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On the cyclic torsion of elliptic curves over cubic
number fields (II)

par Jian WANG

Résumé. Le résultat de Merel sur la forme forte de la conjecture de borne
uniforme a mis en valeur la classification des parties de torsion des groupes de
Mordell–Weil des courbes elliptiques définies sur les corps de nombres de degré
fixé d. Dans cet article, nous étudions les sous-groupes de torsion cycliques
des courbes elliptiques sur les corps de nombres cubiques. Pour N = 49, 40, 25
ou 22, nous montrons que Z/NZ n’est pas un sous-groupe de E(K)tor pour
toute courbe elliptique E sur un corps de nombres cubique K.

Abstract. Merel’s result on the strong uniform boundedness conjecture
made it meaningful to classify the torsion part of the Mordell–Weil groups of
all elliptic curves defined over number fields of fixed degree d. In this paper,
we discuss the cyclic torsion subgroup of elliptic curves over cubic number
fields. For N = 49, 40, 25 or 22, we show that Z/NZ is not a subgroup of
E(K)tor for any elliptic curve E over a cubic number field K.

1. Introduction
In 1996, Merel [16] finally proved the strong uniform boundedness con-

jecture for elliptic curves over number fields.

Theorem 1.1 (Merel). For every positive integer d, there exists an integer
Bd such that for every number field K of degree d and every elliptic curve
E over K, we always have

|E(K)tor| ≤ Bd
Merel’s result made it meaningful to classify the torsion part of the

Mordell–Weil groups of all elliptic curves defined over number fields of
fixed degree d. The case d = 1 was solved by Mazur [15] and Kubert [13].
The case d = 2 was solved by Kamienny [9], Kenku and Momose [12].

In 2016, Derickx and the group of Etropolski, Morrow and Zureick-Brown
each announced a solution of the case d = 3 [4], but there is still no publicly
available preprint until April 2019. In view of the work of Parent [20, 21],
Jeon–Kim–Schweizer [8] and Najman [17], we conjectured (see [27]) that
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Z/NZ is not a cyclic torsion subgroup of the Mordell–Weil group of any
elliptic curve over a cubic number field for 24 values of N :

22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40,
42, 45, 49, 55, 63, 65, 77, 91, 121, 143, 169.

In [27], six (N = 55, 65, 77, 91, 143, 169) of the above values were ruled
out using refinements of a criterion originally due to Kamienny. In this
paper, we rule out four further values. Namely we obtain the following:

Theorem 1.2. If N = 49, 40, 25 or 22, then Z/NZ is not a subgroup of
E(K)tor for any elliptic curve E over a cubic number field K.

Acknowledgments. We thank Sheldon Kamienny for valuable ideas and
insightful comments. We thank the anonymous referee for helpful comments
and suggestions.

2. Preliminaries
In this section, we omit the background materials which were covered in

Section 2 of [27]. Readers who are interested may switch there.
Let N be a positive integer. Let X1(N) (resp. X0(N)) be the modular

curve defined over Q associated to the congruence subgroup Γ1(N) (resp.
Γ0(N)). We denote by Y1(N) = X1(N)\{cusps}, Y0(N) = X0(N)\{cusps}
the corresponding affine curves. Denote by J1(N) (resp. J0(N)) the Jaco-
bian of X1(N) (resp. X0(N)).

For a modular curve X, let X(d) be the d-th symmetric power of X. Sup-
pose K is a number field of degree d over Q and x ∈ X(K). Let x1, . . . , xd
be the images of x under the distinct embeddings τi : K ↪→ C, 1 ≤ i ≤ d.
Define

Φ : X(d) −→ JX

by Φ(P1 + · · ·+Pd) = [P1 + · · ·+Pd− d∞] where JX is the Jacobian of X,
and [ · ] denotes the divisor class. The following lemma of Frey [5] plays an
important role in Lemma 3.5.

Lemma 2.1 (Frey). Let K be a number field. If Φ|X(d)(K) is not injective,
then there is a K-rational covering π : X −→ P1

K of degree ≤ d.

