg−1), ∀ x ∈ Mg

1 .
An equivalence class of (M,ρ) will be denoted [M,ρ]G. The set of all such
equivalence classes will be denoted by B(G).

In order to state the Bernstein decomposition, let me introduce some
further notation. We are given an inertial class Ω := [M,ρ]G, where ρ is a
supercuspidal representation of M and D := [M,ρ]M . To any inertial class
Ω we may associate a full subcategory RΩ(G) of R(G), such that (π, V )
is an object of RΩ(G) if and only if every irreducible G-subquotient π0
of π appears as a composition factor of iGP (ρ ⊗ ω) for ω some unramified
character of M and P some parabolic subgroup of G with Levi factor M .
The category RΩ(G) is called a Bernstein component of R(G). We will say
that a representation π is in Ω if π is an object of RΩ(G). According to [2],
we have a decomposition:

R(G) =
∏

Ω∈B(G)
RΩ(G).

So in order to understand the category R(G), it is enough to restrict our
attention to the components. We may understand those components via
the theory of types, developed by Bushnell and Kutzko. This theory allows
us to parametrize all the irreducible representations of G up to inertial
equivalence using irreducible representations of compact open subgroups
of G.

Let me briefly define Bushnell–Kutzko types. Let J be a compact open
subgroup of G and let λ be an irreducible representation of J . Let K be a
maximal compact open subgroup of G containing J . We say that (J, λ) is
an Ω-type if and only if for every irreducible object (π, V ) of RΩ(G), V is
generated by the λ-isotypical component of V as G-representation.

Let F be a non-archimedean local field, with a finite residue field kF .
Let OF be its complete discrete valuation ring, let p be the maximal ideal
of OF with uniformizer $, and let q = |kF |. In this paper we only consider
the case G = GLn(F ).

For G = GLn(F ), types can be constructed in an explicit manner (cf. [7],
[8] and [9]) for every Bernstein component. Throughout this paper we will
use these types. Moreover, Bushnell and Kutzko have shown that the Hecke
algebra H(G,λ) := H(G, J, λ) := EndG(c–IndGJ λ) is naturally isomorphic
to a tensor product of affine Hecke algebras of type A.
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Let Rλ(G) be the full subcategory of R(G) such that (π, V ) is an object
of Rλ(G) if and only if V is generated by V λ (the λ-isotypical component
of V ) as G-representation.

Moreover every Bernstein component has a description as a category of
modules overH(G,λ). Indeed, for any Ω-type (J, λ), by [8, Theorem 4.2(ii)],
we have a functor:

Mλ : Rλ(G) → H(G,λ)−Mod
π 7→ HomJ(λ, π) = HomG(c–IndGJ λ, π)

which is an equivalence of categories. Since (J, λ) is an Ω-type, we have
RΩ(G) = Rλ(G).

Denote by W the vector space on which the representation λ is realized.
Next, let (qλ,W∨) denote the contragradient of (λ,W ).

Then by [9, (2.6)], the Hecke algebra H(G,λ) := EndG(c–IndGJ λ) can
be identified with the space of compactly supported functions f : G −→
EndE(W∨) such that f(j1.g.j2) = qλ(j1) ◦ f(g) ◦ qλ(j2), with j1, j2 ∈ J and
g ∈ G and the multiplication of two elements f1 and f2 is given by the
convolution:

f1 ∗ f2(g) =
∫
G
f1(x) ◦ f2(x−1g)dx.

For u ∈ EndE(W∨), we write qu ∈ EndE(W ) for the transpose of u with
respect of the canonical pairing between W and W∨. This gives (qλ(j))∨ =
λ(j), for j ∈ J . For f ∈ H(G,λ), define qf ∈ H(G, qλ), by qf(g) = f(g−1)∨,
for all g ∈ G.

Write ZΩ for the centre of category RΩ(G) and ZD for the centre of
category RD(M), which is defined the same way as RΩ(G). Recall that the
centre of a category is the ring of endomorphisms of the identity functor.
For example the centre of the category H(G,λ)−Mod is Z(H(G,λ)), where
Z(H(G,λ)) is the centre of the ring H(G,λ). We will call ZΩ a Bernstein
centre.

Acknowledgments. The results of this paper are a part of the author’s
PhD thesis. The author is tremendously grateful to his advisor Vytautas
Paškūnas for sharing his ideas with the author and for many helpful dis-
cussions. The author also would like to thank the referee for comments and
suggestions, which improved considerably the exposition of this paper.

2. Classical results and commutative algebra
We will start stating a few very useful results and we will introduce more

notation. Recall that Ω := [M,ρ]G, where ρ is a supercuspidal representa-
tion of M and D := [M,ρ]M . Write ZΩ for the centre of category RΩ(G)
and ZD for the centre of category RD(M). Combining together theorem in
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Section VI.4.4 (p. 232) and the first lemma in Section VI.10.3 (p. 311) both
in [16], we get following theorem:
Theorem 2.1. H(G,λ) is a free finitely generated ZD-module.

The following result is then proved in [16, Section VI.10.3, p. 314], just
before the statement of a theorem:
Lemma 2.2.

ZΩ = Z
W (D)
D

where
W (D) =

{
g ∈ G

∣∣∣ g−1Mg = M and [M,ρg]M = D
}
/M.

Since ZD is an E-algebra of finite type we may use the results of [4,
Chapitre 5, §1.9], to get:
Lemma 2.3. ZD is a ZΩ-module(algebra) of finite type.

Let χ be an algebra homomorphism χ : ZΩ → E. Let m = Ker(ZΩ
χ−→ E)

a maximal ideal of ZΩ and κ(m) the residue field which is isomorphic to E.
From now on we will always identify an algebra homomorphism χ : ZΩ → E

and a maximal ideal m = Ker(ZΩ
χ−→ E) of ZΩ.

Lemma 2.4. Let A and B be two E-algebras. Let G be a finite group
acting on A and H another finite group acting on B, so that G×H acts on
A⊗E B. Then the invariants under action of G×H are (A⊗E B)G×H =
(AG)⊗E (BH)
Lemma 2.5. Let A be a commutative E-algebra, which is also a Jacob-
son ring. Let f ∈ A, which is a not a zero divisor in A. Then the set
m-Spec(A[ 1

f ]) is Zariski dense in Spec(A).

Lemma 2.6. Let Z := E[X1, . . . , Xe] and S := ZSe, where the symmetric
group Se acts by permutation of variables, i.e. σ ∈ Se acts by σ.Xi = Xσ(i).
Let si :=

∑
1≤j1<···<ji≤eXj1 . . . Xji be the elementary symmetric polyno-

mial, then S ' E[s1, . . . , se]. Then Z is a free S-module of rank e! with
basis given by monomials Xν := X

ν(1)
1 . . . X

ν(e)
e , such that 0 ≤ ν(i) < i for

1 ≤ i ≤ e. Let ∆ = det(trZ/S(Xµ.Xν))µ,ν and let d =
∏
i<j(Xi − Xj)2.

Then ∆ is some power of d.
Proof. According to [5, IV.§6.1 Theorem 1c)] Z is a free S-module of rank
e!. Let’s first prove that d is irreducible in S. Assume that d = d1d2 =
(−1)e(e−1)/2∏

i 6=j(Xi − Xj) with d1 and d2 both in S and have positive
degree. Let T = {(i, j) | i 6= j}. Since Z is an UFD, then by uniqueness of
factorization we have:

dk = ck
∏

(i,j)∈Tk

(Xi −Xj),
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where k ∈ {1, 2} and ck ∈ E. The subsets Tk of T are such that Tk 6= ∅,
T1 ∪ T2 = T and T1 ∩ T2 = ∅. Since dk ∈ S, then for all σ ∈ Se we have
that σ.dk = dk, then∏

(i,j)∈Tk

(Xσ(i) −Xσ(j)) =
∏

(i,j)∈Tk

(Xi −Xj),

again by uniqueness of factorization in Z, we may identify factors on both
sides. In particular we have that if (i, j) ∈ Tk then for any permutation σ
we have that (σ(i), σ(j)) ∈ Tk. This implies that T ⊆ Tk, a contradiction.

The map f : SpecZ → SpecS induced by an embedding S ↪→ Z is étale
at a point x if and only if it is unramified at x. However the zero locus of
∆, V (∆), is equal to the set of points where the map f is ramified (i.e. is
not étale), by definition of the discriminant. The map f is not étale when
Xi = Xj for i 6= j, this is the zero locus of d. Since d is irreducible in S, it
follows that ∆ is some power of d. �

3. Properties of Bernstein centre
Recall that Ω := [M,ρ]G, where ρ is a supercuspidal representation of

M and D := [M,ρ]M . Our goal is to determine ZD⊗ZΩ κ(m) when m varies
through a dense set of maximal ideals in SpecZΩ, where ZΩ for the centre
of category RΩ(G) and ZD for the centre of category RD(M).

Let’s first describe the action of W (D) on ZD. Let X (M) be the group
of unramified characters of M and X (M)(ρ) = {χ ∈ X (M) | ρ ' ρ⊗ χ}.
Let M◦ be the intersection of the kernels of the characters χ ∈ X (M)
and let T be the intersection of the kernels of the χ ∈ X (M)(ρ). Re-
striction to T induces a bijection X (M)/X (M)(ρ) ' X (T ). Let Irr(D)
be the set of irreducible representations in D. Every such a represen-
tation is of the form ρ ⊗ χ for χ ∈ X (M). Thus we have a bijection
X (M)/X (M)(ρ) ' Irr(D), χ 7→ ρ⊗χ. Composing it with previous bijection
we get a bijection Irr(D) ' X (T ). Now X (T ) is naturally isomorphic to the
set of E-algebra homomorphisms from E[T/M◦] to E. It is explained in [16,
Section V.4.4] that we have an identification ZD ' E[T/M◦], so that the
bijection Irr(D) ' X (T ) induces a natural bijection between Irr(D) and
m-Spec(ZD). The group W (D) acts on Irr(D) by conjugation. For each
w ∈ W (D) let ξw ∈ X (M) be any character such that ρw ' ρ ⊗ ξw. We
will use the same symbol ξw for the restriction of ξw to T . If χ ∈ X (M)
then (ρ⊗ χ)w ' ρ⊗ χw.ξw. Thus the action of W (D) on X (T ) is given by
w.χ = χw.ξw. It is immediate that the induced action on E[T/M◦] ' ZD
is given by w.(tM◦) = ξw(t)−1twM◦.

Lemma 3.1. An E-algebra homomorphism X : ZD → E can be lifted to
an unramified character χ of M , i.e. we have a surjective map:

X (M) � HomE−alg(ZD, E).
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This map has the following description, given an unramified character χ
of M , we can associate to it a E-algebra homomorphism X : ZD → E,
defined as:

X : ZD → E
z 7→ z(χ),

where z(χ) is a scalar by which z acts on one dimensional representation
χ of M .
Proof. By the description of the action of W (D) on ZD, above this lemma,
we have the following isomorphisms:

X (M)/X (M)(ρ) ' X (T ) ' HomE−alg(ZD, E),
hence a surjective map X (M) −→ HomE−alg(ZD, E). �

Let m = Ker(ZΩ
χ−→ E) a maximal ideal of ZΩ and κ(m) the residue field

which is isomorphic to E, because E is algebraically closed.
Lemma 3.2. There is a dense set in m-SpecZΩ of maximal ideals m ∈
m-SpecZΩ, such that:

ZD ⊗ZΩ κ(m) '
|W (D)|∏
k=1

κ(Mi),

where Mi are maximal ideals of ZD above m, and κ(Mi) the residue fields.
Moreover ZD is free over ZΩ of rank |W (D)|.
Proof. Let’s first deal with two particular cases before dealing with general
case.

Supercuspidal case. In this case we haveM = G, then ZD ' ZΩ. Everything
is clear, there is nothing to prove.

Simple type case. Assume now that (J, λ) is a simple type, without loss of
generality we may assume thenM = GLk(F )e and ρ = π⊗· · ·⊗π (e times),
where π is a supercuspidal representation of GLk(F ).

By Theorem (6.6.2) in [7], there is a maximal type (J0, λ0) of GLk(F ), a
field extension Γ of F and a uniquely determined representation Λ of Γ×J0
such that Λ|J0 = λ0 and π = c–IndGLk(F )

Γ×J0
Λ. From Frobenius reciprocity it

follows that there is a Hecke algebra isomorphismH(M,λM ) ' H(J̃M , λ̃M ),
because any g ∈M that intertwines λM lies in J̃M , where J̃M is a subgroup
ofM compact modulo centre ofM such that JM = J̃M ∩K∩M and JM :=
J ∩M . Since J̃M/JM is a free abelian group, H(J̃M , λ̃M ) is commutative,
and we have an isomorphism H(J̃M , λ̃M ) ' E[J̃M/JM ]. Therefore we have:

ZD ' H(M,λM ) ' H(J̃M , λ̃M ) ' E[J̃M/JM ] ' E[(Γ×J0)e/Je0 ]
' E[(Γ×J0/J0)e] ' E[(Γ×/O×Γ )e] ' E[(($Γ)Z)e] ' E[X±1

1 , . . . , X±1
e ],
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where OΓ is the ring of integers of Γ and $Γ an uniformizer. Since ρ =
π ⊗ · · · ⊗ π, it follows from the description action of W (D) on ZD in the
beginning of this section, that the characters ξw are trivial, i.e. ξw = 1
for all w ∈ W (D). Then the group W (D) ' Se acts by permutation of
variables Xi on ZD ' E[X±1

1 , . . . , X±1
e ].