For a modular curve X over C, X is called d-gonal if there exists a finite
C-morphism π : X −→ P1

C of degree d. The smallest possible d is called
the C-gonality of X, denoted by GonC(X). Since the cusp at infinity is a
rational point, X1(N) is 1-gonal if and only if N is among the eleven values
N = 1−10, 12 with genus 0. The complete lists of 2-gonal and 3-gonal ones
were determined by Ishii–Momose [7] and Jeon–Kim–Schweizer [8].
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Proposition 2.2 (Ishii–Momose). The modular curve X1(N) is 2-gonal if
and only if N is one of the following:

N = 1− 10, 12 (g = 0);
N = 11, 14, 15 (g = 1);
N = 13, 16, 18 (g = 2).

Proposition 2.3 (Jeon–Kim–Schweizer). The modular curve X1(N) is 3-
gonal if and only if N is one of the following:

N = 1− 10, 12 (g = 0);
N = 11, 14, 15 (g = 1);
N = 13, 16, 18 (g = 2);
N = 20 (g = 3).

Any noncuspidal point of X1(N) is represented by (E,±P ), where E is
an elliptic curve and P ∈ E is a point of order N . Any noncuspidal point
of X0(N) is represented by (E,C), where E is an elliptic curve and C ⊂ E
is a cyclic subgroup of order N . The map π : X1(N) −→ X0(N) sends
(E,±P ) to (E, 〈P 〉), where 〈P 〉 is the cyclic subgroup generated by P .

Let p be a prime such that p - N . Igusa’s theorem [6] says that the
modular curves X1(N) and X0(N) have good reduction at prime p. The
following theorem of Serre and Milne says that reducing the modular curve
is compatible with reducing the modular interpretation.

Theorem 2.4 (Serre–Milne [19, Theorem 1]). Any point of Y1(N) or
Y0(N), rational over a field K (of characteristic not dividing N), is rep-
resented by a K-rational pair (i.e. E is defined over K, and P is rational
over K, or C is a group rational over K), and conversely.

Let K be a number field with ring of integers OK , ℘ ⊂ OK a prime ideal
lying above p, k = Fq = OK/℘ its residue field. Let E be an elliptic curve
over K and P ∈ E(K) a point of order N . Let Ẽ be the fibre over k of the
Néron model of E, and let P̃ ∈ Ẽ(k) be the reduction of P . The following
theorem (see, for instance, [1, §7.3 Proposition 3]) shows that P̃ has order
N when p - N .

Theorem 2.5. Let m be a positive integer relatively prime to char(k).
Then the reduction map

E(K)[m] −→ Ẽ(k)

is injective.
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Let k = Fq be the finite field with q = pn elements. Let E/k be an elliptic
curve over k. Let |E(k)| be the number of points of E over k. Then Hasse’s
theorem states that

||E(k)| − q − 1| ≤ 2√q
i.e.

(1−
√
pn)2 ≤ |E(k)| ≤ (1 +

√
pn)2

Let t = q+1−|E(k)|, E is called ordinary if (t, q) = 1, otherwise it is called
supersingular. In the range proposed by Hasse’s theorem, all the ordinary t
appear, while the supersingular t only appears in restricted case. This was
determined by Waterhouse [28, Theorem 4.1]:

Proposition 2.6 (Waterhouse). The isogeny classes of elliptic curves over
k are in one-to-one correspondence with the rational integers t having |t| ≤
2√q and satisfying one of the following conditions:

(1) (t, p) = 1;
(2) If n is even: t = ±2√q;
(3) If n is even and p 6≡ 1 mod 3: t = ±√q;
(4) If n is odd and p = 2 or 3: t = ±p

n+1
2 ;

(5) If either (i) n is odd or (ii) n is even and p 6≡ 1 mod 4: t = 0.

3. Method
The following Theorem states that the Jacobian J1(N) decomposes to a

direct sum of modular abelian varieties.

Theorem 3.1. [2, Theorem 6.6.6] The Jacobian J1(N) is isogenous to a
direct sum of abelian varieties (over Q) associated to equavalence classes of
newforms

J1(N) −→
⊕
f

A
mf

f

with f(τ) =
∑∞
n=1 an(f)e2πinτ newforms of level dividing N .