Let Z := E[X1, . . . , Xe] and S := ZSe . Let si :=
∑

1≤j1<···<ji≤eXj1 . . . Xji

be the i-th elementary symmetric polynomial,then S ' E[s1, . . . , se]. It
follows that

ZΩ = Z
W (D)
D ' E[X±1

1 , . . . , X±1
e ]Se

' E[X1, . . . , Xe]Se ⊗E E[X−1
1 , . . . , X−1

e ]Se

' E[s1, . . . , se]⊗E E[s′1, . . . , s′e] ' E[s1, . . . , se, s
′
1, . . . , s

′
e−1s

−1
e ]

' E[s1, . . . , se−1, s
±1
e ],

where s′i are symmetric polynomials in the variable X−1
j . The last iso-

morphism follows from the fact that s′i = se−i/se, for 0 ≤ i ≤ e − 1, and
s′e = s−1

e . After a localization with respect of {sne }n≥0 we see that ZD = Zse
is a free ZΩ = Sse-module of rank |W (D)| = e! with basis given by mono-
mials Xν := X

ν(1)
1 . . . X

ν(e)
e , such that 0 ≤ ν(i) < i for 1 ≤ i ≤ e, by

Lemma 2.6. Let d =
∏
i<j(Xi−Xj)2 ∈ ZΩ. By Lemma 2.6 the discriminant

is some power of d.
When the specialization d(m) := d⊗κ(m) of d at a maximal ideal m is non

zero, then m is of form (s1 − a1, . . . , se − ae), where the a1, . . . , ae are such
that the polynomial f ∈ κ(m)[X] defined by f = Xe +

∑e
k=1(−1)kakXe−k

has e distinct roots, say α1, . . . , αe. Let w ∈ W (D) ' Se, set Mw the
kernel of homomorphism ZD −→ E sending Xk 7→ αw(k). Moreover Mw is
a maximal ideal of ZD above m. We have a natural surjection :

ZD ⊗ZΩ κ(m) �
∏

w∈W (D)
κ(Mw).

Since dimκ(m)(ZD⊗ZΩ κ(m)) = |W (D)|, this surjection is an isomorphism
of E vector spaces by comparing the dimensions. Then ZD ⊗ZΩ κ(m) is a
product of |W (D)| copies of E, since E is assumed to be algebraically
closed.

Moreover, the set S := {m ∈ m-Spec(ZΩ) | d(m) 6= 0} = m-Spec(ZΩ[ 1
d ])

is not empty and Zariski dense, because of the Lemma 2.5.

General case. Now let’s treat the general case, where the type (J, λ) is
semi-simple. We may always assume that M =

∏s
i=1Mi and ρ =

⊗s
i=1 ρi,

where Mi = GLni(F )ei and ρi is a supercuspidal representation of Mi.
Define Gi = GLniei(F ), Ωi = [Mi, ρi]Gi , Di = [Mi, ρi]Mi . Let ĎM be the
unique Levi subgroup of G which contains the NG(M)-stabilizer of the
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inertia class D and is minimal for this property. Section 1.5 in [9] applied
to H(ĎM,λM ) ' ZD gives:

ZD '
s⊗
i=1

ZDi

and

W (D) '
s∏
i=1

W (Di).

The action of W (D) on ZD is such that every W (Di) acts only on ZDi . An
inductive application of Lemma 2.4, to the previous decomposition of ZD
gives:

ZΩ '
s⊗
i=1

ZΩi .

By previous case we have the following non canonical isomorphisms :

ZDi ' E[X±1
1,i , . . . , X

±1
ei,i

],

ZΩi ' E[X±1
1,i , . . . , X

±1
ei,i

]Sei .

We have W (Di) ' Sei and we may assume that Sei acts on E[X±1
1,i , . . . ,

X±1
ei,i

] by permutation, since it is always the case after an appropriate linear
change of variables. Moreover ZDi is free ZΩi-module of rank ei!, and let
dei =

∏
k<l(Xk,i −Xl,i)2.

Then ZD is free ZΩ module of rank |W (D)| and define d =
∏s
i=1 dei . The

proof of general case ends exactly in the same way as in the simple type
case and the set S′ := m-Spec(ZΩ[ 1

d ]) is not empty and Zariski dense, by
Lemma 2.5. �

Lemma 3.3. H(G,λ) is a free and finitely generated ZΩ-module.

Proof. It follows from the proof of Lemma 3.2, that ZD is free ZΩ module
of rank |W (D)|. Finally Theorem 2.1 gives the desired result. �

Remark 3.4. Lemma 3.3 above is essentially the same as Lemma 2.1
in [11].

4. Specialization of a projective generator at maximal ideal of
Bernstein centre

In this section we compute c–IndGJ λ⊗ZΩκ(m) for m ∈ SpecZΩ a maximal
ideal which belongs to some dense set of points in SpecZΩ, where Ω :=
[M,ρ]G, D := [M,ρ]M , and ZΩ for the centre of category RΩ(G). This
result is an improvement of Lemma 1.2 in [11]. Let (J, λ) be a Bushnell–
Kutzko Ω-type, such that J is contained in a maximal compact subgroup
K. The representation c–IndGJ λ is a projective generator of RΩ(G).
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Let χ be any lift of X : ZD → E as in Lemma 3.1. Let now χ = X|ZΩ.
We say that a character χ on ZΩ, obtained in this way, is induced from the
unramified character χ of M .

Once and for all we fix the following notation. For (J, λ) an Ω-type, as
above, there exists a D-type (JM , λM ), such that :

(1) JM = J ∩M and λM = λ|JM .
(2) J has an Iwahori decomposition J ' (J ∩N)(J ∩M)(J ∩N) such

that λ|(J∩N) and λ|(J∩N) are trivial. Here N is unipotent radical
of opposite parabolic subgroup P = MN .

(3) For any parabolic subgroup P with Levi component M , there is an
there is an invertible element in H(G,λ) supported in JzPJ , such
that the element zP is in the centre of M and has the following
properties:
• zP (J ∩N)z−1

P ⊂ J ∩N .
• z−1

P (J ∩N)zP ⊂ J ∩N .
• For any compact open subgroups H1, H2 of N there is an
integer m ≥ 0, such that zmP H1z

−m
P ⊂ H2.

• For any compact open subgroups H2, H2 of N there is an
integer m ≥ 0, such that z−mP H1z

m
P ⊂ H2.

(4) There is a subgroup J̃M of M compact modulo centre of M such
that JM = J̃M ∩K ∩M .

(5) There is an extension λ̃M of λM to J̃M such that ρ = c–IndM
J̃M

λ̃M

(is irreducible supercuspidal) and any g ∈M which intertwines λM
lies in J̃M .

Observe that [9, Theorem 8.2] ensures Conditions 1, 2, 3. Conditions 4
and 5 follow from [8, Section (5.5)]. Now we state and prove the main result
of this section:

Proposition 4.1. Let χ : ZΩ → E be an algebra homomorphism corre-
sponding to a maximal ideal m = Ker(ZΩ

χ−→ E) of ZΩ. Then there is a
Zariski dense set S in Spec(ZΩ) such that:

c–IndGJ λ⊗ZΩ κ(m) ' P (χ)⊕|W (D)|

∀ m ∈ S, where P (χ) := iG
P

(ρ⊗χ) is an irreducible parabolic induction of a
supercuspidal representation of a Levi subgroup of G and χ some character
corresponding to the algebra homomorphism X : ZD → E, as in Lemma 3.1,
such that M = Ker(X) is a maximal ideal of ZD above m.

Proof. According to Section 1.5 in [12]. We have the following isomorphism:

(4.1) iG
P

(c–IndMJM λM ) ' c–IndGJ λ.
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The functor iG
P
is exact, hence:

c–IndGJ λ⊗ZΩ κ(m) ' iG
P

(c–IndMJM λM ⊗ZΩ κ(m))

by the previous isomorphism of representations. Let’s find a decomposition
of c–IndMJM λM ⊗ZΩ κ(m). Indeed

(4.2) c–IndMJM λM = c–IndM
J̃M

c–IndJ̃MJM λM = c–IndM
J̃M

(λ̃M ⊗ c–IndJ̃MJM 1).

Let us now describe the action of ZD. From Frobenius reciprocity follows
a Hecke algebras isomorphism H(M,λM ) ' H(J̃M , λ̃M ) because any g ∈
M that intertwines λM lies in J̃M . Since J̃M/JM is free abelian group,
H(J̃M , λ̃M ) is commutative, and we have an isomorphism H(J̃M , λ̃M ) '
E[J̃M/JM ]. Therefore we have:

ZD ' H(M,λM ) ' H(J̃M , λ̃M ) ' E[J̃M/JM ] ' End
J̃M

(c–IndJ̃MJM 1).

The representation c–IndJ̃MJM 1 is naturally isomorphic to the space of
functions on J̃M which are left invariant by JM . We have the following
canonical isomorphism c–IndJ̃MJM 1 ' E[J̃M/JM ]. This shows that c–IndJ̃MJM 1
is free ZD-module of rank 1.

Since c–IndMJM λM ⊗ZΩ κ(m) ' c–IndMJM λM ⊗ZD (ZD ⊗ZΩ κ(m)), it is
enough to find the decomposition of c–IndMJM λM ⊗ZD κ(Mj) (1 ≤ j ≤
|W (D)|), because of Lemma 3.2. The functor c–IndM

J̃M
is exact, therefore

by equation (4.2):

c–IndMJM λM ⊗ZD κ(Mi) = c–IndM
J̃M

(λ̃M ⊗ (c–IndJ̃MJM 1)⊗ZD κ(Mj)).

Let’s express c–IndJ̃MJM 1⊗ZD κ(Mj) in terms of more suitable data. Let’s
drop the index j temporarily and write M := Mj .

Let now M be a maximal ideal of ZD above some maximal ideal m ∈
SpecZΩ. We may always assume that M =

∏s
i=1Mi and ρ =

⊗s
i=1 ρi,

where Mi = GLni(F )ei and ρi ' πi ⊗ · · · ⊗ πi (ei times) is a supercuspidal
representation of Mi and πi is a supercuspidal representation of GLni(F ).
Define Gi = GLniei(F ), Ωi = [Mi, ρi]Gi , Di = [Mi, ρi]Mi . Then:

ZD ' E[X±1
1,1 , . . . , X

±1
e1,1, . . . , X

±1
1,s , . . . , X

±1
es,s].

Let
m = (s1,i − a1,i, . . . , sei,i − aei,i)1≤i≤s,

where sk,i are elementary symmetric functions in variables X1,i, . . . , Xei,i

and ak,i ∈ E. Then

M = (X1,i − α1,i, . . . , Xei,i − αei,i)1≤i≤s,
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where for each i, α1,i, . . . , αei,i are the ei distinct roots of polynomial
Xei+

∑ei
k=1(−1)kakXei−k. We assumed that the extension E is algebraically

closed, so all those roots lie in E. Let χ := χj , the unramified character
which corresponds to M. Then χ =

⊗s
i=1 ψi, where ψi are unramified char-

acters of Mi = GLni(F )ei , such that ψi =
⊗ei

k=1 ψk,i and if $ denotes the
uniformizer of F and I the identity matrix of GLni(F ), ψk,i($.I) = αk,i.

Since c–IndJ̃MJM 1 is a free ZD-module of rank one, we have an isomorphism
of ZD-modules:

(4.3) c–IndJ̃MJM 1⊗ZD κ(Mj) ' ZD/Ker(Xj) ' Im(Xj)

where Mi = Ker(Xj) and the algebra homomorphism Xj : ZD → E is such
that the unramified character χj of M maps to Xj as in Lemma 3.1. It
follows from previous description of the maximal ideal M := Mj and the
character χj that:

Im(Xj) = Im(χj).

Then from (4.3) follows that the representation c–IndJ̃MJM 1⊗ZD κ(Mj) is one
dimensional and also we have an isomorphism of J̃M -representations:

c–IndJ̃MJM 1⊗ZD κ(Mj) ' χj |J̃M .

Now using projection formula and previous isomorphism we may write:

c–IndM
J̃M

(λ̃M ⊗ (c–IndJ̃MJM 1)⊗ZD κ(Mi))

' c–IndM
J̃M

(λ̃M ⊗ χi|J̃M ) ' ρ⊗ χj ,

because ρ = c–IndM
J̃M

λ̃M . So that we have

(4.4) c–IndMJM λM ⊗ZD κ(Mi) ' ρ⊗ χi.