The L-series L(Af , s) of Af coincides, up to a finite number of Euler
factors, with the product∏

σ

L(fσ, s) =
∏
σ

∞∑
n=1

aσnn
−s

where σ runs through embeddings σ : Kf ↪−→ C with Kf = Q({an}) the
number field of f (See [23, §7.5]). The following proposition is a special
case of Corollary 14.3 in Kato [10]:

Proposition 3.2. Let A be an abelian variety over Q such that there is a
surjective homomorphism J1(N) −→ A for some N ≥ 1. If L(A, 1) 6= 0,
then A(Q) is finite.
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The decomposition of J1(N) and the non-vanishing of the L-series at
s = 1 of modular abelian varieties can be calculated in Magma [26]. If
L(Af , 1) 6= 0 for all Af , then we know Af (Q) is finite for all Af , therefore
J1(N)/Q is finite. For the N ≤ 65 in the list in [27], Table 3.1 is the result of
calculations in Magma. The second column t is the number of non-isogenous
modular abelian varieties in the decompositon J1(N) =

⊕t
i=1A

mi
i . The

third column list the dimension di and multiplicity mi of each Ai (we omit
mi if mi = 1). The fourth column verifies non-vanishing of L-series at 1 (a
mark T means L(Ai, 1) 6= 0 is verified, otherwise we place a mark F).

The results in Table 3.1 verifies that J1(N)(Q) is finite for the first 17
values (N ≤ 55) in the list of Section 1. For N = 65, 63, we don’t know
whether J1(N)(Q) is finite or not since we fail to verify the non-vanishing
at 1 of the L-series of one of its quotients.

Table 3.1. Decompostion of J1(N)

N t di(mi) L(Ai, 1) 6= 0
49 5 1, 48, 6, 12, 2 T, T, T, T, T
25 2 8, 4 T, T
27 2 1, 12 T, T
32 4 1, 4, 8, 2(2) T, T, T, T
65 19 1, 2, 2, 6, 20, 20, 8, 2(2), 8, F , T, T, T, T, T, T, T, T,

2, 8, 2, 8, 4, 4, 12, 6, 2, 2 T, T, T, T, T, T, T, T, T, T
39 10 1, 2, 4, 8, 2, 2(2), 4, 2, 4, 2 T, T, T, T, T, T, T, T, T, T
26 5 1, 1, 2(2), 2, 2 T, T, T, T, T
55 10 1, 2, 1(2), 4, 32, 8, 8, 16, 4, 4 T, T, T, T, T, T, T, T, T, T
33 6 1, 1(2), 8, 4, 4, 2 T, T, T, T, T, T
22 2 1(2), 4 T, T
35 8 1, 2, 2, 4, 4, 4, 4, 4 T, T, T, T, T, T, T, T
63 20 1, 2, 1(2), 6, 6, 2, 10, 4, 2(2), 2, T, T, T, T, T, T, T, T, T,F

10, 2, 2, 2(2), 2, 10, 2, 10, 12, 4 T, T, T, T, T, T, T, T, T, T
28 4 1(2), 4, 2, 2 T, T, T, T
45 8 1, 1(2), 2, 6, 16, 4, 2, 8 T, T, T, T, T, T, T, T
30 4 1, 1(2), 4, 2 T, T, T, T
40 7 1, 1(2), 4, 2(2), 8, 2, 4 T, T, T, T, T, T, T
36 5 1, 8, 2, 2(2), 2 T, T, T, T, T
24 3 1, 2, 2 T, T, T

The famous specialization lemma is an immediate consequence of the
classification of Oort–Tate [25] on finite flat group schemes of rank p (this
result was generalized to finite flat group schemes of type (p, . . . , p) by
Raynaud [22]). If the group scheme is contained in an abelian variety, as
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we stated in the following, the specialization lemma follows from elemen-
tary properties of formal Lie groups (see, for example, the Appendix of
Katz [11]).

Lemma 3.3 (Specialization Lemma). Let K be a number field. Let ℘ ⊂ OK
be a prime above p. Let A/K be an abelian variety. Suppose the ramification
index e℘(K/Q) < p− 1. Then the reduction map

Ψ : A(K)tor −→ A(Fp)
is injective.

In the proof of Lemma 3.5, we also use a theorem of Manin [14] and
Drinfeld [3].