Using (4.1) and (4.4) we get:

c–IndGJ λ⊗ZΩ κ(m) ' iG
P

(c–IndMJM λM ⊗ZD (ZD ⊗ZΩ κ(m)))

' iG
P

|W (D)|⊕
j=1

c–IndMJM λM ⊗ZD κ(Mj)

 ' |W (D)|⊕
j=1

iG
P

(ρ⊗ χj),

where the maximal ideal m belongs to open dense set S′, defined by S′ :=
m-Spec(ZΩ[ 1

d ]) as in Lemma 3.2.
Let’s now prove that all the iG

P
(ρ⊗χj) are irreducible on the subset S :=

m-Spec(ZΩ[ 1
d∆ ]) of S′, with ∆ :=

∏
k′ 6=k,i′ 6=i(Xk′,i′ − qXk,i)(Xk,i − qXk′,i′),

for all 1 ≤ k, k′ ≤ ei and 1 ≤ i, i′ ≤ s, and q is the cardinality of the residue
field of F . Again by Lemma 2.5 the set S is dense. Let M a maximal ideal
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of ZD above m ∈ S corresponding to χj . With the same notation as above,
we have then:

ρ⊗ χj =
s⊗
i=1

ei⊗
k=1

(πi ⊗ ψk,i).

By definition of the representations πi, there is no integer m such that
πi ' πj ⊗ | det |m(for any i 6= j) since all the αk,i are distinct (for a fixed i)
and αk,iα

−1
k′,i′ 6= q±1(for any k′ 6= k, i′ 6= i). Then the segments ∆k,i =

πi⊗ψk,i are not linked pairwise for any k and i. Then it follows by Zelevinsky
classification [19], that iG

P
(ρ⊗ χ) is irreducible.

We have just proved that if χ is the unramified character which cor-
responds to a maximal ideal M of ZD above m ∈ S, then iG

P
(ρ ⊗ χ) is

irreducible. By construction all the maximal ideals Mi (which all lie above
m ∈ S) are pairwise conjugated by some element w ∈W (D), thus so are the
corresponding characters χi. Then for m ∈ S all iG

P
(ρ⊗ χi) are irreducible.

Let m ∈ S, it follows from Frobenius reciprocity that HomG(iG
P

(ρ⊗ χi),
iG
P

(ρ ⊗ χj)) 6= 0, for all 1 ≤ i ≤ |W (D)| and 1 ≤ j ≤ |W (D)|, because
there is a wi,j ∈ W (D) such that χi = χ

wi,j
j . Then for all 1 ≤ i ≤ |W (D)|,

1 ≤ j ≤ |W (D)|, iG
P

(ρ⊗ χi) ' iGP (ρ⊗ χj), because all these representations
are irreducible on S. Write P (χ) := iG

P
(ρ⊗ χi), for some integer i.

Then on the open dense set S we get :

c–IndGJ λ⊗ZΩ κ(m) ' P (χ)⊕|W (D)|. �

5. Intertwining of representations
In this section we collect some useful lemmas. Recall that Ω := [M,ρ]G,

where ρ is a supercuspidal representation of M , D := [M,ρ]M , ZΩ is the
centre of category RΩ(G), and ZD is the centre of category RD(M).

Lemma 5.1. Let σ be an irreducible K-representation. With the notations
of Proposition 4.1, we have:

HomG(c–IndGK σ, P (χ)) = HomG(c–IndGK σ ⊗ZΩ κ(m), P (χ)),

where P (χ) := iG
P

(ρ ⊗ χ) is an irreducible parabolic induction of a super-
cuspidal representation ρ⊗χ of a Levi subgroup of G and χ some character
corresponding to the algebra homomorphism X : ZD → E, as in Lemma 3.1,
such that M = Ker(X) is a maximal ideal of ZD above m.

Proof. Observe that the maximal ideal m = Ker(ZΩ
χ−→ E) kills P (χ). The

assertion follows. �
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Lemma 5.2. Let σ1 and σ2 be two irreducible K-representations. We have
the following isomorphisms:

HomG(c–IndGK σ1, c–IndGK σ2)⊗ZΩ κ(m)
' HomG(c–IndGK σ1 ⊗ZΩ κ(m), c–IndGK σ2 ⊗ZΩ κ(m))
' HomG(c–IndGK σ1, c–IndGK σ2 ⊗ZΩ κ(m)).

Proof. Since c–IndGK σ is a projective and is also finitely generated as a
G-representation, we have an isomorphism:

HomG(c–IndGK σ,B)⊗ZΩ κ(m) ' HomG(c–IndGK σ,B ⊗ZΩ κ(m)),
for any G-representation B. Indeed if B is a free ZΩ-module, then the
assertion is clear. For general B, take a presentation of B as ZΩ-module
and use the previous case. The other isomorphism is proven the same way
as in the lemma above. �

6. Computation of multiplicities
Recall the decomposition (1.2) of IndKJ λ. Then the multiplicity of an

irreducible K-representation σ appearing in IndKJ λ is given by mσ :=
dimE HomK(IndKJ λ, σ). Recall that pK denotes the set of all isomorphism
classes of irreducible representations of K. Define Iσ := c–IndGK σ. Now we
can deduce the following result from Proposition 4.1:

Corollary 6.1. Let σ ∈ pK, viewed as K-representation, and χ : ZΩ → E a
algebra homomorphism corresponding to maximal ideal m = Ker(ZΩ

χ−→ E)
of ZΩ. Then there is an integer nσ and a Zariski dense set S in Spec(ZΩ)
such that:

c–IndGK σ ⊗ZΩ κ(m) ' P (χ)⊕nσ , ∀ m ∈ S,
where P (χ) := iG

P
(ρ⊗χ) an irreducible parabolic induction of a supercuspi-

dal representation of a Levi subgroup of G and χ some unramified character
corresponding to the algebra homomorphism X : ZD → E, as in Lemma 3.1,
such that M = Ker(X) is a maximal ideal of ZD above m.

Moreover we have the following relations of multiplicities :∑
σ∈ pK

mσnσ = |W (D)|,
∑
σ∈ pK

m2
σ = |W (D)|.

Proof. It follows from decomposition (1.2) and from Proposition 4.1 that:⊕
σ∈ pK

(c–IndGK σ ⊗ZΩ κ(m))⊕mσ ' P (χ)⊕|W (D)|.

Then we also have⊕
σ∈ pK

(Mλ(c–IndGK σ ⊗ZΩ κ(m)))⊕mσ 'Mλ(P (χ))⊕|W (D)|.
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Observe that by Proposition 4.1 the representation P (χ) is irreducible,
in particular is indecomposable. The same observation holds in the cat-
egory of H(G,λ)-modules for Mλ(P (χ)). Moreover the H(G,λ)-module
Mλ(c–IndGK σ⊗ZΩκ(m)) is of finite length hence by [6, §2, n◦5, Theorem 2a)]
it can be written as a direct sum of indecomposable modules Ik(σ):

Mλ(c–IndGK σ ⊗ZΩ κ(m)) =
⊕
k

Ik(σ).

Then, again, by theorem of by Krull–Remak–Schmidt Theorem [6, §2, n◦5,
Theorem 2.b)], the decomposition:⊕

σ∈ pK

⊕
k

Ik(σ)⊕mσ 'Mλ(P (χ))⊕|W (D)|,

into indecomposable sub-modules is unique up to permutation of factors.
This theorem is applicable because all the modules in the direct sum are
of finite length. It follows that by the uniqueness of such a decomposition
there exists an integer nk,σ, such that:

Ik(σ) 'Mλ(P (χ))⊕nk,σ

Then there exists an integer nσ :=
∑
k nk,σ (that may depend on χ as well)

such that:
Mλ(c–IndGK σ ⊗ZΩ κ(m)) 'Mλ(P (χ))⊕nσ .

So the same holds for representations:
c–IndGK σ ⊗ZΩ κ(m) ' P (χ)⊕nσ .

Then by definition of nσ we have:∑
σ∈ pK

mσnσ = |W (D)|.

Let’s compute dimE HomK(IndKJ λ, IndKJ λ) in two different ways. By
restriction induction formula we have

ResKJ IndKJ λ =
⊕

g∈J\K/J
IndKK∩Jg ResJgK∩Jg λg,

where g is a representative of g. Then combining it with Frobenius reci-
procity we get:

HomK(IndKJ λ, IndKJ λ) =
⊕

g∈J\K/J
HomJ∩Jg(λ, λg).

By definition the space HomJ∩Jg(λ, λg) is the intertwining space. Assume
first that (J, λ) is a simple type. In the course of this proof we will use
the same notation from the book [7]. Let Γ = F [β] be a finite extension
of F , which is denoted E in the Chapter 5 of that book. Then accord-
ing to [7, (5.5.11)] g ∈ G intertwines λ if and only if g ∈ JW̃ (B)J . So
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g ∈ K intertwines λ if and only if g ∈ JW̃ (B)J ∩ K = JW0(B)J and
|W0(B)| = e(B|oΓ)! by construction. In simple type case we have then
dimE HomK(IndKJ λ, IndKJ λ) = e(B|oΓ)! = |W (D)|.

In general case we have to deal with semi-simple types. The reference
is [9]. Let ĎM be a unique Levi subgroup of G which contains the NG(M)-
stabilizer of the inertia class D and is minimal for this property. The Levi
subgroup ĎM is the G-stabilizer of a decomposition V =

⊕s
i=1Wi of V ' Fn

as a sum of non-zero subspaces Wi. Set Gi = AutF (Wi). We then have
M =

∏s
i=1Mi and K∩M =

∏s
i=1Ki, whereMi = M∩Gi = GLni(F )ei and

Ki = K ∩Gi. The type (JM , λM ) decomposes as a tensor product of types
(JMi , λMi), each of which admits a Gi-cover (J

ĎMi
, λ

ĎMi
) as in [9, Section 1.4].

We put J
ĎM =

∏s
i=1 JĎMi

and λ
ĎM =

⊗s
i=1 λĎMi

. The main theorem asserts
that (J, λ) is a G-cover of (J

ĎM , λĎM ).
It follows from Corollary 1.6 in [9], that g ∈ G intertwines λ if and only

if it is of the form g = j1mj2, where j1 and j2 are in J and m ∈ ĎM , which
intertwines λ

ĎM . The element m can be written as m = m1 ⊗ · · · ⊗ ms,
where mi ∈ Mi intertwine λĎMi

. Then according to [7, (5.5.11)] mi ∈ Mi

intertwine λ
ĎMi

if and only if m ∈ J
ĎMi
W̃ (Bi)JĎMi

(with analogous notations
to [7, 5.5]). This shows that m ∈ ĎM intertwine λ

ĎM if and only if m ∈
J

ĎM (
∏s
i=1 W̃ (Bi))JĎM .

The decomposition

HomK(IndKJ λ, IndKJ λ) =
⊕

g∈J\K/J
HomJ∩Jg(λ, λg),

where g is a representative of g, shows that

dimE HomK(IndKJ λ, IndKJ λ) = |J \ {g ∈ K|g intertwines λ} /J |
=
∣∣J \ {g∈K ∣∣ g=j1mj2, where j1, j2∈J and m∈ĎM intertwines λ

ĎM

}
/J
∣∣

=
∣∣∣∣∣J \

{
g ∈ K

∣∣∣∣∣ g = j1mj2; j1, j2 ∈ J and m ∈ J
ĎM

(
s∏
i=1

W̃ (Bi)
)
J

ĎM

}
/J

∣∣∣∣∣
=
∣∣∣∣∣J \K ∩

(
JJ

ĎM

(
s∏
i=1

W̃ (Bi)
)
J

ĎMJ

)
/J

∣∣∣∣∣
=
∣∣∣∣∣J \

(
JJ

ĎM

(
s∏
i=1

Ki ∩ W̃ (Bi)
)
J

ĎMJ

)
/J

∣∣∣∣∣
=
∣∣∣∣∣
s∏
i=1

W0(Bi)
∣∣∣∣∣ =

s∏
i=1
|W (Di)| = |W (D)|.

Hence in every case

dimE HomK(IndKJ λ, IndKJ λ) = |W (D)|.
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We have the following decomposition IndKJ λ =
⊕

σ∈ pK
σ⊕mσ , by defini-

tion of multiplicities. Then

dimE HomK(IndKJ λ, IndKJ λ) =
∑
σ∈ pK

m2
σ. �

The rest of this section will be focused on proving that mσ = nσ. Let
Rλ(K) denote the category of smoothK-representations generated by their
λ-isotypic subspace.

Lemma 6.2. The category Rλ(K) is abelian.

Proof. Observe that any smooth K-representation is semi-simple, since K
is compact. Then it is enough to show that a smooth representation of K
is an object of Rλ(K) if and only if all of its irreducible subquotients are
generated by their λ-isotypic subspaces.

An irreducible summand σ of IndKJ λ will be generated by its λ-isotypic
subspace. Indeed

n = dimE HomK(σ, IndKJ λ) = dimE HomJ(σ, λ) = dimE HomJ(λ, σ) 6= 0,
because the restriction of σ to J is semi-simple. Therefore the K-stable
subspace of σ generated by λ⊕n is non zero. So is the whole σ, since
this K-representation is irreducible. If M is any module of H(K,J, λ) :=
EndK(IndKJ λ), then by writing M as a quotient of free module, we deduce
that M ⊗H(K,J,λ) IndKJ λ is a quotient of a direct sum of copies of IndKJ λ.
Thus irreducible subquotients of M ⊗H(K,J,λ) IndKJ λ will be subquotients
of IndKJ λ. But this means that all irreducible subquotients are generated
by the λ-isotypic subspace.