Theorem 3.4 (Manin–Drinfeld). Let Γ ⊂ SL2(Z)/(±1) be a congruence
subgroup. x, y ∈ P1(Q) and x, y the images of x and y respectively, on H/Γ.
Then the class of divisors (x)− (y) on curve H/Γ has finite order.

Lemma 3.5. SupposeN > 4 such that GonC(X1(N)) > d, J1(N)(Q) is
finite, p > 2 is a prime not dividing N . Let K be a number field of degree
d over Q and ℘ a prime of K over p. Let E/K be an elliptic curve with a
K-rational point P of order N , i.e. x = (E,±P ) ∈ Y1(N)(K). Then E has
good reduction at ℘.

Proof. Suppose E has additive reduction at ℘, then Ẽ(k)0 ∼= Ga/k with
|Ga/k| = pi, i ≤ d and Ẽ(k)/Ẽ(k)0 ∼= G with |G| ≤ 4 (this comes from the
Kodaira–Néron classification of special fibers on Néron models of elliptic
curves. see for example [24, §IV.8]). Since P̃ is a k-rational point of order
N in Ẽ, then N divides |Ẽ(k)| = |Ga/k||G|, which is impossible under our
assumption.

Suppose E has multiplicative reduction at ℘, i.e. x specializes to a cusp
of X̃1(N). Recall the notation of τi and xi, 1 ≤ i ≤ d, in Section 2. Then
τi(K) is also a cubic field with prime ideal τi(℘) over p and residue field
ki = k. And τi(E) also has multiplicative reduction at τi(℘). This means
all the images x1, . . . , xd of x specialize to cusps of X̃1(N). Let c1, . . . , cd
be the cusps such that

xi ⊗ Fp = ci ⊗ Fp, 1 ≤ i ≤ d
We know all the cusps of X1(N) are defined over Q(ζN ) [18]. Let ℘′ be

a prime in Q(ζN ) over p. We also know p ramifies in Q(ζN ) if and only
if p|N . So e℘′(Q(ζN )/Q) = 1 under our assumption p - N . Therefore by
Lemma 3.3, the specialization map

Ψ : J1(N)(Q(ζN ))tor −→ J1(N)(Fp)
is injective.
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Since GonC(X1(N)) > d, then by Lemma 2.1, the map

Φ : X1(N)(d)(Q(ζN )) −→ J1(N)(Q(ζN ))

is injective.
We know x1 + · · · + xd is Q-rational and J1(N)(Q) is finite, so [x1 +

· · ·+xd−d∞] is in J1(N)(Q(ζN ))tor. By Theorem 3.4, the difference of two
cusps of X1(N) has finite order in J1(N). So [c1 + · · ·+ cd − d∞] is also in
J1(N)(Q(ζN ))tor. Therefore Ψ◦Φ(x1+· · ·+xd) = Ψ◦Φ(c1+· · ·+cd) implies
x1 + · · ·+ xd = c1 + · · ·+ cd since Ψ ◦Φ is injective. This is a contradiction
because we assume x is a noncuspidal point.

Therefore E has good reduction at ℘. �

4. Proof of Theorem 1.2
If N = 49, 40, 25 or 22, as is seen in Table 3.1, J1(N)(Q) is finite. By

Proposition 2.2 and 2.3, we know GonC(X1(N)) > 3. Let K be a cubic field
and ℘ a prime ofK over 3. Suppose x = (E,±P ) ∈ Y1(N)(K). Therefore by
Lemma 3.5, E has good reduction at ℘. By Theorem 2.5, the reduction P̃
of P is a k-rational point of order N in the elliptic curve Ẽ over k = OK/℘.

In the case N = 49 or 40, Ẽ(k) cannot have a point of order N since
N > (1 +

√
33)2 ≈ 38.4. Now consider the case N = 25 or 22. If k = F3

or F32 , then Ẽ(k) cannot have a point of order N since N > (1 +
√

32)2.
If k = F33 , suppose Ẽ(k) has a point of order N , then Ẽ(k) ∼= Z/NZ since
Nm > (1 +

√
33)2 for any m > 1. But by Theorem 2.6, |Ẽ(k)| 6= N (t = 3

for N = 25, t = 6 for N = 22). Thus, in any of the four cases, we have a
contradiction. So Z/NZ is not a subgroup of E(K)tor.
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