Let now δ any object of Rλ(K). Since λ is a type, observe that M(δ) :=
HomJ(λ, (c–IndGK δ)|J) = HomK(IndKJ λ, (c–IndGK δ)|K) is a non zero
H(G,λ)-module, which can be viewed as H(K,J, λ)-module via restriction.
Moreover all the irreducible subquotients of δ appear in M(δ) ⊗H(K,J,λ)
IndKJ λ. By the second paragraph it follows that all irreducible subquo-
tients of δ are generated by the λ-isotypic subspace. The other direction is
trivial. �

Lemma 6.3. The categories Rλ(K) and H(K,J, λ)−Mod are equivalent,
where H(K,J, λ) := EndK(IndKJ λ).

Proof. This is a consequence of a more general result [1, Section 1 (4.1)]. �

Lemma 6.4. Let σ ∈ pK, where pK is a set of all isomorphism classes of
irreducible K-representations. Write mσ := dimE HomK(σ, IndKJ λ) for its
multiplicity. Then:

mσ = dimE HomG(c–IndGK σ, P (χ)) = nσ.
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Proof. We claim that HomG(c–IndGJ λ, P (χ)) is a free rank one module over
algebra H(K,J, λ) = {f ∈ H(G, J, λ) | supp(f) ⊂ K}, where H(G, J, λ) :=
EndG(c–IndGJ λ). Let’s first deal with a particular case before dealing with
the general case.

Simple type case. Assume that λ is a simple type. It follows from (5.6)
of [7] that there is a support preserving isomorphism of Hecke algebras
H(GΓ, IΓ, 1) ' H(G, J, λ), where Γ is a well defined extension of F (denoted
K in [7]), GΓ = GLe(Γ) with IΓ the Iwahori subgroup of GΓ and KΓ be
a maximal compact subgroup of GΓ. Let M = HomG(c–IndGJ λ, P (χ)) =
HomJ(λ, P (χ)|J) = HomK(IndKJ λ, P (χ)|K), this is an H(G, J, λ)-module.

Notice that when P (χ) = iG
P

(ρ⊗χ) is irreducible, the H(G, J, λ)-module
M is simple. The module M is also naturally an H(GΓ, IΓ, 1)-module, and
corresponds to an irreducible representation M ⊗H(GΓ,IΓ,1) c–IndGΓ

IΓ
1 '

iGΓ
BΓ
χΓ, where χΓ is an unramified character of Borel subgroup BΓ of GΓ,

making iGΓ
BΓ
χΓ irreducible. Notice that M = HomJ(λ, P (χ)|J) does not

depend on the character χ, so that discussion above is always valid.

HomGΓ(c–IndGΓ
IΓ

1, iGΓ
BΓ
χΓ) = HomGΓ(c–IndGΓ

IΓ
1,M ⊗H(GΓ,IΓ,1) c–IndGΓ

IΓ
1)

= M.

According to the description of Hecke algebras to [7, Section (5.6)] the
isomorphism of Hecke algebras t : H(GΓ, IΓ, 1) ' H(G, J, λ) is support pre-
serving, in the sense that supp(tf) = J. supp(f).J , we have also a natural
isomorphism between H(KΓ, IΓ, 1) = {f ∈ H(GΓ, IΓ, 1) | supp(f) ⊂ KΓ}
and H(K,J, λ) = {f ∈ H(G, J, λ) | supp(f) ⊂ K}. Then we have:

HomK(IndKJ λ, P (χ)|K)

= HomG(c–IndGJ λ, P (χ)) = HomGΓ(c–IndGΓ
IΓ

1, iGΓ
BΓ
χΓ)

= HomKΓ(c–IndKΓ
IΓ

1, iKΓ
BΓ∩KΓ

1) = HomKΓ(IndKΓ
IΓ

1, IndKΓ
BΓ∩KΓ

1)

= HomKΓ(IndKΓ
IΓ

1, (IndKΓ
BΓ∩KΓ

1)K1) = HomKΓ(IndKΓ
IΓ

1, IndKΓ
IΓ

1)
= H(KΓ, IΓ, 1) = H(K,J, λ),

where K1 = {g ∈ GΓ | g ≡ 1 mod pΓ}, where pΓ is the maximal ideal in
the ring of integers of Γ.

General case. Let now λ be some general semi-simple type. The second
part of Main Theorem of [9, Section 8] gives a support preserving Hecke
algebra isomorphism j : H(ĎM,λM ) → H(G,λ),where ĎM is a unique Levi
subgroup of G which contains the NG(M)-stabilizer of the inertia class
D and is minimal for this property. Moreover the Section 1.5 of [9] gives
a tensor product decomposition H(ĎM,λM ) = H1 ⊗E · · · ⊗E Hs, where
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Hi = H(Gi, Ji, λi) is an affine Hecke algebras of type A and (Ji, λi) is some
simple type with Gi some general linear group over a p-adic field.

Let now M = HomK(IndKJ λ, P (χ)|K). The same argument as in the
simple type case shows that M is a simple H(G,λ)-module. Then by [6,
§12, Proposition 2]M is a quotient ofM1⊗E · · ·⊗EMs, whereMi is a simple
Hi-module. Since E is algebraically closed we have by [6, §12 Theorem 1a)],
that M1⊗E · · ·⊗EMs is a simple H1⊗E · · ·⊗EHs-module. Then it follows
that M 'M1 ⊗E · · · ⊗E Ms.

Let Ki denote the maximal compact subgroup of Gi and Ai := H(Ki,
Ji, λi). Then by simple type case Mi ' Ai.

Since the isomorphism j above is support preserving, we have a similar
decomposition for H(K,J, λ), namely H(K,J, λ) ' A1⊗E · · · ⊗E As. Then
M 'M1 ⊗E · · · ⊗E Ms ' A1 ⊗E · · · ⊗E As ' H(K,J, λ).

By the discussion above we always have HomK(IndKJ λ, P (χ)|K) =
H(K,J, λ). Let now τ be a subrepresentation of P (χ)|K, generated by the
λ-isotypic subspace of P (χ)|K. Then by the isomorphisms above we have

HomK(IndKJ λ, τ) = HomK(IndKJ λ, P (χ)|K) = H(K,J, λ),

as isomorphisms of H(K,J, λ)-modules. Then by equivalence of categories
(as in Lemma 6.4):

IndKJ λ ' τ ↪→ P (χ)|K,

where the first arrow from the left comes from the discussion above and
the second one is a natural inclusion. Applying HomK(σ, · ) to previous
injection and then taking the dimensions of both sides yields an inequality:

mσ ≤ dimE HomG(c–IndGK σ, P (χ)).

Moreover by Lemma 5.1 we have:

dimE HomG(Iσ, P (χ)) = dimE HomG(Iσ ⊗ZΩ κ(m), P (χ)).

Since by Corollary 6.1 we have Iσ ⊗ZΩ κ(m) ' P (χ)⊕nσ , then

dimE HomG(Iσ, P (χ)) = dimE HomG(Iσ ⊗ZΩ κ(m), P (χ))
= dimE HomG(P (χ)⊕nσ , P (χ)) = nσ.

The inequality mσ ≤ dimE HomG(c–IndGK σ, P (χ)) = nσ is actually an
equality because of the relations∑

σ∈ pK

mσnσ = |W (D)|,
∑
σ∈ pK

m2
σ = |W (D)|,

which were proven in Corollary 6.1. �
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7. Consequences
In this section we will deduce a few results from previous sections and

finally prove that if mσ = 1 then :

ZΩ ' EndG(c–IndGK σ).

Let us denote Iσ := c–IndGK σ, A(σ1, σ2) := HomG(c–IndGK σ1, c–IndGK σ2)
and Aσ := A(σ, σ). We begin with the following result:

Theorem 7.1. Let σ ∈ pK, where pK is the set of all isomorphism classes
of irreducible K-representations. Write mσ := dimE HomK(c–IndKJ λ, σ)
for its multiplicity. Then HomG(c–IndGK σ1, c–IndGK σ2) is a free ZΩ-module
of rank mσ1mσ2, for all σ1, σ2 ∈ pK.

Proof. Recall the decomposition (1.3) :

c–IndGJ λ =
⊕
σ∈ pK

(c–IndGK σ)⊕mσ ,

so that:
H(G,λ) ' EndG(c–IndGJ λ) =

∏
σ1,σ2∈ pK

HomG(c–IndGK σ1, c–IndGK σ2)mσ1mσ2 .

Moreover the action of ZΩ onA(σ1, σ2) by multiplication, makesA(σ1, σ2)
into a sub-ZΩ-module of H(G,λ), via the previous decomposition. Let’s
prove that A(σ1, σ2) is also a locally free finitely generated ZΩ-module.

By the decomposition of H(G,λ), A(σ1, σ2) is also a direct summand
of H(G,λ). Moreover by Lemma 3.3, H(G,λ) is a free ZΩ-module, and
therefore A(σ1, σ2) is a projective ZΩ-module. Let m be a maximal ideal of
ZΩ and let dm be the rank of (A(σ1, σ2))m. Then:

dm = dimE(A(σ1, σ2)m ⊗(ZΩ)m κ(m))
= dimE(A(σ1, σ2)⊗ZΩ (ZΩ)m ⊗(ZΩ)m κ(m))
= dimE A(σ1, σ2)⊗ZΩ κ(m)

(recall that κ(m) ' E). We will prove now that the local rank is constant
on a dense set of maximal ideals.

Let i ∈ {1, 2}. Choose now m = Ker(ZΩ
χ−→ E) ∈ S (see Proposition 4.1

for definition of the set S). By Corollary 6.1 there is an integer nσi such
that:

Iσi ⊗ZΩ κ(m) ' P (χ)⊕nσi .
Then

dimE HomG(Iσi , P (χ)) = dimE HomG(Iσi ⊗ZΩ κ(m), P (χ))
= dimE HomG(P (χ)⊕nσi , P (χ)) = nσi .
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By Lemma 6.4 we have:
mσi = dimE HomG(Iσi , P (χ)) = nσi .

Then

HomG(Iσ1 ⊗ZΩ κ(m), Iσ2 ⊗ZΩ κ(m)) ' HomG(P (χ)⊕mσ1 , P (χ)⊕mσ2 )
' EndG(P (χ))mσ1mσ2 ' (E)mσ1mσ2 ,

since by Schur’s lemma EndG(P (χ)) = E. Finally by Lemma 5.2

dm = dimE A(σ1, σ2)⊗ZΩ κ(m)
= dimE HomG(Iσ1 ⊗ZΩ κ(m), Iσ2 ⊗ZΩ κ(m)) = mσ1mσ2 .

This proves that dm = mσ1mσ2 , ∀ m ∈ S. Moreover this equality is true
for all m since m 7→ dm is locally constant function ([3, Chapitre 2 §5.2
Théorème 1c)]) and S is a dense set. The main result of [18] allows us to
conclude. �

Now we deduce the result announced in the introduction of this paper:

Corollary 7.2. Let σ ∈ pK, such that mσ = 1. Then the canonical map
ZΩ → EndG(c–IndGK σ) induces a ring isomorphism:

ZΩ ' EndG(c–IndGK σ).
Remark 7.3. In the Iwahori case 1 and st are multiplicity free direct
summands of IndKI 1. When the type (J, λ) is simple σmax(λ) and σmin(λ)
are also multiplicity free summands of IndKJ λ. Indeed, in this case Ω =
[GLr(F )e, ω ⊗ · · · ⊗ ω]G where the tensor product ρ := ω ⊗ · · · ⊗ ω is
taken e times and ω is a supercuspidal representation of GLr(F ). Accord-
ing to [7, (5.6)] there is a support preserving isomorphism of Hecke alge-
brasH(GL, IL, 1) ' H(G, J, λ), where L is an extension of F (denoted byK
in [7]), GL = GLe(L) with IL the standard Iwahori subgroup of GL, and let
KL be the maximal compact subgroup of GL. Then we have an equivalence
of categories Rλ(G) ' H(G,λ) −Mod ' H(GL, IL, 1) −Mod ' R1(GL),
which induces an equivalence of categories Rλ(K) ' R1(KL), sending
IndKJ λ to IndKLIL 1, σmax(λ) to 1, σmin(λ) to st, and similarly for all the
other direct summands.

Assume now that the type (J, λ) is semi-simple [M,ρ]G-type and is a
cover of (J1× · · ·× Jr, λ1⊗ · · ·⊗λr), where the types (Ji, λi) are all simple
and distinct. Let P = MN be a parabolic subgroup of G. Then according to
the end of Section 6 in [17], the (K∩N)-coinvariants of restriction to K∩P
of theK-representation σ := σP(λ) are (σ|K∩P )(K∩N) ' σ1⊗· · ·⊗σs where
σi := σPi(λi). It follows that if for each i, σi = σmax(λi) or σi = σmin(λi),
then mσ := dimE HomK(IndKJ λ, σ) = 1. In this case there will be at least
2r multiplicity free direct summands of IndKJ λ.
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